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Abstract

The understanding of joint asset return distributions is an important ingredient
for managing risks of portfolios. While this is a well-discussed issue in fixed income
and equity markets, it is a challenge for energy commodities. In this paper we are
concerned with describing the joint return distribution of energy related commodities
futures, namely power, oil, gas, coal and carbon.

The objective of the paper is threefold. First, we conduct a careful analysis of
empirical returns and show how the class of multivariate generalized hyperbolic dis-
tributions performs in this context. Second, we present how risk measures can be
computed for commodity portfolios based on generalized hyperbolic assumptions. And
finally, we discuss the implications of our findings for risk management analyzing the
exposure of power plants which represent typical energy portfolios.

Our main findings are that risk estimates based on a normal distribution in the con-
text of energy commodities can be statistically improved using generalized hyperbolic
distributions. Those distributions are flexible enough to incorporate many characteris-
tics of commodity returns and yield more accurate risk estimates. Our analysis of the
market suggests that carbon allowances can be a helpful tool for controlling the risk
exposure of a typical energy portfolio representing a power plant.

1 Introduction

Managing the financial risks induced by power plants is one of the key components of the

risk management of utility companies. These financial risks may be represented by certain

financial futures positions, e.g. a coal-powered power plant can be thought of as a long

position in electricity, a short position of coal and, due to recent efforts to regulate emissions,

a short position in CO2 emission certificates. In our analysis we will consider the interaction

of all of these positions including emission certificates.

In order to evaluate the risk of these portfolios we need to analyze the dependence struc-

ture across different commodities. Based on empirical studies in Börger (2007) and Högerle

(2007), we compute risk measures such as value-at-risk and expected shortfall based on dif-

ferent choices of multivariate distributions and apply the procedure to a given portfolio of

energy commodities. As an improvement to the Normal variance-covariance approach for

deducing value-at-risk in the context of commodities we propose an alternative based on

generalized hyperbolic distributions that is straightforward to implement. We compare this

multivariate parametric method with a copula-based approach, where we estimate the uni-

variate distributions of the commodities under consideration first and then fit the dependence

structure using copulas.

Although there are pressing needs to model power, coal, gas, oil and emission allowances

simultaneously, there is very little literature on this topic. In particular, multivariate research
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Figure 1: Q-Q plots of log-returns of futures prices: power, coal, oil, carbon (left to right)

on statistical properties of energy-related commodities is all but non-existent. Research on

commodities as an asset class for investment purposes can be found in Kat and Oomen (2006)

where the authors discuss the role of commodity markets as an alternative investment to

bonds and stocks. They focus on different dependence measures for individual commodities

and conclude that commodities, in general, seem to be statistically independent from other

financial markets, but there is strong dependence within a commodity group. Further, the

authors state that a multivariate Normal distribution is not appropriate to capture the

dependence structure among commodities, stocks, bonds and inflation.

We will focus on the dependence structure within the group of energy-related commodities,

which is of most importance to utility companies. We propose two methodologies to model

and estimate the joint return distributions of various commodities and apply the results to

risk management issues. Our first approach is based on explicit multivariate distributions.

This requires multivariate distributions flexible enough to fit the marginal distributions of the

single commodities, whilst at the same time, capturing their dependence structure. Within

our second approach we fit univariate distributions first, and then model the dependence

structure using copulae.

The energy commodities discussed in this article include Brent crude oil, coal, power and

CO2 emission allowances with a focus on the European market. The distributional properties

of electricity prices have been examined by Cartea and Figueroa (2005) and Weron (2006)

among others. Further, Eberlein and Stahl (2003) give statistical evidence for modeling

electricity spot prices using generalized hyperbolic distributions and show how this distrib-

ution can be used for deriving risk capital charges based on value-at-risk. They discuss the

superiority of this parametric approach to standardized alternatives that have to be applied

to commodities markets in context of the German implementation of the capital adequacy

directive.

From a statistical point of view, a multivariate Normal distribution is not suitable because

all marginal distributions would also be Normal and the hypothesis of normally distributed

returns has been rejected for assets in many markets; especially energy commodities. Fig. 1

shows the Q-Q plot of univariate log-returns of commodity futures contracts. The oil contract
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in this example is close to a Normal, but for power this is not true, even less so for CO2 prices.

