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Abstract. This article proposes goodness-of-�t tests for dynamic regression
models, where regressors are allowed to be only weakly exogenous and arbitrar-
ily correlated with past shocks. The null hypothesis is stated in terms of the
lack of serial correlation of the errors of the model. The tests are based on a
linear transformation of a Barlett�s Tp-process of the residuals. This transforma-
tion approximates the martingale component of the process so that it converges
weakly to the standard Brownian motion under the null hypothesis. One feature
of our setup is that we do not require to specify the dynamic structure of the
regressors. Due to this, the transformation employs a semiparametric correction
that does not restrict the class of local alternatives that our tests can detect,
in contrast with other works using smoothing techniques. A Monte-Carlo study
illustrates the �nite sample performance of the tests.

1. INTRODUCTION

Delgado, Hidalgo and Velasco (2005) (DHV henceforth) proposed asymptotically
distribution free tests for the correct parametric speci�cation of the autocorrela-
tion structure of a time series process. The tests were based on a parametric
transformation of Bartlett�s (1954) Tp-process, which entails to consider its mar-
tingale component, so that asymptotically the transformed process converges to a
standard Brownian motion. The tests were applied to observable data, so there
was no need to compute the residuals of the model, and the martingale transfor-
mation only depended on a set of unknown parameters under the null hypothesis.
The aim of this paper consists of extending the DHV procedure to test the speci-
�cation of dynamic regression models. Here, we use the empirical spectral process
of the residuals of the model, because, in the presence of general explanatory
variables, regression models do not specify completely the dynamics of the depen-
dent variable unlike the linear models studied by DHV. The transformation of the
corresponding Tp-process depends, despite the unknown parameters, on the non-
parametric cross-spectrum between the regressors and the regression error term,
which is non-constant and di¤erent from zero when regressors are only assumed to

Date: October 21, 2008.
Key words and phrases. Goodness-of-�t; dynamic models; empirical processes; local alterna-

tives; martingale decomposition; exogeneity.
The research of the �rst and third author is funded by the Spanish �Plan Nacional de I+D+I�,

reference number SEJ2007-62908.
1



2 MIGUEL A. DELGADO, JAVIER HIDALGO, AND CARLOS VELASCO

be weakly exogenous. A feasible transformation might be computed via a nonpara-
metric smoothed estimator of this cross-spectrum. However, we show that we can
avoid the smoothing in the feasible martingale transformation by using directly the
cross-periodogram, although it is an inconsistent estimate of the cross-spectrum.
Despite of this nonparametric aspect of our model and tests, our tests have non-
trivial power against local alternatives converging to the null at the parametric
rate n1=2.
The remainder of the paper is organized as follows. Section 2 introduces the

model and describes the testing problem. Section 3 presents the transformation to
obtain asymptotically distribution free tests, whereas Section 4 discusses the power
of our tests. Section 5 describes a Monte-Carlo experiment to shed some light on
the �nite sample performance of our test and how it compares with Portmanteau
and tests based on nonparametric smoothing as well as directional and smooth
tests. Finally, the proofs have been placed in Section 6.

2. DYNAMIC MODELS

This section discusses methods for the correct speci�cation of dynamic regression
models

(2.1) Xt = �0 + �01Xt�1 + � � �+ �0pXt�p + �
0
0Zt + "t,

where Zt is a q�dimensional vector of deterministic and/or (weakly) exogenous
variables and where the parameter vector �00 = (�0; �

0
0; �

0
0) is identi�ed as the

solution of the p+ q + 1 moment conditions

(2.2) E [Wt (Xt � �0Wt)] = 0,

where W 0
t = (1; Xt�1; : : : ; Xt�p; Z

0
t) and E (WtW

0
t) is a positive de�nite matrix.

The models considered in (2:1), also known as ARX models, are an important
extension of those examined in DHV. Notice that in Zt we can allow some of its
components to be lagged values, for example Zkt = Zjt�k for some k � 1. In the
context of model (2:1), a natural assumption is that

(2.3) E ["tjF f"s; Zs+1; s < tg] = 0,

where F f"s; Zs+1; s < tg is the �-algebra generated by f"s; Zs+1; s < tg. (2:3) im-
plies that E [Zt"s] = 0 for all s � t, although it allows for feedback from "t to Zt+j,
j > 0. The latter implies that it is possible that the cross-autocovariance of Zt
and "t satis�es that 
Z"(j) = E [Zt+j"s] 6= 0 for some j > 0. Denoting herewith
the cross-spectral density function between the sequences fUtgt2 Z and fVtgt2Z by
fUV , we have that one consequence of the latter is that the cross-spectral density
function between the sequences fZtgt2Z and f"tgt2Z, fZ", de�ned by


Z" (j) =

Z �

��
fZ" (�) e

ij�d�, j = 0;�1;�2; : : : ,

is not a null function. That is, the sequence fZtgt2Z is only predetermined in (2:1).
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The null hypothesis of interest is that the errors f"tgt2Z in (2:1) are not au-
tocorrelated. In other words, that the regression model (2:1) captures the linear
dynamic structure of fXtgt2Z. More speci�cally, for given �, de�ne the residuals
f"t (�)gt2Z by

(2.4) "t (�) := Xt � �0Wt,

and its autocovariance structure by 
" (j; �) := E ("t (�) "t+j (�)). Then, our null
hypothesis of interest is

H0 : 
" (j; �0) = 0, for all jjj � 1 and some �0 2 � � Rp+q+1:

We are interested in omnibus tests, where the alternative hypothesis is the negation
of the null. The compact set � := A� Rq+1 is chosen such that for all � 2 A, all
the roots of the polynomial

(2.5) �(z) := 1� �1z � � � � � �pzp

are outside the unit disk. Notice that the least squares estimator of the parameters
may be inconsistent if H0 does not hold even if the true value of � is zero.

Remark 1. It is worth mentioning that we could allow the so-called ARMAX
models, i.e. (2:1) where

"t = %1"t�1 + � � �+ %`"t�` + �t.

In this case our null hypothesis would be that f�tgt2Z follows a white noise sequence.
We consider (2:1) because of its generality and mathematical simplicity in the ar-
guments and notation. The extension to nonlinear models is fairly straightforward
and it would not be pursued in the paper.

As in DHV, we can write the null hypothesisH0 in the frequency domain. Indeed,
let f" (�; �) denote the spectral density function of f"t (�)gt2Z in (2:4), that is


" (j; �) =

Z �

��
f" (�; �) exp(ij�)d�; j = 0;�1; : : : ,

and denote its spectral distribution function as F" (�; �0), i.e.

F" (�; �) := 2

Z �

0

f" (!; �) d!.

Under H0 we have respectively the spectral density and distribution functions of
f"t (�0)gt2Z = f"tgt2Z. Then, we can equivalently write the null hypothesis H0 as

(2.6) H0 :
F" (�; �0)

F" (�; �0)
=
�

�
for all � 2 [0; �] and some �0 2 �,

being the alternative hypothesis H1 the negation of H0. Thus, the null hypothesis
H0 in (2:6) states that there exists a parameter value �0 2 � such that the sequence
f"t (�0)gt2Z has a constant spectral density function, i.e. they are uncorrelated.



4 MIGUEL A. DELGADO, JAVIER HIDALGO, AND CARLOS VELASCO

A natural estimator of F" (�; �) is

(2.7) bFn (�; �) := 2�

~n

[~n�=�]X
j=1

I"" (�j; �) ,

where �j := 2�j=n, for j = 1; : : : ; ~n, ~n := [n=2], [�] denoting the integer part, and

I"" (�; �) :=
1

2�n

�����
nX
t=1

"t (�) e
it�

�����
2

is the periodogram of the sequence f"t (�)gnt=1 de�ned in (2:4). In what follows, for
a generic function g (�; �), we shall suppress any reference to � when the function is
evaluated at the true value �0. That is, g (�; �0) =: g (�). Observe that the estimatorbFn (�; �) is location invariant, due to the omission of j = 0 in (2:7). Thus, there is
no need to center the residuals or to estimate the mean � in (2:1). See Remark 2
below for a more explicit explanation and some implications.
If the true value of �, �0, were known, or equivalently if we could observe "t, fol-

lowing Bartlett (1954), we might perform a goodness-of-�t test using the Tp-process

(2.8) bTn (!; �) := ~n1=2 bFn (�!; �)bFn (�; �) � !
!
, ! 2 [0; 1] ,

evaluated at � = �0. Recall that in this case, we denote bTn (!; �0) by bTn (!).
Before we present the properties of bTn (!), let us introduce the following regularity
assumption.

Assumption A1: f"tgt2Z is a zero mean sequence of random variables such

that E ("t"s) = �2"I (t = s) and that E
h
" (t)k

���Ft�1i = {k, k = 1; : : : ; 3,

and E j" (t)jk = �k; k = 3; : : : ; 8 with �8 <1, where Ft�1 is the �-algebra
of events generated by f"s; Zs+1; s < tg.

