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Abstract

This article considers tests for parameter stability over time in general econometric models,
possibly nonlinear-in-variables. Existing test statistics are commonly not asymptotically pivotal
under nonstandard conditions. In such cases, the external bootstrap tests proposed in this paper
are appealing from a practical viewpoint. We propose to use bootstrap versions of the asymptotic
critical values based on a .rst-order asymptotic expansion of the test statistics under the null
hypothesis, which consists of a linear transformation of the unobserved “innovations” partial
sum process. The nature of these transformations under nonstandard conditions is discussed for
the main testing principles. Also, we investigate the small sample performance of the proposed
bootstrap tests by means of a small Monte Carlo experiment. c© 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction and statement of the problem

Asymptotically admissible hypothesis tests on parameter stability can be easily im-
plemented in practice, even when test statistics are not asymptotically pivotal, by using
bootstrap estimates of asymptotic critical regions. This paper suggests to apply this
approach in the context of general econometric models, possibly nonlinear-in-variables.

Bootstrap tests allow to implement hypothesis tests under fairly general conditions, in
situations where test statistics limiting distributions are case dependent and, therefore,
tables are not available.

Bootstrap versions of test statistics are usually obtained from a resample of the
original data set, after imposing the restrictions to be tested on the null hypothesis,
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but respecting unknown features of the underlying data generating process aBecting
the limiting distribution under the null. Under suitable resampling schemes, conditional
quantiles, given the sample, of these bootstrap versions are consistent estimators of the
corresponding asymptotic critical values, and, therefore, form a basis for asymptotically
admissible tests. Bootstrap approximations also permit to use simpler test statistics in
practice, avoiding necessary scaling for obtaining asymptotically pivotal tests.
Hansen (2000) has suggested a bootstrap approach in the context of Quandt (1960)

and Nyblom (1989) parameter stability tests for the linear regression model. He pro-
poses to apply Wu (1990) external bootstrap residual resample, which consists in .x-
ing the exogenous variables and then, resampling the endogenous variables by adding
to the OLS .ts the corresponding residuals multiplied by an independent standard
normal random variable. This procedure is diIcult to justify in nonlinear-in-variables
models, where innovations enter nonlinearly in “reduced form” equations. Instead of
using bootstrap analogs of the original test statistics, we propose to use external boot-
strap versions of a .rst-order expansion, as it has been suggested by Su and Wei (1991)
and Hansen (1996), among others, in other contexts.
Let Zn = {Zni; i = 1; 2; : : : n; n = 1; 2; : : :} be a Rq-valued double array of random

variables. Consider the nonlinear-in-variables simultaneous equations system,

U (Zni; �ni) = Uni; i = 1; : : : ; n; n¿ 1;

where �ni is a p-valued parameter vector, U :Rq ×Rp → Rk are the known functions,
and Uni are the innovations satisfying that

E[Uni] = 0 for all i¿ 1:

The parameter stability hypothesis is stated in terms of a parameter �0, de.ned as
follows:
A1. There exists a parameter vector �0, which is an interior point of � ⊂ Rp, and

the only solution to the set of equations

lim
n→∞E[T 0

n (1)] = 0;

where T 0
n (·):=Tn(·; �0) and Tn(·; �):=n−1∑[n·]

i=1 U (Zni; �).
These conditions identify the parameter �0, and the null hypothesis can be equiva-

lently written as

H0 : �ni = �0 for all i¿ 1 and some �0 ∈� ⊂ Rp:

Tests are designed to be consistent in the direction of .xed alternatives,

H1n(
0) : �ni =

{
�1(
0); i = 1; : : : ; [n
0]

�2(
0); i = [n
0] + 1; : : : ; n

for some 
0 ∈ [0; 1]; and �1(
0); �2(
0)∈� ⊂ Rp;

or the more general formulation
⋃


∈� H1n(
) for some � ⊂ [0; 1] with nonzero
Lebesgue measure. These tests are also able to detect contiguous alternatives of
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the form

HCn : �ni = �0 +
g(i=n)√

n
for some bounded function g : [0; 1] → RP:

As it will be discussed in detail in Section 3, test statistics based on the main testing
principles, such as CUSUM, likelihood ratio (LR), Wald, lagrange multiplier (LM)
or Predictive tests can be written as

�̂n = ’(n1=2Rn);

where {Rn} is an m × 1 vector (m¿ k) of empirical processes taking their values in
the space of right-continuous functions on [0; 1] with left-hand limits, the space D[0; 1].
We will say that {Rn} is a random element of (D[0; 1])m. The form of {Rn} depends
on the speci.c testing principle applied (see Section 3) and ’ : (D[0; 1])m 	→ R+ is
some continuous functional. For CUSUM tests, popular for structural break testing in
linear models, the functionals usually chosen are

’(f) = sup

∈[0;1]

|f(
)| (Kolmogorov–Smirnov’s type tests); (1)

’(f) =
∫ 1

0
f(
)2 d
 (Cram Rer–von Misses’ type tests):

Some other examples of ’ maps, used in tests statistics based on Wald, LM, LR
or Predictive tests principles are

’(f) = sup

∈[�;1−�]

‖f(
)‖2 (e:g: Andrews; 1993);

’(f) =
∫ 1

0
‖f(
)‖2 dJ (
) (e:g: Andrews and Ploberger; 1994);

’(f) = log
∫ 1

0
exp
(
1
2
‖f(
)‖2

)
dJ (
) (e:g: Andrews and Ploberger; 1994);

(2)

where J is a suitable weight function and, henceforth, for any matrix A, ‖A‖= S�(A′A)1=2,
where S�(·) means the greatest eigenvalue.

Under certain regularity conditions, which will be discussed in Section 2, Wald, LM,
LR or Predictive tests belong to the following class:

A2. The class of tests we are interested in is based on test statistics of the form
�̂n = ’(n1=2Rn) for a given continuous functional ’ : (D[0; 1])m 	→ R+ and a suitable
empirical process {Rn} taking values in (D[0; 1])m, such that, under HCn,

sup

∈[0;1]

|Rn(
)−LT 0
n (
)|= op(n−1=2);

where L : (D[0; 1])k 	→ (D[0; 1])m is a given linear bounded transformation.
The speci.c form of the transformation L for the main testing principles: CUSUM,

LM, LR, Wald and Predictive tests will be discussed in Section 3.
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The empirical process {n1=2T 0
n } is a random element of (D[0; 1])k . Under fairly gen-

eral regularity conditions, which will be discussed in Section 2, {n1=2T 0
n } converges in

distribution to a Gaussian element with continuous sample paths in the space (D[0; 1])k

with the Skorohod’s topology (see Billingsley, 1968, Chapter 3). Tests statistics are
designed in such a way that under more or less restrictive regularity conditions the
linear transformation L satis.es that {n1=2LT 0

n } converges weakly to a vector of in-
dependent Brownian motions, and asymptotic critical values are usually approximated
by Monte Carlo. However, under departures from the assumed regularity conditions,
{n1=2LT 0

n } has covariance function depending on unknown features of the data gen-
erating process, and the asymptotic distribution of resulting test statistics cannot be
tabulated under general conditions. Some tests are not asymptotically pivotal when in-
novations are heteroskedastic or autocorrelated, e.g. Quandt (1960) and Nyblom (1989)
tests for the linear regression model, and many others, which are robust under het-
eroskedasticity and autocorrelation (e.g. Andrews, 1993; Sowell, 1983), may have a
case-dependent limiting distribution when exogenous variables or innovations are not
covariance-stationary. Thus, it seems reasonable to use bootstrap critical values and
p-values for preventing situations where test statistics are not asymptotically pivotal
under the null hypothesis.
The rest of the paper is organized as follows. The next section discusses the asymp-

totic behavior of test statistics under departures from standard conditions. Section 3
shows that A2 is satis.ed for leading classes of tests. Section 4 proposes bootstrap
versions of �̃n, based on an external bootstrap version of {T 0

n }, and justi.es the valid-
ity of resulting bootstrap tests, which estimate asymptotic critical values and p-values
from conditional quantiles, given the sample Zn, of these bootstrap statistics. Section
5 presents some remarks on the implementation of the bootstrap testing procedures in
linear models. Section 6 illustrates the .nite sample performance of proposed bootstrap
tests by means of a small Monte Carlo experiment. Proofs of stated results are placed
in a .nal section at the end of the paper.

