
Creating User Profiles from a Command-Line

Interface: A Statistical Approach

José Antonio Iglesias, Agapito Ledezma, and Araceli Sanchis

Universidad Carlos III de Madrid,
Avda. de la Universidad, 30, 28911 Leganés (Madrid), Spain

{jiglesia,ledezma,masm}@inf.uc3m.es

Abstract. Knowledge about computer users is very beneficial for assist-
ing them, predicting their future actions or detecting masqueraders. In
this paper, an approach for creating and recognizing automatically the
behavior profile of a user from the commands (s)he types in a command-
line interface, is presented.

Specifically, in this research, a computer user behavior is represented
as a sequence of UNIX commands. This sequence is transformed into a
distribution of relevant subsequences in order to find out a profile that
defines its behavior. Then, statistical methods are used for recognizing
a user from the commands (s)he types. The experiment results, using
2 different sources of UNIX command data, show that a system based
on our approach can efficiently recognize a UNIX user. In addition, a
comparison with a HMM-base method is done.

Because a user profile usually changes constantly, we also propose
a method to keep up to date the created profiles using an age-based
mechanism.

1 Introduction

Would it not be interesting to recognize a computer user and to know how (s)he
will behave after (s)he types a few commands?

Recognizing the behavior of others in real-time is significant in different tasks,
such as to predict their future behavior, to coordinate with them or to assist
them. In order to act efficiently, humans usually try to recognize the behavior of
others. New theories claim that a high percentage of the human brain capacity
is used for predicting the future, including the behavior of other humans [1].

Specifically, computer user modeling is the process of learning about ordinary
computer users by observing the way they use the computer. This process needs
the creation of a user profile that contains information that characterizes the
usage behavior of a computer user. Experience has shown that users themselves
do not know how to articulate what they do, especially if they are very familiar
with the tasks they perform. Computer users, like all of us, leave out activities
that they do not even notice they are doing. Thus, only by observing users we

G.-J. Houben et al. (Eds.): UMAP 2009, LNCS 5535, pp. 90–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Published in: Lecture Notes in Computer Science, 2009. nº 5535, p. 90–101. 



Creating User Profiles from a Command-Line Interface 91

can model his/her behavior correctly [2]. However, the construction of effective
computer user profiles is a difficult problem because of the following aspects:
human behavior is usually erratic, and sometimes humans behave differently
because of a change in their goals.

In recent years, significant work has been carried out for profiling computer
users. In this research, an approach for profiling and recognizing general user
behavior profiles is proposed. This approach is called ABCD (Agent Behavior
Classification based on Distributions of relevant subsequences of commands) and
can be applied for creating and recognizing any behavior represented by a se-
quence of commands (or events). ABCD creates a user profile as a distribution
of relevant subsequences and then statistical methods are applied for recognizing
a given sequence of commands.

However, for evaluating ABCD, the UNIX operating system environment is
used. The creation of the UNIX user profiles from a sequence of UNIX commands
should consider the sequentiality of the commands typed by the user and the
temporal dependencies. In a human-computer interaction by commands, the
sequentiality of these commands is essential for the result of the interaction.
This aspect motivates the idea of automated sequence learning for computer
user behavior classification; if we do not know the features that influence the
behavior of a user, we can consider a sequence of past actions to incorporate
some of the historical context of the user. This aspect is taken into account in
the HMM-based methods, so we will compare ABCD with a method which uses
HMMs for modeling users. Finally, once the user has been classified, relevant
actions can be done, however this task is not addressed in this paper.

This paper is organized as follows: Section 2 provides a brief overview of the
background and related work relevant to this research. Our approach (ABCD)
is explained in detail in section 3. Section 4 describes the experimental set-
ting and the experimental results obtained. Section 5 compares the obtained
results with a very well know technique (HMMs). The proposal for making
ABCD adaptative is detailed in Section 6. Finally, Section 7 contains concluding
remarks.

2 Background and Related Work

Different methods have been used to find out relevant information in the com-
puter user behavior in different computer areas:

Discovery of navigation patterns: Spiliopoulou and Faulstich [3] present
the Web Utilization Miner WUM, a mining system for discovering interesting
navigation patterns in a web site. WUM prepares the web log data for mining and
the language MINT mining the aggregated data according to the directives of the
human expert. This work is complementary to ”Footprints” tool, which focuses
on the visualization of frequently accessed patterns and on the identification of
pattern types that may be of importance [4].



