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2. Theoretical considerations

Macroscopic plasticity in metals is the result of dislocations
moving through the crystal lattice. Two types of obstacles are
encountered that try to prevent dislocation movements through
the lattice: long range and short range barriers [6,12,15,19 21].
Long range obstacles are due to the structure of the material and
cannot be overcome by introducing thermal energy through the
crystal [7,8,22]. They contribute to the flow stress with a
component that is non thermally activated (athermal stress).
Overcoming of short range barriers can be assisted by thermal
energy [7,8,15,21,22]. Thermal activation aids dislocation gliding,
decreasing the intrinsic lattice friction in the case of BBC metals
(overcoming Peierls stress) or decreasing the strength of obstacles
in the case of FCC metals (overcoming forests of dislocations). In
both cases, thermal activation reduces the applied stress required
to force the dislocation past obstacles [23].

Thus, flow stress of a material (using J2 theory) can be
decomposed into equivalent athermal stress sm and equivalent
thermal stress s� [7,13,15,19,22,24 26]:

s ¼ sm þ s� ð1Þ
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Peierls stress in many FCC metals is relatively unimportant
[12,23]. The rate controlling mechanism is the overcoming of
dislocation forests by individual dislocations [12]. Thermal
activation behaviour becomes dependent on the plastic strain
s� ¼ s�ðep; _e p

; TÞjFCC [7,8,12,23]. FCC metals exhibit large strain
hardening due to an increase in the amount of dislocation
interactions with increasing strain [23]. Strain hardening tends
to be highly temperature and strain rate dependent, while the
yield stress has reduced dependence on such effects [23] (Fig. 2).

In agreement with previous considerations, the volume
thermally activated (VTA) defined by Eq. (2) [30,31] decreases
with plastic strain for many FCC metals [7,15,32] while it is
independent of the deformation level for BCC metals [15,33].

V� � kT
@ lnð _e p

Þ

@s�
jT ¼ kTCT where

Cð _e p
ÞjT for BCC

Cðep; _e p
ÞjT for FCC

(
ð2Þ

Here k is the Boltzmann constant and T the absolute temperature.
In addition, a common characteristic of many FCC metals is the

appearance of a viscous drag component of flow stress at high rate
of deformation [26,34,35]. For strain rate level varying as
103 s�1r _e p

r104 s�1 the flow stress sharply increases (Fig. 3).
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Fig. 2. Strain rate sensitivity definition for BCC and FCC metals.
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thermo viscoplastic behaviour of many metallic alloys [28,43].
However, the RK model has to be modified in order to make it
suitable for modeling determined FCC metals such as, for
example, annealed OFHC copper.

In the following section of the paper the formulation of the
modified RK model (MRK) proposed is reported.

3. An original constitutive model for FCC metals with
application to OFHC copper

In the MRK constitutive relation the equivalent Huber Misses
stress s is decomposed in the following form:

s ¼ EðTÞ

E0
½sm þ s�� þ svs ð4Þ

where each term here is defined as follows.

3.1. Temperature dependent Young’s modulus E(T)/E0

The factor E(T)/E0 defines the Young’s modulus evolution with

��
;

tiv
an

in the form

sm ¼ Y ð6Þ

where Y is the flow stress on undeformed material.
In comparison with the original formulation of the RK model,

in the MRK formulation the athermal stress sm does not describe
strain hardening of the material.

3.3. Effective stress component s�

The effective stress s� is the flow stress component defining
rate dependent interactions with short range obstacles. It denotes
the rate controlling deformation mechanism from thermal activa
tion. At temperatures greater than 0 K, thermal activation assists
the applied stress. It reduces the stress level required to force
dislocations past obstacles.

The theory of thermodynamics and kinetics of slip [6] is
founded on a set of equations that relate activation energy DG,
mechanical threshold stress (MTS) s

_
, applied stress s, strain rate

_e, temperature T and determined physical material parameters.
Based on such understanding of the material behaviour, Rusinek
and Klepaczko [9] derived the following expression:

p T
� �
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� �� 	1=x2

ð7Þ
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temperature [44] as follows:
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Therefore, expression (8) becomes also rate and temperature
dependent (Eq. (9)). Thus, the model considers dependences on
strain and on strain rate that the mechanical threshold stress
exhibits in the case of OFHC copper [26]. This definition is
consistent with the dominance of dislocation obstacle interac
tions in the plastic deformation of polycrystalline FCC materials
[23,26]. In Eq. (9), the modulus of plasticity B defines rate and
temperature sensitivities on strain hardening and n is the strain
hardening exponent dependent on strain rate and temperature.