Herewith, we are denoting the indicator function by I (�). Assumption A1 is
similar to that given in Dahlhaus (1985) who only assumed constant conditional
moments up to the third order. This implies that the fourth-order spectral density
function of the process f"tgt2Z is not necessarily constant (cf. Lemma 2 in DHV).
Henceforth, B (!) denotes the standard Brownian bridge on [0; 1].

Proposition 1. Under A1, we have thatbTn (�) d) B (�) in the Skorohod�s metric space D [0; 1] .

Proof. The proof proceeds as that of Lemma 7 in DHV, and so it is omitted. �

The statistic given in (2:8) is not feasible as it depends on the unknown vector
of parameters �0. To be able to compute (2:8), and so the test, we shall replace �0
by, for example, the least squares estimator, denoted b�n.

Assumption A2: Under H0, it holds that b�n � �0 = Op(n�1=2).



GOODNESS-OF-FIT TESTS FOR DYNAMIC MODELS. 5

Su¢ cient conditions for AssumptionA2 are the stationarity of fZtgt2Z, (2:3) and
that 
Z"(0) = 0. Notice that in contrast to DHV, Assumption A2 does not require
a linear expansion of b�n, only its rate of convergence. This is due to the explicit
solution of the least squares estimator. Also, we shall not give explicit conditions
under which the sequence fZt"tgt2Z, and so b�n, satis�es the central limit theorem.
Remark 2. It is worth noticing that the least squares estimator of (�0; �0)0 is given
by the minimization of bFn(�; �). That is,�b�0n; b�0n� = argmin

(�0;�0)

~nX
j=1

jwX (�j)� �0wX� (�j)� �0wZ (�j)j2

= argmin
(�0;�0)

bFn(�; �),(2.9)

where wX (�j), wX� (�j) and wZ (�j) are respectively the discrete Fourier transform
of fXtgnt=1, fXt�1; : : : ; Xt�pgnt=1 and fZtg

n
t=1. So, we observe that as we do not

employ the frequency �j = 0 to compute bFn ��;b�n�, bFn ��;b�n� is independent of
the intercept estimator b�. The latter implies that the computation of bTn(!;b�n)
is independent of the intercept �. For this reason and to simplify notation, in
what follows, we shall assume that there is not intercept in (2:1) and accordingly
that W 0

t = (Xt�1; : : : ; Xt�p; Z
0
t) and � = (�0; �0)

0. Moreover when we have trend
regressors, such as polynomial trends, apart from a di¤erent rate of convergence ofb�n, we have that the distribution of bTn(!;b�n) is asymptotically independent of the
estimation of the trend component of the regression model. Hence, in what follows
we can consider the model

Xt = �01Xt�1 + � � �+ �0pXt�p + �
0
0Zt + "t

without loss of generality. Also, notice that if we employed tapers, bTn �!;b�n� would
be invariant to the trend as well as to the intercept.

Now, once we have an estimator of the unknown parameters, we can calculate
the residuals as b"t := "t �b�n� = Xt�b�0nWt, and with Ib"b"(�j) := I""

�
�j;b�n�, we set

bFn �!;b�n� := 2�

~n

[~n!]X
j=1

Ib"b"(�j).
So, the feasible Tp-process is de�ned as in (2:8) but with b�n replacing �. That is,
(2.10) bTn �!;b�n� = ~n1=2

0@ bFn
�
�!;b�n�bFn ��;b�n� � !

1A .
Before we describe the asymptotic properties of bTn �!;b�n�, we introduce the

following regularity assumption.
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Assumption A3: A3.1. The cross-spectrum fZ" (�) is di¤erentiable at all
� 2 [��; �]. A3.2. The spectral density matrix fZZ (�) is continuous for
all � 2 [��; �]. A3.3. The higher order (cross) spectral densities up to 8th
order of fZtgt2Z and f"tgt2Z are bounded.

A3.1 could be replaced by some Lipschitz condition, but that might complicate
some of the technical arguments. Nevertheless, the assumption as it stands is quite
weak and it is satis�ed for most models employed with real data. Next, because
all the roots of the polynomial �(z) in (2:5) are outside the unit disk, we obtain
that the stationary solution of Xt is given by �0(L)�1 ("t � �00Zt), where �0(z) is
de�ned in (2:5) with � = �0. Thus, it follows that

(2.11) fX�;" (�) =
Lp(e

i�)

�0(ei�)

�
�2"
2�
� �00fZ"(�)

�
,

with Lp(z) = (z; : : : ; zp)
0, so that A3.1 implies that fW" (�) is di¤erentiable every-

where in � 2 [��; �].
One implication of (2:11) and A1 is that � (1) = 0; where

� (!) :=

Z !

0

� (v) dv, ! 2 [0; 1] ;

and
� (!) = 4�Re fW" (�!) = 4�Re

�
fX�;" (�!)

0 ; fZ" (�!)
0�0 ;

by orthogonality between fWtgt2Z and f"tgt2Z and evenness (oddness) of the real
(imaginary) part of fW" (�). However, it is important to emphasize that we are not
assuming that fW" (�) = 0 for all �. In fact, this is not the case because E [Zt"s]
can be di¤erent than zero for some t > s.
On the other hand, A3.1-2 imply that fWW (�) is bounded for all � 2 [��; �]

because

fWW (�) =

�
fX�;X�(�) fX�;Z(�)
fZX�(�) fZZ(�)

�
,

with

fX�;X� (�) =
Lp(e

i�)

�0(ei�)

�
�2"
2�
+ 2�00Re fZ"(�) + �

0
0fZZ(�)�0

�
Lp(e

�i�)0

�0(e�i�)

fX�;Z (�) =
Lp(e

i�)

�0(ei�)
(f"Z(�) + �

0
0fZZ(�)) .

Finally A3.3 implies eighth �nite moments for Zt and Xt as assumed for "t in
A1. However the requirement of higher order bounded spectra function of fWtgt2Z
can be relaxed as in DHV at the expense of much lengthier arguments.
In what follows, for two sequences fVtgnt=1 and fUtg

n
t=1, we denote its cross-

periodogram by

IV U (�) :=
1

2�n

 
nX
t=1

Vte
it�

! 
nX
t=1

Ute
�it�

!0
.



GOODNESS-OF-FIT TESTS FOR DYNAMIC MODELS. 7

Proposition 2. Assuming A1-A3, uniformly in !, under H0,

bTn �!;b�n� = bTn (!)� 4�

�2"~n

[!~n]X
j=1

Re I"W (�j) ~n
1=2
�b�n � �0�+ op(1)

= bTn (!)� � (!)0 ~n1=2 �b�n � �0� =�2" + op(1).(2.12)

Remark 3. The second equality in (2:12) follows because under weak regularity
conditions, Brillinger (1981) implies that

sup
!







2�~n
[!~n]X
j=1

(IV U (�j)� fV U (�j))







 = op(1).
Remark 4. Proceeding as with the proof of Theorem 2 of DHV, Propositions 1
and 2 imply that the asymptotic distribution of bTn �!;b�n� depends, in general, onb�n and so on the model as in other goodness-of-�t tests with estimated parameters.
However, since the aim of the paper is to describe distribution free (pivotal) tests,

we will not explicitly examine the asymptotic distribution of bTn �!;b�n�.
Remark 5. (Strong) Exogeneity and predetermined regressors. When the
regressors Zt are (strong) exogenous, we have that fZ" (�) = 0 for all � 2 [0; �],
and hence � (!) =

�
�1(!)

0; 00q
�0
, where �1(!) := 4�Re fX" (�!). So, the latter

together with (2:12) implies that

bTn �!;b�n� = bTn (!)� �Z !

0

�01 (v) dv

�
~n1=2 (b�n � �0) =�2" + op(1).

That is, similar to the case where regressors are deterministic, the estimation of
� in (2:1) has no in�uence on the asymptotic distribution of bTn �!;b�n�, only the
least squares estimator of �0. Moreover, in this case the function � (!) is known
up to a set of parameters which can be consistently estimated by A2. But this case
was already covered by DHV, and hence it is not of interest in this paper. On
the other hand, it is worth mentioning that the null hypothesis that one particular
component of Zt is (strong) exogenous can be tested using the methods put forward
in the paper.

