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Abstract 

Let S be the number of components in a finite discrete mixing distribution. We 
prove that the number of waves of panel being greater than or equal to 2S is a sufficient 
condition for global identification of a dynamic binary choice model in which all the 
parameters are heterogeneous. This model results in a mixture of S binary first order 
Markov Chains. 
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1 Introduction

When considering observed persistence in time varying choices, Heckman (1981)

emphasized the importance of distinguishing between unobserved heterogeneity and

true state dependence. A preeminent example in empirical work is the modelling

of dynamic discrete choice models, for example, labour force participation. In al-

lowing for heterogeneity it is important to capture unobserved heterogeneity in the

state dependence parameter as well as in the �intercept�; see Browning and Carro

(2007). One convenient way to do this is to employ �nite mixture models. Here we

examine the identi�cation of mixture model of S binary �rst order Markov Chains.

This mixture model corresponds to a dynamic binary choice model in which all the

parameters are heterogeneous.

Discrete �nite mixtures as a �exible (�nonparametric�) way to control for unob-

served heterogeneity have been widely used. It was popularized in economics by the

work of Heckman and Singer (1982) in duration models, but it is used in many other

non-linear models, including discrete choice models. The question of identi�cation

of �nite mixtures has been studied for many decades in statistics and econometrics.

Teicher (1961), Blischke (1962), Blischke (1964) and Teicher (1963) are among the

�rst examples. These studies considered the identi�cation of mixtures of normal,

gamma, or binomial distributions, but they did not consider mixtures of �rst order

Markov Chains. A recent study in econometrics is Kasahara and Shimotsu (2009),

but for the model of our interest they do not give identi�cation conditions for an

arbitrary number of periods. Moreover, their conditions are very di¢ cult to check in

actual data. In this paper we derive a explicit (and very simple) su¢ cient condition

for global identi�cation in terms of the number of waves of a panel that is needed

to identify a mixture of S binary �rst order Markov Chains.

1



2 Su¢ cient conditions for identi�cation

Let Yi = (yi0; yi1; ::::yiT ) be a realization of a binary variable yit that follows a time-

homogeneous �rst order Markov process. The transition probabilities that de�ne

this process are:

Gs = Pr (yt = 1 j yt�1 = 0; s) (1)

Hs = Pr (yt = 1 j yt�1 = 1; s) (2)

where s indexes the S distributions we are mixing, and we have T + 1 realizations

of this process. We make all our analysis conditional on the initial observation. The

distribution of Yi conditional on yi0 is the following mixture

Pr(Yijyi0) =
SX
s=1

�sjyi0G
n01
s (1�Gs)n00 Hn11

s (1�Hs)n10 (3)

where n01 is the number of 0 ! 1 transitions in path Yi, and similarly for the

other three transitions. �sjyi0 gives the mixing probabilities of each value of (Gs; Hs)

conditional on the initial observation. That is, we have one mixing distribution for

those Yi that start with yi0 = 0, and another one, possibly di¤erent, for those with

yi0 = 1. The unconditional mixing proportions can be easily recovered using the

observed proportion of yi0 = 1. Note that
PS

s=1 �sjyi0 = 1, and therefore �Sjyi0 =

1�
PS�1

s=1 �sjyi0. 0 < �sjyi0 ; Gs; Hs < 1 for s = 1; ::; S. Also, Gs and Hs take distinct

values for di¤erent s.

The unknown parameters we want to identify are
n�
�sjyi0=0; �sjyi0=1

�S�1
s=1

; [Gs; Hs]
S
s=1

o
;

in all there are (4S � 2) parameters. We provide su¢ cient conditions for global

identi�cation of the mixture in (3). We say the mixture is identi�ed if from the

realized proportions of the mixed distribution we can recover only one distinct value

of
n�
�sjyi0=0; �sjyi0=1

�S�1
s=1

; [Gs; Hs]
S
s=1

o
that yields that mixed distribution. Also, any
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sets of values of the unknowns that contain the same values but in di¤erent order

(e.g. (G1; H1) in one set is (G3; H3) on another set) are the same solution. If that

solution is unique we say the model is identi�ed regardless of the number of ways it

could be ordered.

