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1 Introduction 

The modelling of complex nonlinear systems is a comparatively recent area of research which wel­

comes the concerted efforts and knowledge of many different disciplines (see for instance, West, 

1985, Haken and Mikhailov, 1993; Green and Bossomaier, 1993, Verhulst, 1994; Horgan, 1995, 

Kauffman, 1995, Bar-Yam, 1997, and Casti, 1997, for a few surveys on the potential applications). 

Its purpose is the building of mathematical models of cooperative phenomena that are abstractions 

derived from various branches of science. 

Complex systems may differ substantially in certain properties, but they all share a common fea­

ture : they all function in a coherent and potentially predictable way while being composed of a 

considerably large number of interacting and adaptive units. For example, the natural systems of 

the life sciences are the result of a long-evolutionary selection which has perfected their inner or­

ganization. By means of the interaction of these units, new properties may emerge that are absent 

at the individual level. 

There is a widespread interest in the social sciences in developing models of social structure derived 

from processes of rational choice and the aggregation of individual strategic decisions. An example 

of one such process, which is representative of a broad class of systems, arises as follows. Suppose 

a medium-size number, n, of individuals1 that are willing to visit a place periodically if it is not 

too crowded. More precisely, the ith individual will independently decide to visit the place at time 

t if he (she) expects no more than Bi,t visitors at that time. Notice that it is impossible to be sure 

in advance of the number of people coming to the place. 

The previous problem was introduced by Brian (1994), and was baptised as "El Farol" problem to 

remind its original source of inspiration. "El Farol" is a sort of bar-restaurant in Santa Fe where 

people gather on Thursday nights to hear good Irish music. The problem arises when most of these 

people would not attend the bar in the midst of a loudy crowd. That is, each prospective visitor 

has to decide on whether visiting or not the pub on the next Thursday evening, based on his (her) 

own forecasts of the next attendance figure, and knowing that it will also depend on the forecasts 

the others made. In order to make these forecasts, every person constructs an optimal predictor 

that takes into account his (her) own preferences as regards the maximum number of attendants 

IThe reason why the number of agents, n, is considered to be of medium size is because too small values lead to 

problems which can be conveniently approached using game-theoretic analysis methods, while too large values need 

to be treated statistically. By a medium number of agents, we mean that n is neither too small nor too big, but still 

creates complex patterns of emergent behavior. 
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that he (she) can tolerate. Once all the individual decisions are made, people converge on the 

bar. As soon as the latest attendance figure is known during the week, the agents adapt their own 

prediction rules to the new piece of information, and the process continues for another round. As 

remarked by Brian, this process leads to self-invalidating expectations and thus to the failure of 

deductive logic. And the reason is that agents are not perfectly rational. To explain, agents cannot 

foresee either the logical implications of their actions or the reactions of the other agents, or both. 

As a consequence, they are thrown into the realm of inductive inference. 

The key features of "El Farol" are ubiquitous in any problem involving intelligent decision-making, 

many of which arise in the social and behavioral sciences. The purpose of this paper is to discuss 

some of the properties of this model of macrobehavior derived from the aggregation of a not too 

large number of intelligent decision-making units and assumptions about their microbehavior. The 

paper is structured as follows. In section 2, we present the recursive model for the time series of 

attendances built upon the aggregation of decision variables, and in section 3, we discuss different 

features of the model as well as potential applications in the social and the life sciences. Section 

4 focusses on an application to the modelling of the stock market dynamics. In particular, we 

show how unusual events such as crashes and speculative bubbles, usually attributed to incidentals 

and unexplained by models of rational expectations, can be generated with this model when some 

conditions are satisfied by most investors' preferences. In section 5, we present some simulation 

experiments to illustrate some of the features of the time series produced with the model. Finally, 

section 6 is devoted to the conclusions. 

2 The model 

Suppose that our potential visitors to "EI Farol" (here also referred to, indiferently, as agents or as 

economic units) follow generally different strategies embodied in a particular transition probability 

from the state "out" (of the place) to the state "in" (the place), say from state "0" to state "1". 

Each agent's transition probability will depend on a (generally different) history of the series of 

attendances. We will assume that this series, say Xt, is obtained by regular sampling (the potential 

visitors only plan to visit the place each thursday evening) of the discrete process of attendances, 

say {Xth~o. To begin, let Pi,t be the ith individual transition probability, which embraces the 

information on (}i,t. Assume also that, in general, agents do not have access to what other agents 

are doing or planning to do, when trying to define their own optimal decision rules at any time 
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instant t. This means that the i-th agent will generally base his (her) decisions at t independently 

of the decisions of the other agents, and thereby will use a generally different predictor for X t , say 

Xi,t. This predictor will combine past information in either a linear or a nonlinear way. That is, 

we may write Xi,t = Wi(Xi,t-l), where Xi,t-l = (Xt- l , ... , Xt-pJ' represents the i-th visitor's state 

vector, which summarizes the useful or the available past history of the series for this agent, while 

Wi represents the functional form of his (her) forecasting rule. Notice that in the linear prediction 

case this rule reduces to Wi(Xi,t-d = a~Xi,t-l' where ai = (ai,l, ... , ai,pJ' is a vector of coefficients 

whose elements and dimension may differ from one agent to the other. The fact that the state 

vector contains only a portion of the history of the process X t , and that its length will be generally 

different for each agent, is because agents may be willing to face different costs in data collection, 

storage, computation and communication. 

