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Me gustaŕıa mostrar mi gratitud al Prof. Erkki Oja, con el que tuve la suerte de entender
los entresijos del algoritmo FastICA durante el verano de 2006 en Helsinki. Gracias también
al Prof. David Brillinger por iniciarme en el mundo de los cumulantes y por hacerme sentir
una más de sus estudiantes durante mi estancia en la Universidad de Berkeley en 2009.
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Resumen

El objetivo de esta tesis es aplicar el análisis de componentes independientes (ICA) sobre

datos multivariantes de series temporales. También, se propone un nuevo procedimiento

para predecir un vector de series temporales a partir de un número reducido de componentes

independientes.

En el caṕıtulo 1 analizamos la relación entre ICA y métodos clásicos de análisis multi-

variante: ICA es una extensión del análisis de componentes principales que calcula los com-

ponentes independientes (ICs) como la rotación que maximiza la independencia de los com-

ponentes principales; ICA puede definirse como un modelo de análisis factorial no-Gaussiano

(Hyvärinen and Kano (2003)); ICA es un caso particular de método de búsqueda de proyección

cuando la independencia de los componentes se mide en términos de su no-Gaussianidad; ICA,

al igual que el algoritmo de Peña and Prieto (2001), detecta valores at́ıpicos al proyectar los

datos en las direcciones de máxima kurtosis. Además, en este caṕıtulo, tratamos el problema

de la reducción de la dimensionalidad en series temporales, describiendo brevemente algunos

modelos multivariantes como el análisis canónico y el modelo factorial dinámico. Finalmente,

comentamos los trabajos que se han propuesto en la literatura para aplicar ICA sobre datos

con estructura temporal.

En el caṕıtulo 2 proponemos un nuevo modelo de factores con heterocedasticidad condi-

cionada, el modelo GICA-GARCH. Este modelo asume que las observaciones están generadas

por una combinación lineal de factores no observados, que son independientes y condicional-

mente heterocedásticos. El modelo GICA-GARCH supone que existe un número reducido

de factores que explican los movimientos comunes de los datos observados y que tienen het-

erocedasticidad condicionada. Además, asume que la matriz de covarianzas condicionada de

las observaciones es diagonal, y propone aproximarla mediante la combinación lineal de las

varianzas condicionadas de los factores comunes. La ventaja del modelo GICA-GARCH con

respecto a otros modelos de factores GARCH reside en el uso de ICA para la estimación de los
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componentes comunes. Primero, tal y como muestran los resultados de las simulaciones, ICA

reproduce bastante bien el exceso de kurtosis y obtiene ‘buenos’ estimadores de los compo-

nentes no-Gaussianos. Segundo, como los ICs son estad́ısticamente independientes, se pueden

modelar por separado, ajustando distintos modelos ARMA-GARCH a cada uno de ellos, y

aśı se simplifica el problema de estimar un modelo GARCH multivariante, reduciéndolo a la

estimación de unos pocos modelos ARMA-GARCH univariantes. Por último, tal y como se

muestra en la aplicación emṕırica, las predicciones un paso adelante de los rendimientos del

IBEX 35 dadas por el modelo GICA-GARCH mejoran las dadas por los modelos O-GARCH

(Alexander (2001)) y CUC-GARCH (Fan et al. (2008)).

En el caṕıtulo 2 también presentamos una comparativa entre el modelo GICA-GARCH y

otros modelos de factores GARCH, distinguiendo entre los que suponen estructura de factores

en la distribución no condicionada de los datos, como el modelo de Diebold and Nerlove

(1989) y el modelo DF-GARCH (Alessi et al. (2006)), y los que la asumen en la distribución

condicionada, como el modelo FACTOR-ARCH (Engle (1987)), la familia de modelos GARCH

ortogonales (Alexander (2001), van der Weide (2002), Lanne and Saikkonen (2007)), y el

modelo CUC-GARCH (Fan et al. (2008)).

En el caṕıtulo 3, presentamos un nuevo procedimiento, llamado FOTBI, para aplicar

ICA a series temporales. Dado un conjunto de series temporales multivariantes, FOTBI es un

algoritmo diseñado para extraer los componentes independientes y no-Gaussianos que generan

dichos datos. Para ello, FOTBI propone la diagonalización conjunta de varias matrices de

cumulantes temporales de cuarto orden. Aśı, FOTBI utiliza tanto la no-Gaussianidad como

la estructura temporal de los datos, y puede verse como una extensión del algoritmo JADE

(Cardoso and Souloumiac (1993)) que sólo tiene en cuenta la no-Gaussianidad de los datos,

y del algoritmo SOBI (Belouchrani et al. (1997)) que se basa en la estructura temporal de

las observaciones. Los experimentos de Monte Carlo muestran la eficiencia del FOTBI para

estimar componentes independientes que son series temporales no lineales.

El caṕıtulo 4 trata el problema de predicción y extracción de señal en series temporales

multivariantes. Se presenta ICA como un procedimiento automático de extracción de señal.

Se aplica ICA al problem de descomposición de una serie temporal, y se estiman los compo-

nentes de interés, tendencia, ciclo y estacionalidad, sin asumir ninguna estructura a-priori.

La ventaja de ICA es que los ICs son, por hipótesis, estad́ısticamente independientes, y por

tanto, los estimadores ICA para la tendencia, la estacionalidad, y el ciclo, van a ser indepen-
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dientes entre śı de modo natural. Los resultados de las simulaciones demuestran que FOTBI

puede considerarse un primer paso para definir un procedimiento automático de extracción

de señal. Este resultado se confirma en la aplicación emṕırica, al identificar los componentes

de tendencia y estacionalidad de las series del IPI de Alemania, Italia, Francia, y España.

También en el caṕıtulo 4 se propone un procedimiento para predecir un conjunto multi-

variante de series temporales utilizando sólo un número reducido de ICs. Nuestro método

se basa en la independencia estad́ıstica de los ICs. La idea es predecir los ICs utilizando

modelos univariantes y utilizar esas predicciones de modo que, combinándolas con los pesos

de la matriz de carga, se obtenga las predicciones para las series originales. Para analizar la

eficiencia de nuestro procedimiento, predecimos las cuatro series del IPI mencionadas ante-

riormente utilizando los componentes de tendencia y estacionalidad estimados con ICA. Los

resultados muestran el buen comportamiento del FOTBI, especialmente en el medio (h = 6)

y largo (h = 12) plazo. En el corto plazo (h = 1, 3) no hay diferencias significativas en-

tre las predicciones dadas por FOTBI y las dadas por los modelos de referencia de los IPIs

(modelos ARIMA univariantes identificados con la especificación automática del programa

TRAMO/SEATS).
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Chapter 1

Introduction

The aim of this thesis is to analyze the performance of independent component analysis (ICA)

when it is applied to a vector of non-Gaussian time series in order to find an ‘interesting’

representation of the observations. First, we give an introduction to the ICA methodology

and how it performs on estimating a set of non-Gaussian and statistically independent latent

factors. Second, we review some basic ideas of multivariate time series analysis, paying special

attention to well known dimension reduction techniques previously proposed in the literature.

Third, we give an overview of the existing research that links ICA and time series data. Finally

we outline the thesis.

1.1 Motivation

In many fields, such as Medicine, Engineering, Finance, and Economics among others, the

amount of available data is continuously growing, and the data sets used in their empirical

applications become very large. In addition, large data sets usually contain redundant infor-

mation and/or are observed with high level of noise which make hard their analysis. Then,

an important task in multivariate data analysis is to find a meaningful representation of the

data which describe the ‘interesting’ features of the observations.

Principal component analysis (PCA), factor analysis (FA), and projection pursuit (PP)

are classical examples of linear transformation methods proposed for finding projections of the

data that have ‘interesting’ structure. PCA (Hotelling (1933)) and FA (Spearman (1904)) can

be seen as dimension reduction techniques that transform the original data (highly correlated)

in a set of a few underlying components that are maximally uncorrelated. Both methods

compute the components of interest by using only the information contained in the data

9



1.1. Motivation 10

covariance matrix. Although PCA and FA are very related, they are not identical. PCA

takes into account all variability in the variables and the principal components are computed

by maximizing the amount of total explained variability. FA tries to explain all the common

variability by a set of common factors. Both methods are equivalent if the covariance matrix

of the specific components in the FA model can be written as σ2I.

Empirical applications show that, if the observations are Gaussian distributed, the pro-

jections of the data computed by PCA and FA will reveal interesting features of the data.

However, in many situations where the Gaussianity assumption does not hold, the represen-

tation of the data given by either the PCs or the latent factors (estimated by FA) could

not describe the data in a meaningful way. For example, they cannot capture higher-order

independence and possibly they cannot split the data into clusters. For non-Gaussian data,

the information that is contained in the covariance matrix is not enough to obtain the ‘inter-

esting’ projections of the data, and higher-order statistics are required. PP (Friedman and

Tuckey (1974)) is a classical higher-order method that identifies the meaningful projections

of the data (in the sense of displaying some relevant structure) as those that are further away

from the Gaussian distribution (Huber (1985) and Jones and Sibson (1987), among others,

argue that the Gaussian distribution is the least interesting one). Peña and Prieto (2001)

proposed a new PP algorithm to identify clusters in multivariate data sets by projecting the

observations onto the directions of both maximum and minimum kurtosis. Thus, when the

data are projected in the direction that either maximizes or minimizes the kurtosis coefficient

of the projections, the distance between clusters becomes as large as possible. In particular,

Peña and Prieto (2001) showed that projecting the data in the directions of maximum kurtosis

detects groups of outliers in the observations.

More recently independent component analysis (ICA) has emerged as an alternative method-

ology that uses higher-order information to find a set of underlying components (called in-

dependent components (ICs)) which provide a meaningful description of the data. The goal

of ICA (Jutten and Hérault (1991), Comon (1994)) is to look for the projections of the data

that become as independent as possible. That is, ICA defines the most ‘interesting’ compo-

nents as those that are maximally independent. On the one hand, ICA is related to PP in

the sense that ICA looks for the maximum independence of the components by maximizing

their non-Gaussianity. In particular, if the non-Gaussianity is measured by using the kurtosis

coefficient, ICA can be related to the Peña and Prieto (2001) procedure in the sense that
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ICA is able to detect the outliers of the data set (Baragona and Battaglia (2007)). On the

other hand, ICA can be seen as an useful extension of PCA, since the ICs are estimated

by using higher-order statistics and then, under non-Gaussinity assumption, they will reveal

more useful information than the PCs.

Although ICA was not formally defined until 1994 (Comon (1994)), the concept of statisti-

cal independence to estimate a set of underlying components without any a-priori information

was firstly used by Hérault and Jutten (1986) and Jutten and Hérault (1991) in the context

of neural networks. ICA is an active research topic that has been applied to several disci-

plines. Some examples are pattern recognition (Hyvärinen (1999b), Bingham (2001), and Bell

and Sejnowski (1997) among others), visual brain theories (Vigàrio et al. (1998)), astronomy

(Funaro et al. (2001)), telecommunications (Ristaniemi and Joutsensalo (1999)), and finance

(Kiviluoto and Oja (1998)) among others.

In most of the previous applications, the observations are simply random vectors or data

that do not exhibit temporal dependencies. However, multivariate time series data usually

have a pronounce autocorrelation structure. Of course we can apply any of the previous

methods, PCA, FA, PP, or ICA, to find the ‘interesting’ projections of multivariate time series

data, but we might not obtain the desirable components (that is, the ones which describe the

meaningful structure of the data). On the one hand, as we have discussed previously, PCA

and FA only work properly under Gaussianity assumption, and their estimated components

will not be represent the most important features of non-Gaussian data. On the other hand,

although we know that both PP and ICA will provide meaningful components under non-

Gaussianity assumption, neither PP nor ICA exploit all the available information in the

observations (that is, the non-Gaussianity and autocorrelation structure of the data). Thus,

whereas PP looks for the maximally non-Gaussian projections of the data without taking

into account their temporal structure, ICA exploits either the non-Gaussianity or the time

dependencies of the data to estimate the components, but not both features together. Then,

it seems that the results given by ICA will be likely to be improved if we incorporate the

non-Gaussianity as well as the time-structure to find the projections of time series data. The

aim of this thesis is to propose ICA procedures for multivariate time series by combining those

two criteria.

The rest of this chapter is organized as follows. Section 1.2 defines the ICA methodology

and describes some of the principles used to estimate the ICs. Section 1.3 reviews well known
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procedures proposed in the literature to reduce the dimensionality in multivariate time series.

Section 1.4 introduces the existing second-order procedures to apply ICA in time series data.

Finally, Section 1.5 gives an overview of the structure of this thesis.

1.2 Independent components analysis (ICA)

Independent component analysis (ICA) is an active interdisciplinary research topic since the

early 80s. However, it was not formally defined until middle 90s (Comon (1994)). ICA uses the

notion of statistical independence to estimate the underlying components which linearly gen-

erate the set of observations. In the following, we give an overview of the general description

of ICA and discuss the relationship between ICA and classical multivariate techniques.

1.2.1 ICA model

Let x = (x1, . . . , xm)′ be an m-dimensional vector of observations. ICA assumes that x

is linearly generated by a set of r, with r ≤ m, mutually independent and non-Gaussian

distributed components which are unknown. The ICA model may be written as,

x = As (1.1)

where A is an m × r unknown matrix of constant parameters, that is called mixing matrix,

and s = (s1, . . . , sr)
′ is the vector of non-Gaussian and mutually independent underlying

components, which are called independent components (ICs). In addition, it is assumed

without loss of generality that E{x} = 0. Given a random sample of x, (x1, . . . ,xn), the aim

of ICA is to estimate both, A and s, only from the observations. Thus, ICA tries to find a

linear transformation of the data,

ŝ = Bx (1.2)

where the separating matrix, B, of size r ×m, is such that the components of ŝ become as

independent as possible. However, assuming statistical independence on s is not enough to

guarantee the identifiability of model (1.1), and some additional assumptions should be made

(Comon (1994)):

1. The number of observed variables cannot be greater than the number of ICs, r ≤ m.

Moreover, the mixing matrix is assumed to be a full rank matrix, rg(A) = r.



1.2. Independent components analysis (ICA) 13

2. Calling ai to the columns of A, we have from (1.1) that x =
r∑
i=1

aisi and since both A

and s are unknown, for any αi 6= 0, we also have x =
r∑
i=1

(
1
αi

ai

)
(siαi). Then, both si

as well as siαi could be the ICs of x, but their variances take different values. To avoid

such indeterminacy, the variances of the ICs are fixed to be equal to one, var(st) = Ir.

However, the ICs are still indeterminate with respect their sign.

3. No more than one IC could be Gaussian distributed. If there are two or more Gaus-

sian components, the observations will become more and more Gaussian and then, the

components cannot be separated (by the central limit theorem, the sum of a set of inde-

pendent random variables tends to be Gaussian distributed). Under Gaussianity, ICA

and PCA are equivalent, and the ICs will be indeterminate under rotations.

An important drawback of ICA is that despite of imposing those three identifiability

conditions on (1.1), the ordering of the ICs is still ambiguous.

Most of the literature related to ICA deals with the basic ICA linear model. This model

is a particular case (1.1) but assuming, by simplicity, that the dimension of x equals the

dimension of s, r = m. However, note that this need not necessarily be the case in many

empirical applications, where the interest is to estimate only a small number of components.

In that case, PCA is usually applied to reduce the dimension of the observations (from m to

r) and then, the basic ICA model on the r-dimensional vector of observations is hold. In the

next section, we review different approaches to solve the basic ICA model when it is applied

to a set of random vectors. Proposals to apply ICA on multivariate time series data will be

discussed in Section 1.4.

1.2.2 Independent components estimation

Most of the algorithms proposed to solve the basic ICA model usually incorporate additional

constraints which yield further simplification of the procedure. One popular constraint consists

on imposing orthogonality on the mixing matrix, A, which, in the basic ICA model, is a square

matrix of order m. In that way, the ICA solution is restricted to the space of orthogonal

matrices and the number of parameters to be estimated is reduced from m2 in A to m(m+1)
2

in the new orthogonal mixing matrix. The orthogonality constrain is naturally included in

the model by the multivariate standardization of the observations that transforms the original
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data into a set of new observations that have zero mean and identity covariance matrix. That

is,

z = Vx (1.3)

where V is an m ×m matrix such that E{z} = 0 and Vz = E{zz′} = Im. ICA procedures

usually applies PCA to perform the multivariate standardization of x as follows. Let Vx =

E{xx′} be the covariance matrix of x. The eigenvalue decomposition of Vx is given by

Vx = QDQ′, where Qm×m is the orthogonal matrix of eigenvectors (in columns) and Dm×m =

diag (d1, ..., dm), with d1 ≥ . . . ≥ dm, is the matrix of eigenvalues. Taking V = D−1/2Q′ in

(1.3), the original observations, x, are multivariate standardized, and the ICA model (1.1)

can be written in terms of the standardized data, z, as,

z = Ãs (1.4)

where Ã = VA = D−1/2Q′A is the new mixing matrix of size m×m that is clearly orthogonal.

