Publication:
Morphology of ion-sputtered surfaces

dc.affiliation.dptoUC3M. Departamento de Matemáticases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Interdisciplinar de Sistemas Complejos (GISC)es
dc.contributor.authorMakeev, Maxim A.
dc.contributor.authorCuerno, Rodolfo
dc.contributor.authorBarabási, Albert-László
dc.date.accessioned2010-02-18T11:18:40Z
dc.date.available2010-02-18T11:18:40Z
dc.date.issued2002-12
dc.description43 pages, 23 figures.-- PACS nrs.: 61.80.Az; 68.35.Bs; 64.60.Ht.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0007354
dc.descriptionFinal publisher version available Open Access at: http://gisc.uc3m.es/~cuerno/publ_list.html
dc.description.abstractWe derive a stochastic nonlinear continuum equation to describe the morphological evolution of amorphous surfaces eroded by ion bombardment. Starting from Sigmund’s theory of sputter erosion, we calculate the coefficients appearing in the continuum equation in terms of the physical parameters characterizing the sputtering process. We analyze the morphological features predicted by the continuum theory, comparing them with the experimentally reported morphologies. We show that for short time scales, where the effect of nonlinear terms is negligible, the continuum theory predicts ripple formation. We demonstrate that in addition to relaxation by thermal surface diffusion, the sputtering process can also contribute to the smoothing mechanisms shaping the surface morphology. We explicitly calculate an effective surface diffusion constant characterizing this smoothing effect and show that it is responsible for the low temperature ripple formation observed in various experiments. At long time scales the nonlinear terms dominate the evolution of the surface morphology. The nonlinear terms lead to the stabilization of the ripple wavelength and we show that, depending on the experimental parameters, such as angle of incidence and ion energy, different morphologies can be observed: asymptotically, sputter eroded surfaces could undergo kinetic roughening, or can display novel ordered structures with rotated ripples. Finally, we discuss in detail the existing experimental support for the proposed theory and uncover novel features of the surface morphology and evolution, that could be directly tested experimentally.
dc.description.sponsorshipThis research was supported by NSF-DMR CAREER and ONR-YI awards (A.-L.B. and M.M.) and DGES (Spain) grants PB96-0119 and BFM 2000-0006 (R.C.).
dc.description.statusPublicado
dc.format.mimetypetext/html
dc.identifier.bibliographicCitationNuclear Instruments and Methods in Physics Research, Section B, 2002, vol. 197, n. 3-4, p. 185-227
dc.identifier.doihttps://www.doi.org/10.1016/S0168-583X(02)01436-2
dc.identifier.issn0168-583X
dc.identifier.urihttps://hdl.handle.net/10016/6919
dc.language.isoeng
dc.publisherElsevier
dc.relation.publisherversionhttp://dx.doi.org/10.1016/S0168-583X(02)01436-2
dc.rights© Elsevier
dc.rights.accessRightsopen access
dc.subject.ecienciaMatemáticas
dc.subject.otherSurface morphology
dc.subject.otherIon irradiation
dc.subject.otherRipples
dc.subject.otherSputtering
dc.subject.otherRoughening
dc.titleMorphology of ion-sputtered surfaces
dc.typeresearch article*
dc.type.reviewPeerReviewed
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
morphology_cuerno_nimprb_2002_ps.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
preprint version