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This paper studies the performance of two auction procedures for allocating the
assets of a dissolving partnership when partners’ valuations for the assets are inde-
pendent and asymmetrically distributed, with one partner reputed to be more inter-
ested in the assets to be divided. We provide results on existence, and uniqueness
of the equilibrium induced by these auctions. Comparative statics are developed,
especially the differences between relative efficiency and revenue from the two auc-
tions. Journal of Economic Literature Classification Numbers: C72, D39, D44, D52,
D74,D82. -~ - -

1. INTRODUCTION

In many auctions bidders split the revenue generated by the auction.
This is the case, for instance, whenever auctions are used to dissolve a
partnership (a joint venture or a marriage) or when they are used to settle
the competition between raider firms seeking to take over a target firm.
We consider two-party partnership in which each partner is endowed with
an equal share of the assets. If the partnership dissolves, assets are divided
by using k + 1-price auctions.? In these auctions, the players submit sealed
bids, and the good is transferred to the highest bidder who pays each of
the others a price that is an exogenously given convex combination of the
highest bid and the second highest bid.

1 This paper was partially written during my stay at Boston University. I am indebted to
the economics department at B.U. for the support received during this work. I have ben-
efited from comments by Robert Rosenthal, Svika Neeman, Deborah Minehart, and Cesar
Martinelli. Comments by an anonymous referee have substantially improved the paper. Fi-
nancial support by a Fulbright grant from the Ministerio de Educacion of Spain and by grant
DGICYT PB96-0118 is gratefully acknowledged. Any error is my exclusive responsibility.
E-mail: frutos@eco.uc3m.es

2These auctions were first introduced in Cramton et al. (1987; CGK, for short) and are also
studied, for the common-values case, by Engelbrecht-Wiggans (1994).
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This paper focusses on two of the above auctions: the winner’s bid auc-
tion (WBA), in which the winning bidder pays half of his bid to the losing
bidder, and the loser’s bid auction (LBA), in which the winning bidder pays
half of the losing bidder’s bid to the losing bidder.? In contrast with pre-
vious work on these auctions, we assume that the agents’ valuations are
independently and asymmetrically distributed on some common real inter-
val. Further, we assume that one partner is reputed to be more interested in
the assets; in the Maskin and Riley (1999) terms, there will be a weak and
a strong bidder. As in standard auctions, asymmetries among bidders are
quite common. Asymmetries may be due to different budget constraints,
or to institutional arrangement. In divorce settlements, for example, courts
give more to the financially weaker party. In a takeover, asymmetries may
arise due to different synergies or managerial skills.

In both auction formats, bids are closer to valuations than in standard
first and second price auctions. Note that bidders have countervailing in-
centives; bidders are tempted to exaggerate their true valuations if they
were to sell, whereas they will want to understate if they were to purchase.
Under asymmetric distributions, the bidding equilibrium functions of these
auctions consist of continuously differentiable and strictly monotonically
increasing strategies which are characterized as solutions of a system of
differential equations with two boundary conditions. Through a change of
variables, we show that the equations and boundary conditions that char-
acterize the equilibrium of these auctions are identical to the equations
and boundary conditions that characterize the equilibrium of certain asym-
metric first price auctions. This fact allows us to apply the results about
existence and uniqueness developed by Lebrun (1999; 1998) and Maskin
and Riley (1999) for standard first price auctions with heterogeneous bid-
ders. By applying their results, we show that the partner that is reputed to
be more interested in the asset will bid more conservatively, irrespective
of the auction in use. Nevertheless, she is more likely to win the auction.
In contrast to the symmetric case, in both of these auctions the resulting
allocation need not be efficient.

Under the WBA, we show that the bidders always shade their bids
whereas under the LBA they always submit bids in excess of their val-
uation. In the latter case, overbidding may result in the winning party
losing money. In the context of a takeover, this result is consistent with the
observation that the stock price of a successful raider sometimes falls dra-
matically. + Two numerical examples show that the LBA generates larger

3The WBA and LBA have been studied for the symmetric case by McAfee (1992). We have
adopted here his terminology. In Bulow et al. (1999), for the takeover application, the authors
refer to these auctions as first and second price auctions, respectively.

*This fact has been pointed out by Bernhardt (1995) for the LBA equilibrium bids of two
raider firms with symmetric valuations but with different initial stakes in the target firm.



expected selling price than the WBA. In one of these examples the LBA is
more inefficient than the WBA. Both of these results are consistent with
results in Bulow et al. (1999) who study takeovers when the takeover tar-
get has a common value to the bidders. They show that if the bidders have
equal initial stakes, or toeholds, in the target firm, and if the signal dis-
tributions are symmetric, then the expected sale price is higher in a LBA.
Nevertheless, the probability that the bidder with the higher signal wins
the auction is greater in a WBA.S

We compare the revenue from the two auctions. For the symmetric case,
we show that the LBA generates larger expected selling price than the
WBA. In the asymmetric case, we provide sufficient conditions for this
result to hold. Our results are consistent with Maskin and Riley (1985)
claim that second-price auctions are more likely to generate more revenue
than first-price auctions when, across bidders, distributions have different
shapes but approximately the same support.

The paper is organized as follows. Section 2 presents the model and
assumptions. Section 3 contains the results on existence, uniqueness and
properties of the equilibrium induced by the WBA and the LBA. Section 4
provides a revenue comparison among them. Section 5 concludes. Finally,
some of the proofs are included in the Appendix.

2. THE MODEL

Two risk-neutral partners (i = 1, 2) want to dissolve their partnership. It
is assumed that each partner has an equal share of the asset to be traded. In
the case of takeovers, two risk-neutral bidders with equal toeholds compete
to acquire a company. Partner i has a valuation for the entire object of v;
which is only known to him. Valuations for the asset are independent but
asymmetrically distributed. Partner 1’s beliefs about the value that partner
2 places in the good are drawn from the c.d.f. F,(v), and partner 2’s beliefs
about the valuations of partner 1 are summarized by the c.d.f. F;(v). These
distributions are common knowledge.