Moreover, this procedure can also be applied to reduce the dimensionality of the data from m

to r by discarding the m− r smallest eigenvalues of Vx (then, z and Ã will be, respectively,

the r × 1 vector of observations and the r × r orthogonal mixing matrix).

The estimates of the ICs will be given by those linear combination of the standardized

data,

y = Wz, (1.5)

where W is an orthogonal matrix of size m×m (or r×r if the dimension is reduced), that are

maximally independent. Depending on how the statistical independence is measured, Hyväri-

nen et al. (2001) distingue three ICA estimation principles: maximizing the non-Gaussianity

(Delfosse and Loubaton (1995), Hyvärinen and Oja (1997), Hyvärinen (1999a), and Car-

doso and Souloumiac (1993) among others), minimizing the mutual information (Bell and

Sejnowski (1995) and Amari et al. (1996) among others), or maximizing the likelihood of the

components (Gaeta and Lacoume (1990) and Pham et al. (1992) among others).

Maximization of non-Gaussianity

Many ICA procedures estimate the ICs by focusing on their non-Gaussianity. They maximize

the independence of the ICs by maximizing their non-Gaussianity. There are several ways

to measure non-Gaussianity and each of them leads to different ICA algorithms. The first

alternative measures the non-Gaussianity by using the kurtosis coefficient. The kurtosis of

the i-th IC, yi = w′iz (see (1.5)), is given by: kurt(yi) = E{y4
i } − 3E{y2

i }2. kurt(yi) can take
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positive or negative values and it is equal to zero if yi is Gaussian. The idea of measuring the

non-Gaussianity with the kurtosis was firstly implemented by Delfosse and Loubaton (1995).

However, since the kurtosis is highly sensitive to outliers, it will not be a robust measure of

non-Gaussianity.

As an alternative to the kurtosis coefficient to solve the lack of robustness, the second

approach proposes to use the entropy to measure the non-Gaussianity. Since, for a given co-

variance matrix, the distribution that has highest entropy is the Gaussian distribution (Cover

and Thomas (2001)), the principle of maximizing the non-Gaussianity is equivalent to mini-

mizing the entropy. The entropy of a random vector, y, is defined as H(y) = −E{logpy(ξ)},

where py(ξ) is the probability that y is in the state ξ. However, since the entropy is not

invariant to linear transformations (H(Wz) = H(z) + log |det W|), it is commonly accepted

to use the negentropy, instead of the entropy, as a measure of non-Gaussianity. Negentropy

can be seen as a measure of distance from Gaussianity that is defined by:

J(y) = H(yGauss)−H(y), (1.6)

where y is a random vector (Gaussian or non-Gaussian) and yGauss is a random vector

whose covariance matrix is equal to that of y. Since negentropy is invariant to linear

transformations, is always non-negative, and is zero iff y is a Gaussian vector, negen-

tropy can be seen as a ‘good’ index to measure non-Gaussianity. However, computing

the negentropy as in (1.6) is quite difficult and it is usual to take into account different

approximations. For example, Comon (1994) proposes an approximation based on poly-

nomial functions, J(w′iz) ≈ 1
12E{(w

′
iz)3}2 + 1

48kurt(w
′
iz)2, and Hyvärinen (1998b) uses a

non-quadratic function, G(·) (usually G(·) = tanh(·)), and approximates the negentropy by

J(w′iz) ≈ E{G(w′iz)}−E{G(yGauss)}2. The FastICA algorithm (Hyvärinen and Oja (1997),

Hyvärinen (1999a)), that will be introduced in the next chapter, uses the kurtosis coefficient

and/or the negentropy to measure the non-Gaussianity of the components.

The third approach to measure the non-Gaussianity of the components is based on higher-

order cumulants. Higher-order cumulants are closely related to higher-order moments and

both provide the same statistical information. However, higher-order cumulants have some

useful statistical properties that make them preferable to solve the ICA problem. Thus, for

instance, the cumulants of order higher than two of Gaussian random vectors are equal to

zero. Furthermore, it is easy to see that two (or more) random vectors are independent
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if their cross-cumulants of order higher than two are equal to zero (for more details about

cumulants and their properties, see Chapter 3). JADE (Cardoso and Souloumiac (1993)),

that will will be presented in Chapter 2, is a well known ICA algorithm that estimates the

ICs by maximizing their non-Gaussianity using fourth-order cumulants.

Minimization of mutual information

In information theory, the mutual information of two or more random variables is commonly

used to measure the statistical dependence among them. The mutual information of an r-

dimensional random vector, y = (y1, . . . , yr)
′, is defined by (Cover and Thomas (2001)):

I (y1, . . . , yr) =

r∑
i=1

H(yi)−H(y). (1.7)

Moreover, mutual information can also be expressed as the Kullback-Leibler (KL) distance

between the product of the marginal distributions of the two (or more) random variables and

the random variables’ joint distribution. That is,

I (y1, . . . , yr) = KL

(
py(ξ),

r∏
i=1

pi(yi)

)
(1.8)

where py(ξ) is the joint distribution of y and pi(yi) are the marginal distributions of {yi}mi=1.

Thus, using the concept of KL distance, it is easy to see that the mutual information is y

is always a non-negative measure of independence and I(y1, . . . , yr) = 0 iff y is a vector of

independent random variables. Therefore the ICA procedures which try to find the directions,

{wi}i=1,...,r, that minimize I(w′1z, . . . ,w
′
rz), are actually looking for the components, w′iz,

that are maximally independent. Examples of algorithms that follow this approach are given

by Bell and Sejnowski (1995) and Amari et al. (1996) (InfoMax) among others. Since the

mutual information is defined from the entropy, as FastICA does, those algorithms computes

the mutual information by using different approximations for the entropy.

Maximization of likelihood

The classical estimation principle of maximum likelihood was also applied to estimate the ICs

(see Gaeta and Lacoume (1990) and Pham et al. (1992) among others). In particular, Pham

et al. (1992) showed that, from model (1.4),

pz(z) = ps(s)

∣∣∣∣∂s

∂z

∣∣∣∣ = ps(s) |det W| ,

i.e.,

pz(z) ≡ L(W) =
r∏

i,j=1

pi(w
′
izij) |det W| (1.9)
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where pi(·) is the marginal distribution of the i-th IC. Taking logs in (1.9), we have the

contrast function that is used to estimate the ICs by the maximum likelihood principle:

logL(W) =

r∑
i,j=1

log pi(w
′
izij) + n log |det W|

The main drawback of this approach is that the marginal distributions of the ICs are unknown

and non-parametric estimation methods are required to estimate

Despite that the properties and the optimality criteria of the three estimation principles

are quite different, many theoretical links are established among them. For example, Cardoso

(1997) presented the mathematical equivalence between the mutual information and maximum

likelihood approaches. Moreover, Lee et al. (2000) showed that negentropy maximization (that

is, maximizing non-Gaussianity) also has equivalent properties. Therefore, since the three

approaches are mathematically equivalent, it seems that there exist a unifying framework for

ICA, where the ICs are obtained as the solution to the following optimization problem:

max
‖wi‖2=1

E{±G(w′iz)} (1.10)

where G(·) is a non-quadratic function. Then, choosing the estimation principle is equivalent

to choose G(·), and the statistical properties of the ICs estimates will depend on that election.

In this thesis, we will focus on the estimation of the ICs by the maximization of the

non-Gaussianity of the components.

1.2.3 Relation to other multivariate methods

In this section, we analyze the relationship between ICA and classical methods previously used

in the literature to simplify the structure of large data sets: principal components analysis

(PCA), factor analysis (FA), and projection pursuit (PP). ICA, as well as PCA, FA, and PP,

is based on the idea of finding an ‘interesting representation’ of the data by the projection of

the observations, but the concept of ‘interesting representation’ differs from one method to

another.

In PCA, the ‘interesting representation’ of the data set is given by those projections of the

data that are mutually uncorrelated and explain as much of the variability in the observations

as possible. These projections, called principal components, will be statistically independent

only if the observations are Gaussian distributed. Thus, ICA can be seen as a generalization
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of PCA in the sense that the ICs will be estimated by the rotation of the principal components

that makes them as independent as possible.

ICA is related to FA in the sense that model (1.1) is quite similar to the model used

in classical FA. However, FA assumes uncorrelated underlying components, whereas ICA

assumes non-Gaussian factors in addition to their statistical independence. Then, ICA can be

seen as a non-Gaussian FA (Hyvärinen and Kano (2003)) that uses higher-order information

to uniquely identify the model (1.1). By the non-Gaussianity assumption on the underlying

components, ICA will be very helpful to determine the optimal factor rotation, without using

traditional methods like varimax. That is, estimating the ICs is equivalent to find the optimal

rotation of the latent factors in FA.

If ICA measures the statistical independence of the components in terms of non-Gaussianity,

it could be seen as an special case of PP, which tries to find those projections of the data that

are far away from Gaussianity. Therefore, measures of non-Gaussianity such as kurtosis or

negentropy could be considered as projection indexes in PP. ICA differs from PP in the fact

that ICA is based on a data generating model that makes easier the statistical inference and

the prediction on the data.

1.3 Multivariate time series models

When we have several time series data, dynamic relationships usually appear among them,

and in order to capture those interactions, the data should be modelled using a multivariate

framework. Vector ARMA models and simultaneous equation econometric models are well

known approaches for examining temporal relationships among multiple time series. However,

since for both modelling approaches the number of parameters to estimate grows rapidly with

the number of series considered, they are not very convenient for large dimensional data sets.

Then, the so-called curse of dimensionality is an important problem in multivariate time series

analysis. Next, we present some popular procedures for dimension reduction.

1.3.1 Dimension reduction techniques

The problem of dimensionality reduction have attracted great attention in multivariate time

series literature since late 70s. Most of techniques proposed to achieve dimensionality reduc-

tion in time series data are extensions of multivariate classical methods such as PCA and FA
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among others. Those methods are based on the idea that there exist a few underlying com-

ponents, which are given by ‘interesting’ linear combinations of the data, that represent the

relevant dynamic features of the observations. Tiao and Tsay (1989) have supported the use-

fulness of using linear combination of the time series data to achieve dimensionality reduction.

Then, the general problem of dimension reduction in multivariate time series can be formu-

lated as follows: let xt = (x1t, ..., xmt)
′ be an m-dimensional time series vector of observations.

The aim to achieve dimensionality reduction in xt is to look for a linear transformation,

yt = Mxt (1.11)

where M is the parameter matrix of size r×m, r < m, and yt = (y1t, ..., yrt)
′ are the r linear

combinations of the observations that capture the dynamic relationships among them. On

the one hand, if xt is a stationary time series vector, it will interesting to find those linear

combinations of xt that are white noise processes. Then, the r remainder will represent the

dynamic structure of xt. On the other hand, if xt is non-stationary, its dynamics will be given

by the linear combination that are non-stationary and the interest will be to estimate the

stationary linear combinations (or cointegration relationships) of xt. Then the dimension of

xt is reduced to the space generated by the r non-stationary linear combinations.

Literature on dimensionality reduction in multivariate time series is vast (see, for example,

Peña and Poncela (2006a) for a survey). Here we review three methods that come from

standard multivariate techniques: principal components in time series data (Stock and Watson

(2002)), canonical analysis (Box and Tiao (1977)), and dynamic factor model (Geweke and

Singleton (1981), Brillinger (1981), Peña and Box (1987), Forni et al. (2000), and Peña and

Poncela (2006b) among others).

Principal components in time series data

Principal component analysis (PCA) has been applied to build economic indicators from mul-

tivariate time series data (see, for example, Stock and Watson (2002)). This approach, that

is an extension of classical PCA, uses second-order information to separate the stationary

underlying components from those linear combinations of the data that are white noise pro-

cesses. Let us assume that the observations, xt, is a vector of m stationary time series with

zero mean. Let Γx(k) = E{xt−kx′t} be the lagged k covariance matrices of xt, ∀k. The aim

of PCA is to find the r orthogonal directions, mim
′
i = 1 where mi is the i-th column of M,
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such that the projection of the data,

yit = m′ixt ∀i = 1, ..., r, (1.12)

explain maximum percentage of total variability. The linear combination of the data given

by (1.12) are the principal components (PCs). The solution to the PCA problem is given by:

Γx(0)mi = λimi. That is, the directions of projections, {mi}ri=1, which define the PCs as in

(1.12), correspond to the eigenvectors of Γx(0). Moreover, the variance of the PCs defined as

in (1.12) are the eigenvalues of Γx(0), λi = m′iΓx(0)mi. Then, if the eigenvalues are sorted

decreasingly, λ1 ≥ . . . ≥ λr, it is clear that the first PC, y1t, will be the projection of xt in

the direction given by the eigenvector, m1, associated to the largest eigenvalue.

If the data have some dynamics, assuming that the PCs are generated by yit = Ψ(B)ut,

we will have: var(yit) = σ2
u

∑
i

Ψ2
i where σ2

u = var(ut). According to this results, the PCs that

are close to be non-stationary (they are the ones associated to the largest eigenvalues) could

be separated to those PCs that are white noise processes (which correspond to the ones that

come from the smallest λi). If there is any xit that is given by a linear combination of some

xjt, with j 6= i, Γx(0) will have some null eigenvalues. In that case, those eigenvalues that are

equal to zero will provide the linear combinations among the components of xt.

If xt is a non-stationary time series vector, xt ∼ I(d), the matrices Γx(k) are not well-

defined. Peña and Poncela (2006b) define the generalized sample covariance matrices as:

Cx(k) =
1

T 2d

∑
(xt−k − x)(xt − x)′, (1.13)

where x = 1
T

∑
xt. These matrices play the same role than the sample covariance matrices

in the stationary case for identification purposes. Thus, using the same optimality criterion

as before, we will get analogous results: whereas the non-stationary components will be the

PCs associated to the largest eigenvalues of Cx(0), the PCs which come from the smallest

eigenvalues will correspond to white noise processes.

Canonical analysis

The canonical analysis, that was proposed as an extension of PCA, solves the problem of

dimensionality reduction using the concept of predictability (Box and Tiao (1977)). The idea

of canonical analysis is finding the linear combinations of xt, defined as in (1.12), which have

maximum (or minimum) predictability. These components are called canonical variables.
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Given a time series vector, xt, we can always write the orthogonal decomposition,

xt = x̂t−1(1) + εt (1.14)

where x̂t−1(1) is the one steap ahead prediction of xt, and εt is the one step ahead prediction

error with zero mean and Σ covariance matrix. Since x̂t−1(1) and εt are uncorrelated, Γx(0)

can be decomposed as: Γx(0) = Fx(0) + Σ, where Fx(0) = E{x̂t−1(1)x̂t−1(1)′}. By (1.14),

the canonical variables given by (1.12) can be written as yt = ŷt−1(1) + ut, where ut = m′iεt.

Then, the predictability of yt, p, is defined as (Box and Tiao (1977)):

p =
Fy(0)

Γy(0)
=

m′iFx(0)mi

m′iΓx(0)mi
= 1− m′iΣmi

m′iΓx(0)mi
, 0 ≤ p ≤ 1.

It can be shown that the direction of projection, mi, which maximizes the predictability of

yit satisfies: Qmi = λimi, where Q = Γx(0)−1Fx(0) = I− Γx(0)−1Σ. That is, yit will have

maximum predictability if mi is the eigenvector of Q that is associated to the largest eigen-

value. According to this result, we can separate the canonical variables that are stationary

from the ones that are non-stationary. On the one hand, the stationary canonical variables

will be those projections of xt in the direction of the eigenvectors of Q that are associated

to the smallest eigenvalues. On the other hand, the non-stationary canonical variables will

be those linear combinations of maximum predictability (that is, those yit where mi are the

eigenvectors of Q associated to the eigenvalues close to one). Then, since it is possible to find

a stationary linear combination of non-stationary time series, it could be said that canonical

analysis introduces the concept of cointegration.

Dynamic factor models

Despite that previous methods are very useful for understanding and simplifying the dynamic

structure of a time series vector, none of them can be considered model-based methodologies

and therefore, it is difficult to make statistical inference or prediction from them. As an alter-

native for those purposes, dynamic factor models (DFM) were introduced (see, for example,

Geweke and Singleton (1981), Brillinger (1981), Peña and Box (1987), Forni et al. (2000), and

Peña and Poncela (2006b) among others).