In fact, the statistical properties of energy commodities are very different from those of most

asset classes, therefore the joint distribution is most likely described best by copulae-based

methods. At the same time, univariate findings, see also Benth and Salyte-Benth (2004)

indicate that distributions from the generalized hyperbolic class are well-suited to describe

univariate properties, so that it is natural to consider their multivariate counterparts in

addition to copula-based methods.

The rest of the paper is structured as follows. In section 2 we show how the loss distribution

of a typical energy portfolio may be determined given the estimates from our two competing

approaches and how to compute the corresponding risk measures. In section 3 we summarize

the analyses in Börger (2007) and Högerle (2007). In section 4 we employ our results to give

further directions for financial model building, pricing and hedging purposes. As a particular

example, we will show how our findings can be used to evaluate the riskiness of a given energy

portfolio and illustrate our methodology using portfolios that reflect the typical exposure of

power plants. Finally, section 5 concludes. An appendix provides the necessary mathematical

tools.

2 Portfolios and Risk measures

The value at time t, denoted by Vt, of a utility’s portfolio will depend on the assets, S
(i)
t ,

and the number of contracts per asset, ωi. Hence, we write the portfolio’s value at time t as

Vt =
d∑

i=1

ωiS
(i)
t , (1)

where i = 1, . . . , d and d represents the number of distinct assets in the portfolio. We use

(1) to express the one-period loss of the portfolio as the random variable

X = −(Vt+1 − Vt).

In order to determine risk measures we need to specify the distribution of X. This speci-

fication can be achieved by modeling the joint log-return distribution.1 We then know the

distribution of

x
(i)
t+1 := s

(i)
t+1 − s

(i)
t , s

(i)
t := lnS

(i)
t , i = 1, . . . , d

and we have

X = −(Vt+1 − Vt) = −
∑

ωiS
(i)
t

(
exp(x

(i)
t+1)− 1

)
,

1The alternative is to model the joint return distribution X
(i)
t+1 := (S(i)

t+1 − S
(i)
t )/S

(i)
t , i = 1, . . . , d with

X = −(Vt+1−Vt) = −
∑

ωiS
(i)
t X

(i)
t+1. The analysis in Högerle (2007) and Börger (2007) find that differences

between the approaches are small compared to other uncertainties regarding reliability of data and estimates.

4



which we can approximate for a small time horizon ∆ by

X∆ = −
∑

ωiS
(i)
t x

(i)
t+1. (2)

It is clear that the approximation applied here is valid only for small log-returns.

In this paper we follow two different routes to obtain the joint log return distributions

of the commodities under consideration, namely estimation of a multivariate parametric

distribution and estimation of the univariate logreturn series and then combining them using

a copula.

As the multivariate parametric distribution we use the Generalized Hyperbolic (GH) distri-

bution. Recall the representation of GH distributions as Normal mean-variance mixtures,

namely a random variable S is a multivariate Normal mean-variance mixture if

S
d
= µ+Wγ +

√
WAZ (3)

with Z a k-dimensional standard Normal, W a non-negative real-valued random variable

(mixing variable) independent of Z, A ∈ Rd×k and µ, γ ∈ Rd. If W has a generalized inverse

Gaussian distribution with parameters (λ, χ, ψ), then S is GH-distributed with Σ = AAt.

Often, one can make use of the fact that S, conditional on W = w, is Normal with mean

µ+ wγ and variance wΣ. Further details may be found in the appendix.

One of the advantages of modeling the joint distribution of commodities with GH distribu-

tions is that we can can express, analytically, the loss distribution. Moreover, this analytical

tractability allows us to study the impact of portfolio weights and try to find optimal weights

(for a further discussion of this issue see appendix).

Rather than modeling the multivariate distribution directly as above, it is possible to con-

struct a multivariate distribution by specifying marginal distributions and coupling them

together with a suitable copula. The choice of copula determines the choice of dependence

among the marginal distributions. An introduction to the concept of copula modeling in risk

management can be found in Embrechts, Frey, and McNeil (2005). In the empirical analysis

of Högerle (2007), among the many possible choices of copula function, the t-copulae was

found to perform best.

