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under perturbed better-response dynamics (BRD). A social choice function (SCF) is
implementable in stochastically stable strategies of perturbed BRD whenever the only
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outcome prescribed by the SCF. For uniform mistakes, we show that any e-secure and
strongly efficient SCF is implementable when there are at least five agents. Extensions
to incomplete information environments are also obtained.
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1 Introduction

This is a companion paper to Cabrales and Serrano (2010), referred to as CS from
now on." As in that paper, we continue to study the implementation problem under
a plausible class of learning processes, that of better-response dynamics (BRD) and
perturbations thereof. Thus, we postulate a behavioral assumption by which agents
(or generations of agents) interact myopically within a given mechanism, and adjust
their actions in the direction of better-responses. A first criterion for successful imple-
mentation is the convergence of the better-response process to a rest point or to a set
of rest points. When the outcome of a social choice function (SCF) is the only limit of
the BRD in a mechanism for any allowed environment, we shall say that the SCF is
implementable in recurrent strategies of BRD. CS provides necessary and sufficient
conditions for implementability in this sense, among which the most salient condition
is quasimonotonicity, a variant of Maskin monotonicity.

Those results on recurrent implementation in BRD are obtained for a general class
of preferences and will stand for any perturbed process. The latter means that, if one
were to perturb the BRD via mistakes (by allowing agents not to use a better response
sometimes), an SCF that is implementable in recurrent strategies would also be im-
plementable in stochastically stable strategies of any perturbation of BRD. That is,
the outcomes prescribed by the SCF are the states of minimum stochastic potential
(see, e.g., Young (1998, Chapter 3)), for any perturbed process. Therefore, quasimo-
notonicity is identified as the key condition to essentially characterize very robust
implementation with respect to myopic BRD processes. In this way, these conclu-
sions are immune to the Bergin and Lipman (1996) critique of uniqueness results in
stochastic evolutionary implementation.

The current paper considers how to obtain implementability results in these contexts
once one moves beyond quasimonotonicity. Since implementability in recurrent strat-
egies of BRD will not be possible, given the necessity of that condition, it follows that
the permissive results we describe here must rely on a different class of dynamics, such
as certain perturbations of BRD. Specifically, strengthening the assumptions on pref-
erences and mistakes processes, we show that there are mechanisms for evolutionary
implementation under relatively permissive conditions on SCFs.

We present here a result that uses uniform mutations or “mistakes” in the BRD
process.” It states that, under uniform mistakes (“all mistakes are equally likely”) and

' To avoid obvious repetitions here, we refer to CS for an extensive literature review.

2In  our working paper version (available at http://www.eco.uc3m.es/~acabrales/research/
CS-stochimple-2.pdf) we also show that, under a variant of the “more serious mistakes are less
likely” assumption, any e-secure SCF (a version of the NWA condition found in CS formulated for
economic environments) is implementable in stochastically stable strategies of the corresponding perturbed
BRD process if there are at least three agents.
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an assumption on diversity of preferences, any Pareto efficient and e-secure SCF can
be reached if there are at least five agents in the environment; if the required preference
diversity happens near the zero bundle, the Pareto assumption can be dispensed with
altogether.

The findings in this paper, vis-d-vis those in CS, should not be interpreted as
“on-the-one-hand, on-the-other-hand” type of results. We formalize a genuine tradeoff
for the social planner. If the SCF he wishes to implement satisfies quasimonotonic-
ity, he knows that he has an evolutionarily robust mechanism for implementation at
his disposal. If not, there exist mechanisms that are robust under evolution, but more
requirements are needed from other fundamentals of the problem. In addition, sto-
chastically stable outcomes may require a very long time for convergence (see e.g.
Ellison 2000). Hence a high degree of patience on the attainment of social goals is
required for the social planner and society as a whole. Thus, unlike what some of the
previous implementation literature has suggested, there is no “free lunch” in terms of
implementability.