The DFM assumes that all the common dynamic structure of xt comes from through a set

of few common factors. The data is assumed to be generated by a set of r underlying factors,

r < m, that represent the common dynamic structure of the m time series data, plus a noise
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term that represents the specific component of each xit. The DFM can be formulated as:

xt = Λf t + nt (1.15)

where ft is the r dimensional vector of common factors (that may be stationary or non-

stationary) which are assumed to follow a VARIMA(p, d, q) model: Φf (B)∆dft = Θf (B)et; Λ

is an unknown m× r matrix of parameters, that is called loading matrix; nt is the m dimen-

sional vector of idiosyncratic components (some of them could be white noise process while

others could have stationary dynamic structure). In general, it is assumed nt ∼ VARMA(p, q),

i.e., Φn(B)nt = Θn(B)at where Φn and Θn are diagonal m×m matrices, and at ∼ N(0,Σa)

with Σa diagonal. In addition, two extra assumptions are made: (1) the covariance matrices

of et and nt are diagonal; (2) et and at are mutually uncorrelated for all lags. However, previ-

ous assumptions are not enough to guarantee the identifiability in (1.15): the set of common

factors that generate xt will be either correlated or uncorrelated. To avoid identifiability prob-

lems, the loading matrix is assumed to be orthogonal, Λ′Λ = Ir. In that way, the common

factors, ft, will be uncorrelated but they are indeterminate under rotations.

If xt is a vector of stationary time series, the r common factors ft will be stationary, nt will

be a multivariate white noise process. In that case, model (1.15) is analogous to the model

analyzed by Peña and Box (1987) that satisfies:

Γx(0) = E{xtx′t} = ΛΓf (0)Λ′ + Σn

Γx(k) = E{xt−kx′t} = ΛΓf (k)Λ′, ∀k ≥ 1, (1.16)

where Σn = E{ntn′t} is as in (1.15) and Γf (k) = E{ft−kf ′t}, ∀k ≥ 0. From (1.16), we have the

following remarks: (i) Γx(k), ∀k ≥ 1, are symmetric matrices; (ii) rank(Γx(k)) = r =number

of common factors, ∀k ≥ 1; (iii) the eigenvectors of Γx(k), ∀k ≥ 1, are the estimates of the

columns of Λ; (iv) the eigenvalues of Γx(k), ∀k ≥ 1, are the values for the variances of the

common factors.

If xt is a stationary time series vector, it has been shown that it is enough to take k = 1

to identify the model (1.15). That is, both the common factors, ft, and the loading matrix,

Λ, can be estimated by the eigenvalue decomposition of Γx(1) as follows: Γx(1) will have r

eigenvalues different from zero whose associated eigenvectors will be the columns of Λ, and

the projections of the data in the directions of those eigenvectors will be the estimates of

the common factors. The remainder m − r eigenvalues of Γx(1) will be close to zero, and

correspond to those linear combination of the data that are white noise processes.
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If xt ∼ I(d), Peña and Poncela (2006b) propose to decompose ft and Λ in such a way that

the stationary factors are separated from the non-stationary ones as: (ft)r×1 =

[
(f1t)r1×1
(f2t)r2×1

]
and Λm×r =

[
(Λ1)m×r1 (Λ2)m×r2

]
. Thus, they reformulate model (1.15) as:

xt = Λ1f1t + Λ2f2t + nt

Peña and Poncela (2006b) show that, in the non-stationary DFM, the identification of the

non-stationary factors is carried out from the generalized sample covariance matrices defined

in (1.13), which play the same role as the sample covariance matrices in the stationary case.

It is shown that Cx(k) converges to Γx(k), ∀k ≥ 1, that is mainly driven by non-stationary

components. Then, the r1 non-stationary components, denoted by f1t, will be identify from

Γx(1), following an analogous procedure as the one applied in the stationary case.

1.4 ICA and time series

The basic ICA model can be extended for a vector of m time series data as follows (see, for

example, Hyvärinen (1998a)):

xt = Ast (1.17)

where A is a parameter matrix of size m × r and {sit}ri=1, with r < m, are the underlying

components which are assumed to be statistically independent (they are the ‘dynamic’ ICs).

To achieve the identifiability of the model (1.17), instead of assuming non-Gaussianity, xt is

assumed to be stationary and ergodic (Hyvärinen (1998a)).

As it is done in the static ICA model, xt is standardized to have zero mean and identity

covariance matrix, and model (1.17) can be rewritten as zt = Ãst, where Ã = Γx(0)−
1
2 A is

an r × r orthogonal matrix. Then, the r ‘dynamic’ ICs will be those linear combinations of

the standardized data which become as independent as possible. That is,

st−k = Wzt−k, ∀k ≥ 0

where W
(
≈ Ã−1

)
is an r×r orthogonal matrix that maximizes the statistical independence

st. If st are statistically independent, then they will be uncorrelated: E{si,t−ksj,t} = 0,

∀i 6= j, k. According to that, ICA time series literature proposes to estimate the ‘dynamic’ ICs

making their time-delayed cross-correlations equal to zero. There are two different approaches,

depending whether the optimality criterion proposes to diagonalize one or several covariance

matrices, Γs(k), for k ≥ 1, are presented in the literature.
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The first approach, introduced by Tong et al. (1990), proposes to estimate the ‘dynamic’

ICs by the diagonalization of one of their time delayed covariance matrix, Γs(·). This idea was

implemented in the AMUSE algorithm (Tong et al. (1990)) that is based on the eigenvalue

decomposition of Γz(k), for any k ≥ 1 that is fixed a-priori. However, since the matrices Γz(k)

are, in general, not symmetric, Tong et al. (1990) propose the following transformation,

Γz(k) =
1

2
{Γz(k) + Γz(k)′} ∀k ≥ 1 (1.18)

where Γz(k) is now symmetric ∀k ≥ 1. Since W is linear and orthogonal, (1.18) can be

written as:

Γz(k) = W′Γs(k)W ∀k ≥ 1 (1.19)

where Γs(k) is a diagonal matrix ∀k ≥ 1 (because of the diagonality of Γs(k)). Therefore,

from (1.19), Γz(k) = W′DW, ∀k ≥ 1, and once k is fixed, the eigenvalue decomposition is

applied to Γz(k), and the eigenvectors of Γz(k) are the estimates of the rows of W. Then,

the ‘dynamic’ ICs are given by ŝt = Ŵzt, and the values of their k-th lag auto-covariances

correspond to the eigenvalues of Γz(k). AMUSE is a quite fast algorithm, but it is efficient

only when all the eigenvalues of Γz(k) are uniquely determined. Then, k should be chosen

carefully to achieve that all the eigenvalues of Γz(k) are distinct. That is, in such a way that

there will not be two ‘dynamic’ ICs with identical k-th lag auto-covariances.

The second approach, trying to avoid the problematic of choosing k in AMUSE, proposes

to consider several time lags. Let K = {1, ..., kT } be a set of multiple time lags. Then, as an

extension of the idea introduced by Tong et al. (1990), the aim of this approach is to estimate

the ‘dynamic’ ICs by the joint diagonalization of several time delayed covariance matrices,

Γs(k), ∀k ∈ K. That is, W will be the transformation that makes the k-th cross-correlation

of st, ∀k ∈ K, to be equal to zero. Depending on how the lack of diagonality of Γs(k) is

measured, different implementations have been presented in the literature.

Belouchrani et al. (1997) introduced the SOBI (Second Order Blind Identification) algo-

rithm, where the lack of diagonality of any squared matrix, M, is measured by the sum of the

squares of its off-diagonal elements, that is: off(M) =
∑
i6=j

m2
ij . Then, the matrix M will be

as diagonal as possible when the ‘off’ criterion is minimized. In Chapter 2, we will describe

SOBI in more detail.

Kawamoto et al. (1997) defined an alternative measure of lack of diagonality as: F (M) =∑
i

logmii − log |det M|. This measure is based on the idea that any m ×m positive-definite
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matrix, M, satisfies that
∑m

i=1 logmii ≥ log |detM|, and the equality holds iff M is a diagonal

matrix. This property, in addition to the scale invariance of F (·) (Pham and Cardoso (2001)),

makes it a ‘good’ index to measure lack of diagonality.

Since Γs(k), ∀k ∈ K, is a positive definite matrix, Kawamoto et al. (1997) applied previous

criterion, and considered a new contrast function to estimate W,

J (W) =
1

2

∑
k∈K

F
(
Γs(k)

)
=

1

2

∑
k∈K

F
(
WΓz(k)W′)

which, by the definition of F (·), can be written as:

J(W) =
∑
k∈K

{
m∑
i=1

1

2
log
(
w′iΓz(k)wi

)
− log |det W| − 1

2
log
∣∣det Γz(k)

∣∣} (1.20)

Moreover, since W is an orthogonal matrix, (1.20) can be simplified:

J(W) =
∑
k∈K

m∑
i=1

1

2
log
(
w′iΓz(k)wi

)
+ cte

The main drawback of these two approaches is that, under non-Gaussianity, the estimates

of the ‘dynamic’ ICs will be temporally uncorrelated but not statistically independent.

Note that, if xt is assumed to be Gaussian distributed, estimating the ‘dynamic’ ICs by any

of previous separation principles (that exploit the temporal structure of the data) is equivalent

to estimate the latent factors in the DFM, when r = m. Then, it could make sense to think

about formulating ICA as a dimensionality reduction technique that extends the DFM under

non-Gaussianity assumption.

1.5 Organization of the thesis

After introducing the background of ICA and giving an overview of the problem of dimen-

sionality reduction in multivariate time series, the rest of this thesis is organized as follows.

Chapter 2 proposes a new multivariate conditionally heteroskedastic factor model, GICA-

GARCH model, where the observations are assumed to be linearly generated by a set of

underlying factors that are independent and evolve according to univariate ARMA-GARCH

models. The GICA-GARCH model is an alternative procedure to explain the conditional

covariance matrix of large financial data sets using a small number of factors with GARCH

effects. The GICA-GARCH works as follows: first, it exploits the information provided by the
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unconditional data covariance matrix and estimates the set of conditionally heteroskedastic

independent components that explain the co-movements among the observations; second, it

assumes factor structure in the conditional distribution of the data and approximates the

conditional covariance matrix of large data sets by a linear combination of the conditional

variances of the previous common factors. This chapter also analyzes the relationship between

the GICA-GARCH model and popular alternatives that impose the factor structure either in

the conditional distribution of the data (see Engle (1987) and the family of orthogonal GARCH

models such as Alexander (2001), van der Weide (2002), Lanne and Saikkonen (2007), and Fan

et al. (2008) among others) or in the unconditional distribution of the data (see Diebold and

Nerlove (1989) and Alessi et al. (2006) among others). Some simulation experiments show the

ability of ICA to extract the underlying components from financial observations (ICA seems

to be an appropriate method to identify the latent factors of the financial data sets, since the

conditional distribution of financial data is far away from Gaussianity and they exhibit some

kind of non-linear dependence). Finally, Chapter 2 presents an empirical application where

the GICA-GARCH model is applied to the Madrid stock market.

In Chapter 3, we present a new algorithm to find the projections of non-Gaussian time

series data that will describe ‘interesting’ features of the observations. Our algorithm, called

FOTBI, uses time-delayed fourth-order cumulants to estimate the components using all the

available information of the data: the non-Gaussianity as well as the temporal dependencies of

the data. Then, it can be as an extension of previous ICA algorithms such as JADE (Cardoso

and Souloumiac (1993)), that estimates the components by using the non-Gaussianity of

the data but not the autocorrelation structure, and SOBI (Belouchrani et al. (1997)), that

neglects the non-Gaussianity and only takes into account the temporal structure to obtain the

underlying components. We design three Monte Carlo experiments to analyze the performance

of FOTBI to extract non-Gaussian and statistically independent time series components.

Chapter 4 explores the idea of applying ICA to economic multivariate time series data.

Our interest is twofold: first, exploring how helpful is ICA to understand the dynamics re-

lationship among the observed time series; second, analyzing the forecasting performance of

some ICA procedures at different time horizons. Several simulation experiments analyze the

ability of three different algorithms, JADE, SOBI, and FOTBI, to extract a set of underlying

components which can be easily interpreted in terms of trend, cycle, and seasonality among

others. Moreover, we consider industrial production index (IPI) time series of four European
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countries to empirically test how those three ICA algorithms capture the dynamic relation-

ships among the data. In addition, we compare the forecasting performance of each procedure

with respect to some benchmark models. FOTBI provides the best results overall the ICA

procedures.

Finally, in Chapter 5 we summarize the main conclusions of this thesis and introduce some

ideas for future research.



Chapter 2

A conditionally heteroskedastic
independent factor model with an
application to financial stock
returns

In this chapter we propose a new conditionally heteroskedastic factor model, the GICA-

GARCH model, which combines independent component analysis (ICA) and multivariate

GARCH (MGARCH) models. This model assumes that the data are generated by a set of

underlying independent components (ICs) that capture the co-movements among the observa-

tions, which are assumed to be conditionally heteroskedastic. The GICA-GARCH model sep-

arates the estimation of the ICs from their fitting with a univariate ARMA-GARCH model.

Here we will use two ICA approaches to find the ICs: the first one estimates the components

maximizing their non-Gaussianity, and the second approach exploits the temporal structure

of the data. After estimating and identifying the common ICs, we fit a univariate GARCH

model to each of them in order to estimate their univariate conditional variances. Then,

the GICA-GARCH model provides a new framework for modelling multivariate conditional

heteroskedasticity in which we can explain and forecast the conditional covariances of the ob-

servations by modelling univariate conditional variances of a few common ICs. We report

some simulation experiments to show the ability of ICA to discover leading factors in a mul-

tivariate vector of financial data. Finally, we present an empirical application to the Madrid

stock market where we evaluate the forecasting performance of the GICA-GARCH, and two

additional factor GARCH models: the orthogonal GARCH and the conditionally uncorrelated

components GARCH.

28
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2.1 Introduction

Since Engle (1982) introduced the ARCH model and Bollerslev (1986) generalized it to the

GARCH representation the interest in modelling volatilities has grown considerably. In mul-

tivariate time series, researches are interested in understanding not only the co-movements of

the volatilities of financial assets, but also the co-movements of financial returns. For these

purposes a multivariate modelling approach is required. Multivariate GARCH (MGARCH)

models should be able to explain the structure of the covariance matrix of a large financial

datasets and to represent the dynamics of their conditional variances and covariances too.

Depending on the parametrization of the conditional covariance matrix, different specifica-

tions for MGARCH have been proposed in the literature (see, for example, the survey of

Bauwens et al. (2006)). Two popular MGARCH specifications are the VEC model (Bollerslev

et al. (1988)) that is an extension of the univariate GARCH model (see Engle et al. (1984)

for an ARCH version), and the BEKK model (Engle and Kroner (1995)) that can be seen as

a restricted version of the VEC model. However, in most of these developments the number

of parameters to estimate can be very large and the restrictions to guarantee the positive

definiteness of the conditional covariance matrix are difficult to implement.

Factor models are an alternative to achieve dimensionality reduction in large datasets.

They are based on the idea of the existence of few underlying components that are the driving

forces for large datasets. In finance, many empirical applications motivate the use of factor

models with conditional heteroskedasticity. For example, asset pricing models usually assume

that the dynamics of prices of different assets are explained by a small number of underlying

dynamic factors that are conditionally heteroskedastic.

There are two branches of literature about factor GARCH models depending whether

the factor structure is referred to the conditional or the unconditional distribution of the

data. On the one hand, the FACTOR-ARCH model (Engle (1987)) exploits the conditional

distribution of the data applying common factors to model the conditional covariance matrix of

the observations. The factors, that follow GARCH-type processes, are given by those linear

combinations of the data that summarize the co-movements in their conditional variances.