Denoting by tν,R the d-dimensional t distribution with correlation matrix R and ν degrees

of freedom and by t←ν the quantile function of a univariate t distribution, the d-dimensional

t-copula with correlation R and ν degrees of freedom is defined by

Ct
ν,R(u1, . . . , ud) := tν,d (t←ν (u1), . . . , t

←
ν (ud)) .

Such a copula can be estimated using maximum-likelihood procedures as described Em-

brechts, Frey, and McNeil (2005).

Having determined the joint distribution of commodities based on marginal distributions

coupled together by some well-suited copula, the portfolio distribution is not given as a
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closed-form expression as above and one needs to simulate from the multivariate distribution

given by the copula and compute simulated portfolio returns. This can easily be achieved by

simulating a vector X according to tν,R, using the fact that this distribution is a special GH

distribution (with density given according to (5) in the appendix). Finally we transform the

vector via U := (tnu(X1), . . . , tnu(Xd)) and obtain a vector U which has distribution function

Ct
ν,R as required. The realizations of portfolio returns are computed by using Eq. (2). Thus,

we approximate the true distribution by an empirical distribution based on simulation.

Having obtained the portfolio loss distribution we compute the risk measures value-at-risk

(VaR) and expected shortfall (ES). Given a random variable X, representing the loss during

a fixed period ∆, with distribution FX , the value-at-risk is defined by

V aRα[X] = F←X (α)

for a specified confidence level α. F←X denotes the quantile function of FX . The VaR is the

smallest number such that the probability of the loss X exceeding the number is less than

1− α, where α is typically above 0.9.

Expected shortfall of an absolutely continuous random variable X is defined by

ESα[X] =
1

1− α

∫ 1

α

V aRu[X]du

=
1

1− α
E [X1(X ≥ F←X (α))] ,

where 1(·) denotes the indicator function.

We point out that whilst the VaR is the quantile of the loss distribution, the ES takes the

whole tail of the loss distribution into account.

For our parametric GH distribution we can make use of the Normal mean-variance mixture

representation to compute the expected shortfall. We obtain (see the appendix for a proof)

ESα[X] = µ+ γE[W ] + σ
φ(Φ−1(α))

1− α
E

[√
W

]
. (4)

Since we are only able to simulate the portfolio distribution in a copula model, we have

to estimate the risk measures from the simulated distribution using standard estimators

based on the empirical portfolio distribution. We want to emphasize that one only needs to

simulate samples for the joint returns once and use these samples to deduce the portfolio

distribution for different weights. This saves a considerable amount of time.
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3 Statistical Analysis

3.1 Data Set

The data under consideration are daily price series of futures or forwards on power, coal,

oil and carbon emission allowances. While the portfolio of an energy producing company

will most likely include other financial instruments (e.g. FX positions), the energy-related

commodities make up a large part of a typical portfolio of a power producing utility.

We use futures for the year 2008 with a length of 585 trading days to determine the depen-

dence structure across commodities. The length of the data set is specified by the length

of the time series that is the youngest, i.e. CO2 certificates here. In this section we briefly

discuss the specifics of each time series. The time series of power prices are taken from EEX-

traded futures for the year 2008. The futures prices are quoted in EUR/MWh. Coal futures

have been traded at several exchanges, among them the ICE (formerly IPE) in London and

the EEX. They offer trades in coal with different points of delivery. In the following we will

pick Rotterdam as an example. The futures prices are quoted in US$/t but we convert to

EUR/t. While the futures market for coal has just started, there is an established market for

swaps and forwards on coal.2 An important location of trade for Brent crude oil is the ICE in

London. Since there is no 2008 oil future available at the ICE, we need to construct it artifi-

cially as weighted average of monthly futures of the corresponding period. Again, we convert

all prices to EUR/barrel. Emission allowances, also known as CO2 or carbon certificates,

are the youngest of the energy related commodities. They were introduced, in the context of

the Kyoto-protocol, by the European Union and exchange based trading started in October