Now suppose we can write 

P-t - 1 - 1/- t(X- t (J. t) 1., - 1"""1, 1." t, (1) 

where /-li,t (henceforth referred to as the abhorrence function for the ith individual at t) is a function 

that codes the preferences ei,t of the ith individual or his (her) degree of crowd aversion at t into 

a workable rule. Thus each agent's decision rule will be characterized by a triad (Xi,t, ei,t, /-li,t) , 

consisting of: (a) the predictor, Xi,t, which produces a credible hypothesis about the uncertain 

future at t, (b) the preferences, ei,t, which is the unobserved psychological parameter determining 

the agent's attitude at t, and (c) the abhorrence function, /-li,t, which formalizes the degree of 

adherence of the agent towards his (her) preferences at this same instant t. Clearly, we must have 

0:::; l/-li,t(X, ei,t)1 :::; 1, t/x, t . 

The agents' preferences could be more or less noisy. This noise is introduced to account for the 

vagueness of these preferences. At one extreme, agents' may have no preference for a particular 

value of ei,t. This amounts at having purely random preferences, that is 

(2) 

where for each i, {ci,th (the state noise), isa nonnegative sequence of random variables which, 

assuming second order stationarity, will have a variance that depends positively on the degree of 

vagueness about the preferences. At the other extreme, if agents are pretty sure of their needs, 

their preferences will follow pure deterministic ally evolving patterns, say 
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(3) 

where for each i, Di,t is a deterministic function of t. It is reasonable to assume that, in general, we 

will have a mixture of these two extreme models. 

Similarly, the abhorrence function J.Li,t may transduce these preferences with varying degrees of 

fuzziness. This fuzziness is introduced to model the limitations of the agent's logical apparatus, 

or in other words, to model the agent's degree of reliability on his (her) subjective reasoning. For 

example, if agents have limited confidence on the adequacy of their predictors, they may use a 

fuzzy abhorrence law such as 

On the opposite, if agents fully trust their predictors, we will have 

{
I, if x > Bi,t 
0, otherwise. 

(4) 

(5) 

In principle, agents would be willing to consider using the tools of deductive logic to design their 

optimal clear-cut decision programs (objective reasoning). However, the imposibility to foresee 

the consequences of their own actions as well as the actions of the other agents, and the costs of 

collecting, processing and communicating information (bounded rationality), make them realize the 

utopy behind this formidable task, and force them into inductive inferences. This uncertainty will 

affect every element of the triad (Xi,t, Bi,t, J.Li,t) , and will justify the need for: (a) an ecology of 

evolutionary predictors Xi,t (continuously adapting as new information arrives), (b) psychological 

noise for Bi,t, and (c) juzziness in J.Li,t. 

The expected number of people at the pub at time t, given the predictor vector Xt = (X1,t, ... , Xn,t}' 

and the vector of preferences Ot = (B1,t, ... , Bn,t)' at time t is given by 

n 

E(Xt!Xt,Ot) = LPi,t (6) 
i=l 

n 

= n - L J.Li,t(Xi,t, Bi,t) (7) 
i=l 
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(8) 

Remark that X t is a random variable which can be expressed as the sum of n generally dependent 

Bernouilli random variables with possibly different probability distributions. The mutual depen­

dence between the Bernouilli variables here is due to the fact that potential visitors share the past 

information on the process of attendances for making their decisions. Of course, if these variables 

were independent and the transition probabilities identical to p, X t would be a binomial random 

variable with parameters nand p. However, in the general case, it is unclear how the series of 

attendances, Xt, will behave dynamically over time. In the light of the previous formulas, it is 

possible to write our discrete process as 

(9) 

where, far from the barriers at x = ° and x = n, the sequence {~t}t behaves as a martingale 

difference sequence (see for instance, Billingsley, 1986, p. 497) with respect to the predictor space 

~Xt spanned by the component variables in Xt and given the vector of preferences Ot at t. To be 

explicit, ~t is a sequence of random variables verifying 

(10) 

~t + FO t (Xt ) is an integer in the inteval [0, n], Vt. (11) 

Accordingly, the equilibrium error depends on the agents' forecasts of the changes in Xt. Thus 

both nonlinearity in the mean and in higher conditional moments are possible in the process X t 

having barriers at 0 and at n. Remark also that by increasing n, Xt would be free to wander inside 

a wider range of values and thus the probability that it reaches any of the barriers could be made 

arbitrarily small. 

3 Some features and potential applications of the model 

In the model presented in the previous section, the outcome of X t depends directly on the agents' 

predictions, thereby allowing the possibility of self-fulfilling or self-invalidating expectations. In 

fact, in "El Farol" problem, the current value of the series of attendances will depend negatively 

on the agents' expectations. Therefore, any common belief for a majority of the agents is always 
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invalidated (if a majority of agents believes most will go, this majority will not go, and if the 

majority believes most will not go, the majority will go). This imprints a particular feature to the 

series of attendances, Xt, when the agents do not adapt their predictors immediatley after each new 

observation of Xt. In this case, Xt will exhibit an oscillatory pattern of behavior, whose amplitude 

will depend on the common belief of the majority. 