Some applications of the FACTOR-ARCH parametrization are: modelling the term structure

of interest rates (Engle et al. (1990); Ng and Engle (1992)), investigating whether international

stock markets have the same volatility process (Engle and Susmel (1993)), and modelling
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common persistence in conditional variance (Bollerslev and Engle (1993)). Particular models

related to the FACTOR-ARCH model are the orthogonal models. They assume that the data

conditional covariance matrix is generated by some underlying factors that follow univariate

GARCH processes. Examples of this class of models are the orthogonal GARCH (O-GARCH)

model (Alexander (2001)), the generalized orthogonal GARCH (GO-GARCH) model (van der

Weide (2002)), the generalized orthogonal factor GARCH (GOF-GARCH) model (Lanne and

Saikkonen (2007)), and the conditional uncorrelated component GARCH (CUC-GARCH)

model (Fan et al. (2008)). Additionally, the full factor GARCH (FF-GARCH) model proposed

by Vrontos et al. (2003) and extended by K. and D. (2010), allowing for multivariate t-

Student distributions, are also nested in the FACTOR-ARCH approach. On the other hand,

the latent factor ARCH model (Diebold and Nerlove (1989)) applies factor structure in the

unconditional distribution of the data, and can be seen as a traditional latent factor model

where the factors display strong evidence of ARCH structure. In this model, the factors

represent the co-movements among the observations, and it is assumed that the commonalities

in the volatilities among observations are due to the ARCH effect of such common latent

factors. Harvey et al. (1992) extended the Diebold and Nerlove model allowing for general

dynamics in the mean and providing a modified version of the Kalman filter for unobserved

components models with GARCH disturbances. King et al. (1994), who consider a multifactor

model for aggregate stock returns, and Doz and Renault (2004), who present a conditionally

heteroskedastic factor model where the common factors represent conditionally orthogonal

influences, also extended the Diebold and Nerlove model. The dynamic factor GARCH (DF-

GARCH) model (Alessi et al. (2006)) is another example of this branch of the literature. It

can be seen as a generalized dynamic factor model where both the dynamic common factors

as well as the idiosyncratic components are conditionally heteroskedastic.

In this paper we propose a multivariate conditionally heteroskedastic factor model denoted

as GICA-GARCH model. The GICA-GARCH model is a new method for explaining the

conditional covariance matrix of large datasets using a small number of factors with GARCH

effects. It is based on the intuition that financial markets are driven by a few latent factors that

represent the co-movements of financial variables. These factors are estimated by independent

component analysis (ICA). ICA can be seen as a factor model (Hyvärinen and Kano (2003))

where the unobserved components are non-Gaussian and mutually independent. Previous

researchers, Back and Weigend (1997), Kiviluoto and Oja (1998), Cha and Chan (2000),
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and Malaroiu et al. (2000) among others, have applied ICA to financial data. Furthermore,

ICA can be considered as a generalization of principal component analysis (PCA) (Hyvärinen

et al. (2001)) and seems to be, a priori, more suitable than PCA to explain the non-Gaussian

behavior of financial data (Wu and Yu (2005)).

The GICA-GARCH model assumes that observations are generated by a set of underlying

factors that are independent and conditionally heteroskedastic. Once the ICs are estimated,

they are sorted in terms of total explained variability to choose the few components which

represent the co-movements of financial variables. Then, the GICA-GARCH model assumes

factor structure in the unconditional distribution of the data. Furthermore, due to the sta-

tistical assumption on the ICs, the GICA-GARCH model fits a univariate ARMA-GARCH

model to each of them. Then, the conditional covariance matrix of the ICs is allowed to

be diagonal. Thus, the GICA-GARCH model transforms the complexity associated to the

estimation of a multivariate ARMA-GARCH model into the estimation of a few number of

univariate ARMA-GARCH models, and approximates the conditional covariance matrix of

the data by the linear combination of a conditional variances of a few ICs. Therefore, the

GICA-GARCH model also applies factor structure on the conditional distribution of the data.

This Chapter is organized as follows. Next section describes the ICA model, introduces the

three ICA algorithms used to estimate the unobserved components and explains the procedure

we have used to sort the ICA components in terms of their explained variability. Furthermore,

the relationship between ICA and dynamic factor model (DFM) is analyzed. In Section 2.3 we

introduce the GICA-GARCH model to explain and forecast the conditional covariance matrix

of a vector of stock returns from the univariate conditional variances of a small number of

components. Furthermore, we analyze the relationship between the GICA-GARCH model

and other factor GARCH models proposed in the literature. Next, Section 2.4 presents some

simulation experiments that illustrate the ability of the GICA-GARCH model to estimate the

underlying components of conditionally heteroskedastic data. An empirical application to a

real-time dataset is shown in Section 2.5. Finally, Section 2.6 gives some concluding remarks

for this chapter.
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2.2 The ICA model

In this section we introduce the concept of ICA. First, we present the basic ICA model

according to the formal definition given by Comon (1994). Then, we briefly describe the

three algorithms we use to estimate the ICA components. As the definition of ICA implies

no ordering of the ICs a procedure to weight and sort them is next explained. Finally, we

formulate the ICA model as a particular DFM and analyze the relationship between both

models.

2.2.1 Definition of ICA

ICA assumes that the observed data are generated by a set of unobserved components that

are independent. Let xt = (x1t, x2t, . . . , xmt)
′ be the m−dimensional vector of stationary

time series, with E [xt] = 0 and E [xtx
′
t] = Γx (0) positive definite. It is assumed that xt is

generated by a linear combination of r (r ≤ m) latent factors. That is,

xt = Ast, t = 1, 2, ..., T (2.1)

where A is an unknown m × r full rank matrix, with elements aij that represent the effect

of sjt on xit, for i = 1, 2, ...,m and j = 1, 2, ..., r, and st = (s1t, s2t, . . . , srt)
′ is the vector

of unobserved factors, which are called independent components (ICs). It is assumed that

E [st] = 0, Γs (0) = E [sts
′
t] = Ir, and the components of st are statistically independent. Let

(x1,x2, ...,xT ) be the observed multivariate time series. The problem is to estimate both A

and st only from (x1,x2, ...,xT ) . That is, ICA looks for an r ×m matrix, W, such that the

components given by

ŝt = Wxt, t = 1, 2, ..., T, (2.2)

are as independent as possible. However, previous assumptions are not sufficient to estimate

A and st uniquely, and it is required that no more than one IC is normally distributed. By

(3.21) , we have:

Γx (0) = E[xtx
′
t] = AA′, (2.3)

Γx (τ) = E[xtx
′
t−τ ] = AΓs (τ) A′, τ ≥ 1.

Therefore, all the dynamic structure of the data comes through the unobserved components,

and if they are uncorrelated, then Γs (τ) = E[sts
′
t−τ ] is a diagonal matrix for all τ ≥ 1.
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Note that, in spite of previous assumptions, ICA cannot determine either the sign or the

order of the ICs. In the following, we focus on the most basic form of ICA, which considers

that the number of observed variables is equal to the number of unobserved factors, i.e.,

m = r.

2.2.2 Procedures for estimating the ICs

Both ICA and PCA obtain the latent factors as linear combinations of the data. However

their aims are slightly different. On one hand, PCA tries to get uncorrelated factors and,

for this purpose, it requires the matrix W such that WW′ = I, and the rows of W are the

projection vectors that maximize the variance of the estimated unobserved factors, ŝt. On

the other hand, ICA tries to get independent factors, and the most often used methods for

estimating the ICs impose the restriction that the rows of W are the directions that maximize

the independence of ŝt.

Three main ICA algorithms have been proposed: JADE (Cardoso and Souloumiac (1993))

and FastICA (Hyvärinen (1999a); Hyvärinen and Oja (1997)) are based on the non-Gaussianity

of the ICs, while SOBI (Belouchrani et al. (1997)) is based on the temporal uncorrelatedness

between components. Before any of these algorithms are applied, it is useful to multivariate

standardized the data (similarly as we explained in Chapter 1, but considering the eigenvalue

decomposition of Γx (0) = E[xtx
′
t]). After the standardization, the model (3.21) is written as

zt = Ust, (2.4)

where U is the new m ×m orthogonal mixing matrix and zt is the m-dimensional vector of

standardized data.

Joint Approximate Diagonalization of Eigen-matrices: JADE

JADE (Cardoso and Souloumiac (1993)) estimates the ICs maximizing their non-Gaussianity.

After whitening the observed data, JADE looks for a matrix U′ such that the components

given by

ŝJt = U′zt, (2.5)

are maximally non-Gaussian distributed. Note that under the non-Gaussianity assumption,

the information provided by the covariance matrix of the data, Γz (0) = I, is not sufficient to

compute (2.5), and higher-order information is needed. Cardoso and Souloumiac (1993) use
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cumulants, which are the coefficients of the Taylor series expansion of the logarithm of the

characteristic function. In practice, it is enough to take into account fourth-order cumulants,

which are defined as

cum4(zit, zjt, zht, zlt) = E {zitzjtzhtzlt} − E {zitzjt}E {zhtzlt} − (2.6)

−E {zitzht}E {zjtzlt} − E {zitzlt}E {zjtzht} ,

and the fourth-order cumulant tensor associated to zt is a m×m matrix, that is given by

[Qz (Q)]ij =

r∑
k,l=1

cum4 (zit, zjt, zkt, zlt) qkl,

where Q = (qkl)
m
k,l=1 is an arbitrary m×m matrix, and cum4 (zit, zjt, zkt, zlt) is like in (2.6) . It

is easy to see that a set of random vectors are independent if all their cross-cumulants of order

higher than two are equal to zero. In particular, ŝJt will be independent if its associated fourth

order cumulant tensor, QŝJt
(·) , is diagonal. Cardoso and Souloumiac (1993) show that given

a set of m ×m matrices, = = {Q1, · · · ,Qq} , there exists an orthogonal transformation, V,

such that the matrices {V′Qz (Qi) V}Qi∈= are approximately diagonal. Then we can choose

V = U′, and estimate the latent factors by (2.5). JADE uses an iterative process of Jacobi

rotations to solve the joint diagonalization of several fourth-order cumulants matrices. It is

a very efficient algorithm in low dimensional problems, but when the dimension increases, it

requires high computational cost.

Fast Fixed-Point Algorithm: FastICA

FastICA is a fixed-point algorithm proposed by Hyvärinen and Oja (1997). It estimates

ŝFt = U′zt (2.7)

by maximizing their univariate kurtosis. Thus, FastICA searches the directions of projection

that maximize the absolute value of the kurtosis of the ŝFt . As kurtosis is very sensitive

to outliers, FastICA is not a robust algorithm. Hyvärinen (1999a) proposes a more robust

version of FastICA that measures the non-Gaussianity of the ICs by using an approximation

of negentropy (previously defined in Chapter 1) instead of the kurtosis coefficient. Therefore,

the ICs, (2.7), are estimated as the projections of the data in the directions such that the

negentropy of ŝFt is maximum. The main advantage of FastICA is that it converges in a few

number of iterations.
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Second-Order Blind Identification: SOBI

Belouchrani et al. (1997) extended the AMUSE algorithm Tong et al. (1990) (see Chapter 1)

and proposed the SOBI algorithm. SOBI requires that the ICs, given by

ŝSt = U′zt, (2.8)

will be mutually uncorrelated for a set of time lags. That is, SOBI looks for an orthogonal

m × m matrix, U′, that simultaneously diagonalizes a set of K time delayed covariance

matrices of ŝSt ,

Γs (τ) = E
{
ŝSt ŝS′t−τ

}
, τ ∈  = {1, ...,K} . (2.9)

However, the matrix Γs (τ), for any τ ∈ , is in general not symmetric and, as we showed in

Chapter 1, it is usual to take the transformation, Γs(τ) = 1
2{Γs(τ) + Γs(τ)′} that is always

a symmetric matrix, ∀τ ∈ . SOBI, as JADE and FastICA do, also applies whitening as a

preprocessing procedure, and the covariance structure of the whitened data model (3.24) is

given by:

Γz (τ) = UΓs (τ) U′, τ ≥ 1, (2.10)

where U is an orthogonal matrix. Therefore,

Γs (τ) = U′Γz (τ) U, τ ≥ 1. (2.11)

Since U is linear an orthogonal, (2.10) and (2.11) can be rewritten as Γz (τ) = UΓs (τ) U′

and Γs (τ) = U′Γz (τ) U. Thus, SOBI searches for an orthogonal transformation that will

be the joint diagonalizer of the set of time delayed covariance matrices,
{
Γs (τq)

}
τq∈. The

optimization problem is therefore to minimize:

F (U) =
∑
τq∈

off
(
U′Γz (τ) U

)
, (2.12)

where U is an orthogonal matrix and ‘off’ is a measure of the non-diagonality that was

defined in the previous chapter. Note that the off
(
U′Γz (τ) U

)
criterion can also be written

as difference between the sum of the squares of all the elements of
(
U′Γz (τ) U

)
and sum

of the squares of its diagonal elements. Then, since U is an orthogonal matrix, the sum of

the squares of all the elements of
(
U′Γz (τ) U

)
is constant, and the minimization of (2.12) is

equivalent to minimize

F̃ (U) = −
∑
τq∈

m∑
i=1

(
uiΓz(τ)u′i

)2
(2.13)
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where ui is the i-th row of U. SOBI estimates the ICs using Jacobi rotation techniques.

Belouchrani et al. (1997) show that this problem has unique solution: if there exists two

different ICs that have different autocovariances for at least one time-lag, then the joint

diagonalizer, U, exists and it is unique. That is, if for all 1 ≤ i 6= j ≤ m, there is any

q = 1, ...,K such that γsi (τq) 6= γsj (τq) , then the components of ŝSt can be separated, they

are unique, and lagged uncorrelated. Note that SOBI cannot get the ICs if they have identical

autocovariances for the lags considered.

Weighting the ICs

After estimating the components, we should decide which of them are more important to

explain the underlying structure of the data. Note that the PCs are sorted in terms of

variability, but the ICs are undetermined with respect to the order. Following Back and

Weigend (1997), we will sort the ICs in terms of their explained variability. According to

model (3.21) , the ith observed variable is given by xit =
∑m

j=1 aijsjt, and its variance is

var(xit) =

m∑
j=1

a2
ij , i = 1, ...,m. (2.14)

For each xit, with i = 1, ...,m, Back and Weigend (1997) define the weighted ICs in terms

of the elements of the ith row of A as s
w(i)
t = diag (ai1, ai2, . . . , aim) st. That is, for each xit,

the jth weighted IC is given by s
w(i)
jt = aijsjt, for j = 1, ...,m, and its variance is

var
(
s
w(i)
jt

)
= a2

ij , i, j = 1, ...,m. (2.15)

Therefore, from (2.14) and (2.15) , the variance of xit which is explained by s
w(i)
jt is computed

as:

νij =
a2
ij∑m

j=1 a
2
ij

, i, j = 1, ...,m, (2.16)

and the total variance of xt explained by the jth IC is given by:

ϑj =

∑m
i=1 ν

i
j∑m

j=1

(∑m
i=1 ν

i
j

) , j = 1, ...,m.

Thus, after getting {ϑ1, ϑ2, ..., ϑm}, we know how much of total variance is explained by each

IC and we can sort them in terms of variability. Thus, the most important ICs will be those

that explain the maximum variance of xt.
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2.2.3 ICA and the Dynamic Factor Model

Suppose that, in the basic ICA model, there are r non Gaussian components, s
(1)
t = (s1t, . . . , srt)

′

with r < m, representing the common dynamic of the time series, but the other m− r com-

ponents, s
(2)
t = (sr+1t, . . . , smt)

′ , are Gaussian. Then we can split the matrix A = [A1 : A2]

accordingly and write

xt = A1s
(1)
t + A2s

(2)
t . (2.17)

Calling nt = A2s
(2)
t to the vector of Gaussian noise we have xt = A1s

(1)
t +nt, which is similar

to the DFM studied by Peña and Box (1987) and generalized in Peña and Poncela (2006b).

However, there are two main differences between these models. First, in the factor model, the

r common factors, s
(1)
t , are assumed Gaussian and linear, whereas here they are non Gaussian.

Second, in the standard factor model the covariance matrix of the noise is of full rank, whereas

here it will have rank equal to m−r. This last constraint can be relaxed by assuming that the

ICA model is contaminated with some Gaussian error model, as in xt = Ast + ut, where ut

is Gaussian. Note that the latent factors of the DFM can be estimated consistently by PCA

when both the number of of series and the sample size (m and T respectively) go to infinity

(see, for example, Stock and Watson (2002)).

2.3 The GICA-GARCH model

This section presents the GICA-GARCH model as a new multivariate conditionally het-

eroskedastic factor model. From now on, let xt = (x1t, x2t, . . . , xmt)
′ be the vector of m

financial time series. First, we introduce the GICA-GARCH model, give its mathematical

formulation, and describe the structure of the ICA components. Then, we explain how this

model can be used to forecast the conditional variances of a vector of financial data from the

univariate conditional variances of a set of common ICs. Finally, we relate the GICA-GARCH

model to the factor GARCH models.

2.3.1 The model

Let us assume that xt is a linear combination of a set of independent factors given by (3.21) .