2005. One certificate allows the emission of one ton of CO2 during a certain time period

and companies need to cover their yearly emissions by certificates. The trade in allowances

is divided into two periods: Period 1 is up until the end of 2007 and a Period 2 ranges from

2008 to 2012. Although allowances may be transferred within the same period, they cannot

be transferred from Period 1 to Period 2. Futures contracts for allowances within one of the

two periods but with different maturity dates differ only by a discount factor. In effect, this

means that the 2006 and 2007 contracts for allowances in the first period are virtually the

same, but different from the 2008 contract for allowances in Period 2.3

3.2 Summary of Statistical Results

The full statistical analysis of the copula-based approach is given in Högerle (2007) and we

summarize some of them.

Analyzing the marginal distributions of power, oil, coal and carbon, we can state that for the

2Forward prices have kindly been provided by EnBW Trading.
3OTC prices for 2008 have been provided by EnBW Trading.
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Power Coal Oil CO2 Power Coal Oil CO2 Power Coal Oil CO2

Data Implied by t-copula Implied by NIG

Power 1.00 0.16 0.10 0.60 1.00 0.15 0.09 0.62 1.00 0.16 0.09 0.60

Coal 0.16 1.00 0.19 0.13 0.15 1.00 0.18 0.10 0.16 1.00 0.16 0.12

Oil 0.10 0.19 1.00 0.12 0.09 0.18 1.00 0.10 0.09 0.16 1.00 0.10

CO2 0.60 0.13 0.12 1.00 0.62 0.10 0.10 1.00 0.60 0.12 0.10 1.00

Table I: Correlation estimates of year 2008 futures log-returns of power, coal, oil and CO2

allowances for different models

univariate marginal distributions the symmetric t-, symmetric hyperbolic, NIG and skewed

t-distributions give best fit to the respective data set according to likelihood-ratio-tests and

model selection criteria. The marginal distributions are well-described by these distributions

in line with the univariate findings in existing literature (cp. Section 1).

The t-copula has been identified as a good candidate to couple the marginal distributions to

a multivariate distributions. Table I contains the correlation matrix implied by this copula

compared with data estimates and can serve as one indicator of the goodness-of-fit. All

correlations are well-represented with this approach. The statistical analysis for the copula

method in Högerle (2007) indicates a very good description of multivariate properties of

return data.

The full statistical analysis of the approach based on multivariate generalized hyperbolic

distributions is given in Börger (2007) on a slightly different data set. We present updated

numbers here and summarize the results.

Likelihood ratio tests hint at a multivariate Normal inverse-Gaussian distribution to describe

the return data. On one hand, table I shows that implied correlations match the empirical

values very precise and indicate that dependence measured by correlations is described well.

On the other hand, Börger (2007) describes an issue regarding the implied marginal distri-

butions, which tend to underestimate the tail of power and CO2 data while overestimating

the tail of coal and oil.

The averaging effect of the tail behaviour can be explained by the univariate mixing variable

in the construction of GH distributions. It is the same for all marginal distributions and can

only be a compromise among all commodities. While this issue might not be as prominent

in equity markets, the case of commodities can be extreme. As we have shown in the

introduction (cp. Fig. 1), commodity prices show returns that can range from almost

Normal (e.g. oil) to heavy tails (e.g. power).

Since the copula method starts from estimating the marginal distributions, the problem is

not relevant there. At the same time, correlation estimates are equally good so that the

copula approach offers an advantage when fitting the data.
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4 Application to Risk Management

In this section, we want to show how to apply the method to a typical energy portfolio

and discuss the results. Utility companies as well as financial institutions in the commodity

market need to know the riskiness of their portfolio for several reasons. Here we mention

some of them:

• They can base trading strategies on the risk numbers in such a way that the financial

risk is minimized.

• They can use risk numbers to set limits for traders.

• Banks have to comply to regulatory standards which are based on riskiness of portfolios.