From Proposition 2 and Remark 4, it is obvious that tests based on continuous
functionals of bTn �!;b�n� are not pivotal, as their asymptotic distribution depends
on the model speci�ed under the null hypothesis and on the unknown function �.
The latter function not only depends on �0 but also on the joint dynamic properties
of fZtgt2Z and f"tgt2Z described by fZ", which it is unknown to the practitioner.
The next section introduces a linear transformation of bTn �!;b�n� which converges
weakly, under H0, to the standard Brownian motion whose critical values are
readily available.
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3. DISTRIBUTION FREE TESTS

We are looking for a linear transformation, say L, such that LbTn ��;b�n� con-
verges weakly to B0 under H0. This transformation must remove the e¤ect of
� (!)0 ~n1=2

�b�n � �0� into the asymptotic linear expansion of bTn �!;b�n�, see Propo-
sition 2. As pointed out in Remarks 2 and 4, we shall only consider the interesting
case where the regressors Zt are only predetermined, but not strictly exogenous,
so that the cross-spectral density fZ"(�) is not constant.
Abbreviating for a generic function h (�), h (�j) by hj, and denoting by mj =

2�I"";j � �2", we observe that, applying Proposition 2, we can write bTn �!;b�n�, up
to terms of order op(1), as

(3.1)
~n�1=2bFn (�)

[!~n]X
j=1

mj �
� (!)0 ~n1=2bFn (�)

 
~nX
j=1

IWW;j

!�1 ~nX
j=1

Re IW";j �
! ~n�1=2bFn (�)

~nX
j=1

mj,

which is similar to the corresponding expression given in DHV with our generalized
de�nition of � (!). However, unlike DHV, this expression cannot be directly iden-
ti�ed as a CUSUM of least squares residuals. Nevertheless, a similar martingale
transformation based on a forward projection on the function g (u) := (1; �(u)0)0

will remove the terms in (3:1) depending on
R !
0
g (u) du, i.e. � (!) and !; which

are the non martingale elements in the tied-down empirical process with estimated
parameters bTn �!;b�n�.
So, following similar arguments to those in DHV, we propose as our transforma-

tion L,

(3.2) LbTn �!;b�n� := bTn �!;b�n�� ~n�1=2bFn ��;b�n�
[!�n]X
j=1

g0j

 
~nX

k=j+1

gkg
0
k

!�1 ~nX
k=j+1

gk bmk,

where bmk := 2�Ib"b";k � bFn ��;b�n�, �n = ~n � p � q � 1. The limiting continuous
version of L is de�ned for a generic function �:[0; 1] 7! R as

L0� (!) := � (!)�
Z !

0

g (v)0��1 (v)

Z 1

v

g (u) � (du) dv

and � (v) :=
R 1
v
g (u) g (u)0 du:

Before we examine the properties of (3:2), we need to introduce the following
assumption.

Assumption A4: The matrix ~n�1
P~n

k=�n+1 gkg
0
k is nonsingular.

Let B0 denote the standard Brownian motion on [0; 1] :

Theorem 1. Assume A1-A4. Then, under H0,

LbTn �!;b�n� d) B0 in the Skorohod�s metric space D [0; 1] .
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The transformation L is infeasible, as it depends on the unknown function g (u).
To construct a feasible version of L, we need to replace g (u) by some estimate.
Recall that from (2:11), � (!) = 4�Re

�
fX�;" (�!)

0 ; fZ" (�!)
0�0 and because fZ"

is an unknown function, we have that � is a nonparametric function. Because
of that, we shall propose two feasible transformations. The �rst one employs the
standard average periodogram estimator of the (scaled real part) of the cross-
spectrum between fWtgt2Z and f"tgt2Z, i.e.

(3.3) b�m (j=~n) = b�m;j := 4�

Km

mX
`=�m;` 6=0

K`Re IWb";j+`,

where K` = K (`=m) and Km =
Pm

`=�m;` 6=0K`. The second alternative replaces
fW" by the cross-periodogram. The latter is a much more delicate matter, as the
periodogram is not a consistent estimator of fW", only unbiased, unlike the former
alternative or that in DHV, where � there only depended on a set of parameters.

Assumption A5: A5.1. K (x) is a nonnegative continuous symmetric func-
tion in [�1; 1]. A5.2. m�2n1+� +mn�1 ! 0, for some � > 0.

Nonparametric adjustment in related contexts has been also examined in Stute,
Ties and Zhu (1998) and Stute and Zhu (2002). The estimator b�m;j is of the leave-
one-out type as it does not use the frequency �j. The latter is done to guarantee
the orthogonality in �nite samples of b�m;j with respect to Ib"b";j for all m, using the
well known result of the approximate orthogonality between the discrete Fourier
transform of vector time series at di¤erent Fourier frequencies.
We need to strengthen Assumption A3.

Assumption A3�: A3 holds and fW"(�) has two bounded derivatives.

Thus, in practice, we can take the discrete sample counterpart of LbTn �!;b�n�,
(3.4)

Ln bTn �!;b�n� := bTn �!;b�n�� ~n�3=2bFn ��;b�n�
[�n!]X
j=1

bgm� j
~n

�0 b�m� j
~n

��1 ~nX
k=1+j

bgm�k
~n

� bmk,

where bgm (!) := �1; �̂m (!)0�0 and �̂m (!) := ~n�1P~n
j=1+[~n!] bgm;jbg0m;j:

Theorem 2. Assuming A1-A2, A3�and A4-A5, under H0,

Ln bTn �!;b�n� d) B0 in the Skorohod�s metric space D [0; 1] .

Note that the proof of this result does not show that sup!2[0;1]
���Ln bTn �!;b�n�� LbTn (!)��� =

op (1) as it was necessary in DHV�s proofs.
We now describe the unsmoothed version of the feasible transformation. Here

the aim is to use the periodogram instead of gk or a consistent estimate of it. We
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propose to employ the transformation
(3.5)

�Ln bTn �!;b�n� = bTn �!;b�n�� ~n�1=2bFn ��;b�n�
[�n!]X
j=1

bg0j+1
 

~nX
k=j+1

bgk+2bg0k+2
!�1 ~nX

k=j+1

bgk+2 bmk+1,

where bgj = IWb";j, j = 1; : : : ; ~n.
The reason to employ, for example

P~n
k=j+1 gk+2 bmk+1 instead of

P~n
k=j+1 gk bmk

as in (3:4) is because, contrary to the latter, there is leverage from gj+1 intoP~n
k=j+1 gk bmk which does not vanish su¢ ciently fast, as in the case with the

smoothed version or in the case examined in DHV. At the same time we guar-
antee that bgk+2 bmk+1 is approximately centered because bg and bm have di¤erent
indexes. Then, we have our next result.

Theorem 3. Assuming A1-A2, A3�and A4-A5, under H0, the unsmoothed trans-
formation given in (3:5) satis�es that

�Ln bTn �!;b�n� d) B0 in the Skorohod�s metric space D [0; 1] .

Theorems 2 and 3 justify asymptotic admissible tests based on continuous func-
tionals of �Ln bTn �!;b�n�, as stated in the following Corollary.
Corollary 1. For any continuous functional ' : D [0; 1] 7�! R+, under H0 and
assuming the same conditions of Theorem 3,

'
�
�Ln bTn �!;b�n�� d! '

�
B0
�
:

Note that the nonparametric estimation does not a¤ect �rst order asymptotics
of the tests, which have the same limiting behaviour as if g were known or para-
metrically modeled. However the need to invert the (p+ q+1)� (p+ q+1) matrix
�̂m (!) in a discrete grid ! = j=~n, implies that this is only possible at j = 1; : : : ; �n
due to the loss of degrees of freedom as we need to estimate the parameters in the
regression model (2:1).
The distribution of ' (B0) can be tabulated by Montecarlo. For the main

goodness-of-�t proposals, Kolmogorov-Smirnov and Cramér-von Misses, ' (B0) is
already tabulated, for instance, in Shorack and Wellner (1980, pp. 34 and 748).

4. LOCAL ALTERNATIVES AND CONSISTENCY

We consider two types of local alternatives, �rst a parametric one and secondly
a more general nonparametric type of alternative which it may suggest or establish
the origin of the possible misspeci�cation of the model given in (2:1).

Parametric alternatives. To study the power of our test let us consider local
alternatives of the type

(4.1) Han : �0;p+1 =
c

~n1=2
for some c 6= 0.
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Similar results are available for other forms of misspeci�cation, including errors in
the modeling of the relationship between the sequences fZtgt2Z and fXtgt2Z.

Theorem 4. Assuming the same conditions as in Theorem 3, under Han,

(4.2) Ln bTn d) B0 + cL0	 in the Skorohod�s metric space D [0; 1] ,

where 	(!) := ��2"
R !
0
�p+1 (u) du, with

�p+1(v) := 4�Re f"X�p�1(�v) = Re

�
exp(i(p+ 1)�v)

�0(ei�v)

�
2�2" + 4��

0
0Re fZ"(�v)

��
.