Because of series of stock returns are characterized by the presence of clusters of volatility,

some of the underlying factors will follow conditionally heteroskedastic processes. In the

literature, GARCH models are the most popular specifications for modelling the conditional
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variance of the stock returns. Additionally, from empirical finance, it is common to admit

that the stock returns could exhibit low order temporal dependencies on the conditional mean,

that can be explained by an ARMA model. Therefore, as there could be temporal structure

on the conditional mean of the latent factors too, it seems reasonable to propose an ARMA-

GARCH specification to model the underlying factor given by (1). Then, we suppose that

the vector of unobserved components, st, follows an r-dimensional ARMA(p, q) model with

GARCH (p′, q′) disturbances:

st =

p∑
i=1

Φist−i +

q∑
l=0

Θlet−l, (2.18)

where Φi = diag
(
φ

(1)
i , ..., φ

(r)
i

)
with |φ(j)

i | < 1 ∀j, Θl = diag
(
θ

(1)
l , ..., θ

(r)
l

)
with Θ0 = Ir and

|θ(j)
l | < 1 ∀j, and et is an r-dimensional vector of conditionally heteroskedastic errors given

by:

et = H
1/2
t εt, (2.19)

where εt ∼ iid (0, Ir) and H
1/2
t = diag(

√
hjt) is an r × r positive definite diagonal matrix

such that

hjt = α
(j)
0 +

p′∑
i=1

α
(j)
i e2

jt−i +

q′∑
l=1

β
(j)
l hjt−l, for j = 1, .., r, (2.20)

where hjt is a stationary process, independent of εjt, and represents the conditional variance

of the jth IC: hjt = V (ejt|It−1) = V (sjt|It−1) , where It−1 is the past information available

until time t−1. In order to ensure a positive hjt > 0, ∀j, it is assumed that α
(j)
0 > 0, α

(j)
i ≥ 0,

β
(j)
i ≥ 0, and

∑max(p′,q′)
i=1

(
α

(j)
i + β

(j)
i

)
< 1 (see Bollerslev (1986)).

Focusing on forecasting the volatility of the observed financial data, from (3.21) , we have

that the conditional covariance matrix of xt is:

Ωt = V (xt|It−1) = AHtA
′, (2.21)

where Ht = diag(h1t, ..., hrt) is the r× r conditional covariance matrix of st at time time t. In

order to guarantee the diagonality of Ht, we should assume that the conditional correlations of

the ICs are zero. This assumption allows us to achieve our purpose: explaining and forecasting

the conditional covariances of the observations from the univariate conditional variances of

the set of conditionally heteroskedastic components that represents the co-movements of the

stock returns. In the GICA-GARCH model, it is assumed that the number of conditionally

heteroskedastic common ICs relative to the dimension of the dataset is small. Then, the
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GICA-GARCH reduces considerably the number of parameters to be estimated but at the

cost of obtaining conditional covariances matrices with a reduced rank. Furthermore, note

that the GARCH structure of xt is ensured because each IC is generated by an independent

GARCH process, and the linear combination of r independent GARCH processes will be a

weak GARCH process (see Nijman and Sentana (1996)).

2.3.2 Fitting the model

The model is fitted in two steps. First, we apply ICA to identify the underlying indepen-

dent components and the loading matrix. Second, univariate GARCH models are fitted to

the components. Next, we describe these two steps. Any of the previous ICA algorithms

standardizes the data as a preprocessing step, and solves the basic ICA model for the normal-

ized data, which is given by equation (3.24). Thus, JADE, FastICA, and SOBI will estimate

the orthogonal loading matrix and the m ICs, defined by equation (2.5) , (2.7) , and (2.8) ,

respectively. After estimating the model, we should choose the common ICs that we will take

into account to forecast the conditional variances of the financial variables. For this purpose,

we weight the ICs according to the procedure explained in Section 2.2.4: we sort the ICs

in terms of their explained total variability and we split the vector of ICs as st = [s
(1)
t s

(2)
t ],

where s
(1)
t = (s1t, . . . , srt)

′ are the r ICs, with r < m, which we choose to represent the co-

movements of the data, and s
(2)
t = (sr+1t, . . . , smt)

′ are the m − r ICs which we consider as

noise. This splitting is done by testing that the m− r ICs are white noise. As an alternative

we can fit ARMA (p, q) models to st and s2
t and check that the order selected with the BIC

criteria is in both cases ARMA(0, 0). From now on, we focus on the r selected ICs, that

are conditionally heteroskedastic, and fit a univariate ARMA(p, q)−GARCH(p′, q′) to each

one of them. According to the corresponding model, we estimate the univariate conditional

variance of each IC and generate the conditional covariance matrix of s
(1)
t , Ht. Finally, we

get the conditional covariance matrix of the observed data from (2.21) and its ith diagonal

term, γ2
it =

∑r
j=1 hjta

2
ij , is the conditional variance of xit, for i = 1, 2, ...,m.

Note that the performance of the GICA-GARCH model depends on the method applied to

estimate the ICs. In the next sections, we will investigate the usefulness of the three algorithms

presented in section 2. Since they use different estimation principles (JADE and FastICA

non-Gaussianity, and SOBI dynamic uncorrelatedness) the performance of the algorithms is

expected to depend on the features of the data. If the data have excess kurtosis and do not
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have significant autocorrelation structure, FastICA and JADE would work better than SOBI.

However, for data with large autocorrelation coefficients, SOBI may be the most appropiated

algorithm to estimate the ICs.

2.3.3 The GICA-GARCH model and related factor GARCH models

In this section, we point out the relationship between the GICA-GARCH model and other

factor GARCH models such as the latent factor ARCH model (Diebold and Nerlove (1989)),

the dynamic factor GARCH (DF-GARCH) model (Alessi et al. (2006)), the factor GARCH

model (Engle (1987); Engle et al. (1990)), and several orthogonal models.

The GICA-GARCH model assumes that the observations are given by a linear combination

of a set of underlying components that are independent and conditionally heteroskedastic.

Let’s assume that r of these components, s
(1)
t = (s1t, ..., srt)

′, with r < m, explain the co-

movements between the observations and the other m−r components, s
(2)
t = (sr+1t, . . . , smt)

′ ,

are the noisy ones. Splitting the matrix A = [A1 : A2] properly, the GICA-GARCH is given

by

xt = A1s
(1)
t + nt, (2.22)

where nt = A2s
(2)
t is the noise vector. By assumption, both the common and the noisy

components are conditionally heteroskedastic and distributed as(
s

(1)
t
nt

)
|It−1 ∼ D

{(
µ

(1)
t

µ
(n)
t

)
,

(
Ht 0
0 Γt

)}

where Ht is a r × r conditional covariance matrix of the vector of common factors, and Γt

is a m ×m conditional covariance matrix of the noise vector with rank(Γt) = m − r. Note

that the GICA-GARCH model assumes that the vector of common components and the noise

vector are conditionally uncorrelated, and allows for the possibility that the common factors

and the noise have non-zero conditional mean (the GICA-GARCH model assumes that each

IC could fit a univariate ARMA-GARCH model, see (2.18)-(2.20)). Furthermore, due to

the independence assumption on the underlying components, both Ht and Γt are diagonal

matrices: Ht = diag(h1t, ..., hrt) and Γt = diag(0, ..., 0, hr+1t, ..., hmt). According to these

assumptions, the GICA-GARCH model assumes factor structure in both the unconditional

distribution of the data,

Γx(0) = A1Γs(1)(0)A
′
1 + Γn(0), (2.23)
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as well as in the conditional distribution,

Ωt = A1HtA
′
1 + Γt. (2.24)

where Ht = diag(h1t, ..., hrt) and hjt is the conditional variance of the jth component of s
(1)
t

given by (2.20).

In practice, the GICA-GARCH model approximates the data conditional covariance ma-

trix as

Ωt = A1HtA
′
1 =

r∑
i=1

a(1)ia
′

(1)ihit, (2.25)

with an accuracy that depends on the number of chosen common components, r, and where

a(1)i = (a1i, ..., ami)
′. Plugging (2.20) into (2.25), we have:

Ωt =
r∑
i=1

a(1)ia
′

(1)i(α
(i)
0 +

p′∑
l=1

α
(i)
l e

2
it−l +

q′∑
l=1

β
(i)
l hit−l), for i = 1, .., r, (2.26)

where eit = s
(1)
it − µ

(1)
it for i = 1, ..., r. Note that s

(1)
it = w′(1)ixt, where w(1)i is the ith row

vector of W1 (W′ = [W1 : W2]′ is such that AW′ = W′A = Im). Then,

Ωt =

r∑
i=1

a(1)ia
′

(1)i(α
(i)
0 +

p′∑
l=1

α
(i)
l (w′(1)ixt−l−µ

(1)
it−l)

2 +

q′∑
l=1

β
(i)
l (w′(1)iΩt−lw(1)i)), for i = 1, .., r,

(2.27)

and it is clear that the data conditional covariance matrix, estimated by the GICA-GARCH

model, is measurable with respect to the information set that contains only past values of the

observations.

In the following, we analyze the relationship between the GICA-GARCH model and other

factor GARCH models. We distinguish between the two branches of the literature about factor

GARCH models depending on whether the factor structure is referred to the unconditional

or the conditional distribution of the data.

Factor structure in the unconditional distribution of the data

Here, we analyze the relationship between the GICA-GARCH model and the latent factor

GARCH model (Diebold and Nerlove (1989)) and the DF-GARCH model (Alessi et al. (2006)).

First, the GICA-GARCH model can be seen as a latent factor model with GARCH effects

(Diebold and Nerlove (1989)). As with the GICA-GARCH model, the latent factor ARCH

model (Diebold and Nerlove (1989)) assumes that there are a few common latent factors
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(in particular, r = 1 in Diebold and Nerlove model) that explain the co-movements among

the observations and evolve according to univariate GARCH models (Ht = h1t). However,

whereas the GICA-GARCH model assumes factor structure in the unconditional as well as

the conditional distribution of the data, the Diebold and Nerlove model only assumes factor

structure in the unconditional covariance matrix of the dataset. According to this, the latent

factor GARCH model assumes that the commonalities in the volatilities among observations

are due to the ARCH effect of the common factor. That is, in Diebold and Nerlove model,

the conditional covariance matrix of the observations is given by:

Ωt = a(1)1a
′

(1)1h1t + Γ, (2.28)

where Γ is a diagonal matrix whose elements correspond to the constant conditional variances

of the noisy components. Furthermore, in (2.28), h1t is the conditional variance of the common

factor that is not unobservable. Then, Ωt is not measurable when the information set contains

only past values of the observations (it should contain past values of the latent factor too).

Second, the GICA-GARCH model can be seen as a parsimonious version the DF-GARCH

model (Alessi et al. (2006)). Both models exploit the unconditional information contained in

the entire dataset to estimate the conditional covariance matrix of the observations. The main

difference between the two models is the parametrization of the common factors conditional

covariance matrix. While the GICA-GARCH model, due to the statistical independence of

the unobserved components, fits a univariate ARMA(p, q)−GARCH(p′, q′) to each of them,

and assumes that Ht is diagonal, the DF-GARCH model assumes that the common factors

have zero-conditional mean and evolve according to a MGARCH model that is parameterized

as a BEKK model:

Ht = C0C
′
0 + C′1s

(1)
t−1s

(1)
t−1
′C1 + C′2Ht−1C2, (2.29)

where Ci are matrices of constant parameters. Therefore, whereas in the GICA-GARCH

model, the conditional covariance matrix of the dataset depends on the conditional variances

of the r common components, the DF-GARCH model estimates the conditional covariance

matrix of the observations taking into account both the conditional variances and covariances

among the common latent factors. For both models, the GICA-GARCH and the DF-GARCH,

the noise components, which in the DF-GARCH model represent the idiosyncratic part, follow

univariate ARMA-GARCH models. Then, the conditional covariance matrix, Γt, is diagonal

for both models, but it is a full rank matrix in the DF-GARCH model, whereas in the GICA-

GARCH model it will have rank equal to m− r.
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Factor structure in the conditional distribution of the data

In this section, we analyze the relationship between the GICA-GARCH model, Engle’s model

and some orthogonal models.

From (2.25)-(2.27), it is clear that the GICA-GARCH model is related to the FACTOR-

ARCH model (Engle (1987)). Both models assume that the data conditional covariance matrix

is given by a linear combination of the conditional variances of some portfolios (factors) of the

observations. Therefore, Ωt is measurable when the information set contains only past values

of the observations. Engle’s factor GARCH model assumes that Γt is a constant matrix that

does not play any role in the model.

The GICA-GARCH model is also related to several orthogonal models, such as the O-

GARCH (Alexander (2001)), the GO-GARCH (van der Weide (2002)), the GOF-GARCH

(Lanne and Saikkonen (2007)), and the CUC-GARCH (Fan et al. (2008)). All these models

assume that the data are generated by a linear combination of several factors that follow

univariate GARCH models. The GICA-GARCH model can be seen as extension of the O-

GARCH model where the estimates of the factors are given by the ICs instead of by the

principal components (PCs). Both the GICA-GARCH and the O-GARCH models approx-

imate the data conditional covariance matrix by the univariate conditional variances of few

factors (the most risky factors), and transform the problem to estimate a MGARCH model

into a small number of univariate volatility models. The cost of reducing dimensionality is

that the factors conditional covariance matrices have reduced rank. Some extension of the

O-GARCH model is the GO-GARCH model (van der Weide (2002)) that does not reduce

dimension and considers r = m. A restricted version of the model where only a subset of

the underlying factors has a time-varying conditional variance has been analyzed recently by

Lanne and Saikkonen (2007). This model, called GOF-GARCH model (Lanne and Saikkonen

(2007)), parameterizes the factors conditional covariance matrix as,

Ht = diag(Vt : Im−r) (2.30)

where Vt = diag(v1t, ..., vrt) is the conditional covariance matrix of the heteroskedastic com-

ponents. Then, the GOF-GARCH model is similar to the GICA-GARCH model when the

noisy components of the GICA-GARCH are homoskedastic (Γt ≡ Γ is a constant matrix).

Thus, the GOF-GARCH model estimates the data conditional covariance matrix as:

Ωt = AHtA
′

= A1VtA
′
1 + Γ, (2.31)
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where Γ = A2A
′
2. Therefore, the GOF-GARCH model is also related to Engle’s model, but as-

suming that Γ plays a specific role, it is the conditional covariance matrix of the homoskedastic

components. Finally, the GICA-GARCH model is related to the work proposed by Fan et al.

(2008) that models multivariate volatilities through conditionally uncorrelated components.

Both GICA-GARCH and CUC-GARCH models separate the estimation of the unobserved

components from fitting a univariate GARCH model for each one of them, and they esti-

mate the components looking for an orthogonal matrix that is the solution of a non-linear

optimization problem. However, the GICA-GARCH model requires that the components are

statistically independent, while the CUC-GARCH model imposes the weaker assumption of

conditional uncorrelatedness.

Table 2.1 summarizes the main features of all the models considered in this section.

2.4 Simulation experiments

In this section we compare the performance of the GICA-GARCH, the O-GARCH, and the

CUC-GARCH models. The main difference among the three models relies on the properties

assumed for the latent factors: the O-GARCH model assumes unconditionally uncorrelated

factors which are estimated by PCA; the CUC-GARCH assumes conditionally uncorrelated

components which follow extended GARCH(1,1) models and are estimated by quasimaximum

likelihood; and the GICA-GARCH model generalizes the previous models assuming indepen-

dent underlying factors which are estimated by ICA. Then, it would be interesting to analyze

the performance of the three models to identify conditionally heteroskedastic components.

We present three simulation experiments to show the effectiveness of ICA and CUC versus

PCA to identify unobserved components that have the main features of financial assets: excess

kurtosis and non-Gaussian conditional distributions. In all the experiments we generate six

components of 1000 observations and standardize them to have zero mean and unit variance.

Then we generate a 6×6 random loading matrix, A, mix the components according to (3.21) ,

and apply the three procedures, the GICA-GARCH, the O-GARCH, and the CUC-GARCH,

to the vector of observations, xt, and we obtain the ICs, PCs, and CUCs respectively.

In the first experiment, we consider the case where the excess kurtosis of the data comes

from different standard ARMA-GARCH specifications and, in addition to Gaussian innova-

tions, we include the Student’s t distribution (Bollerslev (1987)), the Laplace distribution
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(Granger and Ding (1995)), and the generalized error distribution (GED) (Nelson (1991)).

The second experiment considers conditionally heteroskedastic factors without temporal de-

pendencies on the conditional mean. In the third experiment, we explore the case where the

different excess kurtosis of the latent factors comes from different conditional distributions,

and distinguish between two cases: Student’s t distribution with different degrees of freedom

and GED with different values for the shape parameter.

In order to analyze the performance of the three models we compute the correlation coef-

ficient between each original component and its estimation. Moreover, we compute the mean

square error (MSE) between the original and the estimated components as MSE(sj , ŝ
(·)
j ) =

1/T (
∑T

t=1

(
sjt − ŝ(·)

jt

)2
), for j = 1, . . . , r, where ŝ

(·)
jt is the jth estimated component by the

corresponding method.