Our main insights already described are confirmed in environments with incomplete
information, and some others are obtained therein. First, incentive compatibility arises
as a necessary condition for stable implementation in our sense, whatever the pertur-
bation one wishes to use, including no perturbation at all, of interim BRD. As shown
in CS, if one wishes to implement in recurrent strategies, faithful to the robustness
line of thinking enunciated above, the condition of Bayesian quasimonotonicity is also
necessary. Moreover, that paper shows that incentive compatibility, Bayesian quasimo-
notonicity and e-security are also sufficient for implementation in recurrent strategies
of BRD processes when there are at least three agents. In contrast, we show here that
under weak preference diversity in the environment, the condition of Bayesian quasi-
monotonicity can be entirely dropped. This can be done if the planner is satisfied with
implementation in stochastically stable strategies under uniform mistakes, and if there
are at least five agents. Thus, we find the same tradeoff described earlier: evolutionary
implementation results more permissive than those relying on the quasimonotonicity
conditions are possible, but they come at a cost in terms of their robustness.

2 Preliminaries

Let N = {1, ..., n} be a set of agents. For simplicity, we concentrate on economic
environments. Let agent i’s consumption set be a finite set, X; C ]RZJr (where we
assume 0 € X;, foralli € N). One can specify that each agent holds initially the bun-
dle w; € X; with > ;. w; = w (private ownership economies), or simply that there is
an aggregate endowment of goods w (distribution economies). The set of alternatives
is the set of allocations:

Z = 1 (xi)ieN GHXi : Zwi <w

ieN

Let 60 = (6;);en be a preference profile, and ® be the set of allowable preference pro-
files. For now, we shall describe environments with complete information. (Section 4
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will extend the analysis to incomplete information environments.) We make the fol-
lowing assumptions on preferences:

(1) No consumption externalities: 6; : X; x X; +— X;, that is, an agent’s preference
relation depends on the bundle of goods that he consumes, and not on other agents’
bundles.

(2) Strictly increasing preference: For all i and for all z; € X;, ify; > x;, v >?i Ti.
Note how this implies that O is the worst bundle for every agent.

3

A social choice function (SCF) assigns an outcome to each 6 € ®. We shall denote
an SCF by f, and thus, f : ® — Z.

A mechanism G = ((M;);en, g), where M; is agent i’s (finite) message set, and
g [liey Mi — Z is the outcome function. A Nash equilibrium of the mechanism in
state 0 is a profile of messages m™ such that for every i € N, g(m™) z? g(m;i, m* )
for all m; # m}. A strict Nash equilibrium is a Nash equilibrium in which all these
inequalities are strict. Given a profile m € [ [,y M;, agent j’s (weak) better-response
to m is any m’/ such that g(mfj, m—j) 5? g(m).

We concentrate on the following class of SCFs. An SCF f is said to be e-secure if
there exists ¢ > 0 such that for each 6, and foreachi € N, f;(0) > (e,...,&) > 0.

The condition of e-security amounts to establishing a minimum threshold of living
standards in the consumption of all commodities. We shall think of ¢ as being a fairly
small number. Then, one could easily justify the property on normative grounds.

Next, we turn to dynamics, the central approach in our paper. The mechanism will
be played simultaneously each period by myopic agents. Or, in an interpretation closer
to the evolutionary tradition, the mechanism will be played successively each period
by generations of agents who live and care for that period only. Given a mechanism, we
take the set M = [[;.y M; of message profiles as the finite state space. We shall begin
by specifying an unperturbed Markov process on this state space, i.e., a matrix listing
down the transition probabilities from any state to any other in a single period.* Such
a process will typically have multiple long-run predictions, which we call recurrent
classes. A recurrent class is a set of states that, if ever reached, will never be aban-
doned by the process, and that does not contain any other set with the same property.
A singleton recurrent class is called an absorbing state.

The unperturbed Markov process that we shall impose on the play of the mecha-
nism over time is the following better-response dynamics (BRD). In each period ¢,
each of the agents is given the chance, with positive, independent and fixed probabil-
ity, to revise his message or strategy. Simultaneous revision opportunities for different
agents are allowed. Let m(¢) be the strategy profile used in period 7, and say agent i
is chosen in period 7. Then, denoting by 6; agent i’s true preferences, agent i switches
with positive probability to any m; such that g(m/, m_; (1)) z?" g(m(1)).

3 For vectors z;,y; € X;, we use the standard conventions: x; > y; whenever x;; > y;; with at least one
strict inequality; and x; >> vy; whenever x;; > y;; for every commodity /.

