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Abstract 

In this paper we address the problem of multivariate outlier detection using the (unsuper­
vised) self-organizing map (SOM) algorithm introduced by Kohonen. We examine a number 
of techniques, based on summary statistics and graphics derived from the trained SOM, and 
conclude that they work well in cooperation with each other. Useful tools include the median 
interneuron distance matrix and the projection of the trained map (via Sammon's projec­
tion). SOM quantization errors provide an important complementary source of information 
for certain type of outlying behavior. Empirical results are reported on both artificial and 
real data. 

Key Words: self-organization, atypical data, robustness, dimensionality reduction, nonlin­
ear projections. 

1 Introduction 

Outlier detection is an important problem in pattern recognition and neural network research 
that nonetheless has received relatively little attention outside the statistical literature. The 
effect( s) due to undetected outliers may be largely undesirable, for many ofthe statistics usually 
considered are vulnerable. It is well known, for example, that normal-theory maximum likelihood 
multivariate estimators of location and scatter are highly sensitive to outlying data; hence, sorne 
robust alternative estimators have been proposed and studied [14, 24, 32]. Standard principal 
component and cluster analysis can be seriously degraded as well, for outliers may inflate key 
variance estimates or "distract" cluster centers respectively [2, 37]. In function approximation 
problems, outliers will tend to spoil the quality of the approximation [7, 30]. 

The task of multivariate outlier detection is of course difficult for various reasons. To begin 
with, there is no formal, objective definition of what constitutes an outlying value or set of 
outlying values. We usually hear about the lack of propriety or consistency of sorne values given 
an appropriate (subjective) probability model for the rest of the data ([2], p. 25). Multivariate 
outliers can "organize" themselves in ways that make it hard for the analyst to detect them 
(the well-known masking and swamping effects) [12,29]. AIso, many robust methodologies are 
computationally demanding. For example, both the minimum volume ellipsoid estimator [36] 
and the Stahel-Donoho estimator [24] are defined as the solution of a complex optimization 
problem which just gets worse as the dimension of the data increases. 

In this paper we consider an exploratory (distribution-free) approach based on Kohonen's 
self-organizing map (SOM) [19]. The idea is to train the SOM to obtain an approximation to 
the underlying density generating the data, then exploit this information to label as outliers 
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all patterns related to two fundamental types of outlying behavior encountered in the resulting 
SOMo Compared to standard density estimation methods (as kernel density estimation), SOMs 
are relatively fast and inexpensive when the dimensionality of the data is large [34]. Indeed, the 
approach can be applied to substantially larger data sets than it is usually possible with these 
or other statistical methods. 

The main idea is founded on a few familiar statistics. The median interneuron distance 
(MID) matrix [26] and the projection of the trained map via Sammon's projection (SP) [33] are 
useful to characterize the first type of outlyingnessj the set of SOM quantization errors (QEs) 
substantiates the second fundamental type. While the MID matrix and the projected map 
are already available in the SOM-PAK public domain software [28], no systematic discussion 
of an integrated strategy is presently available to the best of our knowledge. In particular, 
formal prototypes for outlying data are introduced, and the behavior of the aboye tools in such 
prototypal data sets is examined. This behavior provides a useful resource for the analysis of 
real data. In our artificial samples, the bulk of the data follows certain multivariate normal 
distribution(s) and a few observations arising from a different distribution act as contaminants. 
Mixtures of such distributions are used as customary to model structure in the data. While a 
real data set known to exhibit cluster structure is also analyzed below, in this paper we focus on 
the outlier detection purposej the SOM's related ability to isolate clusters correctly is supported 
by evidence provided by several recent works [20,22]. 

Given the treatment's generality, we find it remarkable that the proposed strategy is capable 
of providing quantitatively accurate descriptions of contaminated data structures, a merit due 
of course to the quality of the underlying projection algorithms. In particular, we will see 
that severe outliers can often be neatly distinguished from mild outliers. Given the inherent 
fuzziness in the notion of ou tlier, the latter can be viewed alternatively as extreme points in the 
data cloud. The strategy seems indeed able to detect nearly all severe outliers and many mild 
outliers, possibly suggesting also sorne good (inlying) patterns as extreme data. On the basis of 
satisfactory performance in data sets of varying complexity and dimensionality, we claim that 
the emerging strategy is fairly powerful. As we shall see, this power stems in the first place from 
the implicit robustness with respect to internal parameters, for the strategy adjusts itself to the 
amount of SOM organization attained in each case. 