92 J.A. Iglesias, A. Ledezma, and A. Sanchis

Web recommender systems: Macedo et al. [5] propose a system (WebMemex )
that provides recommended information based on the captured history of navi-
gation from a list of known users. WebMemex captures information such as IP
addresses, user Ids and URL accessed for future analysis.

Web page filtering: Gody and Amandi [6] present a technique to generate read-
able user profiles that accurately capture interests by observing their behavior
on the Web. The proposed technique is built on the Web Document Conceptual
Clustering algorithm, with which profiles without an a priori knowledge of user
interest categories can be acquired.

Computer security: Pepyne et al. [7] describe a method using queuing theory
and logistic regression modeling methods for profiling computer users based on
simple temporal aspects of their behavior. In a similar area (intrusion detec-
tion problem), Coull et al. [8] propose an algorithm that uses pair-wise sequence
alignment to characterize similarity between sequences of commands. The algo-
rithm produces an effective metric for distinguishing a legitimate user from a
masquerader. Schonlau et al. [9] investigate a number of statistical approaches
for detecting masqueraders.

Although there is lot of work that focuses on user profiling in a specific en-
vironment, it is not clear that they can be transferred to other environments.
However, the approach proposed in this research (ABCD) can be used in any
domain in which a user behavior can be represented as a sequence of commands
or events. Therefore, as sequences are very relevant in human skill learning and
reasoning [10], the problem of user profile classification is examined as a problem
of sequence classification. According to this aspect, Horman and Kaminka [11]
present a learner with unlabeled sequential data that discover meaningful pat-
terns of sequential behavior from example streams. Lane and Brodley [12] present
an approach based on the basis of instance-based learning (IBL) techniques, and
several techniques for reducing data storage requirements of the user profile.

3 ABCD: Agent Behavior Classifier Based on
Distributions of Relevant Subsequences of Commands

Although ABCD can be applied for creating and recognizing any behavior profile
represented by a sequence of commands, this research is focused on creating
computer user profiles from a command-line interface. Specifically, ABCD is
detailed using the UNIX commands environment.

ABCD, as other behavior modeling methods [13], uses a library in which all the
different user profiles recognized are stored. Then, a matching of the sequence
to classify with the Profile-Library is done. Thus, ABCD is divided into two
phases:

1. Construction of the User Behavior Profiles: In this phase, the se-
quences of commands typed by different UNIX users are analyzed and the
corresponding profiles are created and stored in the Profile-Library. This
process is detailed in Section 3.1.



Creating User Profiles from a Command-Line Interface 93

2. User Classification: The goal of this phase is to classify a new sequence
of commands typed by a user into one of the profiles created in the previous
phase. Section 3.2 explains the proposed statistical classification method.

3.1 Construction of the User Behavior Profiles

In this phase, the first step is to extract the significant pieces of the sequence
of commands that can represent a pattern of behavior. When a user types a
command, it usually depends on the previous typed commands and it is related
to the following commands. According to this aspect, and as it was used in [14],
in order to get the most representative set of subsequences from the acquired
sequence, the use of a trie data structure [15] is proposed. This structure is
also proposed in [16] to learn a team behavior and in [17] to classify the behavior
patterns of a RoboCup soccer simulation team.

The construction of a user profile from a single sequence of commands is
done by a three steps process: 1. Segmentation of the sequence of commands, 2.
Storage of the subsequences in a trie, and 3. Creation of the user profile. These
steps are detailed in the following 3 subsections.

In order to clarify the process for creating a UNIX user profile, let us consider
the following sequence as example: {ls → date → ls → date → cat}.
Segmentation of the sequence of commands: Firstly, the sequence is seg-
mented in subsequence of equal length from the first to the last element. Thus,
the sequence A=A1A2...An (where n is the number of commands of the se-
quence) will be segmented in the subsequences described by Ai...Ai+length ∀
i,i=[1,n-length+1], where length is the size of the subsequences created and de-
termines how many commands are considered as dependent. In the rest of the
paper, we will use the term subsequence length to denote the value of this length.