Explicit formulations describing the modulus of plasticity and
the strain hardening exponent are given, respectively, as

Bð _e p
; TÞ ¼ B0

T

Tm

� �
log

_emax

_e p

� �� ��n
; T40 ð10Þ

nð _e p
; TÞ ¼ n0 1 D2

T

Tm

� �
log

_e p

_emin

* +
ð11Þ

where B0 is a material constant, n is proportional to temperature
sensitivity, n0 is the strain hardening exponent at T ¼ 0 K, D2 is a
material constant and _emin is the lower limit of the model. The
McCauley operator is defined as follows: /�S ¼ � if /�SZ0 or
/�S ¼ 0 if /�Sr0.
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Finally, some comments have to be made concerning the
definition of the strain rate sensitivity provided by the MRK
constitutive relation.

The model takes into account only the instantaneous rate
sensitivity of the material. Instantaneous strain rate sensitivity
describes the rate dependent behaviour of metals during con
tinuous loading condition (current value of flow stress is an

instantaneous function of strain ep, strain rate _ep
¼ 10 s�1 and

temperature T) [48]. Many of the constitutive descriptions
reported in the literature (physical based models as well as

phenomenological models) [1,3 5,7 10] are usually restricted to
such application fields.

However, it is known that strain rate history effects are present
in the material deformation behaviour. As described by [49 51]
historical effects may be of relevance for modeling the material
behaviour when it is subjected to an abrupt increase of applied
deformation rate or to a cycling loading process.

In order to take into account such considerations, definitions of
internal state variables in the formulation of the constitutive
description are necessary [11,14]. Such internal state variables are
traditionally chosen as the evolution of dislocation density [52] or,
in a wider sense, as an effective microstructural length governed
by a determined evolution law [11,14].

he MRK model (definitions of
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3.4. Viscous drag component svs
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identified from experiments. In the range _e p
r _e p

drag the stress

increase is defined as follows:

Dsð _ep

reference-
_ep
Þjep ¼ sð _ep

Þjep sð _e p

referenceÞjep ¼ s�ð _ep
; TÞjep ð15Þ

Combining Eq. (15) with experimental results for an imposed

strain level ep, it is possible to determine the material

constants x1 and x2. The strain level should be assumed as

epr0:1 in order to guarantee the isothermal condition of
deformation. For larger strain values, the adiabatic condition
induces a thermal softening of the material and a decrease in
strain hardening.
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the stress difference between the model

predictions (without viscous drag component) and experiments
is due to the viscous drag term svsð
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of Eq. (13 a) with experimental results for an imposed strain
level ep, it is possible to determine the material constants w
and a (Fig. 6).

v. The last step is the application of Eq. (4), combined with
experimental results s ep
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p . Then, the stress dependency on

temperature and strain rate for the modulus of plasticity B and
the strain hardening exponent n can be defined.
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tions of the MRK model are compared with experiments.

The first step is to evaluate predictions of the MRK model for
different strain rate levels at room temperature. In Fig. 7 a
satisfactory agreement between model and experiments is
reported under quasi static loading _e p

¼ 0:001 s�1 (Fig. 7a) as
well as under dynamic loading _e p

¼ 4000 s�1 (Fig. 7b). It must be
pointed out that the analytical predictions fit properly not only
the flow stress level but also the strain hardening of the material
up to a plastic strain level close to ep

� 1. Only in the case of high
strain rate and large deformation ep40:75, Fig. 7b, the material
reaches saturation stress condition and differences between
experiments and model predictions appear.

Such an agreement with experiments extends within the strain
rate variation range of 10�4 s�1r _e p

r104 s�1as shown in Fig. 8.
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In Fig. 9 the experimental data are compared with analytical
predictions of the model for two different initial temperatures at a
high strain rate _e p

¼ 4000 s�1. In both cases the model defines
correctly strain hardening and flow stress level of the material.

Moreover, the temperature sensitivity of the material is well
defined in the range 100 KrTr1100 K as shown in Fig. 10. It must
be noticed that within this range of initial temperatures the flow
stress of the material is continuously decreasing. A temperature
independent region is not observed
agreement with considerations repo
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where s0 is a material constant, k is the Boltzmann constant, G0

the reference Gibbs free energy at T ¼ 0 K (it can be considered as

an empirical parameter [8]), _e0 the reference strain rate, n0 is a
material constant defining strain hardening, and p and q are
parameters describing the profile of the short range energy
barrier to the motion of dislocations.