The paper is organized as follows. Section 2 reviews the SOM algorithm. Section 3 discusses 
in detail the MID matrix, SP and QE statistics. Section 4 presents analysis of a number of data 
sets. Section 5 summarizes and points out a few directions for future research. 

2 The SOM algorithm 

SOMs were originally proposed as a mathematical model for certain type of stochastic adaptive 
processes observed in the cortex [15, 16, 19, 25]. A number of research works have since proved 
SOMs very useful for (fast) dimensionality reduction and clustering of high-dimensional data 
[20, 21, 22, 35]. SOMs tend indeed to exhibit a number of features whose potential for analysis 
in other problems is worth investigating. Rere we do so in an outlier detection context assuming 
that the standard n x p sample matrix X presents sorne outlying rows. 

The basic adapting structure is a (usually 2D) network of interconnected neurons, each 
endowed with an associated p-dimensional pointer. We denote the connectivity pattern and the 
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set of pointers as T and W respectively. In the 2D case, T is usually based on the square or the 
hexagon, in which case neurons not lying on edges of the network have direct link s with 4 and 
6 other neurons respectively. We adopt a simple squared array with k2 neurons in total, where 
typically k ~ n (selection of k is loosely based on n throughout). Neither the connectivity 
pattern nor the number of neurons are allowed to change during training. 

Pointers are subject to learning as input vectors are presented to the network. The set of 
pointers after the t-th presentation is denoted by W(t) = {w(i,j)(t)}j the w(i,j)(O) are initially 
assigned at random. The process dynamics consists of the following loop: for t = 1, ... , T (total 
number of cycles), (1) an input pattern x(t) is randomly selected from X and presented to the 
networkj (2) the (Euclidean) distance between the input pattern and each pointer is computed, 
and the closest neuron is determined, say (i*,j*) - we say that x(t) projects on to (i*,j*), or 
that (i*,j*) is the winner for pattern x(t)j (3) each neuron (i,j) in a neighborhood NL(i*,j*)(t) 
has its pointer modified according to the equation 

w(i,j)(t) = [1- a(t)]w(i,j)(t - 1) + a(t)x(t). 

N L is based on T alone, and its size decreases with t. Similarly, the step-size function a( t) is 
relatively big while t ~ TI, relatively small thereafter. These two phases are usually labelled 
organization and convergence respectively. Both TI and T2 = T - TI are decided by the user, 
usually TI ~ T2• We use a cross-shaped NL and the (frequently considered) decay form 

where aleO) and a2(0) are predetermined constants. The final set of pointers is denoted as 
W(T) = {w(i,j)}. 

Interesting regularities exhibited by SOMs include the following [17, 19J. First, they tend 
to preserve the topological order in input space: nearby input vectors are often projected on to 
nearby neurons in the map. Also, SOMs tend to mimk the original distribution in input space. 
Rowever, the task of carefully pinpointing the mathematical nature of these tendencies presents 
formidable difficulties, with the result that formal proofs are only available in the simplest 
situations, see e.g. [31]. A completely general convergence theory for the SOM algorithm needs 
to define in the first place the particular "state of affairs" to which the map should be converging 
[10,18]. Because the process of self-organization is, on the other hand, relatively well understood 
from an intuitive point of view, SOM-based procedures should be validated through the study 
of their sensitivity with respect to the achieved degree of convergence. Rence, robustness in this 
sense mitigates to sorne extent the limitations to the current framework. 

3 SOMs and outlier detection 

Detection of outIying data via SOMs is pursued in two basic, complementary steps: 

1. Detection of outlying neuronSj 

2. Detection of outlying data that projects on to inlying neurons. 
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Given a trained SOM, an outlying neuron is one whose associated pointer seems to lie rel­
atively íar away írom the bulk oí the remaining pointers. Outlying neurons are caused by 
relatively concentrated patches oí outlying data. Data projecting on to outlying neurons are 
labelled directly as outlying; this is case 1. Outliers do not always introduce such neurons in the 
map; in this case 2, both outliers and good data typically project together on neurons whose 
pointers are inlying within the associated cloud. Case 2 arises when outliers are "too sparse" to 
concentrate their pulling effect anywhere on the map. 

Two classes oí techniques are considered to assist detection in these two situations, namely, 
(purely) graphical techniques that make use of the distances among pointers, and techniques 
that make use of the quantization errors (QEs). Detection of outlying neurons is accomplished 
by visual inspection of simple diagnostic images (sections 3.1 and 3.2). The key observation in 
case 2 is that, if an outlier is really so, and if it projects on to an inlying neuron, then we can 
expect that pattern and this pointer to be relatively far apart as determined by the remaining 
QEs. In other words, any outlier's QE should outlie in the onedimensional set of all QEs. Again, 
simple graphical displays are available to carry out this simplified detection problem, see section 
3.3. 