In order to compare the properties of the two auctions that are studied
in this paper, we consider the following assumptions related to the players’
beliefs:

(Al) Both cumulative distribution functions are continuous and differ-
entiable over their common support [0, v]. Their density functions f;, f,
are locally bounded away from zero over (0, v].

SFor this last result to hold the assumption of equal toeholds is not required.



(A2) Partner 2’s valuations are higher in the sense of first order
stochastic dominance, that is, F,(v) < F;(v) for all v € (0, ).

(A3) Partner 2’s valuations are higher in the sense of reverse hazard
rates dominance, i.e. F,(v)/F,(v) is strictly increasing in v for all v € (0, D).

(A4) Partner 2’s valuations are higher in the sense of hazard rates dom-
inance, that is, H; (v) = £ (v)/[1 - F;(v)] > Hy(v) = f,(v)/[1 = F5(v)] for
all v € (0, v). '

(A2) is an assumption of stochastic dominance of F;. Under this assump-
tion, the probability distribution F; gives less weight to high values of v than
F, does. This implies that bidder 2 is reputed to be more likely interested
in the asset than bidder 1. (A3) is an assumption of reverse hazard rate
dominance of bidder 2’s valuations, which is a stronger version of stochas-
tic dominance. This assumption has been used by Maskin and Riley (1999)
to ensure that in a first price auction the more optimistic buyer is the less
“aggressive bidder” (we are using their terminology here). Finally, (A4) is
an assumption of hazard rates dominance which is also a stronger version
of stochastic dominance. It states that bidder 1 has a higher probability of
having a low valuation conditional on valuations being above v. A suffi-
cient condition for (A3) and (A4) simultaneously hold, and therefore (A2),
is that bidder 2’s valuations be higher in the sense of monotone likelihood
ratio dominance (for an argument see Shaked and Shanthikumar, 1994).

3. k+ 1 PRICE AUCTIONS

In a k + 1 price auction each player submits a sealed bid. The bidder
with the highest bid, b,,, gets the object and has to pay the other 0.5(kb; +
(1 —k)b,,), where b; denotes the loser’s bid. In particular, we will study the
following two members of this class of auctions: the winner’s bid auction
(WBA) that corresponds to the case k¥ = 0 and the loser’s bid auction
(LBA) where k = 1.

Suppose that the object has a true value v; for bidder i and that bids
b; and b; are submitted by bidders i and j, respectively, i,j = 1,2, i # j.
Then bidder #’s payoff is

ui(vi, bi’ b]) = O.S(kbl + (1 - k)b]), lf bi < b],
O.SUi if bi = b}



3.1. The Winner’s Bid Auction

The bidder with the highest bid wins the auction and pays half of her bid
to the other bidder. Ties are resolved by the flip of a coin.

We will show that there exists a unique equilibrium for this auction and
that this equilibrium is such that the bidder that is reputed more interested
in the asset bids less aggressively.

LEMMA 1. Bidders’ equilibrium strategies must be pure strategies Bi(v;)
and B,(v,) that are continuous and strictly increasing functions of their types

Proof. See appendix. =

Rather than attempting to solve directly for the equilibrium bid func-
tions, it is convenient to define a pair of inverse bid functions v; = w;(b) =
B7(b), for i =1,2.

Since strategies are increasing, if bidder i bids b and bidder j follows the
strategy B; then her expected payoff is

Uy(v;, b, B)) = <vi - §>Fj(3;1(b)) + fB il(b) 0.5B;(v;) dF;(v;).

At an interior solution® partner #’s bid solves the first-order condition

4B (b)
(v —b) ;b

fi(B;' (b)) = 0.5F;(B;'(b)).

The right-hand side is the marginal cost of bidding more when i wins. The
left-hand side represents the marginal revenue for increasing the bid and
winning. Notice that this first order condition implies that the inverse bid
functions (w;, w,), w;(b) = B;'(b), must be solutions of the system of
differential equations,

2(w; — b)fy(w;(B)W(b) — Fy(w,(b)) = 0. 1)

System (1) and the boundary conditions define equilibrium strategies if
these conditions define a best decision for each bidder. We check this addi-
tional condition as part of the proof in the following theorem which char-
acterizes the equilibrium of the WBA.

6Making this argument assumes B,’l(b) is differentiable. Strictly it can be shown that the
right and left derivative exist and coincide. The arguments are similar to those used in Bulow
et al. (1999).



THEOREM 1. A pair of strategies (B, B,) is an equilibrium for the WBA if
and only if the strategies are pure, the bid functions are strictly increasing and
differentiable, with B;(v) < v for all v € (0, v], and there exzsts b,0 < b < v,
such that the inverse bid functions (w;, w,), w(b) = B;'(b), are solutions
over the interval [0, b] of the system of differential equations,

2(w; — b)fi(w;(b))w;(b) — Fy(w;(b)) =0 1)
satisfying the boundary condition w;(0) =0, w;(b) = v for i =1, 2.
Proof. See Appendix. =

We will now show that such an equilibrium exists and that under (A3) it
is unique.

THEOREM 2. If (Al) holds then there exists a Bayesian equilibrium for the
WBA. If, in addition, (A3) holds, then the equilibrium is unique.

Proof. Equations in system (1) can be rewritten as follows:

d , 1 - L

They are thus identical to the equations of the equilibrium of a first
price auction with two bidders when their valuations are drawn from G, =
F? and G, = F2. The boundary conditions w,(0) = 0, w;(b) = ¥, where
i=1,2and b is a parameter belonging to (0, v), are also identical in
both cases. The existence and uniqueness results of the equilibrium of the
WBA then follow immediately from the known results for the first price
auctions with heterogeneous bidders. In particular, existence follows from
Theorem 2 in Lebrun (1999). A sufficient condition for uniqueness [see
Corollary 4 in Lebrun (1999)] is reverse hazard rate dominance. Since
(d/dv)(Fz(v)/Fl(v)) > 0 by (A3) then (d/dv)(G,(v)/G1(v)) > 0 holds,
and uniqueness follows. m

The following proposition shows some of the properties of the equilib-
rium induced by the winner bid auction.