As a concrete example, assume Ot = 0 = (B, ... , BY and J.Li,t == J.L, Vi, t. If there was an equilibrium 

in the form of a fixed point, this must satisfy the equation x = Fe(x), that is 

x 
- = 1 - J.L(x), for 0 :S x :S n. 
n 

(12) 

If the common abhorrence function is J.L(x) = l(x > B), the only fixed points will occur when B > n 

and when B < 0, and would be x = nand 0, respectively. On the contrary, for 0 :S B :S n, the series 

Xt will oscillate between nand O. 

To show the leading influence of the belief of the majority of agents, suppose again that their 

abhorrence functions are given by J.Li,t(X, Bi,t) = l(x > Bi,t). In this case, the process is deterministic, 

and one will have 

(13) 
n 

n - L l(Xi,t > Bi,t) 
i=l 

Now, if we denote by litCXt) the mean abhorrence function at t accross agents, one has 

(14) 

It follows that X t responds directly to changes in the mean abhorrence regardless of whatever the 

individual expectations are. Notice that if the predictors (preferences) were fixed and known in ad­

vance, it might be possible to estimate non-parametrically lit (x) from the time series of attendances, 

and from this, to track the evolution of the gravity center for the ecology of preferences (predictors). 

The fact that when J.Li,t(X, Bi,t) = l(x > Bi,t) the dynamics of the process X t are deterministic 

should not prevent Xt from exhibiting temporal patterns of varying complexity, depending on how 

large is n and on the constellation of the component prediction rules in Xt. An interesting case 
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results when the series Xt appears to stabilize around a low-dimensional structure as t grows to 

infinity. This structure is what in the nonlinear science literature is called an attractor (see for 

instance Granger and Tedisvirta, 1993, p. 53), that is, a subset n of (~+ U {o})m with the property 

that if the m-dimensional state or phase-space vector X t = (Xt, Xt-I, ... , X t- m+1)' belongs to n, 
then XHi = (XHi' XHi-I, ... , XHi-m+d also belongs to n, Vi 2:: 1. The attractor may be quite 

simple, such as a stable fixed point in ~, or a set of q unstable fixed points in ~ if Xt has eventually 

a limit cycle of period q. But it could also be so complex as to deserve being qualified as strange 

(after Ruelle and Takens, 1971). Strange attractors may emerge as a result of geometric interaction 

between the population units (see Hoppensteadt, 1982, p. 7). This sort of interaction is likely in "El 

Farol" problem, where a large number of visitors at a given time may discourage future attendances 

to the pub. 

If the attractor is the unique stable fixed-point of POt, then this attactor will give us the common 

optimal predictor of the series when agents are perfectly rational. However, if Xt appears to settle 

onto a more complex attractor, we cannot conclude that the final agents' predictors are good just 

because they have simplified the dynamics of Xt. A simpler structure for the series may be very 

hard to forecast for an agent with no side information about the other agents' decision rules. Thus 

the asymptotic structure of Xt has, in general, little to do with the performances of the individual 

predictors. The fact that organized macrobehavior can spring from a mess of microbehaviors, have 

induced some social researchers to adhere to the philosophical postulate that organizations could 

conduct their affairs rationally even though individual actors cannot (see for example, Stinchcombe, 

1965). 

In general, however, the preferences Bi,t of the potential visitors are contaminated with what we 

called psychological noise. As we said in the previous section, this component, say ci,t, somehow 

quantifies the vagueness or indeterminacy of the agents with respect to their preferences. If we 

assume a model for Bi,t that is additive in this perturbation, we may write in general, 

(15) 

where Di,t denotes the deterministic part of Bi,t, and {lJi,th=I,n is a family of processes introduced to 

account for time-varying or stochastic volatility (see Harvey, 1993, p. 281), that is, for the randomly 

or time-varying degree of uncertainty of the agents about the optimality of their inductive inference 

rules (which may possibly be induced by alternating periods of political or social calm and turmoil, 

of lower and higher unpredictability of the weather, etc). Under the effect of Ci,t, and even for 



J.1i,t(X, ()i,t) = l(x > ()i,t), the process X t becomes stochastic : 

n 

X t = n - L 1(Xt- 1 > 8i ,t + O"i,tCi,t}. 
i=l 

9 

(16) 

To show the effect that the presence of this state noise may have on the dynamics of X t , suppose 

that in our general model we have J.1i,t = J.1, Vi, t, where J.1 has first-order partial derivatives. We 

obtain 

n 

X t = FoJXt)+ ~t = n - L J.1(Xi,t, ()i,t) + ~t. (17) 
i=l 

Further suppose et = (()l,t, ... , ()n,t)' , with ()i,t = ()i,t-l + (i,t Vi, t, where (i,t = O"i,tci,t and satisfies 