The aboye distinction between outlying (or migrating) and inlying neurons is surely rather 
fuzzy, as inherited from the fuzzy nature oí all outliers. The situation is likely to be more complex 
when data present both cluster structure and outliers. Because the problem of outlier detection 
should not perhaps precede that of structure detection, it is natural to envisage the proposed 
strategy acting separately on each of the individual clusters provided by a robust clustering 
routine. At any rate, we present below sorne evidence indicating that no decomposition is 
required for the strategy to be useful. 

3.1 MID matrix 

Outlying neurons can be detected in the first place by direct examination of proximities between 
pointers and their neighbours. Specifically, we consider the median-interneuron-distance or MID 
matrix as that whose (i,j) entry is the median ofthe (Euclidean) distances between w(i,j) and 
all pointers in a neighborhood ND(i,j) [20, 26, 28]. As before, ND depends only on T, and 
does not necessarily coincide with N L. We choose the (eight-neighbour) median (as opposed to 
the arithmetic mean or the maximum) as a robust alternative to summarize more faithfully the 
neuron's average location with respect to all its neighbours. 

Once the MID matrix is displayed, we can spot outlying neurons (as well as concentration 
areas). To illustrate, consider the 7 x 7 MID matrix displayed in Fig. 1d; it refers to an artificial 
data set (n = 200, p = 6) exhibiting the prototypical (clustered) structure shown in Fig. la. 
While most entries stay within the interval (.7,1.3) - with an overall average of about 1.1 -
sorne values at the lower left corner are about 5 times this average, indicating that the spatial 
structure is somehow broken here. Fig. le (explained in detail in the next section) corroborates 
that these four neurons have migrated to cover the patch oí outliers. As it turns out, all 20 
outliers project in this case on to the neuron located right at the corner of the MID matrix, 
which corresponds to the most distant pointer in the projected map. The information in the 
1HD matrix can also be displayed on a gray-scaled image for better visual processing (see [20] 
for a similar idea). In Fig. lb larger values translate in effect into lighter cells and the outlying 
patch is clearly visible as well. 
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Figure 1: (a) Clustered structure for outlying data in two dimensions (n = 200)j (b) Gray-valued 
image of MID matrixj (e) Projected map with connectionsj (d) (Original) MID matrix. 
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3.2 SOMs and Sarnrnon's projection 

Sammon's pr~jection (SP) [33] was originally proposed as the map RP 1--+ Rm (m = 2,3) arising 
from (gradient descent) minimization of 

where dij Y dij are the (Euclidean) distances between patterns Xi and Xj in RP and Rm respec­
tively. Note that SP attempts to implement an isometry, which is as hard as it can get for a 
projection [4]. A number of works confirm the fidelity delivered by SP [4, 5, 22]. 

We use the SOM as a quantizer, thus producing a substantially smaller number of vectors, 
and project the set of pointers w( i, j) on to bidimensional space. Put another way: 

Outlying neurons can then be detected as those that appear as outlying data in this projected 
map. In Fig. le, for example, outlying neurons are clear. Also, the superimposed connectivity 
pattern provides information about the degree of organization of the map. Subject only to 
adequate SP performance, these images nicely enhance the view provided by the MID matrix. 

A natural question is: why not project the original data directly? There seem to be at 
least two reasons to the contrary. In the first place, SP needs to construct a distance matrix 
with r(r;l) elements, where r is the number of points being projected. This makes the algo­
rithm hardly applicable for r larger than a few thousands. A possible remedy (unfortunately 
implying sorne loss of information) is suggested in [5]. In [22], a neural implementation (based 
on backpropagation) is proposed. This implementation avoids the computation of the distance 
matrix, yet it depends on the arbitrary choice of several parameters, most critically the number 
of hidden layers and the number of units in each hidden layer. 

A second argument is based on empirical observation: we have collected sorne evidence 
indicating that, as r and p increase, the original algorithm is more likely to fall into a meaningless 
local minimum - this phenomenon is illustrated in section 4.3.2 below. On the other hand, SP 
has always succeeded on the set of trained pointers, providing us with a picture consistent 
with whatever prior information was available on the data. Even when not a great deal of 
this information is available, the correctness of the projection can be checked by noting that, if 
the projected SOM really respects the neuron interdistances, then the "projected" MID matrix 
(based on the projected pointers) should resemble the original MID matrix. Failure to verify 
this condition may be taken as an indication that a new SP is needed. 