PRrROPOSITION 1. Under (A3) if (By, B,) is an equilibrium strategy profile
to a WBA then
(1) Bi(v) > By(v), forall v € (0, v),

(ii) The distribution of bidder 2’s bids stochastically dominates the distri-
bution of bidder 1’s bids.



Proof. The equations that determine the equilibrium for the WBA
are identical to the equations of the equilibrium of a first price auc-
tion with two bidders when their valuations are drawn from G; = FI2
and G, = F:. From Maskin and Riley (1999) (see Propositions 2.2.
and 2.4) we know that (d/dv)(G,(v)/G(v)) > 0 implies wy(b) < wy(b)
and F,(w,(b)) < F;(w,(b)) for all b € (0, b). Since (A3) guarantees that
(d/dv)(G,(v)/G,(v)) > 0 holds, the proposition follows. =

In the WBA the reputed more interested bidder will bid “less aggres-
sively”. Since bidder 1 faces a fiercer competition, the one from bidder 2
that is reputed to be very interested in the asset to be sold, it is natural
that she bids “more aggressively”. She is in a worse position than bidder 2
because she faces a bid probability distribution that gives high weights to
high values, consequently one would expect her payoffs to be smaller.

3.2. The Loser’s Bid Auction

The bidder with the highest bid wins the auction and pays half the loser
bid to the other bidder. Ties are resolved by the flip of a coin.

We will show that there exists a unique equilibrium for this auction.
To prove this result one must first show that equilibrium bid strategies
(B1(v1), By(v,)) are strictly increasing with differentiable inverse bid func-
tions. If B; is strictly increasing, bidder i’s expected payoffs when bidder j
follows strategy B; are

B;\(b) ( B;(v;)
v; — 2

0

At an interior solution, bidder i’s bid, b = B;(v;), satisfies

(b — v)f;(B; ' (B))I(b) = 0.5(1 — Fy(B; " (b)))-

Thus, in equilibrium, the marginal cost from overbidding, b — v;, has to
be equal to the marginal increase in the payment that partner i gets when
she loses. This equation can be derived by differentiating U;(v;, b, B;) with
respect to b and setting that derivative to zero.

To obtain the appropriate boundary conditions assume first, w.l.o.g.,
B1(0) < B,(0). Since bidder 1’s expected payoff when valuation is zero is
half the bid (bidder 1 loses with probability one), bidder 1 would be better
off by increasing the bid up to B,(0). But this contradicts the assumption
that B;(-) is an equilibrium bidding strategy. Therefore B;(0) = B,(0).
Since bidders’ expected payoff when their valuation is zero is half their
bid, they will bid @ > 0 when their draw is zero. Consider now the termi-
nal boundary condition. Assume, for contradiction, that B;(?) = b > ¥ .
Because of continuity, there exists # such that B;(v) >  for all v € [0, v].



Over this interval, partner 2 has a zero probability of winning when bid-
ding the valuation. It is straightforward to prove that, to drive up the price
that 1 has to pay for shares, bidder 2 will bid in equilibrium, B,(v) =
lim,_,q B;(v) — ¢ for all v € [0, ¥]. This implies U;(v, b, B,) < U(9, 9, B,).
Thus B,(?) < v. The same argument applies to partner 2, thus B,(?) < .
Now B;(v) = v for i = 1,2, follows from standard auction theory since
each partner will bid at least the valuation if there is a positive probability
that the other one will bid at least that high.

Thus, by using an argument similar to those employed in Theorem 1, it
can be shown that a pair of strategies (B, B,) is an equilibrium for the
LBA if and only if the strategies are pure; the bid functions are strictly
increasing and differentiable, with B;(v) > v for all i, and v € [0, ) and
their inverse functions (/;(b), [,(b)) are such that they are solutions to the
system of differential equations

2(1(b) — b)f;(1;(B))wj(b) + (1 — Fy(I;(b))) = O, ®)

with boundary conditions /,(a) = ,(a) =0, and /,(v) = L,(?) = v, where a
is a parameter belonging to (0, ¥). We will now show that such an equilib-
rium exists and that under (A4) it is unique. '

THEOREM 3. If assumptions (Al) and (A4) hold then there exists one and
only one Bayesian equilibrium for the LBA.

Proof. The equations in system (2) of the equilibrium of the LBA can
be rewritten as
1

%1n(1—Fj(lj(b)))2:W)_—b fori=1,2, i#j (4

Consider the following change of variables v = ¥ — v and b = 7 — b. Notice
that this change of variables implies a change in the origin. With these new

variables define the functions /;(b), i = 1, 2, as follows:
1(b)=v— (5 - b).

The equations and boundary conditions that determine the equilibrium for
the LBA become

1

fori#j, i=1,2.

d e
_=ln(l = Fy(o - L(BY)): = 5

1,(@) = 72(?1) =17, where a € (0, v),

N’
S

and

1,(0) = L,(0) = 0-



These equations and boundary conditions are identical to the equations
and boundary conditions of the equilibrium of a first price auction with
two bidders and valuation distributions G; and G, defined as follows:

Gi(w)=(1—-F(®-w))* fori=1,2, and w e [0, v].

Existence and uniqueness follow immediately from Lebrun (1999). Notice
that (A4) ensures that (d/dv)(G,(v)/G,(v)) > 0 holds, and hence, unique-
ness follows. m

The following proposition shows some of the properties of the equilib-
rium induced by the loser bid auction.

PROPOSITION 2. Under (A4) if (B, B,) is an equilibrium strategy profile
to a loser-price auction then forall i =1, 2,

(i) Bi(v) > B,y(v), forall v e (0, ),
(ii)  The distribution of bidder 2’s bids stochastically dominates the distri-
bution of bidder 1’s bids.

Proof. We have already shown that the unique equilibrium of the LBA
coincides with the unique equilibrium of a first price auction with two bid-
ders and valuation distributions G, and G, defined as follows:

Gi(w) = (1 — Fi(v — w))? fori=1,2, and w € [0, v].