I(i,tl « ()i,t-l > O. A Taylor series expansion of J.1(Xi,t, ()i,t-l + (i,t) around ()i,t-l leads to the 

first-order approximation 

n 

X t ~ Fot_JXt ) + L Ai,t(Xi,t)(i,t + ~t, (18) 
i=l 

with 

n 

FO t _ 1 (Xt ) = n - L J.1(Xi,t, ()i,t-r) (19) 
i=l 

and 

(20) 

Granger (1980) showed that the aggregation of simple, possibly dependent time series models, can 

produce processes of the integrated type (Box and Jenkins, 1970). This class of processes includes 

nonstationary and infinite-variance processes. Thus if certain data generating mechanisms generate 

the random processes {(i,th=l,n, the component 

n 

Zt = L Ai,t(Xi,t)(i,t (21) 
i=l 

will exhibit such features. 
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There are many potential applications of the model described above to both social and life science 

problems involving either predation, competition, cooperation or consumption of substitutes. Some 

simple examples could be the following: 

a) Xt = number of voters at t to one of two major political parties (it is assumed that the 

population of potential voters has fixed size n and that voting to one of these parties is compulsory). 

b) X t = number of acres of land at t of a given territory (of n acres) conquered by one of two 

species that compete for the same resources. 

c) Xt = number of people at t in a town with n inhabitants that have been infected by a 

contagious disease. 

d) X t = number of smokers at t in a town with n inhabitants, or number of customers of a 

given telephone company (as opposed to the number of customers of other telephone companies), 

or number of consumers of a certain class of milk or any other product manufactured by different 

companies, or number of people subscribing to a given magazine, journal or newspaper (the target 

populations here are the number of potential customers and subscribers, respectively, assumed to 

be invariant over time). 

e) Xt = number of unemployed people at t in a country with n people with working abilities 

and willing to work. 

f) X t = number of cancer cells invading an organ's body at t, or the count of platelets (or other 

blood cells) per mm3 in an aplastic anemia patient (or a patient of having any other hematologic 

disorder). 

g) X t = number of shares of stock of a given company owned by the State or by an individual 

investor at t (where n is the total number of shares of that stock issued and sold by the company). 

h) X t = number of stockholders at t in a group of n potential investors that either invest in 

stocks or in bonds, but not in both. 

Remark that in all the cases above, the preferences are susceptible of control from outside forces. 

For example, in a) preferences can be influenced by propaganda. In d) and g) this can be done by 

marketing strategies, while in b) an intruder in need of space or other resources (such as man) could 

be a determining factor. In c) and f) preferences can be changed by medical intervention, such as 

effective drug therapy or preventive vaccination. In e) employment and environmental policies may 

have an impact on the evolution of the process by altering the preferences. Finally, in h) interest 
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rates is a powerful instrument for either propelling or damping preferences. 

So far we have considered a single-population model of aggregate behavior, but this model could 

be extended to allow for interactions between different populations. For example, consider the 

case of two coexisting populations X and Y in an ecosystem that can support at most nx and 

ny individuals, respectively, of each type. And suppose that the number of individuals in each 

population organize according to the interacting aggregation models 

nx 
,,~ (x) 

X t = nx - 6 1(Xi,t > ei,t (Yt - I )), 

i=1 
ny 
,,~ (y) 

Yt = ny - 6 1(Yi,t > ei,t (X t - I)), 
i=1 

(22) 

(23) 

where X t - I = (Xt- I, ... , X t - mx ) and Y t- I = (Yt-I, ... , Yt-my)' are state vectors that summarize the 

past history of the series Xt and Yt, respectively, and which drive the preferences e~~) and eW of , , 

the individuals in each population. The form of the interdependencies between the two populations 

will define the organizational temporal pattern of the bivariate series (Xt, Yt)'. For example, if ei~) , 

(ei~)) depends negatively (positively) on Yt-I (Xt-r) , and if ei~) (ei~)) depends negatively on Xt - I , , , 

(Yt-I) then our model will exhibit some of the features of a bounded-population predator-prey 

model (see for instance Renshaw, 1993, and Hofbauer and Sigmund, 1996). In this case, X (Y) 

would represent the prey (predator) population. When these two populations are constrained to 

coexist in an environment with limited resources, both species may run out of food (and therefore 

begin to starve) if the number of individuals of each becomes too large (close to either nx or ny). 

Moreover, a growing number of predators will follow an increase in their supply of food (preys), 

while the number of preys will decline as the number of predators to be feeded increases. 

The predator-prey organizational behavior is only one possibility among several others in the previ­

ous two-population interaction model. Even when sticking to the case of linear inter-dependencies 

and m = 1, that is to 

(24) 
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we may have different alternative dynamics for the series Xt and Yt. For example, an extreme case 

is the configuration 

ao,bo > 0, (25) 

for which we obtain two non-interacting populations. Population Y may also feed on the waste 

products of population X, with no quarrelling or competition between the two species, when 

ao > 0, bo < 0, (26) 

Symbiotic behavior will be obtained if, for example, population Y not only lives on population X 

but also cultivates it (e.g. human farming pigs or fisheries, harvesting cereals, etc.), that is when 

ao, bo < 0, (27) 

Finally, notice that a predator-prey model is arrived at with the configuration 

ao, bo < 0, (28) 

a2 < 0, b1 > 0. 

