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Abstract

This paper presents a procedure to breakdown the forecast
function for a base period t of an ARIMA model in terms of its
permanent and transitory components. The former is an estimate
of the equilibrium 1level or steady state path of the
corresponding economic variable and the latter describes the
approach towards the permanent component. Within the permanent
component a distinction is made between the factors which depend
on the initial conditions of the system, and those which are
deterministic.
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1. INTRODUCTION

A disadvantage frequently attributed to ARIMA
models is the difficulty involved in interpreting them in
terms of the <classical trend, seasonal and dirregular
components (Chatfield, 1977; Harvey and Todd, 1983).
Though it is well known (Box and Jenkins, 1976) that the
forecasting function of a seasonal wmultiplicative ARIMA
model can be represented as a combination of an adaptative
trend and a seasonal component, until the work of Box,
Pierce and Newbold (1987), no simple, direct procedures
had been developed lor determining these components. These
authors use the eventual forecasting function together
wilkh signal extraction theory to perform a breakdown of
the series into dts components and to detail its
application for +the IMA model (1.1) x (l1.1), commnonly
known as the airline model.

In this work these ideas are generalised to
obtain a breakdown of Lhe forecasting function into a
permanent term, which is the one produced by the wmodel's
non-stationary structure, and a transitory term, which is
the one produced by the stationary operators. In seasonal
series the permanent term can be easily broken down into a

trend component and a seasonal component,

Calculating these components has three important
advantages: it makes interpretation of the model easier;
it is a useful diaénostic tool fFor identifying
interventions which may affect trend or seasonal nature;
and it offers a means of comparison between ARIMA models
and models in state representation space in their Bayesian
version (Harrison and Stevens, 1977) or the structural one
(Harvey and Todd, 1983).




The work 1dis structured as follows: in Sectiorn 2
the permanent and transitory components of a prediction
function of an ARIMA model are defined, and the breakdown
of the permanent component into trend and seasonal factors
is described. In section three an economic interpretation
of the components of the forecasting function is given. In
section four these components are determined on the basis
of the ARIMA model's predictions, by solving a system of
linear equations, and saction five presents  some
applications.
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2. SEASONAL MODLLS, THEIR FORECASTING FUNCTIONS AND THEIR
COMPONENTS '

2.1. Seasonal models and their forecasting functions

As it is well known, according to Wold's theorem
every linear stationary stochastic process without
deterministic components can be represented by:

Xt=W(L) a (2.1)

t 4

where W(L)=1+W1L+W2L2+... is an infinite convergent
polynowmial in the lag operator L, and at is generated by
a white noise stochastic process. Approximating this
polynomial by wmeans of a ratio of two finite order
polinomials the result is the ARIMA representation,

o(L) Xt = O(L) ay . (2.2)

where W(L)=[¢(L)]M10(L), and the operator O(L) has all the

roots outside the unit c¢ircle so that the process 1is
stationary. The previous formulation is extended to
non-stationary processes, by allowing one or more roots
of the operator O®(L) to 1lie on the unit c¢ircle. For
seasonal processes, Box-Jenkins (1970) simplify (2.2) by
factorising the polynomials in two operators one on L and
another on Ls, where s 1is the seasonal period. These two
contributions are backed by the factorisation properties
of polynomial operators which as we shall see, are crucial
in determining the structure of the model.
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In general, a seasonal multiplicative ARIMA nodel
is represented by

s d
¢p(L)§P(L ) (A Asxt—u)=6q(L)O

Q(Ls)ett , (2.3)

where A=1-L is Lhe regular difference operator,
As=1—LS is the seasonal difference operator,p is
the mean of the stationary series,¢p(L) and eq(L)
are finite operators (with roots outside the unit circle)
in t.he lag operator L and Qp(Ls),eQ(LS) are
the seasonal operators on L® , also with stationary
roots. Calling

~s

d

*
¢r (L) = ¢p(L)@P(LS) A As ; r=p+d+s (1+P)

O (L) = Oq(L)OQ(LS) ; N=q+sQ

. 3 s *
¢ = d>p(L) <1’P(L ) =0 (L) ¢

and X () the prediction of Xi,q from the origin t, we
have that this prediction is given by:

N n
¢i xt(Q—l) +‘£

X, (2) =
t 1 j

i

M3

where Lhe predictions '?l(k—i) coincide with the wvalues
observed when the horizon is negative and the disturbances
at+£~j are zero if f2>3j and they coincide with the
estimated values if j>%.

