Publication:
Unified moving-boundary model with fluctuations for unstable diffusive growth

Loading...
Thumbnail Image
Identifiers
Publication date
2008-08
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
The American Physical Society
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
We study a moving-boundary model of nonconserved interface growth that implements the interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous examples are found in thin-film production by chemical vapor deposition and electrochemical deposition. The model also incorporates noise terms that account for fluctuations in the diffusive and attachment processes. A small-slope approximation allows us to derive effective interface evolution equations (IEEs) in which parameters are related to those of the full moving-boundary problem. In particular, the form of the linear dispersion relation of the IEE changes drastically for slow or for instantaneous attachment kinetics. In the former case the IEE takes the form of the well-known (noisy) Kuramoto-Sivashinsky equation, showing a morphological instability at short times that evolves into kinetic roughening of the Kardar-Parisi-Zhang (KPZ) class. In the instantaneous kinetics limit, the IEE combines the Mullins-Sekerka linear dispersion relation with a KPZ nonlinearity, and we provide a numerical study of the ensuing dynamics. In all cases, the long preasymptotic transients can account for the experimental difficulties in observing KPZ scaling. We also compare our results with relevant data from experiments and discrete models.
Description
17 pages, 9 figures.-- PACS nrs.: 81.10.-h, 68.35.Ct, 64.60.Ht, 81.15.Gh.-- MSC2000 code: 82C24.-- ArXiv pre-print available at: http://arxiv.org/abs/0812.4160
MR#: MR2496824 (2010c:82073)
Final publisher version available Open Access at: http://gisc.uc3m.es/~cuerno/publ_list.html
Keywords
Statistical Mechanics, Materials Science
Bibliographic citation
Physical Review E 78, 021601 (2008)