Table 2.2: Definition of the original factors in the first experiment

s1t ∼ AR(1)−GARCH(1, 1) s1t = 0.0289 + 0.7112s1t−1 + a1t

a1t =
√
h1tε1t; h1t = 0.0152 + 0.2080a2

1t−1 + 0.7918h1t−1

s2t ∼ AR(2)−ARCH(1) s2t = 1.2s2t−1 − 0.32s2t−1 + a2t

a2t =
√
h2tε2t; h2t = 0.2 + 0.7a2

2t−1
s3t ∼ ARMA(1, 1)−GARCH(1, 1) s3t = 5 + 0.9s3t−1 + a3t − 0.4a3t−1

a3t =
√
h3tε3t; h3t = 0.0079 + 0.0650a2

3t−1 + 0.9291h3t−1

s4t ∼ GARCH(1, 3) a4t =
√
h4tε4t; h4t = 0.241a2

4t−1 + 0.077h4t−1 + 0.430h4t−2 + 0.203h4t−3

s5t ∼ U(0, 1) s6t ∼ GED(0, 1, 1.8)

NOTE: εjt is a random noise with zero-mean and unit variance, and it is independent of hjt, ∀j = 1, 2, 3, 4. We generate
four sets of these components by changing the conditional distribution of εjt: Gaussian, Student’s t (t6), Laplace, and
GED (κ = 1.5).

Table 2.3: Average values for the correlation coefficients and the MSE between the
original and the estimated components in the first experiment

Gaussian Student’s (t6 ) Laplace GED
Correlation MSE Correlation MSE Correlation MSE Correlation MSE

CUC 0,7903 0,4192 0,7824 0,4349 0,7663 0,4672 0,7360 0,5277
FAST 0,9617 0,0766 0,9634 0,0731 0,9571 0,0858 0,9586 0,0828
JADE 0,9591 0,0817 0,9408 0,1184 0,9158 0,1682 0,9554 0,0892
SOBI 0,8353 0,3292 0,7790 0,4419 0,8403 0,3192 0,8076 0,3846
PCA 0,6646 0,6700 0,7035 0,5925 0,6952 0,6091 0,7087 0,5820

In the first simulation experiment, we generate the components as defined in Table 2.2.

Note that the conditional distribution of the ARMA-GARCH components depends on the

conditional distribution of εjt ∀j = 1, 2, 3, 4. We consider four possible distributions for

the innovations. First, we generate the factors defined in Table 2.2 assuming that εjt is

conditionally Gaussian ∀j = 1, 2, 3, 4. We repeat this procedure three more times, assuming

that the conditional distribution of εjt, ∀j = 1, 2, 3, 4, is Student’s t (t6), Laplace, and GED

(κ = 1.5). Table 2.3 presents the average results for the correlation coefficients and the MSE

between the original and the corresponding estimated components.
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According to the results shown in Table 2.3, we see that the average of the correlation co-

efficients and the MSE take almost identical values along the four conditional distributions we

have considered here. Independently of the conditional distribution we take into account, the

GICA-GARCH model that estimates the ICs applying FastICA or JADE, provides the most

reliable identification of the unobserved ARMA-GARCH components. On the other hand,

PCA shows the worst performance for all distributions. SOBI is the ICA algorithms that has

worse performance although slightly better than CUC. This is to be expected, as conditionally

heteroskedastic components have excess kurtosis and small correlation coefficients.

In the second experiment we generate components which have constant conditional mean

but are conditionally heteroskedastic as given in Table 2.4.

Table 2.4: Definition of the original factors in the second experiment

s1t ∼ ARCH(1) s1t =
√
h1tε1t;h1t = 0.2 + 0.7s21t−1

s2t ∼ GARCH(1, 1) s2t =
√
h2tε2t;h2t = 0.021 + 0.073s22t−1 + 0.906h2t−1

s3t ∼ GARCH(1, 2) s3t =
√
h3tε3t;h3t = 1.692 + 0.245s23t−1 + 0.337h3t−1 + 0.310h3t−2

s4t ∼ t9 s5t ∼ N(0, 1) s6t ∼ U(0, 1)

NOTE: εjt is a random noise with zero-mean and unit variance, and it is independent of hjt, ∀j = 1, 2, 3. We generate
four sets of these components by changing the conditional distribution of εjt: Gaussian, Student’s t (t6), and GED
(κ = 1.3).

As in the first experiment, we generate the factors defined in Table 2.4 assuming that εjt is

conditionally Gaussian ∀j = 1, 2, 3. Then, we repeat the procedure twice, assuming Student’s

t (t6) distribution, and the GED (κ = 1.3) for εjt, ∀j = 1, 2, 3. We compute the correlation

coefficients and the MSEs between each original and the corresponding estimated component.

The results (average measures) are shown in Table 2.5, and are very similar to those we got

in the first experiment. Note that this result is not surprising and we conclude that imposing

the ARMA structure on the conditional mean does not change the results at all.

Table 2.5: Average values for the correlation coefficients and the MSE between the
original and the estimated components in the second experiment

Gaussian Student’s t GED
Correlation MSE Correlation MSE Correlation MSE

CUC 0,7870 0,4257 0,8438 0,3123 0,8523 0,2953
FAST 0,9711 0,0578 0,9850 0,0300 0,9847 0,0306
JADE 0,9796 0,0408 0,9852 0,0296 0,9733 0,0533
SOBI 0,9218 0,1563 0,8495 0,3009 0,9392 0,1215
PCA 0,6994 0,6007 0,7037 0,5920 0,6964 0,6066

In the third experiment we analyze the situation in where all the components follow the

same ARMA-GARCH specification, and the different excess kurtosis comes from different con-

ditional distributions as defined in Table 2.2. The conditional distribution for εjt, j = 1, 2, 3
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could be: (i) Student’s t with different degrees of freedom for each j = 1, 2, 3, or (ii) GED

with different values for the shape parameter for each j = 1, 2, 3. In the case (i) we generate

ε1t ∼ t6, ε2t ∼ t9, and ε3t ∼ t11. In the second case, (ii), we generate ε1t ∼ GED(0, 1, 1.5),

ε2t ∼ GED(0, 1, 2), and ε3t ∼ GED(0, 1, 1.01). The average results obtained for the corre-

lation coefficients and the MSE, are given in Table 2.6. The results show that when excess

kurtosis comes from different conditional distributions (or better said, from the same condi-

tional distribution with different values for the parameters) any of the ICA methods performs

better than PCA or CUC. If the innovations come from Student’s t conditional distribution

with different degrees of freedom, PCA and CUC have similar performance. However, if the

conditional distribution is the GED with different shape parameters, PCA performs worse

than CUC.

Table 2.6: Average values for the correlation coefficients and the MSE between the
original and the estimated components in the third experiment

Student’s t GED
Correlation MSE Correlation MSE

CUC 0,7113 0,5771 0,7443 0,5111
FAST 0,8039 0,3920 0,9004 0,1991
JADE 0,8868 0,2263 0,8949 0,2101
SOBI 0,8191 0,3616 0,7926 0,4146
PCA 0,7297 0,5400 0,6705 0,6583

From these simulations, we conclude that the ICA algorithms, specially FastICA and

JADE, provide the best performance to identify the unobserved conditionally heteroskedastic

factors. The performance of the three ICA algorithms is as expected: as FastICA and JADE

look for the independence of the ICs maximizing the non-Gaussianity, they capture better than

SOBI the excess kurtosis of the conditionally heteroskedastic components. PCA has the worst

performance, so it seems that the orthogonal GARCH models would not be good methods

to forecast the conditional variance of large datasets. According to the results, the GICA-

GARCH method seems to outperform the CUC- and the O-GARCH. We will investigate this

contention in the next section.

2.5 Empirical application

In this section we apply our procedure to a data set of stock returns. First, we describe

the data used; second, we explain the procedure to estimate the components; and third, we

present the results of applying the GICA-GARCH, the CUC-GARCH, and the O-GARCH,
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to forecast the conditional variances of the stock returns.

The data consist of daily closing prices of the 19 assets which were always included in the

IBEX 35 from 2000 to 2004 (the 19 stocks are listed in Table 2.12). The IBEX 35 index is

the main stock market index of the Madrid stock market. Its composition is revised twice

a year and it comprises 35 companies with the largest trading volume of the Madrid stock

exchange. We apply some preprocessing steps to the data. First of all, to achieve stationarity,

we computed the daily stock returns by taking the first differences of the logarithm of daily

closing prices: rt = log (pt+1) − log (pt) , t = 1, ..., T = 1250. Then, rt is a 19 × 1250

multivariate vector of stock returns, whose columns are the value of these 19 stocks in the 1250

trading days in the period 2000-2004. There are some extreme observations that correspond

to outliers, which are due to known changes such as stock splits or other legal changes, that

have been removed. Finally, we also remove the mean from the stocks returns, and xt = rt−r

is the data that we analyze.

Table 2.7: Summary statistics for the standardized stock returns

Summary statistics
Zero-mean stock returns xt |xt| x2

t
Stocks Median Maximum Minimum St.Dev Kurtosis JB LB(50) LB(50) LB(50)
ACS 0,0003 0,0868 -0,0797 0,0182 5,3619 295, 64∗ 119, 23∗∗ 1053, 39∗∗ 596, 25∗∗

ACX -0,0004 0,0923 -0,0998 0,0206 4,8558 182, 63∗ 84, 03∗∗ 718, 48∗∗ 425, 03∗∗

ALT 0,0003 0,0823 -0,0994 0,0189 5,9571 493, 04∗ 82, 19∗∗ 1188, 20∗∗ 667, 89∗∗

AMS -0,0001 0,1421 -0,1502 0,0298 5,3303 282, 95∗ 65,20 985, 56∗∗ 463, 07∗∗

ANA -0,0003 0,0720 -0,0731 0,0155 5,8949 436, 48∗ 42,75 678, 85∗∗ 703, 10∗∗

BBVA 0,0002 0,0944 -0,0799 0,0217 4,7493 165, 20∗ 87, 12∗∗ 2411, 12∗∗ 1871, 64∗∗

BKT 0,0003 0,0900 -0,0906 0,0192 5,9641 458, 73∗ 66,99 1488, 85∗∗ 843, 23∗∗

ELE 0,0005 0,0831 -0,0747 0,0175 5,4053 305, 54∗ 75,20 2430, 05∗∗ 1931, 99∗∗

FCC -0,0005 0,0784 -0,0595 0,0173 5,0625 245, 37∗ 73,40 1008, 10∗∗ 599, 91∗∗

FER -0,0009 0,0836 -0,0800 0,0194 4,6196 138, 63∗ 62,73 972, 33∗∗ 625, 17∗∗

IBE -0,0001 0,0567 -0,0592 0,0121 5,3139 282, 92∗ 53,60 655, 78∗∗ 352, 19∗∗

IDR -0,0002 0,0903 -0,0921 0,0232 4,8257 177, 73∗ 66,29 892, 09∗∗ 626, 85∗∗

NHH 0,0001 0,0872 -0,0845 0,0182 4,7760 164, 72∗ 64,54 334, 79∗∗ 191, 12∗∗

POP 0,0000 0,0722 -0,0601 0,0157 4,9358 199, 95∗ 84, 47∗∗ 786, 48∗∗ 498, 84∗∗

REP 0,0004 0,0879 -0,0814 0,0180 4,9307 197, 25∗ 77, 35∗∗ 1927, 56∗∗ 1033, 91∗∗

SAN 0,0002 0,0964 -0,1135 0,0233 5,0546 220, 64∗ 67,92 2524, 01∗∗ 1783, 61∗∗

SGC 0,0004 0,1414 -0,1394 0,0339 4,8686 189, 30∗ 69,27 1394, 44∗∗ 850, 22∗∗

TEF 0,0002 0,1016 -0,0872 0,0235 4,0998 72, 24∗ 61,42 1533, 22∗∗ 740, 86∗∗

TPI 0,0004 0,1402 -0,1305 0,0294 5,5625 342, 14∗ 67,48 1334, 54∗∗ 682, 21∗∗

NOTE: JB denotes the Jarque-Bera test statistic for normality and LB is the Ljung-Box test statistic based on 50 lags
for the autocorrelation of the rates of return, the absolute and the squared returns. ∗ indicates that the null hypothesis
of normality is rejected at 1% level of significance, while ∗∗ indicates that the null of no autocorrelation is rejected at
1% level of significance for the rates of returns, the absolute and the squared returns, respectively.

Table 2.7 presents a summary of the basic statistics of the data. This table includes the

Jarque-Bera statistic and the Ljung-Box statistic computed based on 50 lags of the series as

well as the absolute values and the squares of the stock returns. The standard deviation of

the stock returns, varying from 0.0121 for IBE to 0.0339 for SGC, indicates that there are

both, high and low volatile stock returns on our data set. The high values of the kurtosis

coefficients (higher than 3 for all the stock returns) confirms the fat-tailed property of the
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conditional stock returns distribution. Moreover, the Jarque-Bera test statistics are very high

and we clearly reject the null hypothesis of Normality at 1% level of significance. Then, as

the conditional distribution of stock returns is far away from Gaussianity, ICA may have the

potential to identify the set of latent components that explain the co-movements of the stock

returns. According to the Ljung-Box statistics for the stock returns, 13 of the 19 series do

not present relevant autocorrelation (the other 6 series have some significant autocorrelation

coefficients that can be removed by fitting autoregressive models to these series). For the

squares and the absolute values of the stock returns, the high values of Ljung-Box statistics

indicate strong autocorrelation in all series, and suggest the presence of non-linear dependence

in the stock returns. These are the empirical results we expect when dealing with financial

data.

We apply GICA-, CUC-, and O-GARCH model to the vector of zero-mean stock returns,

xt, and we get the corresponding estimates of the 19 unobserved factors. We sort the ICs,

the CUCs, and the PCs in terms of the explained total variance. From the results, which are

displayed in Table 2.8, we can quantify how much of risk is associated with each component.

This fact is crucial since we would like to calculate value at risk of a portfolio of the IBEX 35

index or any other risk management application.

Table 2.8: Sorted components in terms of their explained variability

CUC %CUC FAST %Fast JADE %JADE SOBI %SOBI PCA %PCA

ŝC1t 18.10 ŝF1t 17.72 ŝJ1t 11.75 ŝS1t 11.13 ŝP1t 35.30
ŝC2t 16.44 ŝF2t 10.22 ŝJ2t 7.29 ŝS2t 9.65 ŝP2t 7.00
ŝC3t 8.04 ŝF3t 6.40 ŝJ3t 6.48 ŝS3t 9.16 ŝP3t 5.91
ŝC4t 5.43 ŝF4t 5.92 ŝJ4t 6.36 ŝS4t 8.15 ŝP4t 4.78
ŝC5t 5.20 ŝF5t 5.76 ŝJ5t 6.17 ŝS5t 7.52 ŝP5t 4.73
ŝC6t 4.35 ŝF6t 4.89 ŝJ6t 5.70 ŝS6t 5.42 ŝP6t 4.35
ŝC7t 4.27 ŝF7t 4.65 ŝJ7t 5.61 ŝS7t 5.23 ŝP7t 4.24
ŝC8t 3.86 ŝF8t 4.62 ŝJ8t 5.52 ŝS8t 4.37 ŝP8t 4.04
ŝC9t 3.58 ŝF9t 4.43 ŝJ9t 5.20 ŝS9t 4.11 ŝP9t 3.62
ŝC10t 3.45 ŝF10t 4.15 ŝJ10t 5.16 ŝS10t 4.00 ŝP10t 3.60
ŝC11t 3.37 ŝF11t 3.86 ŝJ11t 5.12 ŝS11t 3.83 ŝP11t 3.31
ŝC12t 3.33 ŝF12t 3.85 ŝJ12t 4.74 ŝS12t 3.73 ŝP12t 3.13
ŝC13t 3.30 ŝF13t 3.69 ŝJ13t 4.01 ŝS13t 3.57 ŝP13t 3.03
ŝC14t 3.22 ŝF14t 3.67 ŝJ14t 3.85 ŝS14t 3.57 ŝP14t 2.86
ŝC15t 3.05 ŝF15t 3.56 ŝJ15t 3.84 ŝS15t 3.57 ŝP15t 2.66
ŝC16t 3.03 ŝF16t 3.47 ŝJ16t 3.76 ŝS16t 3.42 ŝP16t 2.56
ŝC17t 2.90 ŝF17t 3.26 ŝJ17t 3.51 ŝS17t 3.26 ŝP17t 2.21
ŝC18t 2.83 ŝF18t 2.97 ŝJ18t 3.41 ŝS18t 3.22 ŝP18t 1.71
ŝC19t 2.29 ŝF19t 2.89 ŝJ19t 2.51 ŝS19t 3.10 ŝP19t 0.93

100.00 100.00 100.00 100.00 100.00

We use Figure 2.1, that shows the explained variability by the components estimated by

the five algorithms, to decide the optimal number of components for each method. That is, we

choose those components that are the most important sources of risk. The results are given in
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Figure 2.1: Explained total variability by the components

Table 2.9, that also includes the absolute explained variability by the r selected components.