4 Modelling the stock market dynamics 

Most models of the stock market proposed by economic theory rely on the assumption that human 

behavior could be interpreted as the solution to an optimisation problem, in a way coherent with 
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the axioms of deductive logic. This is the sort of behavior that economists call "rational". But 

which beliefs and preferences are rational under conditions of uncertainty? 

There are indeed many aspects of human economic decision-making that are difficult to rationalized. 

In the economy, these difficulties can be found in both single-person decision problems such as 

consumer behaviour, and games of strategy such as bidding in auctions. For example, models 

of the stock market which rely on the perfect rationality hypothesis are hardly able to mimic 

such extreme events as crashes or bubbles. The hypothesis of rational expectations (Muth, 1961) 

entails that the price of a security is equal to the present value of its future dividend stream. This 

contradicts the well-known existence of periods, the so-called speculative booms (crashes), when 

the prices of some assets are far above (below) this value. Both speculative bubbles and crashes 

may appear when the expected rate of market price change influences the current market price. In 

particular, a bubble (crash) will arise when the actual market price depends positively (negatively) 

on its own expected rate of change. 

The shortcomings of the perfect rationality hypothesis have led many economists and social re­

searchers to support the weaker hypothesis of bounded rationality for the agents (see Feldman 

and Lindell, 1990, Abrahamsson, 1993, Brian, 1994, and Zey, 1998, for recent critical surveys on 

rational choice theory in organizations and in cooperation processes). Following Magill and Quinzii 

(1996), an agent is boundedly rational if time and effort on his part are necessary to : (a) gain 

access to and process information, (b) create a mental image of possible future consequences of 

his (her) decisions, (c) make the necessary computations to obtain a solution to his (her) strategic 

problem, and (d) if the agent cannot devote unlimited time and effort to it. These costs underline 

the importance for the agents of adapting their models as they learn new information (see Holland, 

1995, and Borgers, 1996, for a general discussion on the relevance of learning in strategic decisions 

and of computed-based models of adaptive agents, respectively). 

In the following, we consider the model of the previous section in the context of the stock market 

dynamics, and show how it can generate both crashes and bubbles providing some conditions 

are satisfied by the preferences of most investors. This arises as a consequence of letting the 

evolution of our time series (here representing the number of stockholders) depend explicitely on 

the expectations of the agents (here on the expected rate of market price change). 

Other studies on the analysis of these financial extreme events can be found in Flood and Garber 
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(1994). However, these studies are motivated from a different perspective, and focus mostly on 

testing for the presence of such events. Brian et al. (1996) present a computer model of stock 

market behavior which summarizes recent market activity by a collection of descriptors and is able 

to reproduce the rich behavior seen in real world speculative markets. The model applied in this 

section is intended to provide just an pproximation to some of the most striking features of the 

stock market dynamics. The quality of this approximation will depend on the accuracy with which 

the agents' preferences are modelled. As we pointed in section 3, this approach allows a wide range 

of potential applications to the social and economic sciences such as the modelling of the number 

of customers in a service, and that of groups contending for power, such as labor unions, political 

parties, guerrilla armies, etc. But also the growth and decline of professions, or the cooperative 

behavior apparently characterizing the beginning of many industries (see for instance, Hannan and 

Carooll, 1992, Nowak et al., 1995, Casti, 1997 for details). 

In what follows, let our population of agents be one of prospective stockholders, and let X t represent 

the number of these stockholders (as opposed to the number of investors on bonds) at time t. In 

the previous section we saw that our model could be written as X t = FO t (Xt )+ ~t, where Xt is the 

agents' predictor vector at t, and ~t is a martingale difference constrained by the fact that X t is a 

discrete process taking values in [0, n]. 

An important case corresponds to when agents have unlimited computational power, storage, time 

as well as free access to the full history of the series, and to the plans of the rest of the agents 

(perfect rationality). In this case, they will select the n-th dimensional optimal predictor vector of 

X t given all this information, that is a vector, say X~pr), whose i-th component is 

(29) 

with It-l denoting the information set reflected in the values of the random variables of the process 

up to time t - 1, and X~~ denotes the (n - 1)-th stacked dimensional vector defined as , 

~ (pr) - ~(pr) ~(pr) ~(pr) ~(pr) ~(pr) I 
X-i,t - (Xl,t ,X2,t , ... , Xi-l,t, XHl,t' ... Xn,t ) . (30) 

Because agents are supposed to know the consequences of their own actions and those of the other 

agents, the optimal predictor can be deduced from the givens of the problem. This predictor will 
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satisfy 

(31) 

That is, it is a perfect foresight because it confirms the deductions that went into it. Quoting 

Brian (1995), "when the agents' expectations induce actions that aggregatively create a world that 

validates them as predictions, they are in equilibrium and are called rational expectations". This 

equilibrium must be stable, or in other words, the optimal predictor Xipr)must be self-enforcing, 

since it is clearly in the interest of an agent to use this predictor when the other agents use it. But 

for this to occur, there are only two possibilities: (a) the trivial case where FO t is the identity 

map, I, and (b) the case where xipr) is a function of t whose values are the stable fixed-point of 

the family of maps {Foth. In this latter case, the existence and unicity of the common optimal 

predictor requires that the maps FO t be contractions, that is, that there exist a sequence of positive 

real number, {pt}t, with Pt < 1, 'it, and such that (see for example, Lusternik and Sobolev, 1989, 

p. 46) 

(32) 

It is an easy exercise to see that, in the case where /1i,t(X, Bi,t) = l(x > Bi,t), 'ii, the value of xipr) 
at t would be the stable solution (assuming its existence and unicity) of the equation 

(33) 

where liE [l,n] {x ~ Bi,t} denotes the number of agents whose preferences at t satisfy x ~ Bi,t, and 

x is an integer belonging to the interval [0, n]. 