From Maskin and Riley (1999) we know that (d/dv)(G;(v)/G,(v)) > 0
implies 7,() > L(b) and G,(I;(b)) < G,(Iy(b)) for all b € (0, &). Because
of (A4) we know that (d/dv)(G1(v)/G,(v)) > 0 holds. Since b; = ¥ — b;
and [(b) = v — I,(v — b), we have that [;(b) < l,(b) for all b € (a, D),
consequently (i) follows. Finally, (ii) is deduced from G,(1;(0)) < G,(I,(b))
that yields F;(I;(b)) > F,(I,(b)) for all b € (a, 7). m

In the LBA, as in the WBA, the reputedly more interested bidder bids
less aggressively. In both auctions bidder 2 has a higher probability of win-
ning. Thus bidder 2 is better off in the auction that produces the lowest ex-
pected selling price. It seems reasonable to expect bidder 1 to have higher
interim expected payoffs in a LBA than bidder 2. Notice that when she
wins she has to pay a lower price for the assets whereas when losing she
gets a higher price. In particular,

Ui(v)= /:('7 —0.5B,(v2))f2(v,) dv, > foﬁ(f’ —0.5B;(v)) f1(vy) dvy = U ()

and U,(0) = U,(0) = 0.5a. Therefore either U;(v) = U,(v) for all v, or at
least this is the case for high valuations. Since in a LBA bidders overbid
in equilibrium, the loser does not regret ex post to lose since a price is
obtained for shares that is higher than the valuation for the asset. The



winner, on the other hand, regrets ex post that they overbid so much but
this overbidding is optimal ex ante.’

3.2.1. Numerical Examples

We have shown that both auction formats may yield to inefficient out-
comes if the partners have valuations that are independent but asymmet-
rically distributed. If to guarantee ex post efficiency is the only goal of the
partners then the following bidding procedure can be used. Each partner
submits a bid and has to pay the expected externality associated with her
bid; the asset is awarded to the partner making the highest bid. In our
setup, partner i submits b; and pays p; = fob" v;fi(v;)dv; to the other part-
ner. By internalizing the expected externality, this bidding scheme induces
each partner to make an equilibrium bid equal to her valuation, b; = v;,
which ensures an ex post efficient outcome. Note that this procedure has an
important caveat since it imposes different prices on the partners. If both
submit the same bid, partner 1 will have to pay a higher price to get the
asset than 2 does. This price discrimination is hard to defend.

Our purpose here is to show through two particular numerical examples
that the WBA can be more efficient whereas the LBA generates larger
revenues (i.e., larger expected selling prices).

From the mechanism design literature, it is known that the expected
total gains derived from the implementation of any of these auctions can
be expressed as

fou v1P(By(v) > By(v;)) dFy(vy) + foﬁ 1 P(B1(v1) < By(vy)) dF,(v,)

=./05 vldFl(Ul)-f-fo'_)/:(vz—vl)m(vl, v,) dFy(v)) dF,(v,),

where m(vy, v;) = P(By(v;) < By(v,)).
Since an ex post efficient mechanism maximizes the expected total gains
from trade, and since in such a mechanism

1 if v < vy,
m(vy, v) = .
(1, ) [O if vy > v,
then, on efficiency grounds, we seek for the auction that minimizes

Jy (5a(b) = y1(b))db, y = w, 1.
Similarly, expected revenue can be expressed as

R= /ﬁ /E[Jl(vl)wl(vl’ V) + Jo(v2)my(vy, v3)] dF (v1) dFy(v),
0 Jo

"Overbidding is also the optimal strategy in a takeover when bidders have partial ownership
of the item and the valuations of the bidders are drawn from a common distribution. This
overbidding may lead to inefficient outcomes. For an argument, see Burkart (1995).

10



where J;(v) is the expected marginal revenue generated if the object is
assigned to bidder i (i.e., J;(v) = v — (1 — F;(v)/f;(v))- Because of (A4) we
have that J;(v) > J,(v) for all v € (0, ¥). Thus expected total revenue is
maximized by selling to the weak buyer, i.e., to bidder 1.3

The purpose of this section is to compare the two auctions on efficiency
and revenue grounds. To do so we rely on two particular numerical ex-
amples. These examples illustrate some of the features of the equilibrium
induced by the WBA and the LBA.

ExampLE 1. Let Fi(v) = (1 — exp(—v))/(1 — exp(—1)) and Fy(v) = v
with v € [0, 1]. Note that F,(v), F,(v) satisfy all the assumptions in the
model.

The Winner Bid Auction

The equilibrium bid functions are the solutions of the following system
of differential equations:

2(wy(b) — b)wy(b) = wy(b),
2(wy(b) — b)(exp(—wy (b)))w(b) =1 — exp(—wy (b)),
w,(0.62121) =1,
w;(0.62121) = 1.

There exists a simple algorithm to find a solution numerically. Pick any
b € (0, v) and compute the associated solution in system (1). If this solu-
tion intersects the 45 degree line below 0, then increase the starting value.
Otherwise, if w;(0) > 0, reduce the starting value. °

The Loser Bid Auction

The equilibrium bid functions are the solutions of the following system
of differential equations:

2(14(b) — b)l(b) =1,(b) - 1,
2(y(b) — b)(exp(—11(b)))I1(b) = exp(—1) — exp(~1;(b)),
1,(0.2869) =0,
1,(0.2869) =0.

8This result is proved in Bulow and Roberts (1989). They showed that a revenue-maximizing
auction allocates objects to the bidder(s) with the highest marginal revenue(s) rather than to
those with the highest value(s). So a revenue-maximizing auctioneer discriminates in favor of
selling to bidders whose values are drawn from lower distributions, that is, “weaker” bidders.

9For a study on how to solve numerically differential equations as those in (1), see Marshall
et al. (1994).
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The algorithm to find a solution numerically works as follows: Pick any
a € (0, v) and compute the associated solution in system (2). If this solution
intersects the 45 degree line below v, then decrease the starting value.
Otherwise, if w;(v) > v, increase the starting value.