3.3 Quantization errors 

Given a data set X and a trained SOM {T, W(T)}, the winner for input pattern Xk is denoted 
by (i*,j*). The quantization error (QE) for this datum is defined as ek = d(Xk,W(i*,j*» (where 
d is Euclidean distance as usual). Recall from the introduction to this section that the detection 
strategy seeks patterns with high QE. We often find also patches of relatively low QEs: these 
correspond typically to areas of concentration that have attracted outlying neurons (case 1 as 
discussed earlier). Use of QEs here should corroborate the information provided by the MID 
matrix and the projected map. 

6 



High QEs may occur for two main reasons: either we have a single outlier projecting on a 
non-migrating neuron (case 2 aboye), or we have migration but outliers form a sparse doud. Use 
of QEs in the first of these situations leads to detection of outliers that could not be identified 
by using the MID matrix or the projected map. In the second situation, the outlying neuron(s) 
would be detected using the previous techniques, and the new information provided by the QEs 
has to do with the sparsity of the outlying patch. 

How do we determine which errors are too high? Lacking any distribution or other formal 
theory on which to found this fuzzy notion, we use a simple exploratory tool called the box-plot 
[13]. The box-plot represents the central values in a given list as a box. This box features the 
median as dividing line to portray information about the shape of the distribution. Sorne other 
data stick out along two line segments, the most extreme values being depicted individually, 
see Fig. 5e. We propose to take this latter set of patterns as the dass of concern. More 
specifically, the outlying data are always taken to be those outside the interval (L, U), where 
L = Ql - 1.5(Q3 - Qd, U = Q3 + 1.5(Q3 - Ql) and Qb Q3 are the upper and lower quartiles 
respectively (special attention is paid, of course, to higher QEs). Such a criterion suffices (as 
a first approximation) for our exploratory purposes; individual patterns around the threshold 
will often be checked on a one-at-a-time basis anyway. On occasion, the associated histogram of 
QEs is helpful to monitor the information provided by the box-plot (see sections 4.2.2 and 4.4); 
hence, this complementary image should also be examined for completeness. 

3.4 An outline of the strategy 

To summarize the presentation so far, we discuss now the order in which the previous techniques 
should be applied in practice. The first step is of course to train a suitably sized SOM (as the 
examples will show, the reduction factor can be important here). Next, we check the MID matrix 
and the projected map in parallel; a few outlying neurons and associated data might thus be 
selected. Finally, we examine conjointly the box-plot and histogram of individual QEs, possibly 
leading to the identification of outlying data projecting on to inlying neurons. A flowchart of 
the complete process is given in Fig. 2. 

\Ve must remark that the proposed strategy meaningfully quantifies the degree of outlying­
ness in the suspected data. For not only distances in the projected map approximate distances 
among patterns, but also QEs can be related to MID entries. Thus, the fuzzy notion of outlier 
is appropriately reflected. 

4 Experimental work 

4.1 Introduction 

Our artificial data sets in the next two sections follow the usual contamination scheme for 
one-sample problems: the bulk of the data follows a standard multivariate normal distribution 
N(O, 1), whereas a fraction E are outliers (J.L = nE in total). Two types of outliers are simulated. 
In the first case, outliers are generated according to the distribution N(rd, ~o), where r is a 
(large) constant and d is a fixed unit-Iength direction in RP, [24, 36]. It will be convenient to 
denote by ep the p-dimensional vector with a single one at the first position and zeros elsewhere. 
Typically, as in Fig. la aboye, d = ep , and ~o = (72 J, where (72 < 1. We say that these outliers 
are clustered. Given n and p, a pattern of clustered outliers is specified by a tuple (E, ~o, d, r). 
If (7 is given instead, then it is understood that ~o = (72 J. 
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Figure 3: Radial outliers following the pattern n = 200, E = .1 , 'Y = (1, 1)', ~ = 5, v = 5. 

In the second case, each outlier 1 ~ i ~ J.L is generated according to the following sequential 
procedure [26,27]. First, a random (unit-length) direction di = (dibd¡2," .,d¡p)' is drawn from 
the uniform distribution on a fixed subset of the unit sphere. This subset is specified by a p­
dimensional vector 'Y, where each coordinate in 'Y can be either 0,1 or #: if 'Yj = 1, then dij > O, 
while if 'Yj = O, then dij < O; otherwise, dij can be either positive or negative. Directions di, 
i = 1, ... , J.L are jointly independent. Once d¡ is selected, the i-th outlier is chosen as T¡d¡, where 
T¡ = (q + Ai), q is a fixed constant and the A¡ are independent, identically distributed variates 
following a X~ distribution. We talk of radialoutliers in this case. A pattern of radial outliers is 
similarly determined by a tuple (E, 'Y, q, v) and illustrated in Fig. 3. Radial outliers seem to have 
been considered less often in the literature, yet we feel they provide an interesting prototype for 
research. 