Thus, risk numbers need to be reported on a daily or weekly basis. Of course, the time

horizon for the risk number, say the value-at-risk, can be different from application to ap-

plication. Trading strategies require short-term value-at-risk metrics while the regulatory

standards require longer-term risk figures. We will restrict to one-day value-at-risk and

one-day expected shortfall, since the statistical analysis is done on daily prices, but the me-

chanics are straightforward to apply to other time periods. Alternatively, scaling principles

can be applied to obtain risk measures for longer holding periods. We want to mention here

that the square-root scaling rule is very popular but difficulties can occur when looking at

heavy-tailed data. Embrechts, Kaufmann, and Patie (2005) discuss this issue and present a

method to obtain longer-period risks by scaling.

The portfolio of an energy producer depends on many variables. Key components include:

size of the company, number and types of power plants, number and type of customers,

hedging strategies and many more. While we could assume an arbitrary energy portfolio to

analyze the company’s exposure to various sources of risk, we focus on the typical building

blocks and choose the two most widely used types of power plants in the industry, namely

a coal-fired power plant and a gas-fired power plant. We point out that the choice of power

plant is arbitrary to a certain extent, but represents a quantity that is easy to interpret.

Further, it is a financial position of interest for many utility companies. Finally, banks, that

do not own plants but trade in commodity markets, can interpret the portfolio as a spread

contract being short electricity and long one of coal, oil or gas.

Although power plants are exposed to several types of risks, such as operational risk, volume

risk and many more, in our analysis we will cover the main financial risks in the following

way. First, we represent the plant by certain financial futures positions, e.g. long positions

of electricity and short positions of coal. Thus, we neglect all optionalities included in the

timing of production, i.e. we assume that we run the plant at electricity baseload times and

prices and do not incorporate the possibility of larger earnings when producing the energy

at peakload times and prices.
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Second, risk metrics such as value-at-risk assume a mark-to-market valuation, i.e. compare

prices of the assets today with possible prices of the assets at the end of the time period (one

day in our case). This relies on the fact that the owner of the portfolio is able to sell the

assets at current market prices. This need not be the case as the portfolio size can be large

compared to the market and selling all the portfolio would at least influence prices. Then

one would have to reduce positions step by step so that the portfolio selling is performed

over several periods. Taking this into account, one has to think about an optimal closing

strategy, which is not in the scope of this paper. But if the strategy is known, one would

have to carry out a value-at-risk analysis for each time step as presented here.

Ignoring the limitations in the volume of trades, risk measures can be applied, strictly

speaking, to portfolios whose sizes are small compared to traded volumes in the market.

This would be the case, for example, when the production periods (and thus the plant’s

output) are small. Yet, we illustrate the procedure using typical power plants as portfolios

because the economic interpretation is more intuitive than for an abstract portfolio.

The risk analysis presented below is based on multivariate distributions fitting the joint

distribution of log-returns of commodity prices. The procedure of fitting and analyzing the

goodness of fit has been discussed in Section 3. Similar results are obtained when working

on returns instead of log-returns, but allows for exact instead of approximate value-at-risks

and expected shortfalls.

4.1 Coal-fired Power Plant

A coal-fired power plant burns coal to produce electricity and as byproduct, CO2 is emitted.

Depending on the energy efficiency of the plant, only a certain fraction of the calorific value

of coal is transformed into electricity. As a measure for the energy efficiency of a plant, the

heat rate is often used, which is the input of heat (expressed in terms of units of fuel) needed

to produce one unit (1MWh) of electricity. In the example here, we assume a heat rate of

0.33t of coal per MWh of electricity output. A byproduct of the electricity production of

1MWh is the emission of 0.9t of CO2. Scaling this to a plant with an output capacity of

1000000MWh during a year (the portfolio can also represent a share of a larger power plant),

we arrive at the following portfolio:

• Long position: 1000000MWh in power contracts. (1 contract=1MW =̂ 8760MWh)

• Short position: 330000t in coal.

• Short position: 900000t in CO2.

Usually, the CO2 position is already partially covered by certificates assigned by the govern-

ment. That is why we can also think of the plant as coming with additional, say, 800000t

10



CO2 in certificates as a long position resulting in a net position of 100000t CO2 short. We

also consider the case when the CO2 position is totally hedged (i.e. 0t CO2). This latter

example is comparable to the situation before the introduction of emission allowances. We

find the corresponding distributions by fitting a multivariate distribution to power, coal and

CO2 prices.