For the WBA, consider the function W(v) implicitly defined by the
equation

wy(b) = W(w (b)),

it is a mapping from [0, 1] onto [0, 1] with W (v) > v for all v € (0, 1). The
function W (v) is an “equilibrium correspondence:” in equilibrium, bidder
1 with valuation v = w;(b) and bidder 2 with valuation W (w, (b)) set the
same bid. Notice, that if W (v) = v for all v, then the WBA would yield
efficient allocations.

Similarly, for the LBA, consider the function L(v) implicitly defined by
the equation

L(b) = L(11(b)),

it is a mapping from [0, 1] onto [0, 1] with L(v) > v for all v € (0, 1).
Figure 1 depicts these two equilibrium correspondences.®

EXAMPLE 2. Assume now F;(v) = v and F,(v) = 0.5(v + v?) with v €
[0, 1].

The Winner Bid Auction

The equilibrium bid functions are the solutions of the following system
of differential equations:

(w1(b) — b)(1 + 2w,(b))wy(b) = 0.5wy(b)(1 + wy(b)),
2(wa(b) — bywy(b)=w,(b),
w,(0.70337) =1,
w;(0.70337) = 1.

For the LBA, we plot v = [,(b) versus L(/,(b)). Similarly, for the WBA, we plot v = w,(b)
versus W (w,(b)). Note that we can plot both mappings in the same figure since, in both cases,
the independent variable is v.

12



L(v), W(v)

1

W(y /

7

/ L(v)
7
d
4
0.5
/7
/
/
/
0.43 Vl

FIG. 1. Equilibrium correspondence: Example 1.

The Loser Bid Auction

The equilibrium bid functions are the solutions of the following system
of differential equations:

(1(b) = b)(1 + 21,(b))15(b) =0.5L,(b)(1 + L (b)) — 1,
2(L(b) = b)j(B)=1,(b) - 1,
1,(0.381271) =0,
1,(0.381271) =0.
As in Example 1, let W (v) be implicitly defined by the equation
wy(b) = W(wy (b)),
and let L(v) be implicitly defined by the equation
L(b) = L(1()).
As for Example 1, Fig. 2 depicts these two implicit mappings.

13



L(v), W(v)

1
W(v)

/7 L(v)

0.54

0.5 1

FIG. 2. Equilibrium correspondence: Example 2.

Results. The numerical results confirm that partner 2 bids more conser-
vatively in all the auctions. In both examples it is satisfied that w,(b) >
wy(b), and I,(v) > I;(v) or equivalently, W(v) > v and L(v) > v.

There exists v such that W(¥) = L(9) = 0.5. Moreover W(v) < L(v) for
all v € (0, %) and W(v) > L(v) for all v € (9, 1), with L(0) = 0 = W(0)
and L(1)=1=W(1).

Under the LBA we obtain that both partners may overbid so that either
winner loses money. In Example 1, for instance, if v;, v, € (0.3, 0.85) either
winner will suffer a loss.

Numerical computations show that the LBA generates, in both examples,
a higher expected selling price than the WBA.

In Example 1, numerical computations, show that the WBA is more ef-
ficient. In Fig. 1, notice that L(v) > W(v) > v for all v; € (0,0.43), v, €
(0, 0.5). Since bidder 1 is more likely to have valuations in the interval
(0,0.43) than in the interval (0.43,1), being the intervals (0, 0.5) and
(0.5, 1) equally likely for bidder 2, the ex-ante probability of inefficient out-
comes is larger in the LBA. In Example 2, numerical computations show
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that the LBA is more efficient. In Fig. 2, notice that W(v) > L(v) > v
for all v; € (0.5,1), v, € (0.54, 1). Since bidder 2 is more likely to have
valuations in the interval (0.54, 1) than in the interval (0, 0.54), being the
intervals (0, 0.5) and (0.5, 1) equally likely for bidder 1, the ex ante prob-
ability of inefficient outcomes is larger in the WBA.

4. REVENUE COMPARISONS

4.1. The Symmetric Case

Let us assume that partners’ valuations are independent and identically
distributed from a cumulative distribution function F with support [0, 1]
and positive continuous density function f. Under these assumptions it is
known that the equilibrium bid for the WBA is

L [F(2))dz .
BY(v)=v— 1" fori=1,2,
Yw)y=v [FO)F or i
whereas the equilibrium bid for the LBA is
[F(z) - 1}%d
Blo)=p— LEG WAz 1

[F(v) -1

The expected selling price in the WBA will be P = fol BY(v)F(v)f(v)dv
and in the LBA will be P! = [ ([ BL(2)f(z) dz) f(v) dv.

PROPOSITION 3. If both partners valuations are distributed according to the
same c.d.f. F, then the expected selling price is strictly greater in a LBA than
in a WBA.!!

Proof. Substituting the equilibrium bids into the expressions for the ex-
pected selling price, and integrating by parts, yields

v v 1 _
o ([ i | [ [ Lo 1]21]2d2dt:| dF ()

= |F) [ 2@ a] - [ v erE)do

"For uniform distribution functions, Singh (1995) obtains this result for the pure private-
values case, and Bulow et al. (1999) for the common-values case. Our contribution here is
to show that in the private-values case the result holds for any continuous and differentiable
distribution function.
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+f01[’(1 —F(£))! /tl[F(z) —1]Pdz

:_ | "F () - 1)dt]dF(v)
= /0 ' of (v dv — /0  of(0)F(v) dv
+ [ [a= Py [ 17G) - 1paz]ar )

- /0 11— F)Pdv + /0 1 ( /0 (- F(#))dt)dF (v)
1

1 1 1 )
- fﬁ vf (v) dv — fo of (V)F(v) dv — |In(1 = F(v)) [ [F(z) — 1]dz

0

- [ 'in(1 — F)[1 - F(v)Pdv — ] 11— F(o)Pv
0 0

v 1 1
+‘F(v) /0 (1—F(z))dzo— /O (1 — F(v))F(v)dv

- /0 Lo )1 — F(v))dv — fo 'In(1 = F))[1 - F(o) dv

- /0 - F(v)I[0.5 — In(1 — F(v))] dv,

and
pv fo ' OF (v)f (v)dv — 01 ;_(('% ( fo ’ Fz(z)dz) dv
=05— fo 1 F2(v)[0.5 — In F(v)] dv.
Therefore

2P - P¥)= /0 1([1 ~ F(v)]’[1 - 2In(1 — F(v))]

+F3(v)[1 - 2In F(v)])dv — 1.
Let us define
H(v) = [1—v]*[1 - In(1 — v)*] +v*[0.5 — Inv].