2. Regularity conditions and asymptotic tests

Henceforth, “⇒” means convergence in distribution in the Skorohod metric space

(D[0; 1])k , “ d→” denotes convergence in distribution on Euclidean sets, and “ d=” means
equally distributed. The next set of high level regularity conditions will be helpful for
discussing the asymptotic behavior of test statistics.
A3. Uni(·):=U (Zni; ·) is diBerentiable in a neighborhood of �0, with derivatives

U̇ni(�):=9Uni(�)=9�′ such that, for any S�n = �0 + op(1),

sup

∈[0;1]

‖Mn(
; S�n)− Mn(
; �0)‖= op(1) (3)

and
sup


∈[0;1]
‖Mn(
; �0)− M (
)‖= op(1); (4)

where Mn(·; �)=n−1∑[n·]
i=1 U̇ nt(�) and M (
) is a full rank matrix of continuous functions

uniformly in 
.
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Condition (3) is satis.ed when U̇ni(·) is smooth enough. For instance, a suIcient
condition is that, for some  ¿ 0,

sup
{�: ‖�−�0‖6 }

‖U̇ni(�)− U̇ni(�0)‖6 ‖� − �0‖"ni for each i¿ 1;

such that n−1∑n
i=1 "ni = Op(1). The matrix M (·) of continuous functions in (4) is,

typically, such that

sup

∈[0;1]

‖E(Mn(
; �0))− M (
)‖= o(1): (5)

This condition holds when, for instance, E[U̇ni(�0)] = M (i=n), where M is a matrix
of bounded and continuous functions, which are uniformly Riemman’s integrable on
intervals [0; 
] for all 
∈ [0; 1]. Thus, (4) follows from (5) and

sup

∈[0;1]

‖Mn(
; �0)− E[Mn(
; �0)]‖= op(1): (6)

This last condition is satis.ed when Uni(�0)−E[Uni(�0)] is a martingale diBerence, and
Mn(1; �0) converges in mean square. Note that under these circumstances, by Doob’s
inequality (see Doob, 1953, p. 317),

E

[
sup


∈[0;1]
‖Mn(
; �0)− E[Mn(
; �0)]‖2

]
6 2E[‖Mn(1; �0)− E[Mn(1; �0)]‖2]: (7)

Thus, (6) follows, applying Markov’s inequality, if the right-hand side of (7) con-
verges to zero, which is the case when, for instance, {‖U̇ni(�0)‖2; i¿ 1} is uniformly
integrable, applying Chow’s (1971) result (see also Hall and Heyde, 1980, Section 2.7,
for discussion on Lp convergence of martingales). The martingale assumption can be
relaxed by applying the extension of Doob’s inequality in MacLeish (1975a) to the
case where {U̇ni(�0); i¿ 1} is a mixingale.

In order to implement a test, we also need to know the weak limit behavior of
{n1=2T 0

n }. Assume
A4.

sup

∈[0;1]

‖T 0
n (
)− T 0(
)‖= op(1) and sup


∈[0;1]
‖nE[T 0

n (
)T
0
n (
)

′]− S(
)‖= op(1);

where S is a matrix of continuous functions. Also,

n1=2(T 0
n − T 0) ⇒ Nk;

where {Nk} is a Gaussian process with continuous sample paths, centered at zero and
with covariance function E(Nk(
1)Nk(
2)′) = S(min(
1; 
2)) − T 0(
1)T 0(
2)′ for any

1; 
2 ∈ [0; 1].

This assumption is satis.ed under a variety of circumstances. Billingsley (1968)
proves a number of invariance principles for ’—mixing and functions of ’—mixing
random variables, which were extended by Davidov (1968, 1970) to stationary se-
quences with more than two moments, allowing for &-mixing processes as well. Brown
(1971) provides an invariance principle for martingales, and MacLeish (1975b, 1977)
for nonstationary mixingales.
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In the parameter stability literature, there are usually assumed conditions (see e.g.
Andrews, 1993; Sowell, 1996) such that:

A3′. A3 holds with M (
) = 
M (1).
A4′. A4 holds with S(
) = 
S(1).

Therefore, under H0, if A4′ holds, Nk(
)
d=S(1)1=2Bk(
), where {Bk} is a vector

k × 1 of independent standard Brownian motions. Distribution free tests are available
when A3′ and A4′ are satis.ed. However, A3′ may not hold when {U̇ni(�0); i¿ 1} is
not mean stationary, and A4′ may not hold when {Uni(�0); i¿ 1} is covariance non
stationary. This is illustrated in the following examples.
Case I: Change in the distribution of Zni at an unknown moment of time. For

instance,

Zni = Z (1)
i 1(i6 [n
0]) + Z (2)

i 1(i¿ [n
0]) some 
0 ∈ [0; 1];

where (Z (1)
i ; Z (2)

i ) are i.i.d. Thus

Uni = U (Z (1)
i ; �ni)1(i6 [n
0]) + U (Z (2)

i ; �ni)1(i¿ [n
0])

and

M (
) = 
M (1) + (
 − 
0)(M (2) − M (1))1(
¿
0);

S(
) = 
S(1) + (
 − 
0)(S(2) − S(1))1(
¿
0);

where n−1∑n
i=1 U̇ (Z ( j)

i ; �0)=M (j)+op(1), and n−1∑n
i=1 U (Z ( j)

i ; �0)U (Z ( j)
i ; �0)′=S(j)+

op(1), j = 1; 2. Therefore, A3′ and A4′ do not hold when M (1) �=M (2) and S(1) �= S(2),
respectively.
Case II: Zni with trending components. For instance, Zni = (Zi; i=n), with Zi i.i.d.,

and under regularity conditions,

M (
) =
∫ 


0
E[U̇ (Z1; u; �0)] du and S(
) =

∫ 


0
E[U (Z1; u; �0)U (Z1; u; �0)′] du:

Another important case discussed by Hansen (2000) in the context of a linear regres-
sion model, consists of Zni having stochastic trending components. Then, M (
) may be
a stochastic matrix, and the weak behavior of {n1=2(T 0

n −T 0)} will depend on the non-
linear structure of U . An excellent monograph on the asymptotic behavior of nonlinear
functionals of random walks can be found in Borodin and Ibragimov (1995). Recently,
Park and Phillips (2001) have provided asymptotic theory for nonlinear regression
with integrated processes. The study of asymptotic inference in nonlinear-in-variables
econometric models with stochastic trending variables deserves more attention in future
research.

In order to establish a CLT for the test statistics under contiguous alternatives, HCn,
we need a further assumption.

A5. For any S�ni, such that ‖ S�ni − �0‖6 n−1=2‖g(i=n)‖,

sup

∈[0;1]

∣∣∣∣∣
∣∣∣∣∣1n

[n
]∑
i=1

U̇ni( S�ni)g
(

i
n

)
− L(
)

∣∣∣∣∣
∣∣∣∣∣= op(1);

where L(
) = limn→∞ n−1∑[n
]
i=1 E[U̇ni(�0)g(i=n)] exists uniformly in 
∈ [0; 1].
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When A3′ holds, it is expected also that the following condition is satis.ed:
A5′. A5 holds and L(
) = M (1)G(
) with G(
):=

∫ 

0 g(u) du.

Next theorem is immediate.

Theorem 1. Assuming A1–A5; under HCn;

�̂n
d→’(L(N 0

k + L));

where {N 0
k } is a Gaussian process with continuous sample paths; centered at zero;

and with covariance function E(N 0
k (
1)N

0
k (
2)

′) = S(min(
1; 
2)); for any 
1; 
2 ∈ [0; 1]

(i.e. N 0
k

d=Nk when T 0(
) = 0 uniformly in 
).

Thus, if A1–A3 hold, under H0, �̂n
d→�∞

d=’(LN 0
k ), using the fact that sup
∈[0;1]

‖g(
)‖=0 under H0, and, thus, sup
∈[0;1] ‖L(
)‖=0. The distribution of �∞ is continuous
with respect to the uniform metric. Under A3′ and A4′, the linear transformation L is

typically such that, LN 0
k (
)

d=s(
)[Bk(
)− 
Bk(1)], where s is a known scalar function,
usually s(
) = 1 or s(
) = 1=
1=2(1 − 
)1=2, and the distribution of �∞ can be derived
by Monte Carlo.

Next section discusses the nature of such transformations L in the context of some
leading testing principles.

3. Asymptotic representation of tests statistics

Tests statistics can be constructed based on Wald, LM and LR principles (see
Andrews, 1993). CUSUM tests, designed originally for linear regression models are
also very popular and easy to compute. These last tests only require to estimate �0
under the restrictions of H0 and, hence, they are related to LM tests. We also discuss
predictive (P) tests, which are not related to the above principles.