Remark 6. Under the set of assumptions in the previous section, the proposed
test does not have trivial power, as stated in the following theorem if Zt can not
explain all the information contained in Xt�p�1 at all frequencies. i.e. there is a
set of positive Lebesgue measure where the spectral density matrix of (Z 0t; Xt�p�1)

0

has full rank. This should imply that in a set of positive Lebesgue measure the
cross spectral density fXt�p�1"(�) is not a linear combination of the rows of fZ"(�),
which guarantees that L0	 is not zero for all �.

Therefore, for a suitable continuous functional ' : D [0; 1] 7! R+, such as the
Cramér-von Mises or the Kolmogorov-Smirnov, Pr [' (B0 + L0	) > ' (B0)] = 1,
and the test will detect local departures from the null of the typeHan given in (4:1).

Nonparametric alternatives. We now consider the case when f"tgt2Z has not
�at spectrum up to a n�1=2 factor. Notice that Han implies that the spectral
density function of f"tgt2Z, where � does not include �p+1, is

f�(�; �0) =
�2"
2�
+
2c

~n1=2
Re f"X�p�1(�) +

c2

~n
fX�p�1(�)

=
�2

2�

�
1 + c

�p+1(�=�)

�2
~n�1=2 +O(c2~n�1)

�
.

So, we could consider nonparametric alternatives of the type

H 0
an : f�(�; �0) =

�2

2�

�
1 + l (�) ~n�1=2

�
for some �0 2 �,

where the function l is not in the space spanned by �(�=�). The latter implies that
the correlation structure of f"tgt2Z cannot be explained either by lag values of Xt

or by any of the components of the variables Zt. It is worth noticing that the test
has maximum power against alternatives for which l belongs to the orthogonal
space spanned by g. Then Theorem 4 holds for H 0

an with 	(!) :=
R !
0
l(�u)du and

c = 1 there.
The test is consistent in the direction of general �xed nonparametric or para-

metric alternatives in (4:1), such as �p+1 = c, c 6= 0. Though a precise justi�cation
under suitable regularity conditions is possible, this is beyond the scope of this
paper and we will only provide a sketch of the main arguments. Assuming certain
regularity conditions (such as that �(L) has all roots outside the unit circle), A1
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could be replaced by a linear process speci�cation and A2 is satis�ed under the
alternative hypothesis H1, where now �0 denotes the pseudo true value, de�ned by
�0 := argmin�2� F (�; �), which is such that the pseudo-innovations f"t (�0)g are
autocorrelated under H1. Denote by f"(�) := f"(�; �0) the (nonconstant) spectral
density of f"tgt2Z. Indeed, proceeding as in DHV or Dahlhaus and Wefelmeyer
(1996), we shall have that, for each ! 2 [0; 1],

bTn �!;b�n� = bTn (!) + � (!)0 ~n1=2
�b�n � �0�bFn (�) + op (1) .

Now,

bTn (!) = 1

~n1=2
2�bFn (�)

[~n!]X
j=1

�
I"";j
f";j

� 1
�
f";j + ~n

1=2

0@ 2�bFn (�) 1~n
[~n!]X
j=1

f";j � !

1A ,
where, under suitable regularity conditions, the �rst term on the right of the last
display expression is Op (1), whereas the expression inside the brackets of the sec-

ond term on the right converges to a constant for each !. Thus,
��� bTn (!)��� and���Ln bTn (!)��� diverge to in�nity at the rate n1=2. From here, the consistency of the

test follows by standard arguments.
Following the discussion in DHV, we can use Theorem 4 to derive optimal tests

for H0 against the direction l given in H 0
an. These tests statistics are based on

Ln bTn (�) and thus they are also asymptotically distribution-free under H0.
5. MONTE-CARLO EXPERIMENT

This section presents a small simulation exercise to shed some light on the small
sample behaviour of our tests. To that end, we have considered the ARX (1; 1)
model

(5.1) Xt = �1Xt�1 + �1Z1t + "t, t = 1; :::; n,

where

Z1t = aZ1(t�1) + ut

ut =
�
1� b2

�1=2
vt + b"t�1,

and fvtgt2Z and f"tgt2Z are mutually independent IID N (0; 1) variates. We have
employed three sample sizes n = 100; 200; 400, and the following values of the
parameters:

�1 = f0:2; 0:5; 1:0g , �1 2 f0:2; 0:5; 0:8g , b 2 f0; 0:4; 0:8g ,

whereas a = 0:5 for all the combinations and sample sizes. The autoregressive
parameters �1 and a control partially the dependence structure of fXtgt2Z and
fZtgt2Z. On the other hand, b measures the �endogeneity�of fZtgt2Z in (5:1) (so
that Zt is strongly exogenous if b = 0), together with the regression coe¢ cient �1.
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We �rst estimate the parameters �1; �1 and �
2
" in (5:1) by (2:9), and for a given

feasible transformation Lmn of bTn we compute the Cramér-von Mises statistic
Cmn :=

1

~n� 3

~n�3X
j=1

�
Lmn bTn� j~n

��2
;

where m indicates the type of approximation of � employed. We have considered
three alternatives for the martingale transformation. The �rst one uses a non-
consistent estimator of �, using the transformation �Ln, and it is denoted as C0n
in the tables below. For the cases where we estimate consistently �, we use the
Tuckey-Hanning kernel in (3:3),

Km(x) =
1

2

�
1 + cos(

�x

m
)
�
,

with bandwidths m = [0:25n0:9] and [0:30n0:9].
To be able to make comparisons we provide the results for the popular Ljung

and Box�s (1978) Portmanteau test

Qp := n (n+ 2)

pX
j=1

�̂"̂ (j)
2

n� j ,

where

�̂"̂ (j) :=

 
nX
t=1

b"2t
!�1 nX

t=j+1

b"tb"t�j, j � 1,
are the sample autocorrelations of the residuals fb"tgnt=1 for two choices for p. For
n = 100; 200, p = 10; 15, whereas for n = 400, p = 15; 20. Those choices are close
to n1=2 which seems a reasonable compromise in terms of size and power. As in
Hong (1996), we employ a standardized version of Qp which we compare against
the standard normal critical values.
For power comparisons we consider two local alternatives. The �rst one is based

on the ARX(2; 1) model,

Xt = �1Xt�1 +
5

n0:5
Xt�1 + �1Z1t + "t,

whereas the second local alternative is the ARMAX(1; 1; 1) model

Xt = �1Xt�1 + �1Z1t +
5

n0:5
"t�1 + "t.

We report the percentage of rejections in 100,000 Monte-Carlo replications.
The empirical size for tests based on C0n show an improvement with the sam-

ple size, but it also appears to depend on the model under consideration. More
speci�cally, the percentage of rejections under H0 increases with �1; b and �1 for
all sample sizes. On the other hand, those for Cmn are more stable, although there
is some dependence on the value of b, perhaps due to some additional dependence
on m. Qp provides better sizes for the smaller values of n but similar for the
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larger ones. Here the choice of p seems to be quite important, with the number of
rejections increasing with p and also with �1; �1, but decreasing with b.
For the power analysis we only report the simulations with n = 200, being the

picture for other sample sizes similar, although perhaps for n = 100, the results
show some instability due perhaps to the oversize of the tests for some parameter
combinations. For AR(2) alternatives, C0n shows highest power for the models
with high �1 and b, otherwise Cmn dominates, with power decreasing with m. Tests
based on Cmn are dominated in general by C

0
n, except for the least persistent models

(with lowest �1 and �1) for which � is rather �at and can be well estimated by
kernel estimates with some oversmoothing as with the choices of m we employ. In
general power increases with �1 and �1 for small b, but the reverse situation arises
for large value of b. For the MA(1) alternative, C0n dominates in almost every case,
in some situations outperforming noticeably Qp, while Cmn displays much inferior
results for all m.

6. APPENDIX: PROOFS

We �rst state two general lemmas.

Lemma 1. Let A1-A3 hold. Set bgj = bgm(j=~n). Then under H0, as n !1

(6.1) sup
j
kbgj � gjk = op(1), sup

j




b�j � �j


 = op(1).
Proof. We only prove the �rst part of (6:1) since the proof of supj




b�j � �j


 =
op(1) follows by identical steps. Since gj = (1; �

0
j)
0, we ignore the �rst element. We

have that the left side of (6:1) is bounded by

(6.2) sup
j




b�j � e�j


+ sup
j




Ee�j � �j


+ sup
j




e�j � Ee�j


 ,
where, using the errors "t,

e�j := 4�

Km

mX
`=�m;` 6=0

K`Re IW";j+`.