For f>m the MA part of the model will have no
effect on prediction. Consequently, for a relatively
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far-off +time horizon the so-called eventual forecasting
function is obtained in which:

" ~ e

Xt(Q) = ¢T xt(Q-1)+"'+¢r xt(Q—r)+c . (2.5)

~

The solution of this difference equation
provides the structure of the forecasting function. To
obtain this solution we are going to use the Foiiowing
theorem,

Theorem
Let the homogenous difference equation be
A(LIX, =0 (2.6)
where A(L)n1+a1L+....+akLk is a finite polynomial 1in

the lag operator which can be factorised as:
A(CL) =P(L) Q(L), (2.7)
where Lhe polynomials P(L) and Q(L) are prime (they do not

have common roots. Then, the general solution to this
equation can always be written as:

Z, =P, + 4, (2.8)

where the sequences Py and q, are the solutions to

each prime polyomial, that is to say:

P(L) Py = Q(L) a, =0, (2.9)




The proof of this theorem is given in the appendix.
To apply this theorem let us note that Lhe eventual
forecasting function can be written, for L>m;

0" (L) (AdAs it(ﬁ) - W) =0, (2.10)

where ¢*(L)=¢p(L) QP(LS) and the L operator acts on the

index 2 and t, the origin of the prediction, is fixed.
The stationary operator ¢*(L) has all the roots
outside the unit circle, the operator (1-—L)d has a unit
root repeated d times, while the operator (l—LS) can be
written:

(1-L%) = (1-L) S(L) (2.11)

where:

S(Ly = (1 + L +...+ L°7h

This operator has s-1 roots, all of them in the unit
circle. If s 1is even, these s-1 roots include L=-1 and
other s-2 complex conjugated roots with a unit module and
distribuled symnetrically in the unit circle.
Consequently, the stationary operators o*(L) and the
non-stationary ones AdAs have no root in common
and the eventual forecasting function can always be broken
down into two components:

Xt(Q) = Pt(Q) + t, (R) .,

t
where

(1) Pt(Q) is the permanent component of the long-term
forecast, which is determined only by the non-stationary

part of the model and is the solution to:

AdAs Pt(Q) = | (2.12)




(2) tt(Q) is the transitory component, which is
determined by the stationary autoregressive operator. This
component defines how {he approach towards the permanent
component tends to be produced. The transitory component
is defined by means of the equation:

»
d(L) @(LS) tt(Q) = ¢ (L)tt(Q) = 0 . (2.13)
Now we will study the form of these components an the
basis of the ARIMA model and in section four we analyse

how to calculate them.

2.2 The transitory component

The transitory component of the eventual
forecasting function 1is the solution +t{to (2.13). The
general solution to this homogenous difference equation,
supposing that {he n=p+P.s roots of the polynomial &*(L)
are different, is

L) R () R
t, (R)=b ;"7 Gy 4.4 b " Gr (2.14)

where G;l,...,G;1 are the roots of the
aulltoregressive polynomial and b§t) are coefficients
depending upon the origin of the prediction. Since, by
hypothesis, the operator AR is stationary, its roots will
be outside the unit circle or,which 1is equivalent, the
terms Gj are all in module less than the wunit.

Consequently,

lim £, (%) = I b§t) lim G? -0 (2.15)

L->m Q->
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and the transitory component will be zero din the long
term. his same reasoning is valid when h identical roots
exist, since in that case the termn associated with those h
equal roots, G , will be:

h-1

[bgt)+b§t)ﬂ o0+ bét)ﬂ ]G% ,

which will tend once more to zero when 2->w if lGh|<1.
Consequently,the transitory component specifies

how the transition towards the permanent component is

produced and disappears for high prediction horizons.

2.3. The permanent component

By using the factorisation (2.11) the permanent
component of the long-term forecasting function can be
writien (2.12) as follows:

29+ sy PL(R) = W . (2.17)

According to the theorem of the previous section the
solution to this equation can in Lturn be broken down into
two terms associated with the prime polynowials Ad+1
and S(L), the first of which we will call trend component,

T and will be the solution of:

pd+1 T (R) = ¢ (2.18)

where ¢ = p/s and the second term we will call seasonal
component, Et' and is the solution of:

S(L) Et(Q) =0 . (2.19)
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It can be dmmediately checked that these components
satisfy the equation (2.17). In the following section its
properties are analysed.