In order to implement any of these tests we need some estimate of �0. The partial
sum GMM (PS-GMM) estimators of �1(
) and �2(
) are de.ned as

�̂n(
) = (�̂
′
1n(
); �̂

′
2n(
))

′ = argmin
t1 ; t2∈�

{Q1n(
; t1) + Q2n(
; t2)};

where

Q1n(
; �) = Tn(
; �)′Ŝn(
)−1Tn(
; �);

Q2n(
; �) = [Tn(1; �)− Tn(
; �)]′[Ŝn(1)− Ŝn(
)]−1[Tn(1; �)− Tn(
; �)];

and Ŝn(·) is a consistent estimate of S(·), based on some preliminary estimate of �0
(see Velasco and Robinson (1997) for a review of covariance matrices estimates under
autocorrelation of unknown form). That is,

A6. sup
∈[0;1] ‖Ŝn(
)− S(
)‖= op(1).
The discussion below is perfectly valid substituting Ŝn by any other bounded-in-

probability p:d matrix of functions, which may not converge to S, but to any other
p:d. matrix. The GMM estimator restricted to H0 is �̃n= : �̂1n(1). For notational con-
venience, de.ne SM (
):=[M (1)−M (
)], SS(
):=S(1)− S(
), V (
):=M (
)′S(
)−1M (
),
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and SV (
):= SM (
)′ SS(
)−1 SM (
). It is reasonable to expect that the following .rst-order
asymptotic approximation hold (see Andrews, 1993):

A7. V (·) and SV (·) are p:d. uniformly in 
∈ [0; 1]. Then,

‖�̃n − �0 + V (1)−1M (1)S(1)′−1T 0
n (1)‖= op(n−1=2)

and under HCn,

sup

∈[0;1]

‖�̂1n(
)− �0 + V (
)−1M (
)′S(
)−1T 0
n (
)‖= op(n−1=2);

sup

∈[0;1]

‖�̂2n(
)− �0 + SV (
)−1 SS(
)−1 SM (
)′(T 0
n (1)− T 0

n (
))‖= op(n−1=2):

The asymptotic expansion of �̃n can be justi.ed straightforwardly if A1 and A3 are
satis.ed, as well as some other regularity conditions guaranteeing that �̃n is a consistent
estimator of �0 (see Hansen, 1982). The asymptotic expansions of �̂1n(·) and �̂2n(·) can
also be easily justi.ed under A1 and A3, providing that the PS-GMM are consistent
estimators of �0 under HCn (see Andrews, 1993, Theorem 1 and A1). The asymptotic
expansions of both �̂1n(·) and �̂2n(·) under H1n(
0) will depend on the partial sum
process evaluated at some parameter values, which does not converges to zero.

W -type statistics are functionals of (�̂1n(·)− �̂2n(·)), suitably standardized. LM, LR,
CUSUM and P statistics are based on certain functionals of standardized residual
partial sums. Next proposition, which is an immediate consequence of the stated as-
sumptions, will be helpful in the discussion of asymptotic representations.

Proposition 1. Assume A1; A3–A7. Then;

sup

∈[0;1]

‖Tn(
; �̃n)− T 0
n (
) + M (
)(�̃n − �0)‖= op(n−1=2);

and under HCn;

sup

1 ;
2∈[0;1]

‖Tn(
1; �̂1n(
2))− T 0
n (
1) + M (
1)(�̂1n(
2)− �0)‖= op(n−1=2);

sup

1 ;
2∈[0;1]

‖Tn(
1; �̂2n(
2))− T 0
n (
1) + M (
1)(�̂2n(
2)− �0)‖= op(n−1=2):

3.1. CUSUM tests

These tests are particularly easy to compute and are designed for the linear regression
model (see Brown et al. (1975) or, more recently, Ploberger and KrXamer, 1992) though
they can be employed in general situations. A CUSUM-type test has the form

�̂CUSUMn = ’
(
n1=2

i′T̃ n

(i′Ŝn(1)i)1=2

)
;

where i = (1; 0; : : : ; 0)′ and T̃ n(·) = Tn(·; �̃n). Next proposition provides the asymptotic
representation of �̂CUSUM

n .
8



Proposition 2. Assume A1; A3–A7. Then �̂CUSUM
n satis"es A2 (also under H1n) with

L such that

Lf(
) =
i′f(
)− i′M (
)V (1)−1M (1)′S(1)−1f(1)

(i′S(1)i)1=2
; (8)

and if A3′ also holds;

Lf(
) =
i′f(
)− i′
M (1)V (1)−1M (1)′S(1)−1f(1)

(i′S(1)i)1=2
:

When the test does not use overidenti.ed restrictions, i.e. k = p,

M (1)V (1)−1M (1)′S(1)−1 = Ip;

and when A3′ and A4′ hold,

Lf(
) =
i′[f(
)− 
f(1)]

(i′S(1)i)1=2
:

Therefore, under H0, A3′ and A4′,

�̂CUSUM
n

d→’(B0
1);

where B0
k(
) = Bk(
) − 
Bk(1) is a k × 1 vector of independent standard Brownian

Bridges with time parameter 
∈ [0; 1]. Then, if ’(f) = sup
∈[0;1] |f(
)|, ’(B0
1) fol-

lows the Kolmogorov–Smirnov distribution, and if ’(f) =
∫ 1
0 f(
)2 d
, ’(B0

1) follows
the CramRer–von Misses distribution. For these choices of ’ functionals, the asymp-
totic expansion in Proposition 2 and Theorem 1 justi.es that CUSUM tests have
nontrivial power in the direction of HCn. Consistency in the direction of H1n(
0), for
some unknown 
0, is a trivial consequence of Proposition 3 and A3, since, in this
case, T 0 is bounded away from zero on some [0; 1] subset with nonzero Lebesgue
measure.

Other tests related to CUSUM, also designed for the linear regression model and
based on moving OLS estimates can be represented asymptotically, or exactly, as func-
tionals of some linear transformation of {n1=2T 0

n } (see Kuan and Hornik (1995) for
discussion).

3.2. Lagrange multiplier tests

These tests statistics, in a form related to that proposed by Andrews (1993), have
the expression

�̂LM
n = ’(LMn);

where ’ : (D[0; 1])k 	→ R+ has some of the forms in (2), and

LMn(
) = [Ik
...− Ik ]


 n1=2[Ṽ 1n(
)−1 + Ṽ 2n(
)−1]−1=2Ṽ 1n(
)−19Q1n(
; �̃n)=9�′

n1=2[Ṽ 1n(
)−1 + Ṽ 2n(
)−1]−1=2Ṽ 2n(
)−19Q2n(
; �̃n)=9�′


 ;
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where

M̃ n(·)= : M̃ n(·; �̃n); Ṽ 1n(·)= : M̃ n(·)′Ŝn(·)−1M̃ n(·);

Ṽ 2n(·)= : [M̃ n(1)− M̃ n(·)]′[Ŝn(1)− Ŝn(·)]−1[M̃ n(1)− M̃ n(·)]:
This LM formulation, in contrast to Andrews (1993, Eq. (4.3)), only uses the restricted
estimate of �0 everywhere, �̃n, rather than the PS-GMM estimates. Finally, statistics
are constructed after imposing A3′ and A4′ for estimating M (
) and S(
), and instead
of LMn(
), the computationally more attractive

LM 0
n (
) = n1=2

1

1=2(1− 
)1=2

Ṽ 1n(1)−1=2M̃ n(1)′Ŝn(1)−1T̃ n(
)

is used. Note that CUSUM and LM 0
n tests are very similar. Next proposition provides

an asymptotic representation of �̂LM
n .