It is straightforward to see that H(v) is strictly larger than 1 for all v €
(0,1) with lim, ,qH(v) = 1 and lim,_,; H(v) = 1. Moreover, H (v) =
4[(1 = v) In(1 — v) — vInv] with lim,_,o H (v) = 0 and lim,_,; H' (v) = 1.
Now, H(v) > 1 for all v € [0, 1] implies H(F(v)) > 1 for all v € [0, 1]
since F(v) € [0, 1]. Therefore fol H(F(v))dv > 1, and, consequently, 0 <
J(H(F(v)) =1)dv=P' —P*. m



Remark 1. If F, dominates F; in the sense of (A4) then the expected
selling price in a LBA, when both bidders have valuations drawn form Fy, is
smaller than when valuations are drawn from F,. Similarly, if F, dominates
F; in the sense of (A3), then the expected selling price in a WBA, when
both bidders have valuations drawn form F|, is smaller than when valuations
are drawn from F,.

In the symmetric case the LBA outperforms the WBA. McAfee (1992)
has shown that both of them are efficient and yield the same interim ex-
pected utility to the bidders. Here we have shown that the LBA generates
larger expected prices. Thus, based on revenue considerations, the LBA
should be chosen over the WBA. Recall that this procedure is commonly
used in takeovers whereas the WBA is rarely used.

4.2. Asymmetric Versus Symmetric Auctions

We will now compare bidding in the asymmetric auctions with bidding
when both buyers valuations are distributed according to the same cumu-
lative distribution. To do so, for the WBA, we will denote by Bw!(v) to
the equilibrium bid function of bidder i in the asymmetric auction, and by
Bw?(v) to the symmetric equilibrium bid function when both buyers val-
uations are drawn from F;(-). Similarly, for the LBA, we will denote by
BI#(v) to the equilibrium bid function of bidder i in the asymmetric case,
and by BI$(v) to the equilibrium bid function in the symmetric case. For
the expected selling price we will use the following notation: P¥ and P/,
denote the expected selling price in the asymmetric WBA and LBA, re-
spectively; Pg; stands for the expected selling price in a symmetric WBA
when both buyers valuations are drawn from F;(-), and similarly for P%,.

PROPOSITION 4.  If (A3) holds then
(i) Bwi'(v) > Bwi(v) for all v € (0, V) with PY > PY,.
(i) Bws'(v) < Bwi(v) for all v € (0, D) with PY < PY,.
If (A4) holds then
(iii) Bl(v) > BIj(v) for all v € (0, V) with P, > P},.
(iv) Bl5'(v) < BI5(v) for all v € (0, v) with P!, < PL,.
Proof. See appendix. =
Proposition 4 shows that, irrespective of the auction format considered,
the expected price in the asymmetric auction is always larger than the ex-
pected selling price when both bidders are weak (both bidders valuations
are drawn from F;), but it is smaller than the expected selling price when

both bidders are strong (both bidders valuations are drawn from F,). There-
fore, if the expected price in the LBA with two weak bidders is higher than
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the expected price in the WBA with two strong bidders, we can conclude
that the expected price in the asymmetric LBA will be larger than in the
asymmetric WBA. This is the case, for instance, if the weak bidders have
valuations drawn from a uniform distribution and the strong bidders have
valuations drawn from a distribution F,(v) = v* for any a € (1, 1.2655).

4.3. Comparison of Auction Procedures

PROPOSITION 5. The expected selling price in a LBA when valuations are
drawn from Fi(v), F,(v) is equal to one minus the expected selling price in
a WBA with valuations drawn from (1 — Fi(1-v),1-F,(1—v)) forv e
[0, 1].

Proof. Consider first a WBA. If bidder 1 with valuation w,(b) bids b
his interim expected payment will be bF,(w,(b)). The ex ante expected
payment of this bidder will be

Py = [ bEx(wn(b) dFy(y(5)).

Similarly, if bidder 2 with valuation w,(b) bids b her interim expected pay-
ment will be bF (w;(b)). The ex ante expected payment of this bidder will
be

-
Py = [ bFy(wy(b)) dFy(wy(b)).

The expected price in a WBA, P* = P} + P.

Consider now a LBA. If bidder 1 with valuation /;(z) bids z her interim
expected revenue will be z(1 — F,(1,(z))), i.e., the revenue she expects to
get is the price paid by bidder 2 when bidder 2 wins. The ex ante expected
revenue of bidder 1 will be

1
Ri = [ 2(1 - Fy(lx(2))) dIy(2).
Similarly,
1
Ry = [ 2(1 - Fi(1(2) dFy(l2)).
The expected selling price in a LBA will be P! = R + R},
Since /;(b) =1 —ri(1 —b) for i = 1,2, where r;(-) denotes the inverse

bidding function of bidder i in a WBA when valuations are drawn from
1-Fi(1-w),1- F,(1 - w) (see proof of Theorem 3), we have that

PY = [ 21~ (1~ n(1 - 2) dFy(1— (1~ )

+f1 2(1 — F,(1 = ry(1 = 2)) dFy(1 — r,(1 — 2)).
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By making a change of variables, (b = 1 — z), and integrating by parts, we
obtain

b
P = A (1 =b)(1 = F,(1 — (b)) f1(1 — r1(b)) dry(b)
+fbx*(1 - b)(l - Fl(l — rl(b))fz(l - rz(b)) drz(b)

b**

= [ 0=FRa-n®)AA-n®)dne)

[ U= B = nGDAA - n®) dn(b) ~ P,
-
~|a-Ra-nema-ra-new| -,

—_ w
- 1 - PJIVJZ’

where Py ,,denotes the expected selling price in a WBA with valuations
drawn from i, 1) = (1 -F(1-w),1-F)(1—-w)), and where b** =
l—a. =

PropoSITION 6. (i) If Fi(v) = v and F,(-) is a convex function then
P! > 1 — P, Moreover, a sufficient condition for the expected selling price in
a LBA to be larger than in a WBA is P§| + Py, < 1.