To simplify arguments, we shall take herewith K(u) = 1, so

b�j = 4�

2m

mX
`=�m;` 6=0

Re IWb";j+`.
Now

sup
j




b�j � e�j


 �



b�n � �


 sup

j






 1m
mX

`=�m

Re IWW;k+`







� n1=2m�1n1=2




b�n � �








n�1

~nX
`=1

Re IWW;`







= Op

�
m�1n1=2

�
= op(1)
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because n1=2



b�n � �


 = Op(1) by A2, and 


n�1P~n

`=1Re IWW;`




 = Op(1) by A3.1.
The second term in (6:2) is O(m2n�2+n�1 log n) = o(1) because of A3.1, whereas

E



e�j � Ee�j


4 = 1

16m4

mX
a=�m

mX
b=�m

mX
c=�m

mX
d=�m

E [hj+ahj+bhj+chj+d] ,

where we have considered hj := Re IW";j�ERe IW";j as scalar to simplify notation.
Now

E [hj+ahj+bhj+chj+d] = E [hj+ahj+b]E [hj+chj+d] + E [hj+ahj+c]E [hj+bhj+d]
+E [hj+ahj;d]E [hj+bhj+c] + cum [hj+a; hj+b; hj+c; hj+d] .

But, for all a; b, E [hj+ahj+b] = O
�
n�1 log3 n+ I (a = b)

�
,whereas, distinguish-

ing the contribution from higher order cumulants and second order cumulants (see
Brillinger, 1981, p.20 and Theorem 2.6.1),

cum [hj+a; hj+b; hj+c; hj+d] = O
�
n�2 log6 n+ �a;b;c;dn

�1 log2 n+ �2a;b;c;dn
�1 log3 n+ �3a;b;c;d

�
= O

�
m�1n�1 log2 n+m�3� ,

where �a;b;c;d indicates a restriction among the indexes a; b; c; d. Thus,

E



e�j � Ee�j


4 = O �n�2 log6 n+m�2�

so we can show easily that supj



e�j � Ee�j


 = op(1) using that m�2n! 0 and that

Pr

�
sup
j




e�j � Ee�j


 > c� � ~nX
j=1

Pr
�


e�j � Ee�j


 > c� � c�4 ~nX

j=1

E



e�j � Ee�j


4

which is O
�
n�1 log6 n+ nm�2� = o(1). �

Lemma 2. Under the assumptions of Theorem 2,

(6.3) sup
!2(0;�)







 1

~n1=2

[~n!]X
j=1

�b�j � �j�mj







 = op (1) .
Proof. To simplify arguments we will assume that K (u) = I (juj � 1). Because
Ee�j � 4�Re fW";j is O (m2n�2) uniformly in j, it is easy to show that

sup
!2(0;�)







 1

~n1=2

[~n!]X
j=1

�
Ee�j � 4�Re fW";j

�
mj







 = op (1) ,
assuming �nite second derivatives of fW";j in A3�, and that

sup
!2(0;�)







 1

~n1=2

[~n!]X
j=1

�b�j � e�j�mj







 = op (1) ,
using A2 and A3 as in Lemma 1. The lemma now follows by Propositions 3 and
4. �
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Proposition 3. Under the assumptions of Theorem 2, for all ! 2 [0; �],

(6.4)
1

~n1=2

[~n!]X
j=1

�e�j � Ee�j�mj = op (1) .

Proof. Writing e�j � Ee�j = 1
2m

Pm
`=�m;` 6=0 hj+`, by Abel summation by parts, we

obtain that the left side of (6:4) is

1

2~n1=2m

[~n!]X
j=1

(hj�m � hj+1+m � hj + hj+1)
jX
`=1

m`

=
1

2~n1=2m

[~n!]X
j=1

(hj�m � hj+1+m � hj + hj+1) (mj�m +mj)(6.5)

+
1

2~n1=2m

[~n!]X
j=1

(hj�m � hj+1+m � hj + hj+1)
j�1X

`=1;` 6=j�m

m`:(6.6)

(6:5) is op (1) because

(E jhj�m � hj+1+m � hj + hj+1j jmj�m +mjj)2

� E jhj�m � hj+1+m � hj + hj+1j2 E jmj�m +mjj2 < D,

where in what follows D denotes a �nite and positive constant.
Observe that this is the best rate we can obtain under our general assumptions,

because lack of (strong) exogeneity implies that E (hjmj) 6= 0.
Next, we study (6:6). We employ that h� and m� do not have subindexes in

common. So, although the expectation is not zero, unless the fourth cumulant
is, this is O

�
n�1 log3 n

�
at most. The expectation of (6:6) is O

�
m�1n�1=2 log3 n

�
because

E

 
(hj�m � hj+1+m � hj + hj+1)

j�1X
`=1;` 6=j�m

m`

!
= O

�
n�1 log3 n

�
.

Note that under Gaussianity the expectation would have been exactly zero. Next,
we examine the second moment of (6:6). By Cauchy-Schwarz, it su¢ ces to examine
the second moment of each of the following four terms

1

2n1=2m

[~n!]X
j=1

hj�m

j�1X
`=1;` 6=j�m

H` �
1

2n1=2m

[~n!]X
j=1

hj+1+m

j�1X
`=1;` 6=j�m

m`

� 1

2n1=2m

[~n!]X
j=1

hj

j�1X
`=1;` 6=j�m

H` +
1

2n1=2m

[~n!]X
j=1

hj+1

j�1X
`=1;` 6=j�m

m`.(6.7)
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We will study the contribution due to the �rst term, the other three terms are
similarly handled. The second moment of the �rst term of (6:7) is proportional to

1

~nm2

[~n!]X
j1=1

j1X
j2=1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

E (hj1�mhj2�mm`1m`2)

=
1

~nm2

[~n!]X
j1=1

j1X
j2=1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

E (hj1�mhj2�m)E (m`1m`2)

+
1

~nm2

[~n!]X
j1=1

j1X
j2=1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

E (hj1�mm`1)E (hj2�mm`2)(6.8)

+
1

~nm2

[~n!]X
j1=1

j1X
j2=1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

E (hj2�mm`1)EE (hj1�mm`2)

+
1

~nm2

[~n!]X
j1=1

j1X
j2=1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

cum (hj1�m; hj2�m;m`1 ;m`2) .

Because E (m`1m`2) = O (n
�1)+I (`1 = `2), E (hj1�mhj2�m) = O (n�1)+I (j1 = j2)

and
P[~n!]

j=1 j = O
�
[~n!]2

�
, the �rst term on the right of (6:8) is

O
� n
m2

�
+

1

nm2

[~n!]X
j1=1

j1�1X
`=1;`1 6=j1�m

D = O
� n
m2

�
.

Similarly, the second and third terms on the right of (6:8) are O (nm�2).
Finally, the fourth term on the right of (6:8). First, observe that

cum (hj1�m; hj2�m;m`1 ;m`2)

= cum
�
wz;j1�mw

�
";j1�m; wz;j2�mw

�
";j2�m; w";`1w

�
";`1
; w";`2w

�
";`2

�
=

X
�

qY
r=1

cum (wa;s1wb;s2 ; (s1; s2) 2 �r)

with s1; s2 = j1 �m; j2 �m; `1; `2, a and b are Z and " and where the summation
in � is over all indecomposable partitions �=�1[ : : :[�q, q = 1; : : : ; 4, of the table

wz;j1�m w�";j1�m
wz;j2�m w�";j2�m
w";`1 w�";`1
w";`2 w�";`2

see Brillinger (1981, p.20 and Theorem 2.6.1). So, a typical component of the
fourth term on the right of (6:8) is

1

nm2

[~n!]X
j1=1

j1X
j2=1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

cum (wa;s1wb;s2 ; (s1; s2) 2 �r) = O
�
n�1m�1 log3 n

�
.
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So, we conclude that the second moment of (6:6) converges to zero, and (6:4)
holds true by Markov inequality. �

Proposition 4. Under the assumptions of Theorem 2, the process

Xn (!) =
1

~n1=2

[~n!]X
j=1

�e�j � Ee�j�mj, ! 2 [0; 1]

is tight.

Proof. Proceeding as with Proposition 1, Xn (!) can be written as

Xn1 (!) + Xn2 (!) : =
1

2~n1=2m

[~n!]X
j=1

(hj�m � hj+1+m � hj + hj+1) (mj�m +mj)

+
1

2~n1=2m

[~n!]X
j=1

(hj�m � hj+1+m � hj + hj+1)
j�1X

`=1;` 6=j�m

m`.

Following Billingsley (1968, Theorem 15.6), a su¢ cient condition is

(6.9) E jXnj (!2)�Xnj (!1)j� � D (!2 � !1)1+� , j = 1; 2

where � ; � > 0, !2 > !1, and without loss of generality we can assume that
~n�1 � !2 � !1.
We begin with Xn1 (!). By de�nition,

Xn1 (!2)�Xn1 (!1) =
1

2~n1=2m

[~n!2]X
j=[~n!1]+1

(hj�m � hj+1+m � hj + hj+1) (mj�m +mj) :

So, by the triangle inequality and proceeding as with the estimation of the second
moment of (6:5), we have that E jXn1 (!2)�Xn1 (!1)j is bounded by

D
[~n!2]� [~n!1]

mn1=2
� D (!2 � !1)

n1=2

m
� D (!2 � !1)1+�

because by Assumption A5.2, m�1n1=2 = o
�
n�2�

�
for some � > 0.