2.4. The trend component

The trend component of the model is the solution
of (2.18) which can be written:

£y (t £y .d % del
Tt(R)zcé )+c§ )R+...+cé ) g e (2.20)
M
- P ——
where ¢ “s(d+1)1 °

and 1s a polynomial of degree d+1 with coefficients
varying with the origin of the prediction, except for the
latter which 1is constant and equal to c¢c*. The trend,
therefore, of an ARIMA model idis always polynomial: if
there are no seasonal differences and up=0, the order of
the polynomial dis d-1, whilst din the same case if ud0
the order is d. When there is a seasonal difference the
trend polynomial dis of degree d, if u=0, and d+1 if
Wael

2.5, The seasonal component

The seasonal component of the model 1is the
solution of (2.19) which ié any function of period s with
values summning zero each s lags.

We will call N

(t) _ _
SQ = Et(ﬂ) . 2=1,...8 ,
the s solutions of the equation (2.19), which are the
scasonal coefficients of the forecasting function. It
should be noted that the seasonal coefficients observe the
restriction
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so that when they are unknown we only have (s-1) unkrnown
factors.

The superindex t in the seasonal coefficients
indicates that these coefficients vary with the origin of
the prediction and are updated as new data are received.
The seasonal coefficients will be determined from the

initial conditions,as we shall see in section four.

2.6 The long-term forecasting function

As we have seen, in the long terwm the transitory
component of the eventual forecasting function is made
zero and only the permanent component remains, that is for
a very large %

~

Xp () = T, (O + E (0,

where Tt(ﬂ) is a polynomial trend and Et(Q) is the
seasonal component which is repeated every s periods.
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3. ECONOMIC INTERPRETATION OF THE COMPONENTS OF THE
UNIVARIATE FORECASTING FUNCTION

In this section we attempt to analyse what type
of information is provided by the forecasting function of
the previous section corresponding to an economic
variable. The prediction is the future value which the
variable X would have if no type of i1innovation occurred
from the moment 1in which the prediction 1is - made.
Consequently, the predictions described in the previous
section for different wvalues of 82 are the expectations
held in the moment t on the values of the variable in t+1,
t+2,...,.Tt must be noted that these expectations are
constructed by using exclusively information on the

history of the phenomenon in question,

Supposing that the parameters of the ARIMA model

are known, the wvalue X can be broken down 1in the

t+2
following way:

Kea = Xean * %y - (3.1)

where wilh e . we denote the prediction error which

is equal to

Y A T AASLI T IR AR AT WL IE R (3.2)
The breakdown (3.1) divides the observed wvalue Xt+2
into two parts which are mutually independent:
A ) . . .
“xt+Q' expectation for Xt+2 which we have 1in

the moment t;

effect of the surprises which occurred

—-@ :
£+
between t+1 and t+2, which is obtained as a welghted sum

of the corresponding innovations.
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When & tends to infinite, the forecasting
function indicates the wvalue to which the long-term
variable tends, if in the future the stochastic
innovations or disturbances which affect the system were
zero. Therefore, giving to 2 high and ever higher values
the forecasting function describes the long-term
equilibrium_path of the economic wvariable in question.
Thus, if the 1limit of the forecasting function 1is a
constant we will conclude that the variable tends- to a
stable equilibrium, while on the contrary, if this
function has no limit we will say that the variable tends
to a situation of steady state.

In conclusion we have that the economic
importance of the forecasting function obeys two
fundamental causes: on the one hand it enables us to
quantify the different term univariate expectations for a
particular phenomenon; on the other, it describes the
long-term equilibrium path towards which this phenomenon
is moving, and this ds given by the +trend of the
forecasting function,

In adding comnent to the concept of integrated
variables defined 1in Engle and Granger (1987) and
Escribaro (1987) we will say that a variable generated by
an ARIMA model is integrated of order (h, 1)if it needs
to be differentiated h times to become stationary and the
stationary transformation has a mathematical expectation
different to zero. If in the previous case the
mathematical expectation of the stationary transformation
is zero we will say that the variable is integrated of
order (h, 0). In general the order of integration is
represented by (h, m), where m takes the value 2zero or
one according to whether the mathematical expectation of
the stationary transformation is nil or not. From what has




been seen in the previous section, we have that the order
of integration fully describes the'polynomial structure of
the trend of the forecasting function, which will be of
the order max (o,h+m-1). The trend is purely stochastic,
in the sense that all its coefficients are determined by
the initial conditions of the system, if m is zero, and it
is mainly deterministic if m is different to zero.