"Ve are now ready to comment on performance under the following system parameters (used 
in all experiments unless otherwise noted). Constants aleO) and a2(0) equal .1 and .001 re­
spectively. The radius of the cross-shaped learning neighbourhood is 3 during organization and 
1 during convergence. These phases last respectively for TI = 2,000 and T2 = 40,000 cycles 
when handling the cases with n = 200 or smaller, and for TI = 10,000 and T2 = 200,000 cycles 
for larger n or p. For SP, 1000 iterations are used in all cases, and the adapting parameter for 
gradient descent is set to 0.2. 

4.2 Clustered outliers 

4.2.1 Single outlier 

A non-trivial question is whether it is possible to detect a single outlier when n is moderate. 
\Ve consider a data set (n = 200, P = 6) exhibiting the pattern (E = 1/200, d = e6, T = 15). 
Figs. 4ab show the MID matrix. Slightly larger values (or lighter cells) are clearly appreciated 
at the upper right corner of the neto The projected SOM is displayed in Figs. 4cd. These plots 
confirm the presence of very mild migration. As it turns out, the outlier projects here on to the 
neuron with the largest MID entry, which corresponds as before to the most distant pointer in 
the projected map. Finally, the index plot of individual QEs in Fig. 4f shows that the outlier 
presents the largest entry (we usually place outliers at the top of the input file; this is clearly 
irrelevant as far as the work of the algorithm is concerned). Since the remaining data is so 
homogeneous, no box-plot is really needed here. 
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4.2.2 A standard case 

vVe now turn to a standard case of dustered outliers, namely, n = 2,000, p = 20 and E = .1, (1 = 
.2, d = e20, r = 5. The MID image in Fig. 5a provides again evidence supporting the existence 
of outliers at the lower structure of white and black cells. The projected map in Fig. 5c is highly 
informative; in particular, the spherical shape of the main doud is by and large unaffected by 
the outlying patch. The index plot of individual QEs in Fig. 5d and the associated box-plot 
and histogram in Figs. 5eb also expose the set of outliers at the left tail of the distribution. 
All 200 outliers are thus successfully detected - they project, as expected, on to (neighbouring) 
units (7, O), (8, O), (8,1) and (9, O). We also see 13 additional data at the other extreme of the 
box-plot. Rowever, the remaining QE displays suggest that all these patterns are better viewed 
as extreme data rather than outliers. In this case, the box-plot has been slightly distorted by 
the outlying patch. 

4.3 Radial outliers 

We present next two variations of our second prototype for outlying behavior. The second 
example shows that detection is possible even when outliers of both dustered and radial nature 
are present simultaneously. 

4.3.1 Moderate dispersion 

In the first example (n = 2,000, E = .05" = (1111111111##########)', q = 5, v = 10), 
outliers enjoy up to 10 dimensions to escape from the main doud. The MID matrix in Fig. 6a 
reveals a relatively large patch of distant neurons. The projected SOM in Fig. 6c indicates that 
organization has occurred in the vast region where outliers are located. On the basis of these 
images, the following set of outlying neurons is detected: (8, O), (9, O), (10, O), (11, O), (8,1), 
(9,1), (10,1), (11,1), (9,2), (10,2), (11,2), (10,3) and (11,3). Note that neurons (8,2), (9,3) 
and (11,4), pointed out by the MID image, have been exduded as the projection shows that 
they lie next to the main doud. 

The QE box-plot is shown in Fig. 6d. There we find the 100 outliers plus seven other 
patterns sticking out at the right tail of the distribution. These seven extra patterns are the 
least outlying (in the box-plot) and project on to neurons (0,5), (0,7), (O, 11), (2, 1), (4,5), (6,1) 
and (7,11), none of which was labelled as outlying. These patterns may thus be seen as mild 
outliers projecting on to inlying neurons. The intended outliers project on to the set of neurons 
selected by joint inspection of Figs. 6ab above plus neuron (9,5); this is an inlying neuron where 
only one outlier projects. Since all outliers have quite large QEs, we condude that they exhibit 
sorne dispersion, as it is the case indeed. We detect also a single pattern showing at the lower tail 
of the QE distribution. This projects on to a non-outlying neuron and is therefore not suspect. 