In the proposed sample sequence ({ ls → date → ls → date → cat}), let 3 be
the subsequence length, then it is obtained: {ls → date → ls} and {date → ls
→ date} and {ls → date → cat}.
Storage of the subsequences in a trie: The subsequences of commands are
stored in a trie in a way that all possible subsequences are accessible and ex-
plicitly represented. In the proposed trie, a node represents a command, and its
children represent the commands that follow it. Also, each node keeps track
of the number of times a command has been inserted on to it. As the de-
pendencies of the commands are relevant in the user profile, the subsequence
suffixes (subsequences that extend to the end of the given sequence) are also
inserted.

Considering the previous example, the first subsequence ({ls → date → ls}) is
added as the first branch of the empty trie (Figure 1a). Each node is labeled with
the number 1 (in square brackets) which indicates that the command has been
inserted in the node once. Then, the suffixes of the subsequence ({date → ls} and
{ls}) are also inserted (Figure 1b). Finally, after inserting the 3 subsequences
and its corresponding suffixes, the completed trie is obtained (Figure 1c).



94 J.A. Iglesias, A. Ledezma, and A. Sanchis

Fig. 1. Steps of creating an example trie

Creation of the user profile: For this purpose, frequency-based methods
are used. Specifically, to evaluate the relevance of a subsequence using ABCD,
its relative frequency or support [18] is calculated. In this case, the support of
a subsequence is defined as the ratio of the number of times the subsequence
has been inserted into the trie to the total number of subsequences of equal size
inserted. Calculating this value, the trie is transformed into a set of subsequences
labeled with its corresponding support value. This structure is represented as a
distribution of relevant subsequences. Once a user behavior profile has been
created, it is stored in the Profile-Library with an identification name.

In the previous example, the trie consists of 9 nodes; therefore, the profile
consists of 9 different subsequences which are labeled with its support (Figure 2).

Fig. 2. Distribution of subsequences

3.2 User Recognition

In this second phase, a new sequence of commands typed by one of the users
previously analyzed must be classified. It means that given an observed sequence
E typed by a user and a set of user behavior profiles P = {up1, up2,..., upn}
stored in the Profile-Library, the goal of this phase is to determine into which
profile upi ∈ P the sequence E belongs to.

Firstly, the distribution of relevant subsequences of the new sequence (input)
is created by applying the process explained in the previous section. Then, it is
matched with all the profiles stored in the Profile-Library. As both profiles are
represented by a distribution of values, a statistical test is applied for matching



Creating User Profiles from a Command-Line Interface 95

these distributions. A non-parametric test (or distribution-free) is used because
this kind of tests does not assume a particular population distribution. The
proposed test applied for matching two behaviors is a modification of the
Chi-Square Test for two samples.

To apply the proposed test, the sequence to classify (input) is considered as an
observed sample and the profiles stored in Profile-Library are considered as the
expected samples. Then, this test compares the observed distribution with all the
expected distributions objectively and evaluates whether a deviation appears.

The Chi-Square Test compares the two sets of support values in which Chi-
Square is the sum of the terms (Obs−Exp)2

Exp calculated from the observed (Obs)
and expected (Exp) distributions. However, using this test, all the expected val-
ues are compared but if an observed value is not represented in the expected
distribution, it is not considered. Also, the number of subsequences in an ex-
pected distribution is usually very large, so this kind of comparison can be very
time-consumed. In order to solve these problems, the way to compare the two
distributions is modified to the sum of the terms (Exp−Obs)2

Obs .
An important advantage of the proposed test is its rapidity because only

the observed subsequences are evaluated. However, there is no penalty for the
expected relevant subsequences which do not appear in the observed distribution.

Using this test, a value that indicates the deviation between the observed and
the stored profile is obtained. This deviation needs to be calculated with all the
profiles stored in Profile-Library and the profile that obtains the lowest deviation
value indicates the closer similarity. Also, the number of terms to sum in each
comparison is always the same: number of subsequences of the observed profile.
It means that the degrees of freedom (dof ) are the same in all the comparisons
with the expected behavior profiles. Otherwise, a normalization of the results
according to the dof should be done.