When agents use the rational expectations' predictor, one has 

X - X~(pr) + c 
t - t .."t· 

An interesting result is obtained if the common optimal predictor xipr
) equals the "naive" predictor, 

X t - 1 , in which case X t will behave as an integrated process. More precisely, X t obeys to a discrete 

martingale model with barriers at x = 0 and x = n (see for instance Mills, 1993, pp. 90-91) : 

X t = Xt-l + ~t· (34) 

The naive predictor requires a minimum amount of knowledge, time and intelligent power, and is 

most efficient when the only relevant information in the past values of the series lie in the most 
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recent one. When ~t is a sequence of independent and identically distributed random variables, 

the martingale becomes a random walk, which since the pioneering work of Bachelier (1900) and 

the seminal paper of Fama (1965), has been widely accepted as a model for time series of prices 

at frictionless large stock markets. In this context, it would suggest that prices very quickly reflect 

changes in conditions of demand and supply, so that actual market prices should approximate the 

equilibrium price (see Holden et al., 1991, ch. 6, for an introduction to forecasting asset market 

prices). Consequently, any information in past prices cannot generate consistent profits, as they 

would already be discounted in the price. Moreover, the possibility of extreme events such as price 

crashes or temporary bubbles would be excluded, since any sudden news would be instantaneously 

and fully reflected in the price. That is, if a good were predicted to rise in price, some stockholders 

may desire to bid up the current price in order to cash in on the predicted capital gains, while if 

it were predicted to fall in price, they may be willing to sell their stocks of that good to avoid the 

predicted capital losses. 

In general, however, ~t is just a martingale difference, which suggests the possibility of "beating 

the market" by using appropriate nonlinear models for this volatility. Alternative models to the 

random walk are also obtained when full information on the history of Xt is not generally available, 

and/or when computational and time resources are limited. As a result, the predictor vector Xt will 

have components that are generally different from each other, and different from xIpr). The naive 

predictor will be at most suboptimal in this case in which agents will select their predictors as a 

compromise between efficiency, the time (opportunity) costs, and the data collection and processing 

costs. 

As an example, suppose that the only departure from the perfect rationality of the agents lies in 

their lack of information about the other agents' future actions, but that for each t, there is a 

fixed set of hypotheses materialized in a finite number of predictors available to all of them, say 

{xt)} k=l,K, that are chosen independently with equal probability accross agents, that is 

pi,t(k) = P(the i-th agent selects the k-th predictor at t) = pt(k), Vi. (35) 

We also assume the existence of a fixed set of evolving preferences, {Oi,th=l,n.Under these conditions 

of limited uncertainty, there will be a single common optimal predictor at t for all the agents. This 

will be given by 
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~(o) 1 "[ITn 1 ~ ~(k) X t = J{n-1 ~ . Pt (kj ) E(Xt!It-1; Xj,t = X t 3 ; Ot), 
kjE[l,KJ )=1 
j=l,n 

(36) 

Ni 

where Ot = (B1,t, B2,t, ... , Bn,d' and the sum is extended to all possible choices (J{n-l) of predictors 

for the n - 1 remaining agents. However, in general, 

x(o) ~ F. (X(o)) 
t r 8t t , (37) 

but instead 

~(o) 
X t = X t + 1]t + ~t, (38) 

where the new noise component 1]t in the model is introduced to account for the uncertainty of 

each agent about the other agents' plans. If in the stock price example we had xio) = Xt - 1 , the 

presence of the term 1]t would suggest the possibility of obtaining profits with trading rules that 

anticipate the market psychology. 

As a second example, suppose we are interested in finding optimal predictors under bounded 

rationality. Let us write 

and let 

n 

X t = L Zj,t, with Zj,t = l(Xj,t ~ Bj,t), 
j=l 

n 

X (-i) - "Z. 
t - ~ ),t· 

j=l 
Ni 

(39) 

(40) 

Brian (1995) argues that when some agents use different predictors, predictions of the future out-

come of the series will depend on the other agents' different predictions, and others' predictions 

of others' predictions, thus obtaining a state of ever-changing expectations (out of equilibrium) 

that leads to the breakdown of rational deduction. Since optimal predictors for boundedly rational 

agents are therefore self-referential and give rise to an infinite recursion of expectations, we will 

consider suboptimal predictors in which an agent's predictor only depends on the past history of 

the series and the behavior that he (she) expects from the other agents' collective action given this 

history of the series. By disaggregating the i-th agent's behavior from the collective behavior, the 

i-th agent's suboptimal predictor at t can be expressed as 



Xi,t Ei {XtIIt- I ; Ei(Xi-i)IIt_d} 

= Ei(xi-i) lIt-I) + 1 {Ei(xf-i) lIt-I) + 1 ::; Oi,t}. 
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(41) 

(42) 

To simplify further our discussion, suppose that agents realize the complexity of a forecasting rule 

based on the remote history of the series in the light of their limited computational and time 

resources, and that therefore they decide to use simply one-step-ahead forecasting rules. We will 

have 

= Ei(Xi-i)IXt_I) 

= Xt- I - l(Xi,t-I ::; Oi,t-I). 