This definition of integration makes explicit the
presence or otherwise of & constant 1in the stationary
series due to the iwmportance which, as we shall see, this
parameter has.

If h+4m adds up to zero or one the variable tends
to a stable equilibrium, the value of which will be purely
deterministic 1if h dis zero, or it will be determined by
the initial conditions if h is one.

If h+m adds up to more than one, the variable
does not tend to a stable value, but evolves according to
a polynomial structure which accords it a steady state. In
this polynomial structure the most important thing in the
long-term is the coefficlient corresponding to the greatest
power, since compared to it all other powers have a
negligible contibution. Now, this coefficient will be
deterministic if m 1is one, in which case the long-term
path will also be so. This means that the factor which
contributes most to this path is not altered by changes in
the conditions of the system, and therefore the
development of an Economic Theory to explain in this case
the long term path of a wvariable, i.e. consumption, 1in
terms of another one, i.e. income, 1is not of much help. On
the contrary, if m is zero all the parameters of the trend
of Lhe forecasting function depend on the initial
conditions of the system. In such cases the long-term law
is determined by a time polynomial of the order (h-1), but
the parameters of this polynomial change as new
disturbances reach the system.
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To complete the description of the long term of
an economic variable we must specify the magnitude of the
uncertainty we have about it. This uncertainty is

expressed by the term LT in (3.1) when 2 tends to
infinite. If the process is stationary h=0, the polynomial
¥Y(2) which enters in the definition (3.2) of €in
is convergent and the wvariance of e when &2 tends

t+2
to infinite 1is finite. This result 1is certain even when

bearing din mind the uncertainty associated with the
estimation of the parameters (see Box and Jenkins (1970)
appendix A7.3). In such a case we say that the uncertainty
regarding the future, however far off 1t wmay be, 1is
limited. If h is not zero, Y¥Y(R) does not converge, and
Lhe wvariance of Y tends to infinity with 2, so
that we say that uncertainty regarding the future dis not
bounded. It 1is worlth pointing out that the fact that
ARIMA models generate, for the case of non-stationary
series, predictions regarding the future whose uncertainty
is not Dbounded as the horizon of prediction ()
increases is not a disadvantage of these models, since the
nature of uncertainty regarding the future 1is not a
characteristic which indicates to us whether the model is
good or bad, but an aspect which defines the real world
which we are attempting to make a model of.

In economics the hypothesis that uncertainty
regarding the future is not limited seems acceptable.
Note that 1in a structural economic model (SEM) where
exogenous variables are generated by non-stationary ARIMA
models, long-term predictions are also generated on the
endogenous variables with non-bounded uncertainty. The
difference with respect to the ARIMA predictions can be
found simply in the fact that the uncertainty may tend to
infinite more slowly and with a greater delay.
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The characteristics of the long-~term path
deriving from the models from the ARIMA models with the
most common values for h and m are shown in Table 1.

An ARIMA model with (h+m=2) implies that in the
long term the level of the corresponding variable tends to
infinite. Such a characteristic may be considered as

unacceptable in Economics, but note that simply
substituting one of the positive unit roots included in
1

the differentiations by (0.99) ° will be sufficient for
the law of the long-terin to become a stable equilibrium.
But, the way in which this stable equilibrium is achieved
depends on the transitory component of the prediction
function tt(Q), defined 1in (2.13). As +this component
will in this case have a term b§t) (0.99)Q it
will not be cancelled out in tLthe medium term and this
facet, in practice, will not be able to be distinguished
from the first mentioned one in which (h+m) equalled two.
In fact the 1long term 1in Economics cannot be estimated,
since it 1s not possible to discriminate, with the
available sample sizes, between a fixed structure and one
which is slowly evolving. Therefore, when we say that an
economic wvariable follows a 1linear growth path we mean
simply that in the medium term it tends to follow such a
behaviour path.

From Table 1 it follows that the inclusion of

constants in_ the ARIMA model means severe restrictions on

the characterisation of the long term of an economic

variable.

Having seen that the parameters of the
forecasting function of an ARIMA model, and specifically
the slope of the trend of the permanent component change
with +ime, it 1is important to analyse how we can
calculate them. The next section is devoted to this topic.