As example, let us consider that the sequence that represents the observed
behavior is: {ls → date → cpp}. Figure 3 shows the comparison between the
previous expected distribution (Expected Profile 1 ) and the observed distribution
(Observed Profile). Obtaining the support value of each subsequence in Figure 3,
the deviation value in this example is: (0,44−0,33)2

0,33 + (0,5−0,5)2

0,5 + (0,44−0,33)2

0,33 +
(0−1)2

1 + (0−0,5)2

0,5 + (0−0,33)2

0,33 .

4 Experimental Setup and Results

For evaluating ABCD in the UNIX environment, we have used 2 different sources
of UNIX data with different number of users to classify:

– Set of 9 UNIX Users: Data1 drawn from the command histories of 9
UNIX computer users at Purdue University over 2 years [19]. Each user file
contains from about 10000 to 60000 commands.

1 ML Repository: http://archive.ics.uci.edu/ml/datasets/UNIX+User+Data



96 J.A. Iglesias, A. Ledezma, and A. Sanchis

Fig. 3. Observed and Expected Comparison Example

– Set of 50 UNIX Users: Data2 used in the masquerade-detection studies
done by Schonlau et al. [9]. In Schonlau research, commands from other users
are interspersed as masqueraders data. In our research, the 50 users data are
used without these commands interspersed. Each user file contains 15000
commands.

In both cases, the data is drawn from tcsh history files and pre-processed to
remove filenames, user name, directory structures, etc. Command names, flags,
and shell meta characters have been preserved. However, this analysis is only
based on two fields: Command name and User Identification. Thus, a user is
identified by a set of commands concatenated by date order; for example the
first 10 commands of the User1 in the 50 Users set are: cpp, sh, xrdb, cpp, sh,
xrdb, mkpts, env, csh, csh.

4.1 Experimental Design

In order to measure the performance of the proposed classifier using the above
data, the well-established technique cross-validation is used. For this research,
10-fold cross-validation is used: We remove a 10% of the commands from
the initial data of each user and the corresponding distributions are calculated
(Training Distributions). Then, the portion of data originally taken out of each
user data is analyzed and its corresponding distribution is created (Test Distri-
bution). Using the proposed statistical method, these distributions are compared
and the user is classified. As 10-fold cross validation is used, this process is re-
peated 10 times per user.

The number of UNIX commands analyzed per user is very relevant for the clas-
sification result. Therefore, we have performed several experiments with different
number of UNIX commands (50, 100, 500, 1000 and 5000) per user. These com-
mands are selected from the last commands typed by a user. Also, in the phase
of behavior model creation, the length of the subsequences in which the original
sequence is segmented (used for creating the trie) is a relevant parameter: Us-
ing a longer length, the time consumed for creating the trie and the number of
relevant subsequences in the corresponding distribution increase drastically. In
the experiments presented in this paper, 3 different segmentation values for the
sequence (subsequence lengths) are evaluated: 3, 5 and 10.

2 Schonlau web page: http://www.schonlau.net/intrusion.html



Creating User Profiles from a Command-Line Interface 97

4.2 Results

In this research, a UNIX command sequence (Test Distribution) is classified into
the user behavior (Training Distribution) with the smallest deviation. Also, the
classification process generates a ranked list with the most likely users at the
top. Although there are users whose behavior is quite similar, in the proposed
experiments, the classification is correct only if the user who typed the sequence
of commands to classify holds the first position of the ranking list.

The results are listed in Table 1. The classification rate is the ratio of the
number of correct classifications made and the standard deviation measures the
dispersion of the classification results according to the obtained ranking list.

Table 1. Classification Results using ABCD. 9 and 50 Users.

ABCD Classifier Results
Set of 9 UNIX Users Set of 50 UNIX Users

Number of Subseq Classification Standard Classification Standard
commands Length rate % Deviation rate % Deviation

50 3 80,00 1,40 48,20 8,99
5 78,89 1,34 48,80 7,73

3 80,00 0,96 53,40 8,42
100 5 76,67 1,08 51,40 9,81

10 78,89 0,83 54,80 6,99

3 90,00 1,08 64,00 9,16
500 5 91,11 1,27 64,20 10,17

10 86,67 1,49 63,80 12,48

3 87,78 1,53 72,00 10,14
1000 5 87,78 1,30 71,20 10,49

10 81,11 1,84 69,00 11,69

3 85,56 1,23 75,80 12,05
5000 5 87,78 1,30 76,60 12,26

10 84,40 1,54 75,00 12,64

We can see from the Set of 9 Users results (Table 1) that even with 50
commands (45 per training and 5 per testing), the classification rate is very
high (around 80%). The results obtained with different subsequence lengths for
creating the trie (3, 5 and 10) show that the higher classification rates are not
obtained using a higher length. The higher classification rate is usually obtained
using subsequences of length 5; this number determines the number of commands
considered as dependent for a UNIX user.