(43) 

(44) 

And thus the i-th agent's predictor will evolve dynamically over time as the solution of time-varying 

nonlinear first-order autoregression : 

In a more general situation, it is clear that the order of the nonlinear autoregression to be satisfied 

by Xi,t will be equal to the highest lag of Xt considered in this predictor. 

To summarize, we have shown that these suboptimal predictors form an ecology which evolves 

deterministically and nonlinearly, and which depends on both past and present preferences, and a 

history of the series. In the stock market context, this suggests again departures from the market 

efficiency hypothesis and thus the possibility of obtaining real profits by using the appropriate 

nonlinear trading strategy. If now our i-th agent decides to use the linear "naive" predictor X t - I 

he (she) will commit a prediction error given by 

Xi,t - X t - I 

= 1 {Xt- I - l(Xi,t ::; Oi,t-I) + 1 ::; Oi,t} - l(Xi,t ::; Oi,t-I). 

(46) 

(47) 

These errors represent some of the information on the market which agents are unable to antici­

pate. When the preferences are very noisy, these prediction errors will no longer appear to have 

a systematic component (since masked by the state noise) and thereby will be difficult to detect 
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in the mean behavior of the process Xt. This amounts to saying that the dynamics of the process 

become approximatively linear in the mean, and that the naive predictor could be the common 

suboptimal one for practical purposes. 

The fact that prices are not purely random walks and the existence of profit opportunities has 

been pointed in many studies. For example, Lucas (1978) showed that asset prices in equilibrium 

models do not in general follow martingale processes. Poterba and Summers (1988) found evidence 

in support of an AR(l) process added to a random walk, and Maheswaran and Sims (1993) showed 

that there are classes of behavior for prices that are inconsistent with the martingale model. Also, 

Taylor (1994) reported on empirical evidence against the random walk hypothesis. As we have 

pointed, rejection of this hypothesis in price series amounts at saying that some information is not 

well reflected by the price on the day it first became known. 

To investigate the model capabilities for simulating extreme events such as bubbles or crashes, 

we will restrict again our discussion to the case of purely deterministic dynamics, that is when 

/-Li,t (x) = 1 (x > (}i,t). This means that investor i (i = 1, ... , n) will buy stocks at time t only if his 

(her) expected number of stockholders at time t is smaller than (}i,t, or put differently, if he (she) 

expects stock prices at t to be low enough for him (her) to buy. Thus (}i,t can be interpreted as a 

measure of the minimum level of returns from stocks at t that are acceptable for investor i, and this 

level will depend on the current level of the interest rates rt. By changing (}i,t, investors adjust their 

preferences on stocks at t (with respect to bonds). These adjustments may respond to exogeneous 

events (changes in corporate policy, social, political or even meteorological events) as well as to 

changes in rt. 

Depending on the investors' preferences, the stock market will show different sorts of behavior. 

For example, suppose that we have constant interest rates (rt = r, Yt) and that initially we have 

(}i,o(r) = ()*, Vi. If now investor j changed his (her) preferences so that (}j,l(r) < ()*, the number of 

stockholders at t = 1 will start to decrease, and the continuing anticipation of this market trend by 

every agent (which may regard the current number of the stockholders as an indicator of potential 

earnings) could become self-fulfilling and lead to a crash. This will occur unless interest rates are 

reduced to a level which discourages any investment on bonds. In fact, it is easy to see that a crash 

will follow when the condition 
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aBi,t(r) 0 
at <, (48) 

is satisfied Vi, t. Similarly, speculative bubbles will be obtained if 

8Bi,t(r) > 0 1../' t 
8t ' v't, . (49) 

If instead, we have 

(50) 

neither crashes or bubbles will develop, and the series Xt will show no upward or downward trending 

patterns. In practice, the formation of a crash or a bubble needs only that these conditions be 

satisfied by most investors' preferences most of the time. To see this, let us come back to the 

general model of previous sections with /-li,t = /-l and Xi,t = Xt-l, Vi, t and with Bi,t = Bi,t-l + Oi,t, 

Vi, t, where 10i,tl « Bi,t-I > O. If we further assume that the first-order partial derivatives of f.1 

exist, a Taylor expansion of /-l(Xt-l, Bi,t-l + Oi,t) around Bi,t-I obtains 

n 

X t ~ F(}t_l (Xt- I) + L Ai,t(Xt-r)Oi,t + ~t, (51) 
i=1 

with 

( 
(

8F(}t_l (Xt-r)) 
Ai,t Xt-r) = 80' > O. 

t,t O;,t= 0 

(52) 

As remarked in the previous section, if the {oi,th are stochastic processes of a certain type, their 

aggregation may produce in {Xt}t>o infinite variance patterns of integration or persistence in the 

mean behavior. That is the long strides in the sample paths of the process causing very slowly 

decaying autocorrelations (see for instance, Granger and Teriisvirta, 1993) that are typically found 

in stock price series. 