Table 1
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4. THE DETERMINATION OF THE COMPONENTS OF THE FORECASTING

4.1 General Approach

The results of the previous sections indicate
that the eventual forecasting function of a seasonal ARIMA
model can be written:

- 4 ()gF , a(b) )

xt(n) = L ¢ '8 + 8 + b, G, (4.1)

j=0 3 oy

i M3

1

to simplify Lhe analysis we are assuming that p=0 and
D=1. Then n=p+P.s and the equation is valid for L2>q+sQ.
However, d+1l+p+sP initial values are required to determine
it, therefore,from K>gq+sQ-d-1-p-sP the predictions will
already be related among each other according to (4.1).
The coefficients of this equation can be obtained through
two different procedures: the first is to generate as many
predictions as parameters and to solve the resulting
system of equations. The equation (4.1) has d parameters
cj, s-1 seasonal parameters (since a coefficient can be
expressed as the sum of the others with a changed sign)
and n coefficients bi' Therefore, we need to generate a
number of predictions equal to R=d+l+s-1l+n=d+s+n. Calling
the prediction wvector 2t+R and the parameter vector 9,
we can write from a certain moment 2 the following
expression:

—_ - 4 -

1

=
" | (t)
xt(Q) 1 | 1 2 """ °n o
1 2 2 .

l
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and the coefficient Sét) will be equal to
s~1
- 1 sV
) ]
j=1
Writing
2t =N8 ’

where M is the data matrix which contains the known
coefficients which multiply the parameter vector ‘Q we
can express g as:

8 =M1 Xeer . (4.2)
which enables all {he parameters for +the eventual
forecasting function to be obtained.

The second procedure is first to obtain a value r
high enough for the transitory component to be cancelled
out for k>r. This value depends on the roots of the
autoregressive polynomial and is determined in such a way
that IGr is the G. with the

1 1 i
highest absolute value. A simple way of checking whether

|~0Q, where G

the transitory component is practically nil for K>j.s,
consists of taking the differences:

Xt((j+1) s+k) - Xt(js+k) ,

which will be free of the seasonal effect, and to observe
whether such a difference stays practically constant for
positive values of K. In this case we shall say that from
a prediction horizon j.s the transitory component is
practically nil. For example this dmplies +that with
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monthly data the annual differences between the monthly
predictions will be constant from a certain year onwards.
Thus taking the expression of the general predictions and
eliminating from it the transitory component we can set up
a system of equations to determine the coefficients of the
trend equation and the seasonal coefficients, which are in

general those of interest. Let us see some specific cases.

4.2 The airline model

A seasonal ARIMA model much used for representing
the evolution of monthly economic series is the one called
the airline model:

2

X, = (1~-GlL)(1—-012L1 )at . (4.3)

AByy Xy

According Lo what has been previously discussed, the
forecasting equation of this model for k>0 can be written;

(t) (t) (t)
Xt(k)mbo + b1 k+Sk

and contains 13 parameters. (Remember that Esét)=0).

By equalling the predictions for k=1, 2,...,13 obtained
with the model (4.3) with the structural form, we shall
have:

" (t)
Rt 1 1 1 0...0 b!
(t)
by
= (t)
5 ,
p
R 12 112 0 0 1
2 S ()
Lﬂ+n Lf 31 0.0 | 8]
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a system of 13 equations and 14 unknowns which with the

restriction ngt)=0 enables the parameters
b%t). bgt) and the seasonal coefficients
Sjt) to be obtained. By subtracting the first
equation from the last and dividing by twelve, we obtain
directly
X, (13)-X, (1)
(t)y "t t
b1 = 17 (4.4)
By adding up Lhe first 12 equations Lhe seasonal
coefficients are cancelled out and we obtain:
- 12 (£) .. (t), 14...412
Xy =137 f Xg (K = b "74by (=377
which gives as a result
c(t) oo 13 o
b0 = Xt 2 b1 . (4.5)
fynally the seasonal coefficients are obtained by:
() o () C(b) .
5j = Xt(J) - bo bl J . (4.6)

It must be noted that if the ARIMA model is
specified on the Yogarithmic transformation of X, then the
coefficients bgt) can be interpreted as growth rates
and the coefficients S, measure the seasonal nature as a

percentage of one on the level of the series.
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4.3, General models with a difference of each type

Any ARIMA wmodel which has as non-stationary
operators AAS and p=0 has a permanent component of
the forecasting function which dis the sum of a 1linear
trend and a stable seasonal component. To determine the
parameters b, which measure the Ilinear trend and the
seasonal coefficients S.,, we will wuse the fact that,
taking K=si+j as high enough for the stationary terms to
be negligible, and equalling the predictions to the
permanent component:

Xy (K+s+1)=X, (K+1)

~(ty (4.7
bt -

b{t= X - bk + L (4.8)

s{t) L X (K+i) - b b, (K+3j) (4.9)
j t o 1 '

equations analogous to those of (#.4) and (4.6), where now
D

X 1is the average of the s observations in the interval
(K+1, K+s).
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5. APPLICATION OF THE CALCULATION OF THE TREND OF THE
UNTVARIATE FORECASTING FUNCTION TO SERIES ANALYSIS
OF THE SPANISH ECONOMY

In this section an estimate dis made, for a
certain sequence of months, of growth rates in the trend
of the forecasting function of the following series of the
Spanish economy: imports, exports and the consumer price
index for services. The use of the above-mentioned rate in
a relatively complete short-term analysis of an economic
phenomenon is put forward and described in Espasa (1990).
Following the terminology wused 1in the above-mentioned
work, we will call it inertia to the rate of growth of the

model which will be given by the parameter bl‘ defined
in (4.7), when Lthe model 1is specified on the logarithmic

transformation of the variable.

Regarding Spanish foreign trade on non-energy
goods the following univariate monthly models can be used
to explain imports (M) and exports (X)

M, 0oy 12
Aby 1My Al HRIM +(1-0"77L) (1-0'72L")ay (5.4)
¢ =0'092 ,
= ~0! -0 12
AB,,1nX, =AB, ,ATX, +(1-0'83L) (1-0'72L “)a, , (5.5)

c =0'117 ,

in which AIM and AIX are particular intervention analyses
requiring both series and which have no effect upon the
slope of the forecasting function, therefore, henceforth

we will ignore them.
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The original series with their corresponding
trends are given in pPigurel and tLhe inertias are show 1in
Figure 2.

Figure 1

The last figure shows these inertias from January
1986, the month in which Spain joined the EEC, to December
1989. Thus, this chart can be used to illustrate what
happernied to Spanish overseas trade, in nominal terins from
that dale. Obviously, on the basis of this description no
causal analysis can be made, since we are not using models
incorporating the determining variables of M and X with
which an analysis «c¢an be made of which explanatory
variables are responsible, and to what extent, for the
trend changes. Nevertheless, the mere description of these
changes 1is in fact of interest in itself. However, it must
be pointed out that the trend evolutions shown in Figure 2
refer to Lhe sale and purchase of goods in nominal terms
and, therefore, prices are also influencing these very
same trend movements.

We can deduce from Figure 2 that trend growth
expectation in nominal imports was increasing
systematically throughout 1986 and first three quarters of
1987, that then this expectation has stabilised, with
minor oscillations, at around 23% until the second half an
1989, when it started the decrease very slowly. As a
result, a worsening of perspectives for Spanish imports of
around four percentual points has occurred during this

period.

Figure 2

With exports there was a movement from a growth
expectation of 18% at the beginning of 1986 to an
expectation of around 14% at the end of that year and




during 1987. Since then the expectations have remained
fairly stable.

In conclusion we can say that the perspectives
for imports worsened (increased) progressively in 1986 and
1987 taking on a relatively stable evolution from that
time until the second half of 1989 when a certain
improvement occurred. As for expectations for
exports,although they worsened (declined) during 1986,
they have maintained a fairly high level during thg last
threce years of Lhe sample considered. If the evolutions of
imports and exports are compared in order to have a better
understanding of of the possible evolution of the Spanish
trade deficit, a conclusion can be drawn to the effect
that, it 1s necessary, given that the level of imports is
higher than that of exports, at least for the growth rates
expected in both series Lto equal each other fairly
quickly, and, insofar as export growth can be considered
as optimistic, . given the level of world commercial
activity and the relative level of Spanish prices compared
to Llhe rest of the world, to bring these rates together
must perforce require a significant reduction in import
growtlh.