Figure 2 compares the several approaches to risk estimation described above using the dif-

ferent portfolios.

Considering the values-at-risk and the expected shortfalls, we have the clear result that

the use of the Normal distribution significantly underestimates the risks, especially for the

latter, e.g. we have a shortfall of 1.22M EUR per day with the Normal distribution as

compared with 1.51M EUR as can be seen in the data (without a carbon position, 98% level).

The multivariate NIG also tends to underestimate the risk, but the error is much smaller,

especially at the large quantiles. The copula approach gives the most conservative risk

estimates. While it describes the value-at-risk precisely in all cases, it tends to overestimate

the expected shortfall, in particular in the large quantiles. Yet, we have to mention, that

the numbers from the copula method are estimates from simulations and bear uncertainty

themselves, increasing with the level of α. Still, the use of the NIG approach is preferable

in this situation.

Reducing the carbon position, i.e. closing the short position from 900000t to zero, we

see a drastically increased riskiness of the portfolio. This can be explained by the strong

correlation of power and carbon prices, which results in a diversification effect when taking

opposite positions. Thus, for energy companies hedging their electricity price exposure it

is very important to take a multi-commodity view taking also into account the exposure in

emission certificates

Qualitatively, the implications of the CO2 position is reproduced with all models considered.

However, they perform differently in different situations. The method based on multivariate

NIGs performs best with a large CO2 position (lower risk), while the copula approach is

preferable with no CO2 in the portfolio (larger risk). This is due to the fact, that the rather

heavy tails of power prices are reduced by the opposite CO2 position in the portfolio. Thus,

the averaging effect that takes place in the tail-estimate of multivariate GH distributions

describes the tail of the portfolio well, while otherwise the heavy tails of power influence

the portfolio distribution to such an extent that the deficiencies of the fit of the margins

become more and more apparent, while the copula method can cope with this effect due to

the precise description of marginal distributions.

Finally, we want to discuss the role of the number of CO2 certificates. It is evident from the

data that covering the CO2 position without simultaneously reducing the electricity exposure

leads to higher price risk, measured by any standard. Using the multivariate GH method, we

can compute a minimum variance portfolio using relation Eq. (6) in the appendix. A short

position of 481000 contracts in CO2 would make this power plant have minimum variance.
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Figure 2: Expected Shortfalls (left) and Value-at-Risks (right) for coal-fired power plant

portfolios 12



A short position of 249000 contracts in CO2 minimizes the expected shortfall if we believe

that historic returns of CO2 prices prevail (all numbers for α = 0.95). This means that it

might be advantageous to keep an open position in emission allowances. At least it is not

favorable to pursue a conservative strategy and cover all (or even more) emissions as soon

as possible, but rather keep it open until the electricity exposure has been further reduced.

Obviously, at some point one faces the need to buy the certificates in order to avoid the

penalty by EU comission.

4.2 Gas-fired Power Plant

A gas-fired power plant burns gas to produce electricity and in the process CO2 is released.

One thermal unit of gas (1btu) has a heating value of about 0.0293 MWh. Assuming a heat

rate of 68.3btu/MWh we need about 2MWh of natural gas to produce 1MWh of electricity.

Burning the gas emits 0.4t of CO2. Often, the delivery price of gas is linked deterministically

to the oil price (e.g. in Germany). The exact formula is not standardized and depends also

on the specific contract and the type of oil which the price is linked to. An example price

formula is

Gas in
EUR

MWh
= const + 0.5 · Brent Crude Oil in

EUR

Barrel
This implies, that a short position of 2MWh of natural gas is financially equivalent to a short

position of 1 Barrel of Brent Crude Oil. Scaling this to a plant that produces 1000000MWh

of electricity during a year, we face the following positions:

• Long position: 1000000MWh in power contracts.

• Short position: 1000000 bbl in oil contracts.

• Short position: 400000t in CO2 contracts.

Again, the CO2 position is usually at least partially covered by government issued certificates,

therefore we will vary the short position of certificates to 100000t and 0t. We obtain the

necessary distributions by estimating the joint distribution of power, oil and CO2 prices.