(ii) If Fo(v) = v and F,(-) is a concave function then P' < 1 — Pv.
Moreover, a sufficient condition for the expected selling price in a LBA to
be larger than in a WBA is Pg, + Pgy < 1, where Pg, denotes the expected
selling price in a symmetric WBA when both bidders valuations are drawn
from Gi(v) =1—-F;(1—-v).

Proof. (i) The result follows from Theorem 1 in Lebrun (1998) and the
result in previous proposition. Lebrun has shown that if (J;, J,) = (F, F»),
and (J1, J,) = (F;, 1 — F,(d — w)) (notice that the convexity of F, implies
J, > J,) then P} 5> P /.12 From Proposition 5 we know that P! =

’ 1572
1-P? . Thus P! > 1~ P". Moreover P! > P¥if 1 > P} ; + Py . Since
172 2
Pw y < P] J, and P}” g, < P}‘Z’ J, We get our first sufficient condition. To
show (ii) we first notice that if (J;,J,) = (Fl,Fz) and (J},J,) = (1 -
F,(v — w), F,) then the concavity of F, implies J, > J; and consequently

?He shows these results for asymmetric first price auctions. We can apply them to the
WBA by appealing to the results in Theorem 2.
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Py, > P, . Thus P' <1—P*.Now P!> P*if 1> P}, +PY . Since
1072

P}‘l’ 5 < PJ;’ P and Py ; < Pp ; we get the second sufficient condltlon u

Remark 2. In the first numerical example considered in the paper Pg), =
0.341 and P¥, = 0.444 thus P! > P¥. In the second numerical example
PY¥ = 0.444 and P = 0.35 thus P! > P,

5. CONCLUSIONS

It is well-known that private-value auctions with equal ownership of the
item yield efficient outcomes when the valuations of the bidders are drawn
from a common distribution. This result, as shown in this paper, does not
carry out to the case of asymmetric distributions. The inefficiency is due to
the fact that the bidder who is reputed to be more interested in the asset
to be traded will bid less aggressively in equilibrium. As a result of this, the
bidder with the lower valuation buys the target with positive probability. In
both auctions the strong bidder has a higher probability of winning whereas
a revenue-maximizing auctioneer would prefer weak bidders to win.

Results in this paper have a wide range of applications including the
sharing of profits in bidding rings or creditors’ bidding in Bankruptcy auc-
tions. However, a limitation of the analysis in this paper is that attention is
restricted to the special case of equal shares in the partnership or, in the
takeover model, to symmetric toeholds.

6. APPENDIX

Proof of Lemma 1. To see that equilibrium strategies, (B, B;), have to
be monotone increasing on [0, ] let ¥ = B;(v;) and b” = B;(v/) with
v; > v/. Equilibrium requires the following two conditions to be satisfied:
U(v,, b’ B;) = U;(v;, b", B;), and U,(v{, b", B;) = U;(v}, V', By), ie.,

(2v; = B)F(wy(0)) + [ By(x)dFi(x)
w;(b')

> (20— b )E (0" ) + [ By(x)dE;(),
wy(b")
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and
v
@v] = B )F (w0 + [ Bi(x)dFy(x)
w;(b")
v
> (2] — B)F;(w;(b)) + f B;(x)dF(x).
wi(b')

Subtracting the right-hand side of the second inequality from the left-
hand side of the first, and subtracting the left-hand side of the second
inequality from the right-hand side of the first, yields (v} — v;)[F(w;(b")) —
Fi(w;(b'))] = 0. This implies b” < b'. Moreover, B;(-) must be gapless: if
there is a gap [b', b] in B; then there must be a gap (¥', b) in B;, because
for any v; it would be better to bid b’ than any other bid in that interval
(since with this bid bidder j lowers the price if winning without affecting
the probability of winning). But then the type of bidder i planning to bid b
would be better off bidding (b’ + b)/2. Furthermore, B; must be atomless.
Suppose not, then there is b and j such that P(B;(v;) = b) > 0. Then
there exists & > 0 such that bidder i will assign zero probability to (b —
g, b) creating a gap. Equilibrium strategies are strictly increasing since they
are atomless and weakly monotonically increasing; and because they are
also gapless then equilibrium has to be in pure strategies. Continuity and
monotonicity of B;(-) imply that B;(-) is differentiable almost everywhere
on its domain.

Consider now the boundary conditions. We first show that for a bidder
with valuation v a bid strictly larger than v and which has a strictly positive
probability of winning is less advantageous than a bid of v and will thus
not be played at the equilibrium, ie., U;(v, v, B;) — Uj(v,v + &, B;) > 0.
Clearly,

0.5 (vFj(B].—l(v)) + /Bj_l(v) Bj(x)dF;(x) — (v - s)Fj(Bj—l(v +¢£))
_ — Bj(x)dFj(x))

=0.5 (v(Fj(Bj-l(v)) ~ Fi(B; (v + #))) + £F,(B; (v + ¢))

+f o) Bj(x)dFj(x)>

B\ (v)