4 For complete formal definitions of Markov chains, and related terms (recurrent classes, absorbing states,
irreducibility, aperiodicity, etc.) see e.g. Karlin and Taylor (1975), chapter 2.
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CS study the problem of implementability in recurrent strategies of BRD processes,
and provide necessary and sufficient conditions for it. The key condition that under-
lies much of their analysis is quasimonotonicity, a variant of Maskin monotonicity.
One way to justify the results in the current paper is the search of conditions under
which implementability in terms of perturbed BRD processes may expand the set of
implementable SCFs beyond quasimonotonicity. The problem, though, in trying to
implement an SCF that violates quasimonotonicity is that, since it cannot be done in
recurrent classes of BRD, initial conditions will matter. Thus, some paths in the BRD
dynamics may lead to the SCF outcome, but others will not.

Indeed, the dependence of long-run predictions of unperturbed Markov processes
on initial conditions is sometimes perceived as a drawback of this analysis. One way
out is to perturb the Markov process. The class of perturbations that we are inter-
ested in specify a Markov matrix of transition probabilities that is both irreducible
and aperiodic. Irreducibility means that it is always possible to transit from any state
to any other in a finite number of periods. Aperiodicity is implied because there is a
chance that the state does not change from one period to the next. For an irreducible
and aperiodic process, there is a unique stationary distribution with the following two
properties. First, starting from any initial strategy profile, the probability distribu-
tion on period ¢ strategy profiles is known to approach that stationary distribution as
t — 00. And second, the stationary distribution also represents the proportion of time
spent on each state over an infinite time horizon. If one denotes by u€ the stationary
distribution of the e-perturbed Markov process and takes the limit as € — 0, one
gets that the lim._, o u¢ = p* exists and is one of the multiple stationary distributions
of the unperturbed process. We shall refer to the states in the support of u* as the
stochastically stable states of the perturbed process, which are interpreted as the only
states in which the perturbed process spends a positive proportion of time in the long
run when the amount of noise € is positive, but negligible.

Thus, the planner, who has a long run perspective on the social choice problem,
wishes to design an institution or mechanism such that, when played by myopic agents
who keep adjusting their actions in the direction of better-responses most of the time,
but who may also make mistakes, the socially desirable outcome as specified by the
SCEF, is the only stochastically stable state of the process. This logic suggests the
following implementability notion.

An SCF f is implementable in stochastically stable strategies (of perturbed BRD)
if there exists a mechanism G such that, for every 0 € ®, a perturbation of the BRD
process applied to its induced game when the preference profile is 6 has every f(0)
as the unique outcome supported by stochastically stable strategy profiles.

Therefore, when f is implementable in stochastically stable strategies of a per-
turbed BRD process, in the very long run, for each 6, the proportion of time spent by
the process ata = f(0) is 1.

Before closing the section, we go over some basic concepts in perturbed Markov
processes, which we will use in the sequel. In order to identify the stochastically stable
strategy profiles of any perturbed BRD process, we will use the characterization of
stochastic stability provided by Young (1993) and Kandori et al. (1993), based on the
techniques developed by Freidlin and Wentzell (1984).
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Call the unperturbed Markov BRD process P defined on the finite state space M.
We define a perturbed process of PY as follows: fixing €* > 0, for each € € (0, €*),
the process P€ is a regular perturbed Markov process if P€ is irreducible for every
€ € (0, €*) and for every m, m’ € M, P€(m, m’) approaches P%(m, m’) at an expo-
nential rate. That is,

lim P€(m,m’) = P°(m, m’)
e—>0
and

Je > 0| P Yy >0 implies 3 ') = 00 < lim L)
€ >0[P°(m,m’) >0 implies 3r(m,m’) = 0] < M Termmm)

The real number r(m, m’) is called the resistance of the transition from m to m’. Note
that it is uniquely defined, i.e., there cannot be two exponents satisfying the above
condition. Note also that PO(m,m’) > 0 if and only if r(m,m’) = 0: transitions
that can occur under P have zero resistance. For convenience, we shall assume that
r(m,m') = oo if P<(m,m’) = P%(m,m’) = 0 for every € € (0, €*) (this way the
resistance is defined for every pair of states).

Similarly, let & = (zl, e, zk) be an (m, m')-path, i.e., a finite sequence of states in
which z! = m and z¥ = m’. The resistance of the path & is the sum of the resistances
of its transitions.