Moreover, a(T) is an empirical function depending on tem
perature and tied to the average dislocation spacing (Eq. (19)). It
contributes to the definition of the strain hardening of the
material.

aðTÞ ¼ a0 1
T

Tm

� �n2
� �

ð19Þ

where a0 and n2 are material constants.
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Table 1
Constants determined for annealed OFHC copper for thermal and athermal stress components of the MRK model.

Y (MPa) B0 (MPa) n (�) n0 (�) D2 (�) x2 (�) x1 (-) Tm (K) _emin (s 1) _emax (s 1) y* (�)

40 560.28 0.30447 0.492 0.0553 0.0131 0.0011932 1340 10 5 107 0.9

Table 2
Constants determined for annealed OFHC Copper for the viscous drag stress

component of the MRK model.

w (MPa) a (�)

249 0.0000122

Table 3
Physical constants for annealed OFHC copper.

E0 (GPa) Cp (J kg K 1) b (�) r (kg m 3)

130 385 0.9 8960
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equivalent Huber Misses stress s is split into two parts, the
equivalent thermal stress sm and the
s�ðep; _e p

; TÞ:

sðep; _e p
; TÞ ¼ sm þ s�ðep; _e p

; TÞ

The athermal stress is defined with
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sm ¼ Ya

where Ya is a material constant descr
independent of temperature and strai

The thermal stress is defined as a func
(22)). It is derived from the concept of d
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Here B denotes the modulus of strain h
hardening exponent, B1 and B2 are m

basically, to mobile dislocation density evolution and to thermo
dynamic material parameters [15], m defines the strain rate
sensitivity and A is a material constant.

Some comments must be made concerning this constitutive
relation. They are outlined below.

� As reported for the NNL model, in the VA constitutive
description, strain hardening is defined without taking into
account the intrinsic effect of strain rate.
� The expression used to define the velocity of dislocations [57]

leads to a formulation of the rate sensitivity of the form
Dsð _e p

i -
_e p

iþ1Þj
T
ep
pð _e p

Þ
1=m. This expression neglects rate sensi

tivity under quasi static loading, overestimating it under
dynamic loading (Fig. 12).
� Temperature and rate sensitivities are decoupled in the

formulation of the model. From the thermal activation
analysis, and based on an Arrh�enius type equation, many
researchers reported the existence of reciprocity between
strain rate and temperature [6,25,58].
� As reported for the NNL model, the VA constitutive relation

does not account for the dependence of Young’s modulus with
temperature.
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in [15]. The material constants
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with the experimental data in comparison with other constitutive
descriptions. In this case, although NNL and VA relations describe
properly the strain hardening evolution, they underestimate the
flow stress level (Fig. 13b).

In order to evaluate the description of rate sensitivity proposed
by each model, their definition of the flow stress evolution along
with strain rate is shown in Fig. 14. Two different plastic strain
values are considered, ep ¼ 0:1 (Fig. 14a) and ep ¼ 0:15 (Fig. 14b).

In comparison with the predictions provided by the MRK model,
NNL defines a slightly larger value of stress until a certain strain
rate level is reached. Beyond this point, the NNL model
underestimates flow stress of the material since it does not
account for the dislocation drag effect, which takes place at high
strain rates in annealed OFHC copper. Moreover, the VA model
does not define properly the rate sensitivity of the material. As
commented on before, the VA constitutive relation neglects rate
sensitivity up to the high strain rate level achieved, _ep � 1000 s�1

(Fig. 14). In the case of _e pZ1000 s�1, the rate sensitivity proposed
is excessive (Fig. 14).

As previously introduced, the description of rate sensitivity is
related to VTA. Using Eq. (2) it is possible to analyze for each
model the evolution of VTA along with deformation rate for
different plastic strain levels (Fig. 15). Although the models
considered define a typical decrease of VTA with plastic strain
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Table 4
Constants determined for annealed OFHC copper for the NNL model [8].

p (–) q (–) k/G0 (K 1) e0 (s 1) a0 (�) s0 (MPa) s0
a (MPa) n0 (–) n1 (–) n2 (–)

2/3 2 0.000049 2�1010 20 46 220 0.5 0.3 2
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taking place in many FCC metals [7,1
differences among the predictions are

In comparison with the MRK relati
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stress (it has been analyzed more exha

paper). Due to the low rate sensitiv
relation, the slope of the curves C l
case of the MRK model (Fig. 15). For th
rate increases, VTA quickly decrea

agreement with considerations reported for example in [30]. As
thermal activation reduces its effect on assisting dislocations to
overcome obstacles, flow stress of the material increases. More
over, it must be pointed out that, in the NNL and MRK models,
thermal activation is present for the whole range of strain rates
considered (at room temperature). VTA does not reach zero
although viscous drag effects may take place (they do not have

to be taken into consideration for thermal activation analysis;
Fig. 15).