! (v-+e)
=05 (st(Bj-‘(v + )+ /B i(J (Bj(x) - v)dFj(x)> > 0.
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Hence, B;(v) < v, for i = 1,2, and, consequently, B;(0) < 0. Now, if
B;(0) < B;(0) then, by continuity, there exists ¥ > 0 such that B;(v) <
B;(0) < 0. Since type ¥ of partner j is selling with probability one and gets a
non-positive price, this type would do better by increasing the bid to 0, pay-
ing zero price when winning and receiving a non-negative price when losing.
Therefore B;(0) = B,(0) = 0. Consider now the upper support of the bids
distribution. Since B;(-) is strictly increasing, bidder 2 wins with probabil-
ity 1 by bidding B;(?). Hence B,(v) < B;(v). The same argument holds
for bidder 1; thus, we also have B;(¥) < B,(v), and hence B;(D) = B,(v)
= b < v. If b = v then type ¥ of bidder 1 (the same argument applies for
bidder 2) is making zero profits. By decreasing the bid by £ they gain
0.5¢ when they still buy (which happens with a probability close to 1),
and they lose less than 0.5¢ when they end up selling (which happens
with a probability that can be made arbitrarily small by reducing &). Thus
Bi(?)=By(v)=b <v. m

Proof of Theorem 1. Let B/-) denote an equilibrium strategy for
bidder i. The fact that B,(-) is strictly increasing and differentiable almost
everywhere on [0, ¥] implies that it has an inverse function w; defined on
[0, b] which is increasing and differentiable almost everywhere and satis-
fies that w;(0) = 0 and w;(b) = v for all i = 1,2. Thus for all i = 1,2,
Ui(v;, B;, By) is differentiable in its second argument. Hence B;(-) must
satisfy the first order condition for a maximum and therefore its inverse
will satisfy system (1).

We will now show that the necessary conditions are sufficient. Assume
wy, w, verify (1), and satisfy the boundary conditions with 0 < w;(b) <
for all i = 1,2 and b € (0, b]. Note that w/(b) > 0 for all i and b € (0, b].
If there exists i and 6 € (0, b] such that w}(8) = 0, then system (1) implies
that w;(#) = oo in contradiction with 0 < w;(b) < v, for b € (0, b]. Sim-
ilarly, if there exists 7 € (0, b], such that w)(w) < 0, then the boundary
condition w;(0) = 0 and the fact that w;(b) > 0 for b > 0 imply that there
exists ¢ € (0, 7) satisfying w(£) = 0. But this yields a contradiction with
0 < wy(b) < v for b e (0, b]. Therefore w; w, are continuous, differen-
tiable over (0, b] with w;(b) > b, for all b € (0, b] and all i = 1, 2. We have
to show that B; = w;' and B, = w; " is an equilibrium. To do so, let us
assume that partner 2 follows the strategy B, = w;'. Clearly, a bid larger
than b is never a best response.

If v; = 0, then the best response is B;(0) = 0 because b = 0 maximizes
U, for v; = 0. Recall that

| 0.5By(v)dFy(vy) itb=0,

Ul(oa ba BZ) = 0 ]

—bF,(B;(b)) + f _05By(v)dFy(v;) it b> 0.
By (b)
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If v; € (0, v) then we have

(v, 5, By) _ 1 S Ey(wy(b)) + (1 = b)f>(wy () wh(b).

db
Since wy(b) satisfies (1) then
U, (vy, b, Bz) 1 b 1

Because w;(b) > b, U, /b is positive if v; > w;(b) and negative if v; <
wy(b). For v; € (0, p), the continuity of U; as a function of b and the
above results imply that U, is monotonically non-decreasing on [0, B,(v))
and monotonically non-increasing on (B;(v;), oc).

Therefore bidder 1’s expected payoff is maximized if v; = w(b) that is
if by = By(v;). Thus B;(v,) is a best response if bidder 2 bids according
with B,(v,). Since a symmetric argument applies for bidder 2, any strictly
increasing and differentiable w;(b), w,(b) satisfying system (1) and the
boundary conditions define an equilibrium. m

Proof of Proposition 4. The proposition follows from Theorem 1 and
Corollary 1 in Lebrun (1998). This theorem establishes the following: Take
J1, 75,7, such that J, dominates stochastlcally in the sense of reverse haz-
ard rate to J, (using Lebrun’s notation J, > J,). Assume that Jl(O)
J,(0) =J,0)=0and J, > J, or J; > J,, and J, = J; or J; > J,. Let
the bid functions and their inverses at the unique equilibrium when valua-
tions are (J;, J,) be denoted by (B, B,) and (a4, a,), with P denoting the
corresponding expected selling price, and, at the unique equilibrium when
the distributions are (J;,J,) be denoted by (B), B,) and (), @), respec-
tively, with P’ denoting the corresponding expected selling price. Under
these assumptions, it is shown that in a first-price auction B(v) > B(v)
for all v € (0, 9), Jy(ay(b)) < Jo(ay(b)) for all b € (0, Bi(V) = B,(v))
and P' > P. To show (i) and (ii) we will use the fact that the equilibrium
bidding functions in a WBA when the distributions are (F;, F,) coincide
with the equilibrium bidding functions in a first price auction when the dis-
tributions are (FZ, F?). Therefore in (i) we have (J;,J,) = (Fj, F?) and
(J1,J;) = (F2, F?), and the result follows from the fact that F, > F;. In
(i) we have (Jq, J,) = (F%, F%) and (J;,J,) = (F3, F%) and the result fol-
lows from the fact that F, > F;. To show (iii) and (iv) we first recall that
by making a change of variables (/;(b) = v — [;(v — b)) the equilibrium
bidding functions in a LBA when the distributions are (), F,) coincide
with the equilibrium bidding functions in a first price auction when the
distributions are (G;(w), G>(w)) = (1 — Fy(v — w))?, (1 — F5(v — w))?)
for w € [0, v]. Because of (A4) Gy(w) > Gy(w). Thus, in (iii) we have
(J1, 1) = (G4, G,) and (Jy,J,) = (G;, G;). Therefore T (b) < ll(b) and
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G1(T; (b)) < Gy(ly(b)) implying ;(b) > 1;(b) and Fy(1(b)) > Fy(I5'(b)).
Therefore P!, > PL, is deduced from the fact that when bidders have val-
uations drawn from (G;, G,) both bidders’ bid probability distributions
stochastically dominate the bid probability distributions obtained when val-
vations are drawn from (G, G;). Finally, (iv) follows by (applying the ar-
guments in (iii) to (J;,J,) = (G,, G,) and. (J1,J,) = (G, G;). =
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