Proposition 3. Assume A1; A3–A7. Then; �̂LM
n satis"es A2 (also under H1n) with L

such that

Lf(
) = [V (
)−1 + SV (
)−1]−1=2[V (
)−1M (
)′S(
)−1 + SV (
)−1 SM (
)′ SS(
)−1]

× [f(
)− M (
)V (1)−1M (1)′S(1)−1f(1)]:

If A3′ and A4′ also hold;

Lf(
) =
1


1=2(1− 
)1=2
V (1)−1=2M (1)′S(1)−1[f(
)− 
f(1)]: (9)

Thus, if A3′ and A4′ hold, under H0,

n1=2LT 0
n ⇒ B∗

k ; (10)

where B∗
k (
) = [Bk(
) − 
Bk(1)]=
1=2(1 − 
)1=2, and the asymptotic distribution of

�̂LM
n , based on some of the ’ maps in (2) can be tabulated by Monte Carlo (see
tables in Andrews 1993; Andrews and Ploberger, 1994). From this proposition, it
is straightforward to show that, under the stated assumptions, �̂LM 0

n :=’(LM 0
n ) also

satis.es A2 with

Lf(
) =
1


1=2(1− 
)1=2
V (1)−1=2M (1)′S(1)−1

×[f(
)− M (
)V (1)−1M (1)′S(1)−1f(1)];

and if A3′ and A4′ also hold, the transformation is the same as in (9). Therefore,
when A3′ and A4′ hold, �̂LM

n and �̂LM 0

n , based on the same ’ in (2) are asymptotically
weakly equivalent.
Like the CUSUM tests, LM tests based on some of the ’ functionals in (2) can

detect contiguous alternatives HCn, and they are consistent in the direction of H1n(
0).
10



3.3. Wald tests

These tests, as formulated by Andrews (1993), have the expression

�̂W
n = ’(Wn);

where ’ : (D[0; 1])k 	→ R+ has some of the forms in (2) and

Wn(
) = n1=2[Ṽ 1n(
)−1 + Ṽ 2n(
)−1]−1=2[�̂1n(
)− �̂2n(
)]:

Next proposition states the asymptotic representation of these test statistics.

Proposition 4. Assume A1; A3–A7. Then; �̂W
n satis"es A2 with L such that

Lf(
) = [V (
)−1 + SV (
)−1]−1=2{ SV (
)−1 SM (
) SS(
)−1f(1)

− [V (
)−1M (
)′S(
)−1 + SV (
)−1 SM (
)′ SS(
)−1]f(
)};
if A3′ also holds;

Lf(
) =− 1

1=2(1− 
)1=2

V (1)−1=2M (1)′S(1)−1[f(
)− 
f(1)]:

Therefore, this proposition and Theorem 1 justi.es that W tests based on some of
the ’ functionals in (2) are able to detect contiguous alternatives HCn. Also, in view
of (10), when A3′ and A4′ hold, LM and W tests computed with the same ’ in (2)
are asymptotically weakly equivalent.

3.4. Likelihood ratio tests

These tests, in Andrews (1993) formulation, are functionals of

LRn(
) = n[Q1n(
; �̃n)− Q1n(
; �̂1n(
))] + n[Q2n(
; �̃n)− Q2n(
; �̂2n(
))]:

Next proposition provides an useful asymptotic representation for LRn.

Proposition 5. Assume A1; A3–A7. Then;

sup

∈[0;1]

|LRn(
)− ‖LR0
n(
)‖2|= op(1);

where

LR0
n(
) =

[
n1=2Ṽ 1n(
)1=2(�̃n − �̂1n(
))

n1=2Ṽ 2n(
)1=2(�̃n − �̂2n(
))

]
:

Therefore, likelihood ratio test statistics are asymptotically weak equivalent to test
statistics of the form

�̂LR0

n = ’(LR0
n);

for some functional ’ : (D[0; 1])2k 	→ R+ in (2). Next proposition provides an asymp-
totic representation of �̂LR0

n .
11



Proposition 6. Assume A1; A3–A7. Then �̂LR
n satis"es A2; with L such that

Lf(
) =




V (
)1=2[V (
)−1M (
)′S(
)−1f(
)

−V (1)−1M (1)′S(1)−1f(1)]

SV (
)1=2[[ SV (
)−1 SM (
)′ SS(
)−1 − V (1)−1M (1)′S(1)−1]f(1)

− SV (
)−1 SM (
)′ SS(
)−1f(
)]




;

if A3′ also holds;

Lf(
) =




1

1=2

Ik

− 1
(1− 
)1=2

Ik


V (1)−1=2M (1)′S(1)−1[f(
)− 
f(1)]:

Therefore, this proposition and Theorem 1 justify that LR tests based on some of
the ’ functionals in (2) are able to detect contiguous alternatives HCn. Also, in view
of (10), if A3′ holds, under H0, LR, W and LM tests, based on the same ’ functional
in (2), are asymptotically weakly equivalent.

3.5. Predictive tests

These test statistics are designed to test

SH0 : E[U (Xni; �0)] = 0 all i¿ 1:

Then, the null hypothesis is formulated in terms of changes in the moment conditions,
without attributing necessarily such changes to the parameter vector. These tests have
nontrivial power in the direction of contiguous alternatives of the form

SHCn : E[U (Xni; �0)] =
1√
n

g
(

i
n

)
for some bounded function

g : [0; 1] → RP for all i¿ 1:

Predictive tests, proposed by Ghysels et al. (1997) are designed for detecting these
contiguous alternatives. These tests have the form

�̂P
n = ’(Pn);

where ’ : (D[0; 1])k 	→ R+ has some of the forms in (2) and

Pn(
) =
1

1− 

n1=2Ŵ n(
)−1=2[Tn(1; �̂1n(
))− Tn(
; �̂1n(
))];

where, sup
∈[0;1] ‖Ŵ n(
) − W (
)‖ = op(1), and W (
) = [S(1) + M (1)V (1)−1M (1)′

(1− 
)=
]. The next proposition establishes the asymptotic representation of �̂P
n :

12



Proposition 7. Assume A1; A3–A7. Then �̂P
n satis"es A2; substituting HCn by SHCn;

with L such that

Lf(
) =
1

1− 

W (
)−1=2[f(1)− [Ik + SM (
)V (
)−1M (
)′S(
)−1]f(
)];

and if A3′ also holds;

Lf(
) =
1

1− 

W (1)−1=2

[
f(1)−

[
Ik +

1− 




M (1)V (1)−1M (1)′S(1)−1
]
f(
)

]
:

Therefore, this proposition and Theorem 1 justify that P tests based on some of
the ’ functionals in (2) are able to detect contiguous alternatives HCn. Consider the
spectral decomposition,

S(1)−1=2M (1)V (1)−1M (1)′S(1)−1=2= : C′2C

where C′C =CC′= Ik , and 2=diag(Ip|0k−p) with 0m being an m×m squared matrix
of zeroes. Hence, under A3′,

Lf(
) =
1

1− 

W (1)−1=2S(1)1=2C

×
[
C′S(1)−1=2f(1)−

[
C′ +

1− 




2C
]
S(1)−1=2f(
)

]
;

and under H0,

n1=2LT 0
n ⇒ 1

1− 

W (1)−1=2S(1)1=2C

[
Bk(1)− Bk(
)− 1− 




2Bk(
)

]
:

Noticing that

W (1) =
[
S(1)− (1− 
)



M (1)V (1)−1M (1)′

]

= S(1)1=2C′
[
Ik +

(1− 
)



2
]
CS(1)1=2;

and that

C′S(1)1=2W (1)−1S(1)1=2C =

[

Ip 0k−p

0p Ik−p

]
;

if A3′ holds, under H0,

‖n1=2LT 0
n ‖2 ⇒

∣∣∣∣∣
∣∣∣∣∣

[
Bp(1)− Bp(
)]′[
Bp(1)− Bp(
)]=
(1− 
)

[Bk−p(1)− Bk−p(
)]′[Bk−p(1)− Bk−p(
)]=(1− 
)

∣∣∣∣∣
∣∣∣∣∣
2

:

Thus, P-type tests based on some of the ’ maps in (2) are asymptotically pivotal
under H0, when A3′ is satis.ed (tables are provided by Ghysels et al., 1997).

13



3.6. Simpler tests

When critical values are estimated by bootstrap, it is not necessary to scale the
tests statistics, since their limiting distribution under the null is always consistently
estimated, whatever it could be. Then, it makes sense to use test statistics easier to
compute than those presented in the previous subsections. For instance, a test statistic
related to CUSUM and LM tests is

�̂n = ’(n1=2T̃ n)

for which A2 holds, as a trivial consequence of Proposition 1, with

Lf(
) = f(
)− M (
)V (1)−1M (1)′S(1)−1f(1):

A test statistic, related to Wald tests is

�̂n = ’(n1=2(�̂1n − �̂2n));

for which A2 holds also as a trivial consequence of Proposition 1, with,

Lf(
) = [V (
)−1M (
)′S(
)−1 + SV (
)−1 SM (
)′ SS(
)−1]f(
)

− SV (
)−1 SM (
)′ SS(
)−1f(1):

And a test statistics, related to P-test statistics is

�̂n = ’(n1=2Ṫ n);

where Ṫ n(
) = Tn(1; �̂1n(
))− Tn(
; �̂1n(
)), for which A2 holds, with HCn replaced by
SHCn, as a trivial consequence of Proposition 1, with

Lf(
) = f(1)− f(
)− SM (
)V (
)−1M (
)′S(
)−1f(
):

None of these simple tests are asymptotically pivotal, even when A3′ and A4′ hold,
but they can be easily implemented applying the results in Section 4.