The possible realizations of Yi are all the possible combination of zeros and ones

in the periods we have. To identify
�
�sjyi0=1; Hs

	S
s=1
, we take those realizations with

yi0 = 1, and construct moment conditions using the survivor function. That is,

we take the probability that in the u periods following the initial observation we

observe only ones: SH(u) =
PS

s=1 �sjyi0=1H
u
s . For instance, for a given value Hs,

the probability, conditional on yi0 = 1; of observing yi1 = yi2 = 1 (that is, u = 2) is,

from equation (2), equal to H2
s . Each value of u will give a moment condition, so

we have the following system of equations:

fH;u =
SX
s=1

�sjyi0=1H
u
s ; (u = 0; :::; T ) (4)

with SH(0) and fH;0 being trivially equal to one. The value fH;u is the population

proportion of realizations Yi whose �rst u+1 elements are equal to one. In order to

have at least as many (informative) equations as unknowns in system (4) we need

T � 2S � 1:

To show that T � 2S � 1 is a su¢ cient condition for global identi�cation of the

mixture in (3), �rstly note that equations (4) are the same equations as equations

(6) on page 513 of Blischke (1964), except for the di¤erent notation used. Therefore,

from the same arguments used in Blischke (1964), if T � 2S � 1 there is a unique

solution to this system and
n�
�sjyi0=1

�S�1
s=1

; [Hs]
S
s=1

o
is identi�ed from (4).

To identify
n�
�sjyi0=0

�S�1
s=1

; [Gs]
S
s=1

o
, we do the same analysis taking those real-

izations with yi0 = 0, and use the survivor function with the number of consecutive
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zeros following yi0. This gives the following equations

fG;u =
SX
s=1

�sjyi0=0 (1�Gs)
u ; (u = 0; :::; T ) (5)

fG;u is the population proportion of realizations Yi whose �rst u + 1 elements are

equal to zero. Again, this is the same system of equations as equation (6) in Blischke

(1964) with pki in Blischke(1964) being (1�Gs)
u here. Therefore, if T � 2S � 1,

there is a unique solution to this system and
n�
�sjyi0=0

�S�1
s=1

; [Gs]
S
s=1

o
is identi�ed

from (5). This complete the identi�cation of all the unknowns.

3 Concluding Remarks

We have shown that T � 2S � 1 is a su¢ cient condition for global identi�cation

of a mixture to S binary �rst order Markov Chains. Since in our notation the �rst

observation of the process is 0 and T is the last observation, in terms of the number

of periods observed (= T + 1) this condition is

number of periods � 2S (6)

Two �nal remarks are important:

1. Though we have made use of some results in Blischke (1964) the condition (6)

for identi�cation of (3) is di¤erent than the condition for identi�cation of the

binomial mixtures studied in Blischke (1964). Our mixture requires one more

period to satisfy the su¢ cient condition for identi�cation. This comparison is

relevant since the binomial mixture is a special case of our model: the case in

which Gs = Hs = ps for all s. This is the static version of our dynamic binary

choice model.

2. The condition derived in this paper is su¢ cient but not necessary. At least it
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is not necessary for all the values of the parameters. The moments we have

constructed are ignoring conditions in which both Gs and Hs are combined.

Browning and Carro (2011) exploit all the possible conditions to derive, among

other results, a necessary and su¢ cient condition for (generic local) identi�-

cation. This condition requires a smaller number of periods than condition

(6) for identi�cation. In particular, it requires T � �1
2
+
q

�7
4
+ 4S. For

example, if S = 4 the latter requires at least 5 waves as opposed to the 8

needed for the su¢ cient condition derived here. However, the advantage of

the condition derived here (equation (6)) is that it is for global identi�cation

and holds everywhere. The condition in Browning and Carro (2011) holds

almost everywhere and, as such, it has some exceptions. Moreover, though

it is conjectured that it holds also for global identi�cation, the condition in

Browning and Carro (2011) is proved in general only for local identi�cation.
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