To complete the proof, we need to show (6:9) for Xn2 (!). We will only examine
the contribution due to the �rst term of (6:7) into the left of (6:9), that is

E







 1

2~n1=2m

[~n!2]X
j=[~n!1]+1

hj�m

j�1X
`=1;` 6=j�m

m`








�

:
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Choosing � = 2, we have that the last displayed expression is bounded by

1

~nm2

[~n!2]X
j1=[~n!1]+1

j1X
j2=[~n!1]+1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

jE (hj1�mhj2�m)E (m`1m`2)j

+
1

~nm2

[~n!2]X
j1=[~n!1]+1

j1X
j2=[~n!1]+1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

jE (hj1�mm`1)E (hj2�mm`2)j

+
1

~nm2

[~n!2]X
j1=[~n!1]+1

j1X
j2=[~n!1]+1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

jE (hj2�mm`1)E (hj1�mm`2)j

+
1

~nm2

[~n!2]X
j1=[~n!1]+1

j1X
j2=[~n!1]+1

j1�1X
`1=1;`1 6=j1�m

j2�1X
`2=1;`2 6=j2�m

jcum (hj1�m; hj2�m;m`1 ;m`2)j .

However the last expression is bounded by D (!2 � !1)1+� because proceeding as
with the proof of (6:8), they are bounded by

D
[~n!2]

2 � [~n!1]2

n3m2
log3 n � D (!2 � !1)

n

m2
log3 n � D (!2 � !1)1+2� .

This completes the proof. �

Lemma 3. Let � (u) : [0; 1]! Rp+q+1 be continuous. Assuming A1, we have that
in �p+q+11 D [0; 1],�Z !

0

�(u)bTn (du) : ! 2 [0; 1]� converges in distribution to
�Z !

0

�(u)dB (u) : ! 2 [0; 1]
�
.

Proof. The proof is much simpler than that of Lemma 2 in DHV, so it is omitted.
�

Proof of Proposition 2.
First it can be shown that bFn (�)!p 1 by A1 under H0. So, we can write

bFn(!�;b�n) = bFn (!�)��b�n � �0�0 4�
~n

[!~n]X
j=1

Re IW";j+
�b�n � �0�0 4�

~n

[!~n]X
j=1

Re IWW;j

�b�n � �0� ,
where

(6.10) sup
!2[0;1]







4�~n
[!~n]X
j=1

Re IWW;j







 �





4�~n

~nX
j=1

Re IWW;j






 = Op(1)
because of A3.2. Then bFn ��;b�n�!p 1 by A2 and because as we now show

(6.11) An(!) :=
4�

~n

[!~n]X
j=1

Re IW";j = �(!) + op(1)
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uniformly in !, and � (1) = 0: By A3.1 we obtain that E bFn (!) = � (!) + o(1)

uniformly in ! and by A3.3, b�n (!)� � (!) = op (1) for each !. Then we have to
check the tightness of �An(!) := An(!)� E [An(!)].
Following Billingsley (1968, Theorem 15.6), a su¢ cient condition is that, for

some � > 0; 0 � !1 < !2 � 1,

(6.12) E
�� �An(!2)� �An(!1)

��2 = E
������ 2~n

[!2~n]X
j=1+[!1~n]

hj

������
2

� D j!2 � !1j1+� .

Without loss of generality, we consider only ~n�1 � j!2 � !1j. Then using A1 and
A3.1-3, the left side of (6:10) is bounded by

E
�� �An(!2)� �An(!1)

��2 � D~n�1 Z !2

!1

d�+D~n�1 log3 n

�Z !2

!1

d�

�2
� D j!2 � !1j2 .

Now (6:11) follows from (6:10) and A2, while (2:12) follows from (6:11) and A2.�

Proof of Theorem 1.
Using the arguments in the proofs of Theorems 3 and 4 in DHV, we only need

to consider convergence in intervals [0; !0] ; for any !0 < 1: Since it is trivially
satis�ed that sup!2[0;!0]



LG (!)

 = 0, the theorem is a consequence of

sup
!2[0;!0]

���L�bTn �!;b�n�� bTn (!)���� = op (1) ,(6.13)

LbTn (!) d) B0 in the space D [0; !0] .(6.14)

By de�nition, L
�bTn �!;b�n�� bTn (!)� is

(6.15) bTn �!;b�n�� bTn (!)�Z !

0

g(u)0��1 (u)

Z 1

u

g (v)
�bTn �dv;b�n�� bTn (dv)� du.

By Proposition 2, the �rst two terms in (6:15) are equal to �~n1=2� (!)0
�b�n � �0�+

op(1) uniformly in !, whereas the third term is

~n1=2
Z !

0

g(u)0��1 (u)

Z 1

u

g (v) g (v)0 dvdu
�b�n � �0�+op(1) = ~n1=2� (!)0 �b�n � �0�+op(1),

which shows (6:13).
To complete the proof we need to show (6:14). Fidi�s convergence follows as in

Proposition 1 or Lemma 3. Then, it su¢ ces to prove tightness. Since bTn (!) is
tight, we only need to show the tightness condition of

Pn (r) :=

Z r

0

H (u)	n (u) du,
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where H (u) := g(u)0� (u)�1 and 	n (u) := ~n�1=2
P~n

j=1+[~nu] gjmj. Because by

Lemma 3, supu2[0;!0] k	n (u)k = Op (1) and E k	n (u)k
2 < D,

E jPn (r)� Pn (s)j2 =

Z r

s

Z r

s

H (u1)H (u2)
1

~n

~nX
j=1+[~nu1]

~nX
k=1+[~nu2]

gjgkE (mjmk) du1du2

� D

Z r

s

Z r

s

kH (u1)k kH (u2)k du1du2

= D jL (r)� L (s)j2 ,

where L (�) =
R �
0
kH (u)k du is a monotonic continuous and nondecreasing function.�

Proof of Theorem 2.
Setting b�j = b�m (j=~n), Ln bTn �!;b�n� is, up to terms op(1) uniformly in !,

1

~n1=2

[~n!]X
j=1

mj �
1

~n

[�n!]X
j=1

�
1b�j
�0 b��1j+1 1

~n1=2

~nX
`=j+1

�
1b�`
�
m`(6.16)

+

0@ 1
~n

[~n!]X
j=1

�0j �
1

~n

[�n!]X
j=1

�
1b�j
�0 b��1j+1 1~n

~nX
`=j+1

�
1b�`
�
�0`

1A ~n1=2 �b�n � �0� ,(6.17)

using Proposition 2.
Since �j is assumed nonsingular for all j = 1; : : : ; �n, using Lemma 1 and A2

we obtain that (6:17) is op (1), which is what it is required to conclude that the
asymptotic behaviour of Ln bTn (!) is given by that of (6:16).
We now show the weak convergence of (6:16) with b�` replaced by �`. In Lemma 2

we show that the di¤erence is negligible.
First, the expectation is clearly zero because E (I"";j � 1) = 0, j = 1; : : : ; ~n.

Next, we study the covariance structure. Let !1 � !2. Our aim is to show that

(6.18) E (an (!1) an (!2)) !
n!1

!1,

where

an (!) =
1

~n

[~n!]X
j=1

mj �
1

~n

[�n!]X
j=1

�
1
�j

�0
��1j+1

1

~n

~nX
`=j+1

�
1
E�`

�
m`

:= an1 (!)� an2 (!) ,

since (6:18) implies that if an (!) converges to a Gaussian process, this would be
the standard Brownian motion.
Because E (an1 (!1) an1 (!2)) = !1, we have that (6:18) holds true if

(6.19) E (an2 (!1) an2 (!2)) = E (an1 (!1) an2 (!2)) + E (an1 (!2) an2 (!1)) .
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First, it is easy to check that the right side of (6:19) is

1

~n

8<:
[�n!1]X
j1=1

j1^[�n!2]X
j2=1

+

[�n!2]X
j1=1

j1^[�n!1]X
j2=1

9=;
�

1
�j2

�0
��1j2

�
1
�j1

�
:

Next, we examine the left side of (6:19), which is

1

~n

[�n!1]X
j1=1

[�n!2]X
j2=1

�
1
�j1

�0
��1j1

1

~n

X
`1=1+j1

X
`2=1+j2

��
1
�`1

�

�E (m`1m`2)

�
1
�`2

�0)
��1j2

�
1
�j2

�
;

showing (6:19) :
Since the �dis of (6:16) converge to those of a Brownian Motion, by we only

need to examine the tightness of an2 (!), that an1 (!) is tight is already known.
But we have that an2 (!2)� an2 (!1) is8<: 1~n