The description of VTA proposed by the VA model is quite
different from those reported for the NNL and MRK models. The
VA constitutive relation defines VTA only within the small range
102 s�1r _e pr103 s�1 (Fig. 15). In the case of _e pr102 s�1 it shows a
vertical asymptote (Fig. 15). This behaviour is a consequence of
neglecting the rate sensitivity of the material for _e pr102 s�1 and
is not in agreement with considerations reported for example in
[30]. In the case of 103 s�1r _e p the VTA reaches zero (Fig. 15). This
consideration also is not in agreement with observations reported
for example in [30].

Next, predictions of the models and their comparison with
experiments are shown for different initial temperatures at a high
strain rate level _e p � 4000 s�1 (Fig. 16). At low temperature
T ¼ 77 K, the VA model shows a great underestimation of the
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vel and the strain hardening of
condition up to ep � 1. For
K and NNL) the difference
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However, differences between these two models appear at high
temperature, T0Z700 K. Beyond this temperature level, the MRK
model predicts uniformly decreasing flow stress ðdseq=dT � cteÞ

while the NNL model predicts a decrease in temperature
sensitivity ðdseq=dTjT0r700KZdseq=dTjT04700K; Fig. 17).

This behaviour is caused by the definition of the effective stress
proposed by each model. In Fig. 18 the evolution of the effective
stress with increasing temperature for different deformation
levels and different strain rate values is depicted. First, it must
be noticed that in agreement with theoretical considerations
reported in [7,8,12,23] for annealed OFHC copper, the thermal
stress increases with plastic deformation (Fig. 18).

Moreover, differences in the level of the thermal stress are
observed depending on the constitutive relation (Fig. 18). The
effective stress level proposed by the NNL model is always lower
than that corresponding to the MRK model (Fig. 18). The NNL
model predicts athermal flow stress beyond a determined

temperature level (which depends on the deformation rate;
Fig. 18). This means that under certain loading conditions
annealed OFHC copper does not exhibit influence of temperature
on flow stress. This behaviour may not be in agreement with
experimental observations reported for this material (previously

showed in the present paper; Fig. 5). Moreover, the effective stress
of MRK model never reaches zero (Fig. 18). This model predicts
absence of athermal region for annealed OFHC copper in
agreement with [15].

7. Concluding remarks

In this paper a constitutive relation suitable for defining the
thermo viscoplastic behaviour of FCC metals with dependence of
strain on thermal activation is presented. The model is founded on
physical aspects of the material behaviour. The proposed
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constitutive description has simplicity of formulation and easy
calibration. It has been calibrated and used to study the behaviour
of annealed OFHC copper. Its analytical predictions are compared
with those obtained from other physically based models reported
in the literature, namely those due to Voyiadjis and Almasri [15]
and Nemat Nasser and Li [8]. From the analysis conducted the
following conclusions can be reached:

� Determined FCC metals like OFHC copper exhibit dependence
of strain on thermal activation. In such materials Peierls stress
is relatively unimportant; the rate controlling deformation
mechanism is used to overcome dislocation forests by
individual dislocations. Strain hardening tends to be highly
temperature and strain rate dependent, while the yield stress
may show reduced dependence to such effects. These physical
considerations are exhibited in the formulation of the model
proposed.
� Taking account of viscous drag effects is a key factor in order to

describe properly the rate and temperature sensitivities of the
material under high rate loading. In addition, this provides
extended flexibility to the model proposed. The strain rate

sensitivity of many FCC metals cannot be defined using only
the rate temperature reciprocity proposed by an Arrh�enius
type equation.
� Predictions provided by the MRK model get satisfactory

agreement with the experimental data taken as reference. This
agreement is comparable to that obtained using NNL and VA
models for the whole range of strain rates and initial
temperatures considered.
� From the analysis of the thermal activation behaviour

proposed by each formulation, the main importance of taking
into account the rate temperature reciprocity in order to
describe the material behaviour is revealed. This consideration
places the MRK and NNL models in certain advantage in
comparison with the VA model for describing the deformation
behaviour of annealed OFHC copper.