3.7. Some remarks on consistency

As it has been discussed in Subsections 3.1 and 3.2, consistency of CUSUM and LM
tests is trivially justi.ed, since asymptotic expansions of �̃n, and, therefore of T̃ n(
),
are available both under HCn and H1n(
0). However, further assumptions are required
for showing that Wald and LR tests are consistent in the direction of H1n(
0), since
some knowledge on the limit behavior of �̂1n(·) and �̂2n(·) is needed. In particular,
providing regularity conditions such that, under H1n(
0),

sup

∈[0;1]

‖�̂kn(
)− S�k(
)‖= op(1); k = 1; 2 with S�1(
) �= S�2(
);

it is fairly straightforward to show that Wald and LR statistics detect alternatives
H1n(
0) for ’ functionals in (2).

14



4. Bootstrap tests

As we have discussed in the last section, L depends on M (·) and S(·), which
are unknown, but they can be consistently estimated, uniformly in 
∈ [0; 1], by M̃ n(·)
and Ŝn(·). Suppose that there exists a feasible transformation Ln, which depends on
observed data Zn, such that,

A8. sup
∈[0;1] ‖(Ln −L)f(
)‖6 op(1) · sup
∈[0;1] ‖f(
)‖.
This assumption is very reasonable for all transformations discussed in the last sec-

tion. For instance, for CUSUM tests, a feasible version of L in (8) is Ln, where

Lnf(
) =
i′f(
)− i′M̃ n(
)Ṽ 1n(1)−1M̃ n(1)′Ŝn(1)f(1)

(i′Ŝn(1)i1=2)
;

and sup
∈[0;1] |(Ln −L)f(
)| is equal to

sup

∈[0;1]

∣∣∣∣∣i′
[
M̃ n(
)Ṽ 1n(1)−1M̃ n(1)′Ŝn(1)

(i′Ŝn(1)i)1=2
− M (
)V (1)−1M (1)′S(1)

(i′S(1)i)1=2

]
f(1)

∣∣∣∣∣
6 sup


∈[0;1]

∣∣∣∣∣
∣∣∣∣∣M̃ n(
)′Ṽ 1n(1)−1M̃ n(1)′Ŝn(1)

(i′Ŝn(1)i)1=2
− M (
)′V (1)−1M (1)′S(1)

(i′S(1)i)1=2

∣∣∣∣∣
∣∣∣∣∣

× sup

∈[0;1]

‖f(
)‖

=op(1) · sup

∈[0;1]

‖f(
)‖

by A3 and A6. Similar feasible transformations, holding A8, can be obtained for all
test statistics discussed in the last section by just substituting M (·) by M̃ n(·) and S(·)
by Ŝn(·) in their asymptotic expansions (as indicated in Propositions 3–7).

The bootstrap version of �̃n = ’(n1=2LT 0
n ) has the form

�̃∗n :=’(n1=2LnT̃
∗
n);

where T̃
∗
n(·):=n−1∑[n·]

i=1 Ũ
∗
ni and {Ũ ∗

ni; i=1; : : : ; n} is a resample of {Ũ ni; i=1; : : : ; n},
where Ũ ni:=U (Zni; �̃n): Therefore, the resampling scheme must be such that, for any
distance d metricizing weak convergence on the real line to �∞:=’(LN 0

k ), with {N 0
k }

de.ned in Theorem 1,

d(F∗
�̃∗n

; F�∞) = op(1);

where, henceforth, F∗
" (·) = Pr["6 · |Zn] is the conditional distribution of ", given

the sample Zn, and F"(·) = Pr("6 ·) is the marginal distribution of ". When F�∞
is continuous, as in our case, a suitable distance is the uniform, by Polya’s theorem.
Thus, the resampling scheme must be such that

sup
t∈R+

|F∗
�̃∗n
(t)− F�∞(t)|= op(1); (11)
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which suggests to use as critical values

c∗n&:=inf{t: F∗
�̃∗n
(t)¿ 1− &}:

The null hypothesis is rejected when �̂n ¿ c∗n&. Applying Theorem 1 and the Continuous
Mapping Theorem, under the null hypothesis,

sup
t∈R+

|F�̂n
(t)− F�∞(t)|= o(1); (12)

and, hence, (11) and (12) imply that under the null,

F∗
�̂n
(c∗n&) = 1− & + op(1) (13)

and also,

lim
n→∞Pr[�̂n ¿ c∗n&] = &:

Under contiguous alternatives,

lim
n→∞Pr[�̂n ¿ c∗n&]¿ & (14)

for suitable ’ functionals (e.g. those in (2) for LM, W , LR or P tests, or those
provided in (1) for CUSUM tests). And, if the test based on �̂n is consistent, (11)
justi.es that, under the .xed alternative,

lim
n→∞Pr[�̂n ¿ c∗n&] = 1: (15)

Therefore, (14) and (15) show that tests based on statistics satisfying A2, with critical
values c∗n& are asymptotically admissible, and able to detect contiguous alternatives
converging to the null at the parametric rate n−1=2.
The resampling scheme must be such that (11) is satis.ed, mimicking key features

of the underlying data generating process. Not all the resampling procedures are valid.
Suppose, for the moment, that

sup
t∈R+

|F∗
�̃∗n
(t)− F∗

�̃0∗n
(t)|= op(1); (16)

where �̃0∗n =’(n1=2LT 0∗
n ), T 0∗

n (·):=n−1∑[n·]
i=1 U

0∗
ni and {U 0∗

ni ; i=1; : : : ; n} is a resample
from {U 0

ni ; i = 1; : : : ; n}, with U 0
ni :=U (Zni; �0). Then, (11) is implied by (16) and

sup
t∈R+

|F∗
�̃0∗n

(t)− F�∞(t)|= op(1): (17)

While (16) is satis.ed for most resampling schemes, (17) does not follow under A3
and A4, at least the nonstationarity of {U 0

ni ; i = 1; : : : ; n} is taken into account. Two
necessary conditions for (17) are

E[T 0∗
n (
) |Zn] = op(1); (18)

E[T 0∗
n (
)T 0∗

n (
)′ |Zn] = S(
) + op(1): (19)

For instance, suppose that the U 0
ni are as in cases I and II in Section 2. Then, a

nXaive bootstrap consists of a random sample with replacement {Û ∗
ni; i = 1; : : : ; n} from
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g f ( )

{Ûni; i=1; : : : ; n}, and, hence, {U 0∗
ni ; i=1; : : : ; n} is a random sample with replacement

from {U 0
ni ; i = 1; : : : ; n}, which satis.es (18), but, for each 
,

E[T 0∗
n (
)T 0∗

n (
)′ |Zn] = 
S(1) + op(1);

and (19) does not hold under nonstationarity. The same problem appears by apply-
ing the block stationary bootstrap, where the sample is divided into blocks, which are
sampled at random with replacement. The blocks, whose size must increase with the
sample size, can be nonoverlapping (Carlstein, 1986) or overlapping (KXunsch, 1989).
These bootstrap procedures are designed to preserve the unknown autocorrelation struc-
ture in a stationary context, where asymptotic tests are available. This type of resample
can also be applied to the whole data set Zn, the resulting �̂n bootstrap analog satis.es
(11) under A3′ (see Hall and Horowitz, 1996) but it may not be valid under A3 or
A4. Subsampling (see Politis et al., 1999, monograph) can be applied in nonstationary
situations (e.g. Romano and Wolf, 2001). However, this procedure does not impose
the restriction under the null and, as a result, the subsampling test statistics behave like
the original one under the null and alternative. Therefore, subsampling critical values
estimates are consistent under the null hypothesis, but they diverge to in.nity under
the alternative, and the resulting tests will be inconsistent.
We propose to use an external bootstrap procedure, where the resample is obtained

from an external distribution, rather than the empirical distribution of the data set. That
is, Û

∗
ni = ÛniVi and U 0∗

ni = U 0
niVi, where

A9. Vi are scalar i:i:d: random variables, bounded, independent of Zn, and such that
E(Vi) = 0 and E(V 2

i ) = 1.
This resampling method, known as “wild” or “external” bootstrap, was suggested

by Wu (1986) in the context of .xed-design regression models with heteroskedastic
errors, in order to match, asymptotically, the .rst and second moments of the statis-
tic distribution under the null hypothesis. Su and Wei (1991) suggested to apply this
resampling procedure to asymptotic linearizations of empirical processes, which are a
basis for constructing goodness-of-.t test statistics. It has been also applied in other test-
ing problems by Hansen (1996, 2000), HXardle and Mammen (1991), de Jong (1996),
Stute et al. (1998), and Delgado and GonzRalez-Manteiga (2001), amongst others.
Using this resample scheme,

E[T 0∗
n (
)T 0∗

n (
)′ |Zn] =
1
n

[n
]∑
i=1

U 0
niU

0′
ni for each 
∈ [0; 1];

and (11) is satis.ed assuming
A10.