[�n!2]X
j=[�n!1]+1

�
1
�j

�0
��1j+1

9=; 1

~n1=2

�nX
`=[�n!2]+1

�
1
�`

�
m`

+
1

~n1=2

[�n!2]X
`=[�n!1]+1

�
1
�`

�00@ 1
~n

X̀
j=[�n!1]+1

��1j+1

�
1
�j

�1Am`,

from where is easy to show that an2 (!) is tight. Observe that, for instance, the
�rst term has again the structure (k (!2)� k (!1))Z where Z is a random variable
with at least second �nite moments. �

Proof of Theorem 3.
We �rst analyze an unfeasible version of the transformation �Ln, �L, assuming

that we observe �0 and replace bgj by gj = Re IW";j and bmj by mj; j = 1; : : : ; ~n,
(6.20)

�LbTn �!;b�n� = ~n�1=2bFn (�)
[!�n]X
j=1

8<:mj � ~ng0j+1

 
~nX

k=j+1

gk+2g
0
k+2

!�1 ~nX
k=j+1

gk+2mk+1

9=; ;
and show that under the conditions of the theorem,

�LbTn �!;b�n� d) B0 in the Skorohod�s metric space D [0; !0] ;

for any !0 < 1: Then the proof of Theorem 3 is standard after we notice thatb"t = "t +
�b�n � �0�0Wt and by A2, b�n � �0 = Op

�
n�1=2

�
, and the arguments in

the proofs of Theorems 3 and 4 in DHV.
We shall abbreviate gn;k by gk to simplify the notation. Now, because bFn ��;b�n��

�2" = op (1), recall that we can assume that �
2
" = 1 without loss of generality, we



GOODNESS-OF-FIT TESTS FOR DYNAMIC MODELS. 23

obtain that
(6.21)

�LbTn (!) = bTn (!)� 1

~n1=2

[�n!]X
j=1

g0j+1

 
~nX

k=j+1

gk+2g
0
k+2

!�1 ~nX
k=j+1

gk+2mk+1 + op (1) .

So, except the op (1), the right side of �LbTn (!) is
(6.22)

1

~n1=2

[�n!]X
j=1

8<:mj � g0j+1

 
~nX

k=j+1

gk+2g
0
k+2

!�1 ~nX
k=j+1

gk+2mk+1

9=; .
Now, we could replaceGj;n = 1

~n

P~n
k=j+1 gk+2g

0
k+2 byGj =

1
~n

P~n
k=j+1 E

�
gk+2g

0
k+2

�
.

Indeed,

1

~n1=2

[�n!]X
j=1

(
g0j+1

�
G�1j �G�1j;n

� 1
~n

~nX
k=j+1

gk+2mk+1

)
(6.23)

=
1

~n3=2

[�n!]X
j=1

(
g0j+1G

�1
j (Gj;n �Gj)G�1j;n

~nX
k=j+1

gk+2mk+1

)
.

However, Brillinger�s (1981) Theorem 7.6.3, see also the proof of Lemma 1, implies
that uniformly in j,

Gj;n �Gj = op
�
n�1=4

�
;

~nX
k=j+1

gk+2mk+1 = Op
�
n3=4

�
so that the right side of (6:23) is op (1), and hence the asymptotic distribution of
(6:22) is given by that of

1

~n1=2

[�n!]X
j=1

(
mj � g0j+1G�1j

1

~n

~nX
p=j+1

gp+2mp+1

)
(6.24)

=
1

~n1=2

[�n!]X
j=1

(
mj � E

�
g0j+1

�
G�1j

1

~n

~nX
k=j+1

gk+2mk+1

)
+ op (1)

as we now show. Indeed, writing egj = gj � E (gj), the di¤erence between left side
and the �rst term on the right of (6:24) is

1

~n3=2

[�n!]X
j=1

eg0j+1G�1j ~nX
k=j+1

gk+2mk+1

Now, the second moment of the right side of the last displayed equality is

(6.25)
1

~n3

[�n!]X
1=j�`

E

( eg0j+1G�1j ~nX
k=j+1

gk+2mk+1

! eg0`+1G�1` ~nX
q=`+1

gq+2mq+1

!)
.
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Now because


G�1j 

 < D, the expectation term in (6:25) is governed by

E

 
~nX

q=`+1

gq+2mq+1

~nX
k=j+1

gk+2mk+1

!
E
�eg0j+1eg`+1�

+E

 eg0j+1 ~nX
k=j+1

gk+2mk+1

!
E

 eg0`+1 ~nX
q=`+1

gq+2mq+1

!

+E

 eg0`+1 ~nX
q=`+1

gq+2mq+1

!
E

 eg0j+1 ~nX
k=j+1

gk+2mk+1

!

+
~nX

k=j+1

~nX
q=`+1

cum
�eg0j+1; gk+2mk+1; eg0`+1; gq+2mq+1

�
.

Now, because for exampleCov (egj+1; egk+1) = I (j = k)+O (n�1), Cov (egj+1;mk+1) =
I (j = k)+O (n�1) and by Brillinger (1981, p.20 and Theorem 4.3.2), the last dis-
played expression is O (1), and hence (6:25) is O (n�1). So, we conclude that

�LbTn (!) = 1

~n1=2

[�n!]X
j=1

(
mj � �Gj

1

~n

~nX
k=j+1

gk+2mk+1

)
+ op (1) ,

where

(6.26) �Gj = E
�
g0j+1

�
G�1j .

So, it su¢ ces to examine the asymptotic behaviour of

(6.27) �LbTn (!) = 1

~n1=2

[�n!]X
j=1

(
mj � �Gj

1

~n

~nX
k=j+1

gk+2mk+1

)
,

and more speci�cally that (a)
���E �LbTn (!)��� = o (1), (b) Cov � �LbTn (!1) ; �LbTn (!2)� =

(!1 ^ !2)��1 + o (1) and (c) the tightness of the process �LbTn (!).
We begin with part (a). Now, because Emj = 0 and




�Gj


 < D, we have that
���E �LbTn (w)��� � D

~n1=2

[�n!]X
j=1






 1~n
~nX

k=j+1

E (gk+2mk+1)






 = O �n�1=2� .
because E (gk+2mk+1) = Cov (I";k+1; gk+2) = O (n

�1).
Now, we examine part (b). To that end it su¢ ces to show that

(6.28) (i) E

0@ 1

~n1=2

[~n!1]X
j=1

mj
1

~n1=2

[~n!2]X
j=1

mj

1A2

+ o (1) =
(!1 ^ !2)

�
+ o (1) .

and (ii) that the contribution of the other three terms inCov
�
�LbTn (!1) ; �LbTn (!2)� =

o (1). That (6:28) holds true is standard. See for instance DHV�s Lemma 7. Now,
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regarding part (ii), it su¢ ces to see that

� 1
~n2

[�n!]X
j�`

E

(
mj
�G`

~nX
k=`+1

gk+2mk+1

)
� 1

~n2

[�n!]X
j�`

E

(
m`
�Gj

~nX
k=j+1

gk+2mk+1

)

+
1

~n3

[�n!]X
j�`

E

( 
�G`

~nX
k=`+1

gk+2mk+1

! 
�Gj

~nX
k=j+1

gk+2mk+1

!)
(6.29)

is o (1). Observe that this is the term we obtain when !1 = !2 = !. But this the
case because the �rst term on (6:29) is proportional to

1

~n2

[�n!]X
j�`

~nX
k=`+1

E fmjgk+2mk+1g =
1

~n2

[�n!]X
j�`

~nX
k=`+1

fE fmjgE fgk+2mk+1g

+E fmjgk+2gE fmk+1g+ E fmjmk+1gE fgk+2gg
which is zero because E fmjmp+1g = E fmjg = 0. Next, the second term of (6:29)
is

� 1
~n2

[�n!]X
j�`

�Gj

~nX
k=j+1

E fm`gk+2mk+1g = �
1

~n2

[�n!]X
j�`

�GjE fg`+1g

because E fmjg = 0 and E fm`mk+1g = I (` = k + 1). And �nally, the third term
of (6:29) is ~n�2

P[�n!]
j�`

�GjE fg`+1g+O (n�1). But this is the case because proceeding
as before using Brillinger (1981, p.20 and Theorem 4.3.2) as above and that for
instance E (mk+1mq+1) = I (p = q) and then the de�nition of �Gj in (6:26), the
third term of (6:29) is

1

~n3

[�n!]X
j�`

�Gj�G`

~nX
k=`+1

E
�
g2k+2

�
+O

�
n�1
�
=
1

~n2

[�n!]X
j�`

�GjE fg`+1g+ o (1) .

So, we conclude part (b) that Cov
�
�LbTn (!1) ; �LbTn (!2)� = (!1 ^ !2)��1 + o (1).