The MRK model is revealed as a good alternative to other
physically based relations proposed in the literature for modeling
behaviour of determined FCC metals. Combination of physical
background with a limited number of material constants makes it
attractive for applications, where a proper definition of rate and
temperature sensitivities of the material is required.
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T0 600 K, (c) T0 800 K and (d) T0 900 K [8].
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Appendix A

A.1. Three dimensional model

As reported, for example, in [59] generalization of constitutive
relations to three dimensional (3D) states of stress and strain has
particular relevance. For this, the constitutive description intro
duced in this paper may be extended to 3D modeling and
implemented into FE codes by means, for example, of the
integration scheme proposed in [60]. This procedure has been
already applied to the formulation of the RK model [61]. Thus, the

main features of the algorithm proposed by Zaera and Fern�andez
S�aez [60] are described below.

The yield condition is defined by

f ¼ s syðep; _e p
; TÞ ¼ 0 ðA:1Þ

where s is the equivalent stress, sy the yield stress defined by the
MRK constitutive description, ep the equivalent plastic strain (Eq.
(A.3)), _e p

the equivalent plastic strain rate (Eq. (A.3)) and T the
temperature:

_e p
¼

2

3
_ep

ij
_ep

ij

r
ðA:2Þ

ep
¼

Z
_e p

dt ðA:3Þ

Assuming additive decomposition of the deformation tensor
(hypoelastic plastic approach), the tensor of total strain rate _eij is
written as a sum of the elastic strain rate tensor _ee

ij, the plastic
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strain rate tensor _ep
ijand the thermal strain rate tensor _eT

ij:

_eij ¼ _ee
ij þ _e

p
ij þ

_eT
ij ðA:4Þ

Elastic strains are related to stress through an isotropic
hypoelastic law:

_s ij ¼ Cijklee
kl ðA:5Þ

where Cijkl is the stiffness tensor.
The thermal strains tensor is defined as follows:

eT
ij ¼ a _Tdij ðA:6Þ

where a is the coefficient of thermal expansion and dij the unit
matrix ð dij ¼ 1 if i ¼ j Þ.

To define the plastic flow, the normality rule is used:

ep
ij ¼

_l
@f

@sij
ðA:7Þ

where _l is the rate plastic multiplier that, in J2 plasticity, can be

pl

are
to

equ
f pl

e
n, E
ain

to a time step (Eq. (A.11)):

_lf ¼ 0 ðA:10Þ

f ðDep
Þ ¼ 0 ðA:11Þ

Linearising the consistency condition, the following equation is
found, which allows us to iteratively obtain Dep:

fðkþ1Þ � fðkÞ þ
@f

@sij
dep
ðkÞ2G

@f

@sij
jðkÞ

� �
þ
@f

@ep jðkÞde
p
ðkÞ

þ
@f

@ _e p jðkÞ

dep
ðkÞ

Dt

þ
@f

@T
jðkÞ

b
rCp
ðdep
ðkÞ s

trial
nþ1 6GDep

ðkÞ de
p
ðkÞÞ

¼ 0 ðA:12Þ

where k is an iterative index. From the previous expression, dep
ðkÞ

can be calculated:

p fðkÞ

p
ðstrial

nþ1 6GDep
ðkÞÞ

ðA:13Þ

tion:

ðA:14Þ

d from the final value of Dl.
ntegration procedure can be

n in terms of ep, _e p
and T are

ardening model. Thus, the
e as follows (the remaining

corresponding to the original

the RK model to viscous drag

g

 

Tm

Tx1

ðA:15Þ
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defined by

_l ¼
Dl
Dt
¼ _e p

and hence, the equivalency of the
equivalent plastic strain:

ep
¼ l

Adiabatic conditions of deformation
The consistency model is used

viscoplastic rate equations, via the
and yield stress for updated values o
rate and temperature. In the fram
algorithms, the consistency conditio
in terms of the equivalent plastic str

ds�ð _e p
; ep; TÞ

d _e p jep
;T ¼

B0ðep
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n0 1�

D2T lo
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astic multiplier and the

ðA:9Þ

assumed (Eq. (14)).
integrate the thermo

ality of equivalent stress
astic strain, plastic strain
of the return mapping
q. (A.10), can be written
increment corresponding

de
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3G @f
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1
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@ _e
p jðkÞ

@f
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b
rC

Then, Dl is updated after every itera

Dlðkþ1Þ ¼ DlðkÞ þ dlðkÞ

All the variables can be determine
A more detailed explanation of the i
found in [60].

The derivatives of the yield functio
easily obtained for the proposed h
derivatives of the thermal stress ar
model derivatives are common to those

RK formulation and to the extension of

effects. They can be found in [17,29]):
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ds�ð _e p
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dep j _e
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It is necessary to notice that using the consistency model only
pure elastic unloading is allowed. This fact causes a difference in
comparison with, for example, Perzyna overstress model [62], which
leads to plastic deformation during unloading so long as overstress is
present.
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