Let E = {Ey, ..., Ex} be the set of recurrent classes of the unperturbed process
and consider the complete directed graph with vertex set E, which is denoted by I'.
We want to define the resistance of each one of the edges in this graph. For this, let E;
and E; be two elements of E. The resistance of the edge (E;, E£;) in I is the minimum
resistance over all the resistances of the (E;, E;)-paths. Note that while E; and E;
are two recurrent classes, (E;, Ej)-paths are typically composed of any kind of states,
not necessarily recurrent.

Let E; be a recurrent class. A E;-tree is a tree with vertex set £ such that from
every vertex different from E;, there is a unique directed path in the tree to E;. The
resistance of the E;-tree is the sum of the resistances of the edges that compose it.
The stochastic potential of the recurrent class E; is the minimum resistance over all
the E;-trees. Young (1993) shows that the set of stochastically stable states of the
process consists of those states with minimum stochastic potential. Thus, what is key
is the identification of paths of minimum resistance, and this is what the proofs of our
sufficiency results in the next sections will do.

3 Complete information

In this section we present a result for complete information environments, based on
a perturbed BRD process with uniform mistakes. Uniform mistakes means that each
“mistake” made by an agent, i.e., each revision of his strategy that goes against the
better-response direction, is equally likely (say, it has a small probability € > 0).
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To get such aresult on implementability in perturbed better-responses under uniform
mistakes, we use an additional assumption on the SCF, i.e., that it is (strongly Pareto)
efficient:> We write the definition of efficiency as we will use it:

An SCF f is (strongly) Pareto efficient if for all 8 and for all alternative outcomes
z # f(0), there exists an individual i (8, z) such that f () >?(9’Z) z.0

In addition to (1) and (2), we shall require Assumption (3) below. Before getting
to it, we go over some necessary material in the next paragraphs.

First, note that since states differ because at least one of the agents’ preference
varies, one has that for each pair of states 6 and ¢, there exists an agent j (6, ¢) and
alternatives x (0, ¢) and y (0, ¢) such that

20, 8) =054 vO. ¢) and y(©. ) =%, w(60.). M

Denote by J (6, ¢) the set of agents j (6, ¢) for whom there exists a preference reversal
between a pair of alternatives across states 6 and ¢, as specified in (1).

Also, without loss of generality, note that for all 8, ¢, one can choose alternative
y(0, ¢) so that for alli # j (6, @), yi (0, @) # 0. We shall do this in the sequel.

Here is our regularity assumption on the environments:

(3) For each pair of states 6 and ¢, there exists j (6, ¢) € J (0, ¢) suchthat j (0, ¢) #
i@, x(0, ¢)), where z(0, ¢) is an alternative for which agent j (6, ¢) has a pref-
erence reversal as in (1).

This assumption is used because the mechanism in theorem 1 will move the game
from some f(6) to some other outcome x(0, ¢) as specified in condition (1). We
need that the identity of some agent who loses out in this move from f(0) to z(6, ¢)
(who exists by Pareto efficiency) be different from the identity of the agent experi-
menting the preference reversal, and that is what condition (3) requires. For example,
a “replica” economy in which the preferences in the base economy are not all identical
would meet this assumption.

Now, we can prove the following result:

Theorem 1 Suppose the environments satisfy Assumptions (1), (2) and (3). Letn > 5.
Any e-secure and strongly Pareto efficient SCF f is implementable in stochastically
stable strategies of perturbed BRD, where the perturbation consists of uniform mis-
takes.

Proof Consider the following mechanism. Let agent i’s message setbe M; = ® x Z.
Letatypical message sent by agenti be m; = (m ll , ml.z) and the corresponding message
profile be m = (m', m?). The outcome function obeys the following rules:

(i) If forevery i € N,m}! = 0, g(m) = f(6).

(ii.a) If exactly (n — 1) messages m; are such that mll = 0 and m;@,20,4) =
(@, 20, 9)), gm) = (Ti6,2060.6))(0. ®), Tj0,¢)(0, @), 2¢, 2¢, ..., 2¢).

5 As we shall remark after the proof of the result in this subsection, one can get rid of this by making a
different assumption on the environments.

6 Thus, we are ruling out cases such as linear indifference curves with the same slope for all agents.

@ Springer



SERIEs

(ii.b) If exactly (n — 1) messages m; are such that mll = 6, but the odd man out,
say agent k, does not satisfy the requirements of rule (ii.a), g(m) = (fx(0)—8,
Jf=k(0)), where fi(0) = fi(0) — B = (e, ..., ¢).