4.3.2 Double contamination 

Let us consider a case in which two patches of outliers exhibit different relative concentration, 
namely, a data set (n = 500, p = 50) simultaneously contaminated with dustered and radial 
outliers according to the respective patterns (E = .1, (1 = .2, d = d*, r = 10) and (E = .1" = ,*, 
q = 5, v = 5) (so that there are 100 outliers in total). Rere d* and ,* are chosen to lie on 
opposite portions of space: d* has first thirty ones, then twenty zeros, whereas ,* has thirty 
zeros followed by twenty wildcards. 

11 



o Z 4 6 8 ~O ~z 

(a) 

"'" 
('.3 

= 

('.3 
I 

"'" I 

-4 -2 O 2 4 6 

(e) 

ERROR 

(e) 

6 

5 

4 

3 

2 

1 

I 

o 

o 

11 
2 4 6 

(b) 

. . . .. . . .- . 
-: .. :~ .. :: ........ ~ .... :: .; .. '.:- -. . :~ ... \ .. ~ " 
·· ..... "'A·.: ."'.: .•.... ~~ E:f) .... ··· .t. ... -.t: ••. ;.. 

~
.,s., '!I':'!f' • '1 " ••• .:r. • ..... 

;!Hí ... ~.' •• ~ ." - • :'t . , .~, .-~. ~..' 
"'.... .. . ~. ~..\. ~ :-,'" ....... ~ •.. (~$. .~;¡~ •••• i::'" ... :~, '.¡~: •• ,~:"~;.: ·:.,~I 

Jo. • : •• • ... _. , • ..- •• !.. .. 

500 1000 1500 2000 

(d) 

-----~-

Figure 5: Analysis of standard pattern of clustered outliers: (a) MID irnagej (h) QE histograrnj 
(e) Projected SOM with eonneetionsj (d) Index-plot ofQEsj (e) Box-plot ofQEs. 

12 



o 2 4 6 8 10 12 

(a) 

"" 
N 

o 

N 
I 

"" I 

ID 
I 

(Xl 

I 

-15 -10 -5 O 5 

(e) 

2 

O 

-2 

-4 

-6 

o 

,1 ., .". 

• :.'::. -l.: . ", 
,,' • 'l •• : ..... 

'. ': • '1 1,' .:,,':, ,l.:' ..... ' 
," 'l' '1 '1' 

1
1

:: 11 ::' .::.:' 

•••• , ••••• 1' 
1,1,1 

-10 -8 -6 -4 -2 O 2 

(b) 

4 8 12 16 20 24 

ERROR 

(d) 

Figure 6: Analysis oí moderate dispersion case: (a) MID image; (h) Projeeted SOM; (e) Pro­
jeeted SOM with eonnections; (d) Box-plot oí QEs. 

13 



The MID matrix in Fig. 7a clearly shows a (small) structure of white cells at the top of the 
figure and (les s clearly) a larger structure of lighter cells at the lower left corner. The existence 
of these two structures is corroborated by the projected SOM in Figs. 7cd. Note that in Fig. 
7c we have removed all empty neurons, that is, neurons winning no data; this helps sometimes 
to clarify the situation. 

In Fig. 7c, we single out the top most neuron on one hand and we label with an "X" all other 
clearly outlying neurons on the other. These are seen to correspond to the clustered and radial 
outliers respectively: the isolated neuron contains all fifty clustered outliers, whereas X-neurons 
contain 47 out of the 50 radial outliers (and no good data). The three remaining outliers project 
on to the intermediate neuron labelled with a cross, which wins also three good data. 

Fig. 7e shows the projection of the original data via SP. While two sets of outliers are 
distinguishable in this image, they have nothing to do with the true outliers. This is not an 
isolated instance: we have observed the same phenomenon in other (high-dimensional) cases. 

Let us now check the QE box-plot to see if additional outliers are detected. In Fig. 7f 
we note both high and low outliers simultaneously. The latter are seen to correspond exactly 
to patterns 1, ... ,50, whereas the former yields eleven radial outliers (among those previously 
found). Rence, in this case the QEs box-plot confirms a number of previously detected outliers 
and provides reassurance that there are no more. 

4.4 Outliers and structure: Several clusters with inlying outliers 

\-Ve now switch to the problem of outlier detection when cluster structure exists in the data. 
Specifically, consider an artificial data set exhibiting five clusters of different shapes (p = 10): two 
spherical clusters with different dispersion, two clusters with different equicorrelation covariance 
matrix [23], and one cluster with diagonal covariance matrix. Clusters have also different sizes, 
making in total 450 patterns. We also throw in 5 little clusters (arbitrari1y located between the 
main clusters) with 10 outliers each. 