1
n

[n
]∑
i=1

U 0
niU

0′
ni − S(
) = o(1) with probability 1 for each 
∈ [0; 1]; (20)

1
n

n∑
i=1

‖Ũ ni − U 0
ni‖2 = op(1): (21)
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Condition (20) is satis.ed even when {U 0
niU

0′
ni ; i¿ 1} is a nonstationary mixingale

(see MacLeish, 1975a) and (21) is reasonable in view that �̃n is consistent, (A7) and
A3. Assumption A10 suggests to use,

Ŝn(·) = 1
n

[n·]∑
i=1

Uni(�̃n)Uni(�̃n)′: (22)

However, one may wish to use a bootstrap version of Ŝn, for instance,

S̃
∗
n(·) =

1
n

[n·]∑
i=1

Ũ
∗
niŨ

∗′

ni :

The bootstrap test will be based on the bootstrap version of Ln, say L∗
n , where Ŝn

in Ln is substituted by S̃
∗
n . Then, the bootstrap statistic is �̃∗∗n :=’(n1=2L∗

n T̃
∗
n). The

consistency of �̃∗∗n is discussed in Section 5 remark.
The next, condition is required for guaranteeing that a bootstrap Lindeberg’s condi-

tion is satis.ed:
A11. For all 6¿ 0,

1
n

n∑
i=1

‖U 0
ni‖21(‖U 0

ni‖¿n1=26) → 0 with probability 1:

A suIcient condition for A11 is that there exists an  ¿ 0 such that n−1∑n
i=1

‖U 0
ni‖2+ = O(1) a.s. It does not seem too restrictive in view of A4 and A10. Since

Vi are independent, our resampling does not permit autocorrelation of the U 0′
ni s, but it

does allow for nonstationarity. Next theorem justi.es to use the resulting bootstrap test
in practice.

Theorem 2. Assuming A1–A11; the external bootstrap statistic �̃∗n satis"es (11).

A popular choice of V ′
i s is

Vi =

{−(
√
5− 1)=2 with probability (

√
5 + 1)=2

√
5;

(
√
5 + 1)=2 with probability (

√
5− 1)=2

√
5;

(23)

which has been proposed by Liu (1988) for mimicking the third-order moment structure
of regression errors by their bootstrap analogs. Other authors have proposed to take Vi

standard normal (e.g. Su and Wei, 1991; Hansen, 2000), which seems very reasonable,
since the {n1=2T 0

n } limiting distribution is Gaussian. The bootstrap test is also valid
under this alternative hypothesis.

A9′. Vi are scalar i.i.d. standard normal random variables, independent of Zn.

Corollary 1. Assuming A1–A8; A9′; and A10; the external bootstrap statistic �̃∗n
satis"es (11).
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In practice, c∗n& is diIcult to compute exactly, but it can be approximated, as accu-
rately as desired, by Monte Carlo (see Beran et al. (1987) for a formal justi.cation
of this statement). That is, we generate independent random numbers {Vb

i ; i = 1; : : : ; n;
b = 1; : : : ; B}. Then, instead of c∗n&, we use,

c∗Bn& :=inf

{
t:

1
B

B∑
b=1

�̃∗bn ¿ 1− &

}
; (24)

where

�̃∗bn :=’(n1=2LnT̃
∗b
n )

and

T̃
∗b
n (·):=1

n

[n·]∑
i=

ŨniV b
i :

The greater the B, the better the Monte Carlo approximation.
Thus, the following steps must be followed in practice for implementing bootstrap

tests.

1. Choose a test statistic �̂n from those discussed in Section 3 or any other allowing
the representation in A2.

2. Compute the feasible transformation Ln for the chosen statistic, substituting S by
Ŝn, and M by M̃ n.

3. Generate, independently, random numbers {Vb
i ; i = 1; : : : ; n; b= 1; : : : ; B} from a dis-

tribution satisfying A9 or A9′, e.g. like (23) or standard normals.
4. Compute c∗Bn& in (24).
5. Reject the null hypothesis when �̂n ¿ c∗Bn& .

5. Some remarks on linear models

Linear models deserve a detailed discussion. For these models, Uni(�) = "ni(�)Wni,
where

"ni(�):=Yni − X ′
ni�

with Zni = (Yni; X ′
ni; W

′
ni)

′ and Y ′
nis being scalar. The GMM , or instrumental variables

estimator, has the closed form

�̃n = [M̃ n(1)′Ŝn(1)−1M̃ n(1)]−1M̃ n(1)′Ŝn(1)−1 1
n

n∑
i=1

WniYni;

where now, M̃ n(·):=n−1∑[n·]
i=1 WniX ′

ni does not depend on parameters. Then, exactly,
for each n,

T̃ n(
) = T 0
n (
)− [M̃ n(1)′Ŝn(1)−1M̃ n(1)]−1M̃ n(1)′Ŝn(1)−1T 0

n (1);
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which has an external bootstrap version,

ST
∗
n(
) = T̃

∗
n(
)− [M̃ n(1)′Ŝn(1)−1M̃ n(1)]−1M̃ n(1)′Ŝn(1)−1 ST

∗
n(1)

=
1
n

n∑
i=1

Wni[Y ∗
ni − X ′

ni�̃
∗
n ];

where {Y ∗
ni=X ′

ni�̃n+"ni(�̃n)Vi; i=1; : : : ; n} is the external bootstrap resample of {Yni; i=
1; : : : ; n}, and

�̃
∗
n = [M̃ n(1)′Ŝn(1)−1M̃ n(1)]−1M̃ n(1)′Ŝn(1)−1 1

n

n∑
i=1

WniY ∗
ni

= �̃n + [M̃ n(1)′Ŝn(1)−1M̃ n(1)]−1M̃ n(1)′Ŝn(1)−1 1
n

n∑
i=1

Ũ
∗
ni

is the external bootstrap analog of �̃n. That is, T̃
∗
n is the bootstrap analog of T̃ n com-

puted with the resample {(Y ∗
ni; X ′

ni; W
′
ni)

′; i = 1; : : : ; n}. Ŝn can be substituted by S̃
∗
n

if desired without aBecting the asymptotic properties of the resulting bootstrap tests.
Therefore, our bootstrap version of test statistics based on functionals of {n1=2T̃ n}, like
CUSUM and LM, can be expressed as the same functional of the external bootstrap
analog of {n1=2T̃ n}. For the CUSUM test

LnT̃
∗
n(
) =

i′T̃
∗
n(
)− i′[M̃ n(1)′Ŝn(1)−1M̃ n(1)]−1M̃ n(1)′Ŝn(1)−1T̃

∗
n(1)

(i′Ŝn(1)i)1=2

=
i′ ST

∗
n(
)

(i′Ŝn(1)i)1=2
;

and a similar expression can be obtained for the test based on LM 0
n . Our bootstrap

statistics are also identical to the corresponding external bootstrap analog for other
testing principles. Hansen (2000), in the context of the linear regression model (i.e.
Wni = Xni), discusses a Wald tests statistic, proposing its bootstrap analog for approx-
imating critical values, which produce the same bootstrap statistic than our method,
(see Hansen, 2000, proof of Theorem 5, p. 114). That is, for linear models one can
compute the bootstrap statistics as the external bootstrap analogs of the original test
statistic, which is more attractive from a computational viewpoint.

6. Monte Carlo experiments

Some Monte Carlo experiments have been carried out for studying the level accuracy
of bootstrap tests in the context of the Box–Cox model:

"ni(�) =
Y �

ni − 1
�

− & − 9Xni; i¿ 1 (25)
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with � = (�; &; 9)′ and �∈ (0; 1]. Then,

Uni(�) = "ni(�)Wni; i¿ 1;

where the W ′
nis is a vector of instruments.