(iii.a) Ifexactly (n—2) messagesm; are such thatmi1 =0, mie,20,¢) = (@, 0, P))
andm jg,¢) = (¢, (0, 9)), g(m) =(Wi@6,20.6)) (0, D), Yj@0.0)(0, ®), €, ¢,...,€).

(iii.b) If exactly (n — 2) messages m; are such that ml1 = 6, but we are not under rule
(iii.a), forall k € N, gx(m) = (¢, ..., €).

(iv) In all other cases, g(m) = 0.

(For rule (iii.a) to be well defined, the assumption n > 5 is needed to determine the
outcome in profiles where two agents report the same state 0 as part of their message
and two other agents report a different state ¢, each pair of agents involving j (6, ¢)
and j (¢, 0), respectively.)

We begin by arguing in the next four steps that all recurrent classes of the unper-
turbed better-response process must happen under either rule (i), under rule (ii.a) or
under rule (iii.a). But under rules (ii.a) or (iii.a) this only happens when the common
announcement by n — 1 or n — 2 people is not the true preference profile.

Let 6 be the true preference profile.

Step 1: No message profile in rule (iv) is part of a recurrent class. From any profile m
in (iv), one can construct a path as follows. For all players it is a better response to
announce (@, f(0)). This yields f(6), from which one can never go back to the zero
allocation under better-response dynamics.

Step 2: No message profile in rule (ii.b) or (iii.b) is part of a recurrent class. Let ¢
be the announcement of the n — 1 or n — 2 people announcing a common state. For
players announcing a state ¢’ # ¢ it is a better response to announce (¢, f(¢)). This
yields f(¢), from which one can never go back to the allocation under (ii.b) or (iii.b)
with better-response dynamics.

Step 3: No message profile in rule (ii.a) or (iii.a) is part of a recurrent class if the
common announcement is 6. Let the alternative announcement be ¢. In rule (ii.a)
the agent deviating from the common announcement is agent i (60, (0, ¢)), who
obtains x;,(0,)) (8, ¢), which by definition of i (6, z) is such that f(6) >?(9,w(9,¢))
Ti0,2(0,4)) (0, ¢) and so for this agent announcing (6, f(6)) would be a best-response.
From there, going back to rule (ii.a) would never happen under better-reply dynamics.
Similarly, for rule (iii.a.) agent j (6, ¢), obtains y; 9,4 (0, ¢) and by (1) (8, ¢) >§(0’¢)
y(0, ¢), hence announcing (6, f(6)) would be a best-response for agent j (6, ¢). At
this point, as we argued before, announcing (6, f(0)) would be a best-response for
agenti(0, x(0, ¢)).

Recall that 6 is the true state. Next, we can classify the recurrent classes into three
categories:

Denote by Ej the recurrent class of BRD in which all n agents report the true
state as the first part of their announcement. Note that there are multiple states within
this truthful recurrent class, as agents can disagree on the allocation reported. And

denote by E;, j = 1,...,k, a typical recurrent class consisting of a profile under
rule (i), where agents’ unanimously reported state is 6/, which is not 6, the true
state. Finally, classes Eyy1, ..., Ex4p comprise the possible recurrent states under
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rule (ii.a) or (iii.a) where the common announcement by n — 1 people is not the true
preference profile.

For any two states m and m’, one can now define the resistance of the transition
m — m’ as the number of mistakes involved. We wish to show that the stochastically
stable states of perturbed BRD in the game under uniform mistakes are precisely the
states in the class Eg. To show this, it will suffice to make the following observations:

(a) To get out of the class Eg, we need some agent i (6, (6, ¢)) to impose one of
the reversal outcomes (6, ¢) — one mistake, as by definition this individual is
worse off. Next, j (0, ¢) imposes y(6, ¢) — second mistake, in this case by Eq. (1).
Finally, anyone else changes and we go to rule (iv) where 0 is the outcome — third
mistake. From 0, we go for free to any of the other recurrent classes. There are
other paths as well, going first to (ii.b), and from there to (iii.b), and then to (iv),
but all those also require three mistakes.