According to the Set of 50 Users results (Table 1), the classification rate is
smaller because of the high number of users to classify. In this case, this rate
increases considerably with increasing the number of commands for training
and testing. Using 5000 commands (4500 for training and 500 for testing), the
classification rate is higher than 75% and if we can get more than 900 commands
for training, the classification rate is higher than 70%.



98 J.A. Iglesias, A. Ledezma, and A. Sanchis

5 ABCD vs. HMMs

Recent researches have demonstrated the effectiveness of Hidden Markov Models
(HMMs) for information extraction and they are very used in speech recognition.
However, HMMs can efficiently deal with time-sequential data and can provide
time-scale invariability as well as learning capability for recognition. Therefore,
HMMs are also used in the environment we propose in this research. HMMs have
been used for recognizing automated robot behaviors [20] and recently, for behav-
ior understanding from video streams [21]. In addition, Lane [22] demonstrates
the use of HMMs for user profiling in the domain of anomaly detection using a
data set very similar to the set used in our research. An improved HMM-based
method for this purpose is proposed in [23].

For this reason, to evaluate the results shown in the previous section, we
compare them with a classifier based on HMMs. A HMM is a finite set of
states, each of which is associated with a probability distribution [24]. Transi-
tions among the states are governed by a set of probabilities called transition
probabilities. In a particular state an observation can be generated, according to
the associated probability distribution (it is only the observation, not the state
visible to an external observer).

To define a HMM completely, the following elements are needed: 1) Number
of observation symbols in the alphabet, M. 2) Number of states of the model,
K. 3) A state transition probabilities matrix, A. 4) A probability distribution
in each of the states, B. 5) The initial state distribution, Π .

In order to classify the behavior of UNIX users using a HMM-based method, a
HMM is created for each user as follows: The number of observation symbols
(M ) is the number of different commands typed by the user. The number of states
of the model (K ) is an open question in the use of HMMs for modeling but its
choice is important because it affects the potential descriptiveness of the HMM.
In our research, according to the study done in [22] and in order to compare the
ABCD and HMM results; the number of states of a HMM corresponds with the
subsequence length used in ABCD for creating the trie.

The toolkit Umdhmm [25] was used to create each HMM (UNIX user behavior
model) from the corresponding training data files. After creating the HMMs, the
Forward Algorithm is used to calculate the probability of an observed UNIX
user sequence (Test HMM ) given a user model (Training HMM ). The sequence
of commands is classified into the HMM with the highest likelihood.

Table 2 shows the results using a classifier based on HMMs and using the
same data than in the previous experiments (Section 4). These results show that
with a low number of commands for training, a classifier based on HMMs gets a
low classification rate. Thus, using HMMs we need a high number of commands
to get similar results to the obtained using ABCD. However, creating the user
models with more than 5000 commands, the classification rate is usually a bit
better using HMMs. Even so, the difference in the classification rate between
ABCD and HMMs in the Set of 50 users is very significant. It is remarkable
the high classification rate obtained by ABCD using a low number of commands
(for training and classifying). For areas such as computer intrusion detection,



Creating User Profiles from a Command-Line Interface 99

Table 2. Classification Results using HMMs. 9 and 50 Users.

HMMs Classifier Results
Set of 9 UNIX Users Set of 50 UNIX Users

Number of Subseq Classification Standard Classification Standard
commands Length rate % Deviation rate % Deviation

3 52,22 2,23 30,40 14,08
50 5 54,44 2,06 32,40 14,72

10 54,44 2,08 34,80 15,02

3 64,44 1,49 39,40 8,72
100 5 61,11 1,53 40,00 8,58

10 62,22 1,60 40,40 8,94

3 63,33 1,22 42,20 6,19
500 5 68,89 1,30 48,20 6,03

10 66,67 1,26 51,20 5,86

3 63,33 1,20 46,20 4,69
1000 5 68,89 1,32 49,20 4,55

10 66,67 1,09 53,20 4,47

3 80,00 1,05 54,20 3,89
5000 5 82,22 0,90 58,20 3,53

10 88,89 0,97 62,20 3,45

this aspect is really important because the detection can be done when the user
only has typed a few commands and the set of users is small.