The projected SOM in Fig. 8a essentially portrays the correct structure (we have again 
eliminated all empty neurons, and we have identified outlying neurons with five crosses and 
a solid diamond). According to the linked matrix in Fig. 8b, clusters correspond to "convex" 
portions of the network neatly separated by well-defined borders (of empty neurons). It is readi1y 
verified that all 50 outliers project on to the set of crosses. The solid diamond wins a single, 
unexpected outlier. The projected map with connections is shown in Fig. 8e. 

By itself, the MID matrix in Fig. 8c is also able to suggest the outlying units (as well as the 
cluster structure). The box-plot of individual QEs in Fig. 8d detects 6 additional unanticipated 
outliers, a1l showing certain separation from their respective main clouds. These are naturally 
occurring extreme points in the clusters (and all of them project on to different border neurons 
in three of the five clusters). 

4.5 Real Data 

\Ve consider now two real data sets of different complexity. A number of additional examples 
have been analyzed and good performance has obtained in all cases; they are not included here 
to keep the paper within reasonable length. 
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4.5.1 Milk container data 

This data set has been analyzed by Atkinson [1], to whose conclusions we refer below: n = 
86, p = 8 and up to seventeen outliers are suspected. The MID matrix in Fig. 9a reveals two 
well-defined structures. The smaller is seen to be due to observation 70 alone, asevere outlier 
probably due to a transcription error; this corresponds to the neuron located at the lower left 
corner of the projected map, see Figs. 9cde. According to Fig. 9d, other outlying neurons are 
(4,4), (5,4) and (5,5): patterns 52, 77,11,74,15,14,13 and 12 projecting here are thus labelled 
as outliers (Fig. ge). The box-plot of QEs is shown in Fig. 9b: patterns 70, 12,47, 13, 2 (from 
more to less serious) are identified as having unusually large QEs. Out of these, only 2 and 47 
do not project on to outlying neurons, so they are suspect from this point of view. This makes a 
total of 11 outliers, nine of which were previously suggested by Atkinson (11 and 52 are the new 
arrivals). The remaining data projecting on to (5, O), namely, 1,4,42 and 44 have all rather high 
QEs (but not enough to outlie in the box-plot). These patterns can be viewed alternatively as 
either extreme points or mild outliers (Atkinson mentions 1 and 44 only). About the remaining 
six outliers claimed by this author (41, 3, 75, 27, 16, 17), we find that they all project on to 
border neurons of the projected map. 41 has the highest error: 2.11 - compare to 2.91, the QE 
for 2. The others have substantially smaller QEs. So, we conclude that these points are a bit 
extreme (41 can be suspected), but probably not outliers. 

The projected map in Fig. 9c displays sorne minor torsion, which is probably due to subop­
timal choice of SOM parameters. To verify this claim, we have trained a second SOM with the 
initial neighbourhood radius raised from 3 to 6. The results in Fig. 10 reveal that torsion can 
be completely removed here. Note that two structures are still appreciated in the MID image, 
the main qualitative difference being the loss of the lower spike in Fig. 9c. Instead, we only find 
here two slightly detached neurons in Figs. 10cd (labelled with crosses), which contain pattern 
70 as well as 28 and 41. The perturbation caused by 70 in Fig. lOd can be related to that in 
Fig. 4d. The upper spike (pretty much untouched) leads to exactly the same data as before, 
although the pointer containing 52 might seem now more integrated into the main doud. 

The box-plot of QEs (Fig. 10b) identifies the following outliers (from more to less serious): 
70, 12,47 and 13. Patterns 2 and 41 have the next highest QE. Note that 70 was first detected 
aboye vía an outlying neuron, now its largest QE differentiates it from 28. 41 has a relatively 
hígh QE (1.68, while 2 has 2.65) and projects now on to a slightly outlying neuron, so we can 
consider it a mild outlier. Data 3, 75, 16, 17 and 27 project again on to border neurons, and 
again they have low QEsj hence, we maintain the previous assessment about them. Overall, this 
second analysis speaks about the effectiveness of the approach (or its invariance with respect 
to SOM organization) as far as the most severe outliers are concerned. It also suggests that all 
such outliers manifest indeed in at least one of the two basic types of outlying behavior. 

4.5.2 ArtificiaIly distorted characters 

The patterns in this example correspond to 909 encoded characters. The good data are 100 
instances of each of the following letters: A, e, D, F, G, H, L, P and R. Nine outliers complete 
the data set, one outlier per letter. Each outlier is obtained by blindly distorting a regular 
instance of its kind. Hence, outliers do not correspond in principIe to any of the existing dasses, 
and they are naturally expected to differ among each other as well. 