(b) To getoutof any of the recurrent classes with untruthful profiles £, j =1, ..., k,
(say m! = ¢ is one such profile when the true state is ), one can take the fol-
lowing path: an agent i(¢, (¢, 6)) can impose z(¢, 6). At this point, either
f(@) >l.9(¢’z(¢’0)) z(¢, 0), in which case this step requires a first mistake, or

x(¢p,0) 5?(¢,z(¢,9)) f(¢), in which case this step has zero resistance. Next, agent
Jj (¢, 0) changes the outcome to y(¢, ) for free. Finally, someone else changes
the outcome to 0 under rule (iv), which constitutes at most a second mistake. From
there, we go for free to any of the other recurrent classes.

(c) To get out of any of the recurrent classes Ey41, ..., Exyr, where the common
profileis ¢ # 6, announced by n — 1 or n — 2 agents, and the alternative announce-
ment is ¢’, let any agent who announces ¢ deviate to announcing ¢”. This is a
mistake and leads to rule (iv). From there, we can go for free to Ej.

Therefore, by (b) and (c) one can construct an Eg-tree in which the resistance of
each of the edges (E;, Eg), j =1,...,k+ k' is at most 2. The resistance of such a
tree is at most 2 (k + k’). On the other hand, any Ej-tree (j = 1,...,k + k') must
include an edge (Ey, E,,) of resistance 3 (by (a)). This fact, together with (b) and (c)
for all the other edges in the tree, implies that the resistance of the E j-tree is no less
than 2 (k + K ) + 1. We conclude that E is the class of minimum stochastic potential,
and thus, it contains all stochastically stable states. O

Remark 1f one assumes that the preference reversals specified in Eq. (1) occur “near
enough the zero bundle,” one can show, using a similar proof, that for n > 5 any
e-secure SCF is implementable in stochastically stable strategies of a perturbed BRD
based on uniform mistakes. In this sense, one can clearly interpret Theorem 1 as a
very permissive result.

Remark 1t appears that, to obtain meaningful implementability results using uniform
mistakes, one needs to add at least a new rule to the canonical mechanism used for
the result based on “more serious mistakes are less likely” of our working paper (also
used in Theorem 2 of CS). Note how the proof has relied heavily on the use of the
preference reversal specified in Eq. (1). On the other hand, the economic environment
is not essential. A mechanism very similar to the one we present but using modulo
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games and allowing for some punishments, based on the NWA condition of CS, would
also work in non-economic environments.

4 Incomplete information

This section tackles the extension of our results to incomplete information environ-
ments.

Each agent knows his type 6; € ©;, a finite set of possible types. Let ©® = [ [,y ©;
be the set of possible states of the world, let ®_; = [] j#i ©j of type profiles 6_; of
agents other than i. We shall sometimes write a state 6 = (6;, 6_;). We assume that
all states in © have positive ex-ante probability.”

Let g; (6—;16;) be type 6;’s interim probability distribution over the type profiles 6_;
of the other agents. An SCF (or state-contingent allocation) is a mapping f : ® — Z
that assigns to each state of the world a feasible allocation.

Let A denote the set of SCFs. We shall assume that uncertainty concerning the
states of the world does not affect the economy’s endowments, but only preferences
and beliefs.

We shall write type 6;’s interim expected utility over an SCF f as follows:

Ui(f16) = D qiO-il6)ui(f6i,0-), (6;,6-)).

0_;e®_;

Note how the Bernoulli (ex-post) utility function u; may change with the state. We
shall use the obvious versions of Assumptions (1) and (2) applied to each ex-post
utility function in each state.

A mechanism G = ((M;)ien, 9), played simultaneously by myopic agents, con-
sists of agent i’s set M; of messages (for each i € N, agent i’s message is a mapping
from ®; to M;), and the outcome function g : M + Z. The direct mechanism for the
SCF f is amechanism in which for all i, M; = ®; and where g = f. A Bayesian equi-
librium is a message profile in which each type chooses an interim best-response to the
other agents’ messages, and a strict Bayesian equilibrium is a Bayesian equilibrium
in which every type’s interim best-response is a strict best-response. To prevent any
kind of learning about the state, we shall assume that, after an outcome is observed,
agents forget it (or, closer to the evolutionary tradition, agents are replaced by other
agents who share the same preferences and prior beliefs as their predecessors, but are
not aware of their experience).®

Let agent i of type 0; be allowed to revise his message in period 7. He does so using
the interim better-response logic, i.e., he switches with positive probability to any
message that improves (weakly) his interim expected utility, given his interim beliefs

7 We make this assumption for simplicity in the presentation. With some minor modifications in the argu-
ments, one can prove similar results if ®* # © is the set of states with positive probability, according to
every agent’s prior belief.