6 Future Work: ABCD Adaptative

A widely acknowledged challenge in the ABCD is how to accurately profile a
user while his/her behavior changes constantly. Thus, a user profile should be
frequently revised to keep it up to date. To solve this problem, we propose a
technique used by Angelov and Zhou. [26] for analyzing the quality of the rule
base in an on-line fuzzy system. This technique uses the moment when the
information is obtained.

Applying this technique in ABCD, the subsequences typed by a user are in-
dexed with a number that indicates the moment they were read. This value can
be considered as an integer from 1 (the first subsequence read) to the number of
subsequences read. Using this value, the Age of a subsequence can be calculated.
This Age value indicates how old a subsequence stored in a user profile is. The
formula for calculating this value is shown in Equation 1.a.

a. Ages(t) = t −
∑Ns(t)

i=1 Is(i)
Ns(t)

; b. Age(t) =
1
R

R∑

j=1

Agei(t) (1)

where t is the current time instant; s represents a certain subsequence; Ages(t)
denotes the Age of the subsequence s in the moment t ; Ns(t) is the number



100 J.A. Iglesias, A. Ledezma, and A. Sanchis

of times the subsequence s was read until the moment t and Is(i) denotes the
moment of the subsequence s when it was read for ith time.

Using this value, the distribution of subsequences that represents a user profile
can be updated on-line. Thus, the Age of each subsequence can be calculated
and compared with the mean Age that is determined in Equation 1.b.

These values can be used for removing older subsequences that were used by
a user but during a long period of time they have been omitted. Also, major
shifts in the user behavior can be detected using the Age value.

7 Conclusions

This paper presents an approach (ABCD) for profiling and classifying computer
users from a command-line interface. The sequence of commands typed by user is
segmented and stored in a trie data structure, and the relevant subsequences are
evaluated by using a frequency-based method. Then, a user profile is represented
by a distribution of relevant subsequences and a modification of the Chi-square
Test for two samples is proposed for recognition of users. In addition, as the
behavior of a user can change constantly, we also propose a technique to updated
these profiles by calculating the Age of each subsequence and removing the no
relevant ones.

ABCD has been evaluated with real-data analyzing two different data sources
which have different numbers of users: 9 and 50 UNIX users. A large set of ex-
periments were conducted and the obtained results by using the ABCD are
very satisfactory. The comparison of ABCD with a classifier based on HMMs
shows that the proposed technique is more suitable in the environment evalu-
ated, mainly when the training data is small. These results are very encouraging
because analyzing few commands, a user (and his/her behavior) can be recog-
nized and then, different actions in the computer system, (such as to monitor,
analyze and detect abnormalities, assist the user, predict his/her future actions
or detect masqueraders) can be executed. However, ABCD is generalizable and
it could be evaluated in many other different domains (the only constraint is
that the behavior can be represented as a sequence of commands or events).

Finally, if we want to analyze hundreds (or thousands) of users, ABCD can
be easily modified for clustering users with similar profiles. This aspect could be
implemented using Evolving Systems [27] and it is proposed for future work.

References

1. Mulcahy, N.J., Call, J.: Apes save tools for future use. Science 312(5776), 1038–1040
(2006)

2. Hackos, J.T., Redish, J.C.: User and Task Analysis for Interface Design. Wiley,
Chichester (1998)

3. Spiliopoulou, M., Faulstich, L.C.: Wum: A web utilization miner. In: Proceedings
of EDBT Workshop WebDB 1998, pp. 109–115. Springer, Heidelberg (1998)

4. Wexelblat, A.: An environment for aiding information-browsing tasks. In: Proc. of
AAAI Spring Symposium on Acquisition, Learning and Demonstration: Automat-
ing Tasks for Users. AAAI Press, Menlo Park (1996)