Risk numbers for such a portfolio are summarized in Figure 3. Most of the considerations

apply to gas-fired power plant as to the coal-fired power plant and we will highlight differences

only.

First of all, all risk values are much higher for gas than for coal though the total capacity

of the plant is the same. This is largely due to the fact that at the time of analysis the oil

prices have risen sharply and the total portfolio value is larger for the gas-fired plant than

for the coal-fired one.

As before, the Normal distribution is clearly underestimating the risks, while - in contrast

to the coal-fired plant - the multivariate NIG tends to overestimate the risk. The t-copula

13



gives an almost perfect match with the empirical risk values. The inapplicability of the

Normal is due to the light tails, whereas the overestimation resulting from the NIG is due to

the averaging effect of the tails. The average tail leads to an underestimated tail for power

returns, but overestimated tail for oil returns. At the same time, oil makes up a large part of

the portfolio, so that the NIG-model misspecifies the tail behaviour of the loss distribution.

The t-copula on the other hand specifies marginal distributions precisely and the dependence

structure as well. This explains the extraordinary good description of the risk up to very

large quantiles.

The reduction of CO2 certificates leads again to an increased risk as measured by the data

and all models. The same reasoning applies as for coal-fired plants. The quality of the models

changes only slightly with the varying portfolio weights. Summarizing the results, we can

state that the copula model is most flexible and precise in describing the true underlying

risks.

As in the previous case we compute risk minimizing portfolios. The minimum variance

portfolio is established at a short position of 365000 CO2 allowances and expected shortfalls

are minimized with 362000 contracts (α = 0.95). Again, a partially covered CO2 position

can significantly reduce the risk as compared to a closed position comparable to the time

before emission trading. Such an explicit analysis is only possible in the GH case, not for

the copula approach.

5 Conclusions

In this article we compared two alternative approaches for describing the joint return dis-

tribution of energy-related commodities. We showed that a copula-based approach and a

multivariate generalized hyperbolic distribution (GH) are capable of describing the joint

return distribution well and clearly outperform the Normal distribution.

Additionally we demonstrated how the multivariate fit of the distributions can be applied to

risk management issues such as computation of risk measures. This is particularly straight-

forward with GH distributions due to their normality conditional on the mixture variable.

The example of two different types of power plants illustrates the mechanics of the heavy-

tailed, skewed distributions in connection with the dependent marginal distributions.

The most important conclusions for risk management are:

• GH distributions give a more realistic view on the riskiness of an energy portfolio than

the Normal distribution. Since analytical formulas are available for value-at-risk and

expected shortfall, the implementation is straightforward.

• A copula approach is more flexible in describing statistical properties, but the analysis

of portfolios can be time-consuming.
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Figure 3: Expected Shortfalls (left) and Value-at-Risks (right) for gas-fired power plant
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• The introduction of emission trading poses an additional risk factor that has to be inte-

grated into the risk management strategy. The high correlation in the asset movements,

combined with skewness, allows to reduce the financial risk for market participants by

taking opposite positions in power and CO2 certificates.

6 Appendix

We summarize some important properties of the class of GH distributions, in particular

we look at the multivariate t-distribution (t), (symmetric) Normal-inverse Gaussian (NIG(-

S)), and (symmetric) hyperbolic distribution (HYP (-S)). The class of GH distributions has

been introduced by Barndorff-Nielsen (1978) and important properties are summarized in

Barndorff-Nielsen and Blaesild (1981). Applications can be found in Embrechts, Frey, and

McNeil (2005), Shiryaev (1999), Eberlein and Keller (1995), Eberlein and Prause (2000) and

Eberlein and Stahl (2003).

The multivariate GH distribution is given by the joint density

f(x) = c
Kλ−(d/2)

(√
(χ+ (x− µ)tΣ−1(x− µ))(ψ + γtΣ−1γ)

)
e(x−µ)tΣ−1γ√

(χ+ (x− µ)tΣ−1(x− µ))(ψ + γtΣ−1γ)
d
2
−λ

, x ∈ Rd (5)

c =

√
χψ
−λ
ψλ(ψ + γtΣ−1γ)

d
2
−λ

(2π)d/2|Σ|1/2Kλ(
√
χψ)

with Kλ denoting the modified Bessel function of the third kind and parameters Σ ∈ Rd×d,

µ, γ ∈ Rd, χ, ψ > 0 and λ ∈ R. Thus, a d-dimensional GH is described by 1
2
(d(d + 5) + 4)

free parameters.