Table 2.9: Number of unobserved components and percentage of total explained
variability

CUC FAST JADE SOBI PCA
r 4 2 2 5 1

% variability 47.97 27.95 19.04 45.62 35.30

We are interested in investigating which assets are most important to define each component.

From (2.2) , {ŝit}19
i=1 can be written as a linear combination of the stock returns, ŝit =∑19

j=1wijxjt, where wij represents the effect of the jth stock returns on the ith component,

and the largest weights correspond to the most important assets. The ICs, the CUCs, and
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the PCs have different interpretations. As an example, we analyze the first components. The

first PC is given by a weighted mean of the 19 stock returns and it can be considered an index

of the market. Indeed, if we plot the variation of variability of the first PC and the IBEX 35

index, considering groups of ten observations, it is clear that the first PC reflects the main

movements of the index IBEX 35 (see Figure 2.2). Then, if we forecast the volatility of xt

from the volatility of the first PC, the 19 stock returns will tend to move together.
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Figure 2.2: Variation of variability of ŝP1t and the IBEX 35 index
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Figure 2.3: Variation of variability of ŝF1t and the stock returns with the largest
weights: a) on the left, the positive ones; b) on the right, the negative ones.

The results for the ICs are different: they cannot be seen as indexes of the market.

The first ICs are mainly associated with electricity, building industries, and banking (the

sectorial economic classification is detailed in the Appendix), and separate the stock returns

in terms of the individual explained variability, {νi1}19
i=1 (see (2.16)). As an example, we analyze
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the first FastICA, ŝF1t. In Figure 2.3, that shows the variation of variability of ŝF1t and the

largest weighted assets on ŝF1t, we see that all assets present a cluster of high variability from

observation 600 to 750. The assets which are positively weighted only show this period of

higher variability, but the negative ones are also volatile at the beginning of the sample.

The forecasting performance of the GICA-,CUC-, and O-GARCH models is checked as

follows:

1. We estimate A and the unobserved components, by each model, using the whole sample.

Then, the components are sorted and r is fixed.

2. Using the whole sample, we fit an ARMA(p, q) with GARCH(p′, q′) disturbances for

each component ŝjt, with j = 1, ..., r.

3. The standard ARMA-GARCH processes assume conditionally Gaussian distributions.

However, as the stock returns are far away from Gaussianity, the unobserved components

should be non-Gaussian too and then, the standard ARMA-GARCH specification may

not be adequate to fit the components. In this paper, we explore alternative conditional

distributions, and estimate the parameters of the ARMA(p, q)-GARCH(p′, q′) model,

with a sample of 1000 observations, using Gaussian, Student’s t, and GED as distribu-

tional models for innovations. Then, for each model, we generate the one-step-ahead

forecast for the univariate conditional variance of each ŝjt,

ĥj,1001|1000 = V [ŝj1001|I1000] , j = 1, ..., r. (2.32)

Thus, by rolling prediction for t = 1001, ..., 1250, we have:

Ĥt|t−1 = diag(ĥ1,t|t−1, ..., ĥr,t|t−1), t = 1001, ..., 1250, (2.33)

which is the conditional covariance matrix of ŝt = (ŝ1t, ..., ŝrt)
′ at time t.

4. The conditional variance of xt at time t, Ωt, is computed by (2.21) . Then, the conditional

variance of the ith stock return at time t is given by the ith diagonal term of Ωt:

γ̂2
i,t|t−1 =

r∑
j=1

ĥj,t|t−1a
2
ij , i = 1, 2, ..., 19, t = 1001, ..., 1250. (2.34)

From this expression and (2.20) , we see that xt, which is generated by a linear com-

bination of a set of ICs, possess a GARCH-type structure. This result is confirmed by

the work of Nijman and Sentana (1996) in which they show that a linear combination

of independent GARCH processes will be a weak GARCH process.
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5. To evaluate the forecasting performance of the GICA-,CUC-, and O-GARCH models, we

need to compare the predicted volatility and the real one. As population volatility is not

observed, the literature proposes to substitute a proxy for the real volatility. Initially,

the squares of the stock returns was used as a proxy for the conditional variance (see, for

example, Franses and van Dijk (1996)). However, it is shown that the squared returns

is a noisy proxy for the conditional variance and it performs very poorly (Andersen and

Bollerslev (1998)). Furthermore, Hansen and Lunde (2006) show that an evaluation

based on squared returns can induce an inconsistent ranking of volatility models, and

may select an inferior model as the ’best’ with a probability that goes to one when the

sample size increases. To avoid such inconsistency, we follow the Hansen and Lunde’s

approach and estimate the conditional variance with the realized variance (RV), that is

constructed by taking the sum of squared intraday returns (for more details, see Hansen

and Lunde (2006)). Assuming that at day t we have f intraday observations of the ith

stock return, the RV at time t is defined as:

RVit =

f∑
l=1

x2
i,t,l, i = 1, ..., 19, t = 1, ..., T = 1250, (2.35)

In our empirical analysis, we artificially construct the intraday stock returns as follows.

For a given trading day, t, we use the part of the day that the Madrid stock mar-

ket is open (9:00-17:30), and generate artificial five-minute returns per day (f = 102)

by a linear interpolation method. Then, we have x2
i,t,l and we compute RVit, for

i=1,...,19, t=1001,...,T=1250 as in (2.35). Once we have computed the RV, we need

to define the proxy for the true volatility. Following Hansen and Lunde (2006) we

employ three different proxies for the conditional variance: Proxy1it = ĉRVit, where

ĉ = T−1
∑T

t=1 x
2
it/RVit, Proxy2it = RVit + (popent − pcloset−1 )2, and Proxy3it = x2

it.

Then, substituting each proxy for the unobserved conditional variance, the one-step-

ahead volatility forecast error is given by:

εit = Proxyit − γ̂2
i,t|t−1, i = 1, 2, ..., 19, t = 1001, ..., 1250. (2.36)

6. To evaluate the accuracy of the model we compare the prediction error (2.36) to a

benchmark. This benchmark is obtained by predicting the volatility of the stock returns

by their marginal variance. Then, we define the relative forecast error by:

REit =
εit
ε∗it
, i = 1, 2, ..., 19, t = 1001, ..., 1250, (2.37)
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where ε∗it is the forecast error of the ith stock return obtained by the benchmark method

computed by

ε∗it = Proxyit − σ̂2
i , i = 1, 2, ..., 19, t = 1001, ..., 1250, (2.38)

where σ̂2
i is the marginal variance of the ith stock return at time t. To minimize the

impact of outliers when we analyze the volatility forecasting performance of GICA-,

CUC-, and O-GARCH models, we use the Median Relative Absolute Error (MdRAE)

criteria (see, for example, Hyndman and Koehler (2006) for a complete revision of

measures of forecast accuracy):

MdRAE(REit) = median(|REit|)

In addition, we can use the ratio of the corresponding measure for the ICA and the

CUC methods to respect the PCA one:

RelMdRAE =
MdRAEICA
MdRAEPCA

(2.39)

Our purpose is to compare the forecasting performance of the GICA-, CUC-, and O-

GARCH models when the latent factors are conditionally Gaussian, Student’s t, and GED

distributed. We propose to make this comparison following two approaches. In the first

approach, we fit a univariate ARMA-GARCH model for each component as we have ex-

plained above. In the second approach, even though the CUC-GARCH model assumes that

all components follow GARCH(1,1) processes, and it is common to use this specification for

modelling stock returns (see, for example, Hansen and Lunde (2005)), we decide to analyze

the forecasting performance fitting univariate GARCH(1,1) processes to each IC, CUC, and

PC.

The estimates of the parameters when we fit a univariate model to each component are

shown in Table 2.13, for the GARCH(1,1) specifications), and Tables 2.14-2.16, for the ARMA-

GARCH specifications. From these four tables, we see that the GARCH parameters are sig-

nificant for both the GARCH(1,1) and the ARMA-GARCH approaches, and for the three

conditional distributions. Then, it indicates the time-varying volatility phenomenon of the

components. Moreover, from Tables 2.14-2.16, we have that the ARMA parameters are statis-

tically significant too. Thus, it seems that fitting a univariate ARMA model to the conditional

mean of the components is reasonable. This result is corroborated by the fact that the values
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of the likelihood function for the ARMA-GARCH models are larger than the corresponding

ones for the GARCH(1,1) specifications. Moreover, the values of the likelihood under the as-

sumption of conditional Student’s t innovations are the largest ones (and the GED distribution

outperforms the Gaussian one). Under the Student’s t distribution, the degrees of freedom

parameter, ν, is very similar for the two approaches. According to the GARCH(1,1) specifica-

tion as well as the ARMA-GARCH one, the estimates for ν vary from 5.12 to 32.73 indicating

heavy tails and excess kurtosis. A similar experience happens with the shape parameter of

the GED distribution, which varies from 1.29 to 1.93. According to previous conclusions, the

ARMA-GARCH specifications with conditional Student’s t innovations seems to provide the

most appropriate approach to fitting the underlying conditionally heteroskedastic components.

To evaluate the forecasting performance of the GICA-,CUC-, and O-GARCH models we

take into account the two modelling approaches mentioned before. Moreover, in order to

analyze the effect of increasing the number of components when we evaluate the forecasting

performance of the three models, we vary r from 1 to 5. The average results of the RelMdRAE

measured over the 19 stock returns are displayed in Table 2.10 (GARCH(1,1) specifications)

and in Table 2.11 (ARMA-GARCH processes). To avoid the choice of the proxy affecting our

evaluation, we compute the RelMdRAE criterion using the three proxies proposed by Hansen

and Lunde (2006). From Tables 2.10-2.11 we see that, due to the use of relative measures,

RelMdRAE, the values of the criterion do not differ so much for the different proxies. For both

the GARCH(1,1) and the ARMA-GARCH modelling approaches, we obtain robust results and

JADE is chosen as the best method to estimate the underlying components, independently of

the proxy and the conditional distribution we use.

Tables 2.10-2.11 also show that the values of the RelMdRAE criterion are smaller when

we adopt the ARMA-GARCH modelling approach assuming conditional GED innovations.

Then, it seems that the GICA-GARCH model where the underlying components are estimated

by JADE, and modelled according to univariate ARMA-GARCH models, produces the best

forecasting performance. Furthermore, note that independently of the scenario we had, any

of the ICA algorithms performs better than CUC and PCA. Therefore, the GICA-GARCH

model seems to be a good method to forecast the conditional covariance matrix of large

datsets1.

1Evaluating the forecasting performance of the model using the Relative Geometric Mean Relative Absolute
Error (RelGMRAE) gives similar results which are available from the authors upon request.
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2.6 Concluding remarks

We have proposed a new framework for modelling and forecasting large conditional covariance

matrices of stock returns using a few underlying factors with conditionally heteroskedasticity.

Our model, called GICA-GARCH model, assumes that the co-movements of a vector of finan-

cial data are driven by a few independent components which evolve according to univariate

ARMA-GARCH models. In the our model, the conditional covariance matrix of the factors is

assumed to be diagonal. Therefore the GICA-GARCH provides a parsimonious representation

for the conditional covariance matrix of the data, and reduces the number of parameters to

be estimated. Our estimation procedure consists of two parts: in the first step, we exploit the

unconditional distribution of the data to estimate the ICs, we sort them in terms of variability

and disentangle common and idiosyncratic components of the financial data; in the second

step, we estimate the conditional covariance matrix of the data as a linear combination of the

conditional variances of the common components, that are modelled according to univariate

ARMA-GARCH models.

The advantage of the GICA-GARCH model with respect to the existing literature lies in

the potentiality of ICA to identify the underlying components of a vector of financial data. In

this paper, we have proposed three simulation experiments to test the potential of ICA (us-

ing three different algorithms), CUC, and PCA to identify the conditionally heteroskedastic

components when they have different excess kurtosis. We have analyzed the performance of

the three models both in terms of the correlation coefficients and in terms of the mean square

errors between each original component and its estimation. The results show that, regardless

of whether the excess kurtosis comes from different GARCH specifications or it comes from

different conditional distributions, the ICA methods perform better than CUC and PCA to

identify the conditionally heteroskedastic components. Furthermore, the results for the ICA

algorithms are as expected: both FastICA and JADE, which estimate the ICs maximizing

their non-Gaussianity, capture better than SOBI the excess kurtosis of the conditionally het-

eroskedastic factors. Therefore, the GICA-GARCH model seems to provide more reliable

identification of the unobserved components than the O-GARCH and the CUC-GARCH do.

We have empirically tested the GICA-GARCH model on a vector of stock returns of the

Madrid stock market. After applying the three ICA algorithms to identify the unobserved

components and fitting a univariate model to each one of them, the empirical results show
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that the most appropriate specification to fitting each IC is the ARMA-GARCH model with

conditional Student’s t innovations. Furthermore, as accurate volatility forecasts are a crucial

issue, we have evaluated the forecasting performance of our model. We have implemented a

rolling window scheme to compare the relative ability to predict one-step ahead volatility for

the GICA-, CUC-, and O-GARCH models. In terms of the average results of the RelMdRAE,

and independently of the proxy used to substitute the real volatility, our model provides more

accurate volatility forecasts than the CUC- and O-GARCH models for the stock returns of

the IBEX 35 index. In particular, according to the empirical results, the volatility forecasts

obtained using the JADE algorithm are more accurate than those generated by using any

other ICA algorithms.

Designing an alternative procedure to sort the ICs and to choose the optimal number of

factors may be challenges for the future. Moreover, we are interested in comparing the per-

formance of our model with other multivariate GARCH, such as the dynamic factor GARCH,

and extending the GICA-GARCH model for other applications.

2.7 Appendix

Table 2.12: Components of the IBEX 35 from 2000 to 2004 classified by sectors.

Consumption
Other goods of consumption ALT Altadis

Consumption services
Leisure time / Tourism / Hotel industry AMS Amadeus

NHH NH Hoteles
Mass media / Publicity SGC Sogecable

TPI Telefónica Publicidad e Información
Financial Services / Estate Agencies

Banking BBVA Banco Bilbao Vizcaya Argentaria
BKT Bankinter
POP Banco Popular

SAN Banco Santander Central Hispano(∗)

Oil and Energy
Oil REP Repsol

Electricity and Gas ELE Endesa
IBE Iberdrola

Materials / Industry / Building
Minerals / Metals ACX Acerinos
Building ACS Grupo ACS

ANA Acciona
FCC Fomento de Construcciones y Contratas S.A.
FER Grupo Ferrovial

Technology / Telecommunications
Telecommunications and others TEF Telefónica
Electronic and Software TPI Indra

(∗)From 01/01/2000 to 31/10/2001, its name was SCH.
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Chapter 3

Blind source separation for
non-Gaussian time series using
high-order statistics

This chapter introduces a new blind source separation approach that exploits both, the non-

Gaussianity and the temporal structure, of the dataset. We propose a fourth-order temporal

blind identification (FOTBI) algorithm which identifies the set of underlying independent com-

ponents by the joint diagonalization of several time-delayed fourth-order cumulant matrices.

Some Monte Carlo simulation experiments are carried out to investigate the performance of

FOTBI. Moreover, the effectiveness of FOTBI is compared to the algorithms presented in

Chapter 2. According to our results, FOTBI seems to be a good alternative for the separation

of nonlinear time series independent components.

3.1 Introduction

Blind source separation (BSS) consists on identifying a set of underlying factors given only

the vector of observations, which is assumed to be generated by a linear combination of those

unobserved components. The term ’blind’ usually refers to the fact that there is no previous

knowledge about either the mixture process or the components. However it is not possible to

perform BSS successfully without any a-priori information. In general, the BSS problem is for-

mulated under the assumption of independent components (ICs) and, then it could be perform

using independent component analysis (ICA). However, statistical independence could be not

enough to guarantee the identifiability of the BSS problem as shown in the previous Chap-

ter. Then it is usually assumed that the ICs satisfy at least one of the following properties:

non-Gaussianity, non-stationarity, or having a pronounced autocorrelation structure.

65
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The BSS algorithms proposed in the literature, depending on the specific properties for

the ICs, could be categorized in three approaches: algorithms based on the non-Gaussianity

of the components, algorithms based on their linear autocorrelations, and algorithms based

on non-stationary components.