Model (25) has the reduced form equation

Yni = [1 + �0("ni + &0 + 90Xni)]1=�0

with "ni:="ni(�0). For a given choice of �0=(�0; &0; 90)′, we generate {Yni; i=1; : : : ; n}
observations for each of the following "ni and Xni designs. Let {( 1i ;  2i ;  3i); i=1; : : : ; n}
be vectors of i:i:d: variables, where the components of ( 1i ;  2i ;  3i) are mutually inde-
pendent. Then, the "′nis are generated according to the following designs:

• Homoskedastic: "ni =  1i.
• Heteroskedastic: "ni = :(Xni) ·  1i; :(Xni) =

√
0:1|Xni|.

And the X ′
nis have been generated according to the following designs:

• i.i.d.: Xni =  2i.
• Mean break: Xni =  2i + 5 · 1(t ¿ [n=2]).
• Variance break: Xni =  2i · 1(t6 [n=2]) +  3i · 5 · 1(t ¿ [n=2]).
• Deterministic trend: Xni = t=n.

We run simulations under H0 with the parameter choice �0 = (0:5; 2; 2)′. In all the
experiments, we report the proportion of rejections using asymptotic critical values,
valid under A3′ and A4′, and their bootstrap counterparts, which are valid under more
general conditions.
We consider two cases. First, the nonlinear-in-variables model, where �0 is unknown.

We choose Wni = (1; Xni; X 2
ni)

′, which has also been chosen by Amemiya and Powell
(1981) in simulations of the same model. Also, Robinson (1991) used these instruments
in simulations for the arcsinh transformation model. Second, we consider a linear
model, where �0 is known, the model becomes linear and (&0; 90)′ is estimated by
OLS, i.e. taking Wni = (1; Xni)′.
Tables report the proportion of rejections in 5000 Monte Carlo experiments. At each

experiment, bootstrap critical values are approximated using B = 1000 resamples, as
explained in Section 4, with V ′

i s generated as (23), and satisfying condition A9.
Simulations for the nonlinear models are computationally costly. This is why we

only report, in this case, results for the simpler version of the LM test (LM 0), which
only needs to compute parameter estimates under the null hypothesis. In the linear
case, we also report results for the CUSUM and LR.
Table 1 provides the proportion of rejections under H0 for the nonlinear model

using the LM tests. We used the statistic with ’(f) = sup
∈[−�;1−�] |f(
)′f(
)| and
� = 0:1; 0:3. The critical values for the asymptotic test, valid under A3′ and A4′, can
be found in Andrews (1993). Bootstrap tests exhibit an excellent level accuracy in
all cases considered. On the contrary, there are observed quite large size distortions
for the “asymptotic” test when Z ′

nis are nonstationary with hetoroskedastic "′nis, and
21



Table 1
Lagrange multiplier statistic for the Box–Cox model

Regressor process

i.i.d. Mean break Variance break Trend

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

(� = [0:1n; 0:9n]) Homocedastic error
Asymptotic

& = 0:1 0.059 0.072 0.077 0.091 0.111 0.133 0.108 0.098
& = 0:05 0.028 0.039 0.043 0.052 0.066 0.080 0.072 0.060

Bootstrap
& = 0:1 0.074 0.089 0.095 0.100 0.064 0.083 0.107 0.103
& = 0:05 0.028 0.041 0.043 0.047 0.024 0.034 0.046 0.046

Heterocedastic error
Asymptotic

& = 0:1 0.051 0.071 0.105 0.125 0.374 0.427 0.252 0.278
& = 0:05 0.023 0.033 0.058 0.069 0.292 0.349 0.202 0.226

Bootstrap
& = 0:1 0.086 0.092 0.088 0.090 0.092 0.108 0.107 0.103
& = 0:05 0.035 0.046 0.041 0.041 0.046 0.054 0.056 0.051

(� = [0:3n; 0:7n]) Homocedastic error
Asymptotic

& = 0:1 0.056 0.073 0.023 0.031 0.062 0058 0.013 0.008
& = 0:05 0.022 0.033 0.009 0.013 0.036 0.029 0.007 0.004

Bootstrap
& = 0:1 0.107 0.106 0.105 0.108 0.080 0.090 0.102 0.102
& = 0:05 0.049 0.056 0.052 0.055 0.036 0.044 0.053 0.052

Heterocedastic error
Asymptotic

& = 0:1 0.044 0.057 0.069 0.086 0.345 0.397 0.056 0.066
& = 0:05 0.017 0.024 0.036 0.059 0.279 0.329 0.031 0.037

Bootstrap
& = 0:1 0.101 0.110 0.107 0.107 0.115 0.119 0.109 0.101
& = 0:05 0.048 0.050 0.054 0.054 0.068 0.067 0.056 0.050

taking � = 0:1. However, sensible empirical sizes are observed in the homoskedastic
case, though some bias is appreciated for the variance break model. When we take
�=0:3, the “asymptotic” tests work very poorly in all cases, but the bootstrap tests are
unaBected by the change of �. The size bias of “asymptotic” tests depends on the value
of �, as Hansen (2000) in Section 4 discusses for the Wald test, in the context of a
single linear regression model, under homoskedastic errors and the regressor generated
according to the Mean Break model.

Table 2 compares the proportion of rejections for CUSUM, LR and LM statistics
for the lineal model (i.e. knowing that �0 = 0:5). The CUSUM test in based on the
popular choice ’(f)= sup
∈[0;1] |f(
)|, which has the Kolmogorov–Smirnov’s limiting
distribution when A3′ and A4′ are satis.ed. LM and LR statistics are computed with
�=0:1 and ’ as in Table 1. The bootstrap test exhibit an excellent level accuracy for
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Table 2
LM, CUSUM and RV statistics for the linear regression model

Regressor process

i.i.d. Mean break Variance break Trend

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

(�̂LM
n ) Homocedastic error

Asymptotic
& = 0:1 0.052 0.068 0.072 0.089 0.063 0.082 0.132 0.151
& = 0:05 0.020 0.028 0.033 0.051 0.028 0.044 0.078 0.097

Bootstrap
& = 0:1 0.083 0.095 0.101 0.109 0.093 0.094 0.111 0.104
& = 0:05 0.029 0.040 0.045 0.050 0.035 0.045 0.050 0.052

Heterocedastic error
Asymptotic

& = 0:1 0.055 0.064 0.105 0.126 0.121 0.159 0.197 0.221
& = 0:05 0.025 0.031 0.050 0.070 0.069 0.095 0.133 0.156

Bootstrap
& = 0:1 0.065 0.073 0.084 0.091 0.083 0.099 0.109 0.109
& = 0:05 0.020 0.029 0.032 0.040 0.023 0.036 0.050 0.054

(�̂RV
n ) Homocedastic error

Asymptotic
& = 0:1 0.096 0.085 0.115 0.119 0.099 0.094 0.131 0.126
& = 0:05 0.054 0.041 0.065 0.059 0.058 0.050 0.075 0.065

Bootstrap
& = 0:1 0.137 0.120 0.118 0.113 0.126 0.115 0.123 0.111
& = 0:05 0.072 0.057 0.059 0.057 0.067 0.058 0.059 0.052

Heterocedastic error
Asymptotic

& = 0:1 0.434 0.481 0.408 0.413 0.687 0.741 0.417 0.421
& = 0:05 0.341 0.377 0.321 0.313 0.609 0.656 0.328 0.320

Bootstrap
& = 0:1 0.182 0.139 0.163 0.132 0.259 0.165 0.139 0.119
& = 0:05 0.109 0.066 0.091 0.066 0.159 0.088 0.059 0.053

(�̂CUSUM
n ) Homocedastic error

Asymptotic
& = 0:1 0.067 0.074 0.005 0.010 0.069 0.073 0.000 0.000
& = 0:05 0.029 0.036 0.001 0.001 0.029 0.034 0.000 0.000

Bootstrap
& = 0:1 0.109 0.111 0.105 0.103 0.112 0.109 0.098 0.107
& = 0:05 0.057 0.055 0.046 0.050 0.058 0.053 0.052 0.052

Heterocedastic error
Asymptotic

& = 0:1 0.109 0.069 0.046 0.067 0.102 0.136 0.002 0.009
& = 0:05 0.057 0.032 0.018 0.025 0.050 0.067 0.000 0.002

Bootstrap
& = 0:1 0.052 0.113 0.107 0.110 0.127 0.125 0.117 0.119
& = 0:05 0.019 0.058 0.050 0.057 0.065 0.064 0.057 0.058
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all test statistics, as expected, but the “asymptotic” test observe large size distortions
for all statistics considered under nonstationary designs.