8 There are a host of alternative assumptions one could make, for example, that each agent receives his
type in each period as a draw from the i.i.d. underlying distribution; see Dekel et al. (2004) for an appraisal
of such different modeling choices.
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qi(0_;10;). That is, letting m’ be the message profile at the beginning of period #, type
6; switches from mi (6;) to any m; such that:

> ai O-il0) ui (g (mf, m";0-)), (6:,0-)) = D qi (0-il6:) ui (m' (©), 6i,0-)).

6_;icO_; 0_ie®_;

We adapt now the definitions of implementability to environments with incomplete
information (the definition of implementability in recurrent strategies is borrowed
from CS):

An SCF f is implementable in recurrent strategies (of interim BRD) if there exists
a mechanism G such that the interim BRD process applied to its induced game has f
as its unique outcome of the recurrent classes of the process.

An SCF f isimplementable in stochastically stable strategies (of perturbed interim
BRD) if there exists amechanism G such that a perturbation of the interim BRD process
applied to its induced game has f as the unique outcome supported by stochastically
stable strategy profiles.

4.0.1 Necessity

As for the assumptions on SCFs, we still assume that it is & -secure in each state,
although this will not be a necessary condition. In contrast, we shall introduce two
more properties, which will be necessary for implementability in recurrent strategies.
The next one is the strict version of incentive compatibility.

An SCF f is strictly incentive compatible if truth-telling is a strict Bayesian equi-
librium of its direct mechanism, i.e., if for all i and for all 6;,

D @i O-il0)ui(f©0). 0, 6-0) > D qiO-i0)ui (£ O], 60-). 0, 0-1))

0_ie®_; 0_,e®_;

for every 6] # 6;.

An SCF f is incentive compatible if the inequalities in the preceding definition are
allowed to be weak.

As it turns out, incentive compatibility is an important necessary condition for any
kind of implementability in our sense.

Theorem 2 If f is implementable in stochastically stable strategies of an arbitrary
perturbation of an unperturbed interim BRD process, f is incentive compatible. Fur-
thermore, if at least one of the recurrent classes selected by the perturbation of the
interim BRD is a singleton, f is strictly incentive compatible.

Proof Suppose that f is implementable in stochastically stable strategies of an arbi-
trary perturbation of BRD. This means that, for this perturbed process, there is a unique
outcome supported by at least one of the recurrent classes of the unperturbed process,
and this outcome is f. Since f is the outcome of such a recurrent set of BRD, it must
be incentive compatible.

Furthermore, if one of the recurrent classes selected by the perturbation is a single-
ton, any deviation from the message profile that is an absorbing state of the unperturbed
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dynamics must worsen each type’s interim expected utility, and thus, f must be strictly
incentive compatible. O

4.1 Sufficiency

Consider a strategy in a direct mechanism for agent i, i.e., a mapping «; =
(i (0i))geo; @ O; = O;. A deception « = (;)ien 18 a collection of such map-
pings where at least one differs from the identity mapping.

Given an SCF f and a deception «, let [ f o «] denote the following SCF: [ f o «]
(@) = f(x(0)) for every 0 € ©.

Finally, for a type 0{ € ©;, and an arbitrary SCF y, let Yo @) = y(@i’ ,0_;)) for all
0 € O.

We shall make the following additional assumptions on environments:

(4) For every deception «, there exists an agenti € N, a type 6; € ©;, a strictly
incentive compatible SCF z, and another SCF y such that

Ui(x | ) > Ui(yg | 0)¥6] € ©; and Uj(zoa |6) <Ui(yoa |6). (2)

(5) The bundles in the SCFs x and y used in (2) are componentwise no greater than ¢.

In words, Assumption (4) says that the environment admits preference reversals to
overcome deceptions. However, these preference reversals need not happen around f,
the SCF of interest, but around some strictly incentive compatible SCF x; see Serrano
and Vohra (2005) for an appraisal of this assumption.

For each deception «, we shall choose one test-pair z, i and one test-agent i, satisfy-
ing the conditions in (2). Denote the set of all such x by D. Finally, with very little loss
of generality, choose the bundles in the SCFs y consisting of strictly positive amounts
of each commodity. Then, define the SCF [y] as the one that assigns in each state the
componentwise minimum bundle for each agent i and each state 6 : [y]; (6) < y;(0)
for all y.