To complete the proof we need to show part (c). From the de�nition of �LbTn (!)
in (6:27), it su¢ ces to examine the tightness of

1

~n1=2

[�n!]X
j=1

�Gj
1

~n

~nX
k=j+1

gk+2mk+1

as ~n�1=2
P[~n!]

j=1 mj is known to be tight. See for instance DHV. Now, because by

A3,



�Gj � �Gj+1


 = O (n�1), it su¢ ces to examine the tightness of

1

~n1=2

[�n!]X
j=1

1

~n

~nX
k=j+1

gk+2mk+1 = (1� !) 1

~n1=2

�nX
`=1+[�n!]

g`+2m`+1

+
1

~n1=2

[�n!]X
`=1

�
1� `

~n

�
g`+2m`+1.
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we shall examine the second term on the right being the �rst one similarly handled.
Now by standard arguments, see Billingsley (1968), we only need to show that

E







 1

~n1=2

[�n!2]X
`=1+[�n!1]

g`+2m`+1








4

� D j!2 � !1j1+�

for some � > 0. Now, the left side of the last displayed expression is

1

~n2

[�n!2]X
1+[�n!1]=`1;`2;`3;`4

E (g`1+2m`1+1g`2+2m`2+1g`3+2m`3+1g`4+2m`4+1)

= 3
1

~n2

0@ [�n!2]X
1+[�n!1]=`1;`2

E (g`1+2m`1+1g`2+2m`2+1)

1A2

+
1

~n2

[�n!2]X
1+[�n!1]=`1;`2;`3;`4

cum (g`1+2m`1+1; g`2+2m`2+1; g`3+2m`3+1; g`4+2m`4+1) .

Now proceed as we did in part (b) to conclude that the right side of the last
displayed expression is bounded by D j!2 � !1j2 after we notice that we can al-
ways take !1 and !2 such that ~n�1 � j!2 � !1j. This completes the proof of the
theorem. �

Proof of Theorem 4.
From the de�nition of bFn �!;b�n� in (2:7), under Han, and proceeding as in

Proposition 2, uniformly in ! we have that

bFn �!;b�n� = bFn (!)� 4�

~n3=2

[!~n]X
j=1

Re I"W;j~n
1=2
�b�n � �0�

�c 4�
~n3=2

[!~n]X
j=1

Re I"X(�p�1);j + op(1)

= bFn (!)� ~n�1=2 �� (!)0 (�n � �0) + c�2	(!)	+ op(1).
From here, (4.2) follows repeating the same steps of Theorems 1 and 2, but noting
the additional term given by 	(!) :=

R !
0
l(�u)du in the general case. So, under

Han, the B0 + L0	 is a noncentered Gaussian process, being the �noncentrality
function� given by L0	. So, the test will have nontrivial power under Han if
L0	(!) 6= 0 in a set, say �(L), with Lebesgue measure greater than zero. From
the de�nitions of L0 and 	 and that

R 1
0
� (v) dv = 0, it is easily seen that

L0	(!) =
Z !

0

�
l (�u)� g (u)0� (u)�1

Z 1

u

g (v) l (�v) dv

�
du.
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However, the expression in braces is just the residuals from the least squares pro-
jection of l (�u) on g(u) =

�
1; � (u)0

�0
, which obviously is di¤erent than zero unless

l (�u) is in the space spanned by g(u). But the latter is ruled out. �
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Table 1. Size of 5% Tests. n = 100
b = 0

C0n C15n C18n Q10 Q15
�1 �1 = 0:2
0.2 3.39 2.65 2.16 4.79 5.47
0.5 5.65 3.50 2.23 5.04 5.77
0.8 9.38 4.44 2.70 5.85 6.46

�1 = 0:5
0.2 4.40 2.68 2.22 5.20 5.87
0.5 6.75 3.54 2.31 5.63 6.30
0.8 10.06 4.27 2.70 6.47 7.10

�1 = 1:0
0.2 6.24 2.75 2.22 6.09 6.72
0.5 8.28 3.52 2.39 6.63 7.22
0.8 10.71 3.71 2.65 7.30 7.90

b = 0:4

C0n C15n C18n Q10 Q15
�1 = 0:2

3.71 2.88 2.23 4.80 5.50
6.41 3.96 2.34 5.13 5.82
10.36 3.99 2.52 5.66 6.38

�1 = 0:5
5.23 3.22 2.25 5.25 5.99
8.08 4.28 2.53 5.63 6.28
11.02 3.40 2.45 6.11 6.83

�1 = 1:0
7.51 3.94 2.55 6.12 6.72
9.46 3.99 2.65 6.30 6.93
11.15 2.69 2.17 6.52 7.21

b = 0:8

C0n C15n C18n Q10 Q15
�1 = 0:2

4.11 3.24 2.15 4.73 5.46
7.22 4.05 2.21 4.95 5.66
10.51 3.03 1.81 4.58 5.39

�1 = 0:5
6.34 4.02 2.35 5.07 5.79
8.87 3.62 1.93 4.75 5.42
11.10 2.72 1.69 4.54 5.30

�1 = 1:0
7.93 3.69 1.93 4.80 5.51
9.55 3.23 1.76 4.52 5.23
11.65 2.58 1.63 4.54 5.34

Table 2. Size of 5% Tests. n = 200
b = 0

C0n C29n C35n Q10 Q15
�1 �1 = 0:2
0.2 2.20 3.86 3.46 4.70 5.20
0.5 3.71 4.83 3.47 4.86 5.37
0.8 6.40 6.59 4.13 5.37 5.77

�1 = 0:5
0.2 2.79 3.89 3.48 5.06 5.57
0.5 4.29 4.87 3.48 5.33 5.83
0.8 6.71 6.57 4.23 5.95 6.33

�1 = 1:0
0.2 4.03 3.97 3.48 5.83 6.29
0.5 5.46 4.99 3.59 6.22 6.60
0.8 7.22 6.01 4.20 6.79 6.96

b = 0:4

C0n C29n C35n Q10 Q15
�1 = 0:2

2.41 4.12 3.44 4.68 5.20
4.20 5.36 3.53 4.88 5.35
7.07 6.10 4.00 5.17 5.60

�1 = 0:5
3.38 4.51 3.53 5.10 5.57
5.29 6.19 3.84 5.30 5.70
7.41 5.10 3.84 5.47 5.95

�1 = 1:0
4.99 5.49 3.83 5.75 6.17
6.29 5.91 4.08 5.85 6.20
7.41 3.99 3.39 5.88 6.27

b = 0:8

C0n C29n C35n Q10 Q15
�1 = 0:2

2.71 4.59 3.37 4.57 5.10
4.65 6.01 3.53 4.68 5.17
6.67 5.02 3.13 4.19 4.69

�1 = 0:5
4.19 5.54 3.59 4.86 5.32
5.54 5.67 3.13 4.43 4.93
6.75 4.64 3.05 4.13 4.70

�1 = 1:0
4.91 5.40 3.00 4.52 5.00
5.50 5.27 2.92 6.89 7.76
6.88 4.48 2.98 4.15 4.73
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Table 3. Size of 5% Tests. n = 400
b = 0

C0n C54n C65n Q15 Q20
�1 �1 = 0:2
0.2 1.83 4.54 4.17 4.90 5.19
0.5 2.91 5.54 4.23 5.00 5.25
0.8 4.95 8.32 5.20 5.30 5.51

�1 = 0:5
0.2 2.21 4.56 4.17 5.21 5.48
0.5 3.41 5.53 4.20 5.39 5.66
0.8 5.08 8.25 5.31 5.83 6.02

�1 = 1:0
0.2 3.15 4.61 4.22 5.83 6.04
0.5 4.27 5.61 4.30 6.09 6.25
0.8 5.58 7.87 5.39 6.51 6.57

b = 0:4

C0n C54n C65n Q15 Q20
�1 = 0:2

2.01 4.87 4.24 4.88 5.17
3.34 6.23 4.39 5.00 5.23
5.29 7.99 5.33 4.71 5.14

�1 = 0:5
2.69 3.99 4.16 5.19 5.46
4.13 7.68 5.02 5.30 5.59
5.53 6.45 4.94 5.46 6.58

�1 = 1:0
3.99 6.31 4.62 5.71 5.95
4.86 7.38 5.17 5.71 5.96
5.57 5.07 4.45 5.82 5.98

b = 0:8

C0n C54n C65n Q15 Q20
�1 = 0:2

2.16 5.69 4.32 4.78 5.05
3.74 7.68 4.81 4.83 5.11
4.60 6.84 4.61 4.31 4.69

�1 = 0:5
3.33 6.78 4.44 5.02 5.22
4.08 7.36 4.59 4.55 4.89
4.56 6.34 4.51 4.28 4.66

�1 = 1:0
3.72 6.85 4.11 4.70 5.02
3.86 6.91 4.41 4.40 4.75
4.54 6.13 4.38 4.32 4.66
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