Recall from Eq. (3) the representation of GH distributed random variable X as

X
d
= µ+Wγ +

√
WAZ,

with the specifications as in 2. Observe that symmetric distributions are obtained when

γ = 0. Moreover, a multivariate distribution with hyperbolic marginal distributions is

given by λ = 1 and the Normal-Inverse Gaussian becomes a special case when λ = −1
2
. The

multivariate t-distribution with ν degrees of freedom can also be obtained either as a limiting

case if γ = 0, λ = −1
2
ν, χ = ν, ψ → 0 or by choosing an Inverse Gamma distribution

with parameters (ν/2, ν/2) as mixture variable (and γ = 0).

Estimation of this class of distribution can be done by Maximum-Likelihood procedures, in

particular an EM-algorithm, which is an iterative scheme of maximizing conditional likeli-

hoods. For details on the algorithm see Protassov (2004). We use the S-Plus tool provided

in Embrechts, Frey, and McNeil (2005) and the freely available implementation ghyp for R.
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One of the main advantages, over the copulae approach, from employing the GH approach

is that we have analytical expressions for the distributions of loss of the portfolio based on

log-returns or returns. In other words, we can derive the distributions of X∆ and X, given by

(2). To do so we use the fact that if the random variable Y has d-dimensional GH distribution

with parameters (λ, χ, ψ, µ,AAt, γ) then, for a row vector a ∈ Rd, aY has a one-dimensional

GH distribution with parameters (λ, χ, ψ, aµ, aAAtat, aγ). Thus, the distribution of X∆

in method one and X in method two is given by choosing a =
(
−ω1S

(1)
t , . . . ,−ωdS

(d)
t

)
,

and the computation of the parameters of the one-dimensional GH distribution is based on

multivariate estimates.

We can compute the risk measures in the case of the alternative approach based on multivari-

ate GH distribution. In particular, the computation of expected shortfalls turns out to be

very explicit. Remember that if X has a GH distribution, it can be represented as a Normal

mean-variance mixture (cp. Eq. (3), d = 1). We make use of the fact that, conditionally

on the mixture variable W = w, X is normally distributed with mean µ+ wγ and variance

wσ2. The expected shortfall can be computed by conditioning on the mixture variable W

and using the result for expected shortfall in the Gaussian case, i.e.

ESα [Nµ,σ2 ] = µ+ σ
φ(Φ−1(α))

1− α
.

Here φ and Φ denote the standard Normal density and distribution functions, respectively.

Further, denoting by fW the density of the mixing variable W we compute

ESα[X] =
1

1− α
E [X1(X ≥ F←X (α))]

=

∫
R

1

1− α
E [X1(X ≥ F←X (α))|W = w] fW (w)dw

=

∫
R
ESα [Nµ+wγ,wσ2 ] fW (w)dw

=

∫
R

(
µ+ wγ +

√
wσ

φ(Φ−1(α))

1− α

)
fW (w)dw

= µ+ γE[W ] + σ
φ(Φ−1(α))

1− α
E

[√
W

]
.

We discuss three special cases:

• Normal: If γ = 0 and W = 1, X is Normal with mean µ and variance σ2 and the

expected shortfall has the well-known form

ESα[X] = µ+ σ
φ(Φ−1(α))

1− α
.

• t: If γ = 0 and W is inverse gamma distributed with parameters ν
2

and ν
2
, X is

t-distributed with ν degrees of freedom. Here, we have

E[W ] =
ν

ν − 2
, E

[√
W

]
=
√

2ν
Γ

(
ν−1
2

)
Γ(ν/2)

.
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• If W has generalized Inverse Gaussian distribution with parameters λ, χ, ψ, we obtain

the class of GH distributions with NIG (λ = −1
2
), HYP (λ = 1) and symmetric

distributions (γ = 0) as special cases. Here we have

E[W ] =
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