On the other hand, Assumption (5) says that such reversals happen “near enough
the zero bundle.”” Then, one can make use of the insight in the last remark of the
previous section to show our next result:

Theorem 3 Suppose that the environments satisfy Assumptions (1), (2), (4) and (5).
Letn > 5. Let [ be e-secure in every state and strictly incentive compatible. Then,
f is implementable in stochastically stable strategies of perturbed interim BRD under
uniform mistakes.

Proof The proof follows steps similar to that of Theorem 1, but applied to the fol-
lowing mechanism. Let agent i’s message set be M; = ®; x A. Denote a typical

9 In fact, if the environment allowed the use of lotteries, and making use of expected utility, one could
combine the SCFs x and y in a mixture with the zero bundle, where the latter is imposed with arbitrarily
high probability. This argument would allow one to take the SCFs x and y arbitrarily “near the zero bundle”
without assuming it explicitly, as we do.
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message sent by agent i by m; = (ml.l, ml.z) and the corresponding message profile by
m = (m', m?). The outcome function obeys the following rules:
(i) If forevery i € N,m? = f, g(m) = f(m").
(ii.a) If exactly (n — 1) messages m ; are such that m? = f and ml2 = x for some
r e D,gim)= x(mb).
(ii.b) If exactly (n — 1) messages m ; are such that m? = f and ml2 = 1z for some
@ ¢ D, g(m) = (fi(m'") =B, f-i(m"), where f;() = fi()=B = (e, ... ).
(iii.a) If exactly (n — 2) messages my are such that m% = f, ml2 = x for some
x € D and m% = y where j and y are the ones associated with x as in (¥*#%),
g(m) = y(m").
(iii.b) If exactly (n — 2) messages my are such that m% = f, but the other conditions
of rule (iii.a) are not met, g(m) = [y](m").

(iv) In all other cases, g(m) = 0.

We sketch the steps of the proof as follows. First, one can show that all recurrent
classes of interim BRD are under rule (i). For example, to see how rule (iv) is never part
of arecurrent class, use a simultaneous switch of all types to ml2 = f, and so on; simi-
lar arguments apply to rules (ii) and (iii). Within rule (i), strict incentive compatibility
allows one to support truth-telling as one of these (singleton in this case) recurrent
classes, but there may well be others, in which agents are using a deception «.

To finish the sketch of proof, here is a heuristic argument. One can describe the
transition paths among the different recurrent states. To get out of the absorbing state
in which agents are telling the truth in their first part of the announcement, one can go
through rule (ii.a), which requires one mistake because any = € D is near the origin
(note that any agent can be used for this mistake, by strictly increasing preferences
in each state). Next, the test-agent corresponding to that x will implement rule (iii.a),
where we require a second mistake. Finally, someone else makes a mistake and we
go to rule (iv). A similar path can be created for each state to get to the profile of zero
bundles. There are other paths one could follow: for example, through rules (ii.b) and
(iii.b), but the point is that each time an agent switches to change the outcome in the
direction of the zero profile, a mistake is required.

On the other hand, if one starts at an absorbing state in which a deception is being
used, one gets out through any agent other than the test-agent for that deception and
imposes rule (ii.a), which requires one mistake. The next step, taken by the test-agent
for that deception, is free because of Eq. 2. From rule (iii.a), someone else changes
to rule (iv), and so on. In this path, we have “saved” one mistake. Of course, from the
zero profile, we go for free to any of the other absorbing states.

These arguments allow the construction of the corresponding spanning trees for
each absorbing state. The result is that the truthful absorbing state is the only one of
minimum stochastic potential, i.e., the only one that is stochastically stable. O

5 Conclusion

The results presented here complement those in CS. Restricting attention to eco-
nomic environments, we have studied implementation under perturbed better-response
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dynamics. In the working paper version of this study, we show that, for a variant of
“more serious mistakes are less likely,” any e-secure SCF is implementable when
there are at least three agents. For uniform mistakes, we have shown here that any
e-secure and strongly efficient SCF is implementable when there are at least five
agents. Extensions of results to incomplete information environments have also been
obtained, including the emergence of incentive compatibility as a necessary condition
for any kind of robust implementation in our sense.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.
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