In the consumer price index for the Spanish
economy Lhe component referring to the prices of services,
which we shall call IPCS, has been showing fairly uneven
behaviour with regard to the component referring to the
prices for non-energy manufactured goods. Both components
make wup the IPSEBENE, the consumer price index for
services and non—-energy manufactured goods, which
represents 77.54% of the IPC, and is an appropriate index
on which it 1is worthwhile analysing underlying inflation
or the inflationary trend.
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By using the sample comprising from May 1984 to
January 1989 the following model has been estimated

1 - 0'85.12
= AIS, + a, (7.6)
t oy~ o323 t

A0121n IPCSt

c = 0'0014 ,

where AISt are interventions regquired by this gndex.
These interventions include a step effect which bedgins in
January 1986 and is due to the introduction of Value Added
Tax. The moving average coefficient is fixed at 0.85.

From this wmodel a calculation has been made of
the inertia of the IPCS,(corrected of interventions)
during the period comprising from January 1986 to December
1989. These calculations are shown in Graph 3. There it
can be seen that during these years the medium-term growth
expectations of this index have always remained above 7%.
It can also be detected that during 1986 expectations on
this index increased. That is to say, unlike what occurred
with Lhe prices of non-energy manufactured goods, Spain's
entry in the EEC meant no improvement in expectations for
the prices of services. This result is not surprising if
it is borne in mind that entry scarcely brought with it
greater competitiveness in - the Spanish service sector.
Figure 3 also shows that throughout 1987 there was a
slight improvement- (fall) in the IPCS inertia, which
disappeared completely in 1988, and 1in 1989 this
deterioration in the prices of services continued. A1l
this represents a grave threat to the IPC since the
services component accounts for 34.24% of this index.

Figure 3
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APPENDIX 1

Demonstration of the theorem in Section 2
It can be immediately proved that the condition

is sufficient and that (2.3) 1is & solution of (2.1).
Because of the commutability of the operators

P(B)Q(B)Z, =P(B)Q(B) (P +q,)=Q(B)P(B)p +P(B)Q(B)q =0

Let us now prove that the <condition is
necessary, that 1is, that any solution of (2.1) can be
written as in (2.3). From Bezout's theorem, if P(B) and
Q(B) are prime two polynomials exist TI(B)‘ T2(B) such
that:

1 = T, (B)P(B) + T,(B)Q(B)

therefore:

Zt = Tl(B)P(B)Zt + T2(B)Q(B)Zt

calling
T(BP(BIZ, = ay (A.1)
T,(BYQ(BIZ, = P, (R.2)

is verified
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multiplying both members of (A.1) and (A.2) by Q(B) and
P(B) respectively:

]

Q(B)a, = T, (BIP(B)Q(B)Z, = T,(B)A(B)Z,=0

P(B)p, = T,(B)P(B)Q(B)Z,

T2(B)A(B)Zt=0

and therefore any solution can be written in the form
(2.3) and (2.4) indicated in the theorem. Let us prove
that the breakdown 1s unique. Let us assume another
breakdown:

ot 1
Zg =8 * P
where q‘t and p‘t verify (2.4). Then:

q 1

"

. = TL(BIP(B)a' +T,(B)Q(B)Q" (=T (B)P(B)q'
= T(BP(BI(A' +p' ) = T (BIP(B)(a,+p )=
= T,(B)P(B)a, = (1-T,(B)Q(B))a, = a,

analogously it is proved that Py must be identical to
[}
Py
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TABLE 1

Characteristics of the long term path derived from the A.RIHA mode )
corresponding to an econamic variable

ks, nature of the Influence of initial Uncertalinty regarding tong-term
Tong-term path (b, m) conditions on the
(a) () tong-term path On the level On the growth rates
0. NIL LONG-TERM VALUE (0,0) none finite a1 (growth is zero)
1 ESTABLE EQUILIBRIUM (0,1) none finite a1 (growth is zero)
(1,0) they determine the Infinite (1t growth ni) (growth is zero)
equlibrium value lineary with)
2 LINEAR GROWTH (1,1) they determine the ordenate infinite (it growht finite
{n the origin of the lineary)

straight line, but have no
influence on its slope

(2,0) they determine the two Inflnite (1t growth Infinite (1t growth
parameters which define the quadratically) Vineary)
line

(2) h s the total number of differentiations required by the variable to become stationary.
() m=0 implies that the mathematical expectancy or the stationary series is not all,
o1 implies that this mathematical expectancy is not nil,




FIGURE 1

SPANISH IMPORTS AND EXPORTS OF NON-ENERGY GOQDS
{Original data and trend)
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FIGURE 2

SPANISH IMPORTS AND EXPORTS OF NON-ENERGY GOODS
{Original data and trend)
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FIGURE

CONSUMER PRICE INDEX FOR SERVICES IN SPAIN
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