Creating User Profiles from a Command-Line Interface 101

5. Macedo, A.A., Truong, K.N., Camacho-Guerrero, J.A., da GraÇa Pimentel, M.:
Automatically sharing web experiences through a hyperdocument recommender
system. In: HYPERTEXT 2003, pp. 48–56. ACM, New York (2003)

6. Godoy, D., Amandi, A.: User profiling for web page filtering. IEEE Internet Com-
puting 9(4), 56–64 (2005)

7. Pepyne, D.L., Hu, J., Gong, W.: User profiling for computer security. In: Proceed-
ings of the American Control Conference, pp. 982–987 (2004)

8. Coull, S.E., Branch, J.W., Szymanski, B.K., Breimer, E.: Intrusion detection: A
bioinformatics approach. In: Omondi, A.R., Sedukhin, S.G. (eds.) ACSAC 2003.
LNCS, vol. 2823, pp. 24–33. Springer, Heidelberg (2003)

9. Schonlau, M., Dumouchel, W., Ju, W.H., Karr, A.F.: Theus, Computer Intrusion:
Detecting Masquerades. Statistical Science 16, 58–74 (2001)

10. Anderson, J.: Learning and Memory: An Integrated Approach. John Wiley and
Sons, New York (1995)

11. Horman, Y., Kaminka, G.A.: Removing biases in unsupervised learning of sequen-
tial patterns. Intelligent Data Analysis 11(5), 457–480 (2007)

12. Lane, T., Brodley, C.E.: Temporal sequence learning and data reduction for
anomaly detection. In: CCS 1998, pp. 150–158. ACM, New York (1998)

13. Riley, P., Veloso, M.M.: On behavior classification in adversarial environments. In:
DARS, pp. 371–380

14. Iglesias, J.A., Ledezma, A., Sanchis, A.: Sequence classification using statistical
pattern recognition. In: Berthold, M.R., Shawe-Taylor, J., Lavrač, N. (eds.) IDA
2007. LNCS, vol. 4723, pp. 207–218. Springer, Heidelberg (2007)

15. Fredkin, E.: Trie memory. Comm. ACM 3(9), 490–499 (1960)
16. Kaminka, G.A., Fidanboylu, M., Chang, A., Veloso, M.M.: Learning the sequential

coordinated behavior of teams from observations. In: Kaminka, G.A., Lima, P.U.,
Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 111–125. Springer, Heidelberg
(2003)

17. Iglesias, J.A., Ledezma, A., Sanchis, A., Kaminka, G.A.: Classifying efficiently the
behavior of a soccer team. In: Burgard, W., et al. (eds.) Intelligent Autonomous
Systems 10. IAS-10, pp. 316–323 (2008)

18. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Eleventh International
Conference on Data Engineering, Taipei, Taiwan, pp. 3–14 (1995)

19. Blake, C., Newman, D.J., Hettich, S., Merz, C.: UCI repository of machine learning
databases (1998)

20. Han, K., Veloso, M.: Automated robot behavior recognition applied to robotic
soccer. In: IJCAI 1999 Workshop on Team Behaviors and Plan Recognition (1999)

21. Chung, P.-C., Liu, C.-D.: A daily behavior enabled hidden markov model for human
behavior understanding. Pattern Recognition 41(5), 1572–1580 (2008)

22. Lane, T.: Hidden Markov Models for Human-computer interface modeling. In:
Proceedings of IJCAI 1999 Workshop on Learning About Users, pp. 35–44 (1999)

23. Lane, T., Brodley, C.E.: An empirical study of two approaches to sequence learning
for anomaly detection. Machine Learning 51(1), 73–107 (2003)

24. Bengio, Y.: Markovian models for sequential data. Neural Computing Surveys 2,
129–162 (1999)

25. Kanungo, T.: Umdhmm: A hidden markov model toolkit. In: Extended Finite State
Models of Language. Cambridge Univ. Press, Cambridge (1999)

26. Angelov, P., Zhou, X.: Evolving fuzzy-rule-based classifiers from data streams.
IEEE Transactions on Fuzzy Systems 16(6), 1462–1475 (2008)

27. Angelov, P.: Rule-based Models: A Tool for Design of Flexible Adaptive Systems.
Springer, Heidelberg (2002)