Notice however that a sustained tendency for negative values of Oi,t for most investors will enforce 

the convergence of E(XtIXt- l ) to 0 (crash). Similarly, if the expected profits of most investors 

have an upward trend, E(XtIXt-l) will converge to n (bubble). Thus in spite of being generally 

different, most of the investors' preferences will happen to behave similarly at certain periods of 

time where crashes or bubbles occur. 
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A common economic control instrument intended to prevent the development of crashes and bubbles 

are interest rates, also referred to as the value of money, r. Decreasing (increasing) interest rates 

make stocks more (less) attractive to investors. Formally, what we have is 

aei,t(r) 0 \..I' 

ar <, v~, t, (53) 

since investors respond to an increase in the returns of bonds by requesting higher returns from 

stocks, and thus by investing less on this sort of assets. Moreover, any realistic preference model 

should be able to respond to a lowering of r by shifting 8()i,t(r)/8t < 0 to 8()i,t(r)/8t 2:: 0, thus 

making it possible to move out of a crash. Conversely, when increasing r, the investors' preferences 

must be such that aei,t(r)/at > 0 be shifted to aei,t(r)/at ::; 0, so that a developing bubble could 

be exploded. This two-fold condition could be written as : 

(54) 

5 Experiment 

After discussing some theoretical aspects of the model, in this section we illustrate the different 

sorts of organizational behavior that are obtained with it, Consider again the case of deterministic 

dynamics, for which we have : 

FO t (Xt-I) (55) 
n 

n - L l(Cii,tX t-l > ei,t) 
i=l 

and ei,t ai,trt + bi,trt + Gi,tt, 

with different choices for the parameters Cii,t, ai,t, bi,t and Gi,t, and with n = 10. In this model rt 

represents the time-varying interest rate. Notice that 

ae' t (56) _t_, = ai,t, 8r 
a()· t _t_, = Gi,t + bi,tr, at 

a2(). t __ t_, 
= bi,t. 

arat 
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Therefore, according to our discussion in the previous section, we must have ai,t < 0, and bi,t < 0, 

Vi, t. Furthermore, if we assume rt = r = 0.02, bi t = b = -50, then Ci t < 1 for a crash, Ci t > 1 for , , , 

a bubble, and Ci,t = 1 for a stable pattern of behavior. In the sequel, except when explicitly stated, 

we take ai,t = a = -50, rt = r = 0.02 and C = 1. 

Figures 1 to 9 describe several forms of organizational behavior resulting from different modifica­

tions of the previous configuration for the parameters in the model. The plots show the series on 

top, the cross plot of Xt-l versus Xt (bottom left), and the initial preferences Bi,o (bottom right). 

The specific parameter choices in the simulation experiments are listed below for each of the fol­

lowing figures. 

1. Example of simple attractor (limit cycle) with (}:i,t = 1. 

2. Effect of partially random preferences with (}:i,t = 1. 

Here Bi,t = ar + brt + ct + 10 Ei,t con Ei,t rv U {[ -0.5,0.5]} independent random variables, 

with U {[a, b]} representing the uniform distribution in the interval [a, b]. 

3. Effect of randomly time-varying sensitivity to the interest rate with (}:i,t = 1. 

Here ai,t = -50 (1 + Ei,t) con Ei,t rv U {[-0.5, 0.5]} independent random variables. 

4. Example of crash with (}:i,t = 1, and c = 0.9. 

5. Example of controlled crash with (}:i,t = 1, and c = 0.9. 

Here r is reduced by a factor of 0.95 at each time t for which one has i L:f=o Xt-i < 0.1 n. 

6. Example of bubble with (}:i,t = 1, and c = 1.1. 

7. Example of controlled bubble with (}:i,t = 1, and c = 1.1. 

Here r is increased by a factor of 1.005 at each time t for which on has i L:f=o Xt-i > 0.8 n. 

8. Example of persistence in the mean behavior. 

a) Here (}:i,t = (}:i E (0,1) selected uniformely at random, and Ci,t rv U {(0.5, 1.5)} independent 

random variables. 

b) Here (}:i,t = (}:i E (-0.5,0) initally, and Ci,t were selected as in a). The agents were allowed 

to change their one-step-ahead predictors at t in the following way. If (}:i,t Yt-l < Yt (> Yt) 

then (}:. t+l = -(}:, t. On the other hand (}:' t+l = {ai,t+di(Yt-ai,tYt-l)ai,t ~f ai,t>O, where d, are the 
t, t, ,t, ai,t+di(Yt-ai,tYt-l)ai,t If ai,t>O,' t 

coefficients of the adaptation rule, selected at random from a uniform distribution in the range 

[0,0.001]. 
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Figure 1: Limit cycle. 
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Figure 8: Persistence (a). 
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Figure 9: Persistence (b). 