7. Proofs

Proofs of Theorem 1 and Propositions 1–6 are immediate applying the stated
conditions and a standard mean value theorem (MVT) argument. We just prove
Theorem 2 and Corollary 1.

Let us introduce the following notation. Let {"n; n¿ 1} be a sequence of random
variables. We say that "n=op∗(1) in probability (with probability 1) if for any constant
6¿ 0,

Pr{‖"n‖¿6 |Zn} p→0 (→ 0 with probability 1):

Proof of Theorem 1. First; we show that

n1=2 sup

∈[0;1]

‖T̃ ∗
n(
)− T 0∗

n (
)‖= op∗(1): (26)

Note that

T̃
∗
n(
)− T 0∗

n (
) =
1
n

[n
]∑
i=1

[Uni(�̃n)− Uni(�0)]Vi:

Since conditional on the sample; Zn; [Uni(�̃n) − Uni(�0)]Vi are independent; an appli-
cation of Doob’s inequality establishes that

E

[(
n1=2 sup


∈[0;1]
‖T̃ ∗

n(
)− T 0∗
n (
)‖2

)∣∣∣∣∣Zn

]
6 2E[‖n1=2[T̃ ∗

n(1)− T 0∗
n (1)]‖2|Zn]

= 2
1
n

n∑
i=1

‖Uni(�̃n)− Uni(�0)‖2

= op(1)

by A10; which proves (26); after applying Markov’s inequality. Next; Lemmata 1–3
below show that conditional on Zn;

n1=2T 0∗
n ⇒ N 0

k with probability 1: (27)

We use the strategy of proof in Stute et al. (1998). Lemma 1 shows that the covariance
function; given Zn; of {n1=2T 0∗

n } converges to the covariance function of {N 0
k } a.s.

Lemma 2 shows that the .nite-dimensional distributions (.dis) of {n1=2T 0∗
n }; condi-

tional on Zn; converge to the corresponding distributions of {N 0
k } a.s. (i.e. in view

of Lemma 1; it suIces to show that the .dis are Gaussian). Finally; Lemma 3 shows
that the conditional distribution of {n1=2T 0∗

n } given Zn is tight with probability 1 (see
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Billingsley (1968; p. 9) for a de.nition of tightness). Then; the theorem follows from
(26) and (27). Note that; applying A2 and A8;

sup

∈[0;1]

‖n1=2LnT̃
∗
n(
)− n1=2LT 0∗

n (
)‖

6 sup

∈[0;1]

‖n1=2L(T̃
∗
n(
)− T 0∗

n (
))‖+ sup

∈[0;1]

‖n1=2(Ln −L)T̃
∗
n(
)‖

6Cn1=2 sup

∈[0;1]

‖T̃ ∗
n(
)− T 0∗

n (
)‖+ op(1) · sup

∈[0;1]

‖n1=2T̃ ∗
n(
)‖

=op∗(1) in probability; (28)

by (26); and noting that sup
∈[0;1] ‖n1=2T̃
∗
n(
)‖ converges in distribution; conditional

on Zn; to sup
∈[0;1] ‖N 0
k (
)‖ by (27) and (26). Henceforth; C denotes a generic

constant.

Remark. If we use a transformation L∗
n ; instead of Ln; such that

sup

∈[0;1]

‖(L∗
n −Ln)f(
)‖6 op∗(1) · sup


∈[0;1]
‖f(
)‖;

it also follows; under the stated assumptions that

n1=2 sup

∈[0;1]

‖L∗
n T̃

∗
n(
)−LT 0∗

n (
)‖= op∗(1) in probability;

applying the argument in (28). For instance; we may want to use a bootstrap version
of Sn(·) in the feasible transform.
Remember that �̃∗n :=’(n1=2LnT̃

∗
n) and �̃0∗n :=’(n1=2LT 0∗

n ). Since ’ is continuous,
and �∞ has a continuous distribution, (27) implies, applying the continuous mapping
theorem that

sup
x∈R

|F∗
�̃0∗n

(x)− F�∞(x)| → 0 with probability 1; (29)

and (28) implies that

�̃∗n = �̃0∗n + op∗(1); (30)

Therefore, (29) and (30) prove the theorem.

Lemma 1. Under the assumptions in Theorem 2; we have that

Cov(n1=2T 0∗
n (
1); n1=2T 0∗

n (
2)|Zn) → S(min(
1; 
2)) with probability 1

for each 
1; 
2 ∈ [0; 1].

Proof. Since V ′
i s have zero mean E(T 0∗

n (
); |Zn)=0 a.s.; and since they are i.i.d. with
unit variance; for each 
1; 
2 ∈ [0; 1];

Cov(n1=2T 0∗
n (
1); n1=2T 0∗

n (
2)′|Zn) = E(n1=2T 0∗
n (
1); n1=2T 0∗

n (
2)′|Zn)

=
1
n

[n
1]∑
i=1

[n
2]∑
i=1

U 0
niU

0′
njE(ViVj|Zn)
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=
1
n

[nmin(
1 ;
2)]∑
i=1

U 0
niU

0′
ni

→ S(min(
1; 
2)) with probability 1;

by A10.

Lemma 2. Under conditions in Theorem 2; the "nite-dimensional conditional
distributions; given Zn; of {n−1=2T 0∗

n } converge to the corresponding "nite-dimensional
distributions of {N 0

k } with probability 1.

Proof. Consider the case k = 1. The extension to k ¿ 1 is trivial. Fix some 
1; : : : ; 
q

and a1; : : : ; aq. By the CramRer–Wold device; it suIces to investigate the a.s. limit of
the conditional distribution given Zn of

1
n1=2

q∑
j=1

ajT 0∗
n (
j) =

1
n1=2

n∑
i=1

q∑
j=1

aj1(i6 [n
j])U 0
niVi

=
1

n1=2

n∑
i=1

�iU 0
niVi;

where the �′is are bounded constants. Because the V ′
i s are independent of Zn; and

{n−1=2�iU 0
niVi; i=1; : : : n; n¿ 1} is a triangular array of random variables; it remains to

verify; in view of Lemma 1; Lindeberg’s condition. That is; for each 6¿ 0;

Ln(6):=E

[
1
n

n∑
i=1

�2i U
02
ni V 2

i 1(|�iUniVi|¿n1=26)

∣∣∣∣∣Zn

]
→ 0 with probability 1:

Indeed; since sup16i6n |Vi�i|6 c¡∞; we must check that

Ln(6)6 c2
1
n

n∑
i=1

U 02
ni 1

(
|Uni|¿ n1=26

c

)
→ 0 with probability 1;

which is satis.ed by A11.

Lemma 3. Under the conditions in Theorem 2; the conditional distribution of {n1=2T ∗
n ;

n¿ 1} given Zn is asymptotically C-tight.

Proof. We only discuss the case k = 1; the extension to k ¿ 1 is straightforward.
Asymptotic tightness in C[0; 1] would follow from its tightness in D[0; 1] and the fact
that a possible limit has continuous sample paths with probability one. For tightness in
D; it suIces to check Billingsley (1968; Theorem 15.6). That is we must show that;
for 06 
0 ¡
1 ¡
26 1;

E[|T 0∗
n (
1)− T 0∗

n (
0)|2|T 0∗
n (
2)− T 0∗

n (
1)|2 |Zn]6 |Hn(
2)− Hn(
0)|2; (31)
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for some monotone function Hn; which may depend on Zn. The left-hand side of (31)
is equal to

1
n2

[n
1]∑
i=[n
0]+1

[n
1]∑
j=[n
0]+1

[n
2]∑
k=[n
1]+1

[n
2]∑
l=[n
1]+1

U 0
niU

0
njU

0
nkU

0
nlE(ViVjVkVl|Zn)

=
1
n2

[n
1]∑
i=[n
0]+1

[n
2]∑
j=[n
1]+1

U 02
ni U 02

nj

6


1

n

[n
2]∑
i=[n
0]+1

U 02
ni



2

= |Hn(
2)− Hn(
0)|2;
where Hn(·) = 1

n

∑[n·]
i=1 U

02
ni is monotonically increasing function. By A10; for each


∈ [0; 1];

Hn(
) → S(
) with probability 1;

and S is continuous and monotone; which proves the lemma.

Proof of Corollary 1. It is an immediate consequence of Theorem 2. Just note that
Lemma 2; and then boundedness of Vi and A11; are not required; since {n1=2T ∗

n } is;
conditional on Zn; Gaussian for each n.
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