The data base of raw characters is originally due to Botta [3, 6]. In this data base, each 
character is represented by a number of strokes, which can be transformed into a binary 12 x 8 
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matrix. In this latter form, characters can be recognized by the human eye. We show a few of 
these images in Fig. 11: the first line shows good characters, namely, three A's, two G's, two 
P's and a single R and H. The second line shows the nine outliers as modified versions of the 
ordered list of characters given above. 

Characters are further transformed into vectors in R 16 via the procedure devised by Frey and 
Slate [11]. Since all characters exhibit a non-empty first column in matrix representation, one of 
the output coordinates is constant and therefore excluded from the analysis, so the target data 
matrix is 909 X 15. Note that this transformation may introduce sorne noise into our intuitive 
idea of visually outlying characters. 

The MID matrix in Fig. 12a seems to indicate a major (although a bit diffuse) separation 
band roughly stretching from the upper left to (almost) the lower right corners of the image. 
This band is confirmed to sorne extent by the two major horizontal areas of concentration in 
the projected map, see Fig. 12c. Neurons making up the border between these two are as are 
empty, so there does not seem to be any non-empty outlying neurons in this case (see Fig. 12d). 
If we look at the patterns detected by the box-plot of QEs, we find (from right to left in Fig. 
12b): 607, 506,397,203,563,507,304,345,809,405,367,102,377,708,404,564,391,305, 
58, 462, 35,445, 516 and 13 (outlier labels are shown in boldface for emphasis). We note that 
only one outlier is missed, which is the first one on the left of Fig. 11; this (original) pattern 
appears indeed not too different from either an A, H or R. On the other hand, the most serious 
outlier according to the QE criterion is 607, which may be checked to correspond to a pretty 
unique symbol (third from the right). A few good data are also selected by the QE criterion: a 
visual exam of these patterns suggests that they are indeed a bit peculiar within their respective 
classes, yet not to the point to be considered atypical (compare to Fig. 8d). 

Given the relatively low resolution of the analysis, the previous conclusions should be taken 
with caution, but it is pleasant that they point in the right direction. To validate somewhat the 
results, we have repeated the process with a 20 X 20 neto Looking at the QE box-plot (not shown 
here), we would select (from less to more serious) 63, 362, 570, 516, 566, 405, 345, 377, 809, 
367, 102,404,462,564, 708, 203, 397, 507, 506, 563 and 607. The procedure misses now one 
further outlier (the next mildest), but two fewer good data are selected. Further, 10 patterns 
showing only once in the previous lists are clearly less likely to be outliers. As mentioned earlier, 
a more complete analysis would try to identify clusters in these data, a task beyond the scope 
of this paper. 

5 Summary and concluding remarks 

We have studied the potential of the SOM algorithm in the problem of outlier detection. Inte­
grating the information provided by various sources, we have obtained satisfactory results in all 
cases considered so far: nearly all outliers of concern have been correctly identified, the logic is 
very simple and intuitive, and the speed of processing is relatively high. 

In view of our experimental work, we can emphasize the following points: First and most 
important, the proposed strategy does not require 'extensive fine-tuning of parameters. While 
modifying the training parameters (or the size) ofthe SOM may change sorne qualitative aspects 
of the analysis (for example, sorne migrating neurons may become inlying, and conversely), a 
substantial body of conclusions remains essentially unaltered (provided only that certain mini­
mum level of organization has been achieved). 
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Figure 11: Characters in readable form: first line contains regular characters, second line contains 
the nine outliers. 

Secondly, no severe outlier has remained undetected. Further, no good data has ever been 
taken as the most severe outlier. On the other hand, sorne extreme (good) data have been taken 
as mild outliersj this constitutes no serious problem insofar we are primarily con cerned with the 
most severe outliers. 

We should also remark a word of caution: when outliers are numerous and make up a highly 
concentrated cluster (see, for example, section 4.2.2), the box-plot is slightly perturbed, with 
the result that relatively more extreme data tend to be taken (unduly) as mild outliers. A 
histogram helps to clarify the nature of such data, yet (as mentioned already) ultimate decisions 
on extreme data may vary depending on contexto 

Future work should address the development of sorne distribution theory for the key SOM 
statistics, more informative gray displays (to improve on the sometimes noisy MID image), and 
the extension to the regression case (involving perhaps the modified SOM algorithm put forward 
by Cherkassky and coworkers, [8, 9]). 
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