The first approach assumes that a necessary condition to solve the BSS problem is the

non-Gaussianity: all the components, except at most one of them, must be non-Gaussian dis-

tributed. Thus, following this approach, BSS is performed by maximizing the non-Gaussianity

of the components using higher-order statistics (HOS). As we have seen in previous chapters,

the maximization of the non-Gaussianity of the components is one of the ICA estimation

principles and then, FastICA and JADE, which were introduced in Chapter 2 as examples

of ICA algorithms based on the non-Gaussianity, could be used to perform BSS. In addition

to FastICA and JADE, the quasi-JADE algorithm (Bonhomme and Robin (2009)) extends

JADE in the presence of noise.However, since none of the previous algorithms take into ac-

count the autocorrelation structure of the data, they could have bad BSS performance on

time-dependent data sets, because they ignore important information for the separation.

The second category includes BSS algorithms that exploit the temporal structure of the

data using second order statistics (SOS), as the AMUSE and the SOBI algorithms presented

in Chapter 1 and 2, respectively. They solve the BSS problem under the assumption of

mutually uncorrelated components (less restrictive assumption than the independence) that

have a pronounced linear autocorrelation structure. The algorithms of this approach estimate

the components making their cross-correlations equal to zero. Molgedey and Schuster (1994)

was the first one that suggested the simultaneous diagonalization of time-delayed covariance

matrices. In addition to AMUSE and SOBI, the TDSEP algorithm (Ziehe and Müller (1998)),

which uses the same methodology as SOBI but it is restricted to the noiseless case (there are

not essential differences between SOBI and TDSEP and both provide identical results) is a

well-known example of this BSS approach. All these algorithms are computationally simple

and are allowed to separate Gaussian components. However, as any SOS-based algorithm,

they do not guarantee the independence of the non-Gaussian (or non-linear) components

which will be only uncorrelated.

The last approach, firstly proposed by Matsuoka et al. (1995), comprises algorithms that

allow the separation of both, Gaussian and non-Gaussian components, by exploiting the

non-stationarity of the data. Here, the components are assumed to be second-order non-
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stationarity, in the sense that their variances are not constant over time. Algorithms of this

approach are based on a simple decorrelation technique that performs the BSS by minimiz-

ing the sum of several lagged cross-correlation of the squares observations. Some works on

non-stationary BSS are given by Choi and Cichocki (2000), Pham and Cardoso (2001), and

Hyvärinen (2001) among others.

So far BSS algorithms have been using either information from non-stationarity of the com-

ponents or from the autocorrelation structure in the data. However, making only one of the

three assumptions may lead us to ignore valuable information that could be useful for improv-

ing BSS performance. For example, let focus on the case of our interest: we observe a multi-

dimensional non-Gaussian (non-linear) data set that exhibits a significant temporal structure

and is second-order stationary. In this example, for identifying the ICs, we should choose be-

tween algorithms that exploiting either the temporal structure or the non-Gaussianity of the

data. On the one hand, if we use the autocorrelation structure of the observations then, the

separation can be based entirely on SOS. However, note that, strictly speaking, the SOS-based

algorithms do not estimate ICs. They are merely uncorrelated components, and although the

ICs are always uncorrelated, the inverse is not true. The SOS-based algorithms have the

capability of separating Gaussian components, and in this situation, the independence of

the estimates uncorrelated components is guarantee. However, under non-Gaussianity (or

non-linearity) assumption, the SOS-algorithms provide uncorrelated components that are not

independent. On the other hand, if we deal with the non-Gaussianity (or non-linearity) of

the processes, then HOS are required for the BSS of the ICs. In that case, the statistical

independence of the components is achieved but, since HOS-based algorithms do not deal

with the temporal structure of the components, again essential information for the separation

is lost. Then, it would be desirable to have a BSS procedure that combines both, HOS and

temporal structure, to identify the ICs from a vector of non-Gaussian (or non-linear) time

series.

In this chapter we present a new BSS approach that jointly exploits the non-Gaussianity

(or non-linearity) and the temporal structure of the ICs. Then, it will not be necessary to

choose the BSS estimation principle a-priori, any useful information will be ignored, and then,

an improvement of the BSS performance is expected. We propose a new fourth-order tem-

poral blind identification (FOTBI) algorithm that allows for the separation of the ICs based

on HOS as well as their temporal structure. Since higher-order cumulants contain valuable
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information for non-Gaussian components then, FOTBI incorporates the HOS using higher-

order cumulants. Moreover, in order to introduce the time structure of the ICs, FOTBI is

based on time-delayed higher-order cumulants instead of the instantaneous ones. Although it

is well known that cumulants of any higher-order can be used to construct a sufficient criteria

for BSS of non-Gaussian components, in practice, it is enough to consider fourth-order cumu-

lants. According to this, FOTBI uses time-delayed fourth-order cumulants. Furthermore, as

the cross-cumulants of the ICs vanish, taking into account the temporal structure of the ICs,

FOTBI performs BSS by minimizing the time-delayed fourth-order cross-cumulants of the

ICs (or equivalently, maximizing their time-delayed fourth-order autocumulants). Note that

previous condition is equivalent to say that a set of cumulant matrices are maximally diagonal

(Cardoso and Souloumiac (1993)). Then, FOTBI can be defined as a new BSS algorithm that

is based on the joint diagonalization of a set of time-delayed fourth-order cumulant matrices.

The rest of the chapter is organized as follows. Section 3.2 briefly summarizes some def-

initions and fundamental properties of the cumulants, paying special attention to the case

of time-delayed cumulants. Moreover, we review the existing approaches for joint diagonal-

ization. In the next section, the BSS model and the relevant assumptions made throughout

the chapter are presented. In particular, it is focused on describing the BSS problem for

non-Gaussian (or non-linear) and temporally correlated components. Section 3.4 introduces

a fourth-order temporal blind identification (FOTBI) method that jointly exploits the non-

Gaussianity (or the non-linearity) and the temporal structure of the ICs. In addition, since

FOTBI is based on the joint diagonalization of a set of time-delayed fourth-order cumulant

matrices, we give the framework to formulate the joint diagonalization problem in our proce-

dure. In Section 3.5 Monte Carlo experimental results show the high performance of FOTBI

when the ICs are non-Gaussian (or non-linear) time series. Finally, conclusions are drawn in

Section 3.6.

3.2 Preliminaries

In this section, we review some theoretical results that are useful for our blind identification

approach. First, we focus on HOS: we review the definition of cumulants of both one- as well

as multi-dimensional random variables and stochastic processes, and we include some essential

properties for performing BSS. Next, since our BSS approach is based on the simultaneous

diagonalization of several time-delayed fourth-order cumulant matrices, we review some joint
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diagonalization approaches previously proposed in the literature.

3.2.1 Cumulants: definitions and properties

Here, we introduce the definition of cumulants and point out some important properties which

will be useful for our approach. First we focus on cumulants of random variables, and then

we move to define cumulants of time-dependent processes.

Let x be a zero-mean random variable with probability density function px(·). Let ϕx(·)

and φx(·) be, respectively, the first and the second characteristic functions of x, given by:

ϕx(ξ) = E{exp(iξx)} =
∫
< exp(iξx)dF (x) , ξ ∈ <

φx(ξ) = ln(ϕx(ξ)) , ξ ∈ <
(3.1)

where F (x) is the distribution function of x. The pth-order cumulant of x, denoted by

cump,x(x), is defined as the pth-order coefficient of the Taylor series expansion of φx(·) about

the origin. That is:

φx(ξ) = 1 +
∑∞

p=1 cump,x(x) (iξ)p

p! , ξ ∈ <,

where cump,x(x) is:

cump,x(x) = (−i)p δ
pφx(ξ)
δξp |ξ=0, ξ ∈ <.

Cumulants and moments are very related: they are defined in a similar way (the pth-

order moment of x is the pth-order coefficient of the Taylor series expansion of ϕx(·)), and

cumulants can be expressed in terms of moments (in fact, they are equal in some particular

cases). Thus, for example, the first-, second-, and third-order cumulants of x, given by

cum1,x(x) = E{x} = 0, cum2,x(x) = E{x2}, cum3,x(x) = E{x3}, correspond to the respective

first-, second-, and third-order moments of x. Moreover, the fourth-order cumulant of x is

equal to its kurtosis coefficient, cum4,x(x) = E{x4} − 3E{x2}2, that is defined in terms of

the second- and the fourth-order moments of x. Then, it is clear that both, cumulants and

moments, give us the same statistical information.

Moving to the multivariate case, let y = (y1, ..., ym)′ be an mth-dimensional vector of

zero-mean random variables with probability density function py(·). The first and the second

characteristic functions of y, ϕy(·) and φy(·), are given straightforward from (3.1) as follows:

ϕy(u) = E{exp(iu′y)} =
∫
<m exp(iu′y)dF (y) and φy(u) = log(ϕy(u)), where F (y) is the



3.2. Preliminaries 70

distribution function of y and u = (u1, . . . , um)′ ∈ <m. The pth-order cumulant of y, denoted

by cump,y(

p−times︷ ︸︸ ︷
y, . . . ,y) ≡ cump,y(y), is defined as an mp-dimensional vector that contains the

pth-order coefficients of the Taylor series expansion of φy(·) about the origin. That is,

φy(u) = 1 +

∞∑
p=1

1

p!
cump,y(y)

p−times︷ ︸︸ ︷
(iu)⊗ . . .⊗ (iu), (3.2)

where ⊗ is the Kronecker product and cump,y(y) is:

cump,y(y) = (−i)p

p−times︷ ︸︸ ︷(
δφy(u)

δu

)
⊗ . . .⊗

(
δφy(u)

δu

)
|u=0. (3.3)

Therefore, cump,y(y) is an mp × 1 vector with [(i1 − 1)mp−1 + (i2 − 1)mp−2 + . . . + (ip−1 −

1)m+ ip]th element given by

cump,y(yi1 , . . . , yip) = (−i)p δpφy(u)
δui1 ...δuip

,

where iν ∈ {1, . . . ,m} for ν = 1, . . . , p, is a set of p indexes.

The following are examples of some pth-order cumulants:

• if p = 1, the first-order cumulant of y, cum1,y(y), is an m× 1 vector whose ith element

is: cum1,y(yi) = E{yi} = 0, ∀i = 1, . . . ,m. Then, cum1,y(y) = E{y} = 0.

• if p = 2, the second-order cumulant of y, cum2,y(y), is an m2 × 1 vector whose [(i −

1)m + j]th element is: cum2,y(yi, yj) = E{yiyj}, ∀i, j = 1, . . . ,m. Then, cum2,y(y) =

vec(E{yy′}), i.e., it is the vectorization of the covariance matrix of y.

• if p = 3, the third-order cumulant of y, cum3,y(y), is an m3 × 1 vector whose ](i −

1)m2 + (j − 1)m+ k]th element is: cum3,y(yi, yj , yk) = E{yiyjyk}.

• if p = 4, the fourth-order cumulant of y, cum4,y(y), is an m4 × 1 vector whose

[(i− 1)m3 + (j − 1)m2 + (k − 1)m+ l]th element is:

cum4,y(yi, yj , yk, yl) = E{yiyjykyl}−E{yiyj}E{ykyl}−E{yiyk}E{yjyl}−E{yiyl}E{yjyk}.

Here we have that, as in the univariate case, the cumulants of a vector of random variables can

be written in terms of moments. For example, the first- and the second-order cumulant of y

are, respectively, the mean and the vectorization of the covariance matrix of y. Moreover, the
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third-order cumulants are equal to the third order moments, and the fourth-order cumulants

differ from the fourth-order moments in some second-order moments.

Despite of higher-order cumulants and higher-order moments provide the same statistical

information, there are some mathematical and practical reasons for which higher-order cumu-

lants are preferable to perform BSS. In the following, we point out some examples of these

properties (for a complete revision of cumulants see, for example, Mendel (1991)):

Property P1. Invariance and equivariance. If u = (u1, . . . , um)′ ∈ <m is a vector of

constants, the first-order cumulant of y is shift-equivariant:

cum1,y(u + y) = u + cum1,y(y), i.e.,

cum1,y(ui + yi) = ui + cum1,y(yi), ∀i = 1, . . . ,m

and all of the others are shift-invariant:

cump,y(u + y,

(p−1)−times︷ ︸︸ ︷
y, . . . ,y ) = cump,y(

p−times︷ ︸︸ ︷
y, . . . ,y), i.e.,

cump,y(ui1 + yi1 , . . . , yip) = cump,y(yi1 , . . . , yip) , ∀p > 1,

where iν ∈ {1, . . . ,m} for ν = 1, . . . , p, is a set of p indexes.

Property P2. Gaussian rejection. If y is a vector of Gaussian random variables,

cump,y(

p−times︷ ︸︸ ︷
y, . . . ,y) = 0, ∀p ≥ 3, i.e.,

cump,y(yi1 , . . . , yip) = 0 , ∀p ≥ 3,

where iν ∈ {1, . . . ,m} for ν = 1, . . . , p, is a set of p indexes.

Property P3. Additivity. If y(1) = (y
(1)
1 , . . . , y

(1)
m )′ and y(2) = (y

(2)
1 , . . . , y

(2)
m )′ are inde-

pendent random vectors,

cump,y(1)+y(2)(

p−times︷ ︸︸ ︷
y(1) + y(2), . . . ,y(1) + y(2)) = cump,y(1)(

p−times︷ ︸︸ ︷
y(1), . . . ,y(1))+cump,y(2)(

p−times︷ ︸︸ ︷
y(2), . . . ,y(2)),
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i.e.,

cump,y(1)+y(2)(y
(1)
i1

+ y
(2)
j1
, . . . , y

(1)
ip

+ y
(2)
jp

) = cump,y(1)(y
(1)
i1
, . . . , y

(1)
ip

) + cump,y(2)(y
(2)
j1
, . . . , y

(2)
jp

),

where iν , iν′ ∈ {1, . . . ,m} for ν, ν ′ = 1, . . . , p. Note that higher-order moments do not satisfy

this property.

Property P4. Multilinearity. If {Ul}l=1,...,p, is a set of constant matrices of size ml×m,

cump,(U1y,...,Upy)(U1y, . . . ,Upy) = (U1 ⊗ . . .⊗Up)cump,y(

p−times︷ ︸︸ ︷
y, . . . ,y)

and, in particular, for any mth dimensional vector of constants, u = (u1, . . . , um) ∈ <m,

cump,u′y(ui1yi1 , . . . , uipyip) = (
∏p
ν=1 uiν )cump,y(yi1 , . . . , yip).

where iν ∈ {1, . . . ,m} for ν = 1, . . . , p.

Property P5. Symmetry. For any permutation (i℘1 , . . . , i
℘
p ) of the indexes (i1, . . . , ip),

where iν ∈ {1, . . . ,m} for ν = 1, . . . , p,

cump,y(yi1 , . . . , yip) = cump,y(yi℘1 , . . . , yi
℘
p
).

Under statistical independence and non-Gaussianity assumptions, properties P2. and P3.

are specially relevant. In particular, P2. will be very useful to extract the non-Gaussian part

of the observed variables. According to that, it seems reasonable using higher-order cumulants

to define BSS criteria and to separate the unobserved non-Gaussian ICs from the Gaussian

ones (which could be considered as Gaussian noise). Despite of cumulants of any order could

be theoretically used for performing BSS, in practice, the separation criteria are mainly based

on fourth-order cumulants. But, why most of the BSS algorithms use fourth-order cumulants

instead of third-order ones? The third-order cumulants of random (or stochastic) processes

that are symmetric distributed (e.g., Gaussian, Uniform or Laplacian distributed) are equal

to zero. Then, the third-order cumulants of non-Gaussian components that were symmetric

distributed will be equal to zero, and these components could not be estimated because they

would be considered as Gaussian noise. For that reason, our approach will be based on

time-delayed fourth-order cumulants.
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Given the difficulties of working with the algebraic tensorial nature of cumulants, as we

have shown in Chpater 2, Cardoso and Souloumiac (1993) introduce the fourth-order cumulant

matrices defined component-wise by,

[Qy(N)](i,j) =

m∑
k,l=1

cum4,y(yi, yj , yk, yl)nkl, 1 ≤ i, j ≤ m. (3.4)

where nkl is the (k, l)-th element of the m × m matrix N (note that Qy(N) is an m × m

matrix). For example, if N = Im, the fourth-order cumulant matrix associated to y is:

Qy(Im) =

 cum4,y(y1, y1, y1, y1) + . . .+ cum4,y(y1, y1, ym, ym) · · ·
...

. . .
cum4,y(ym, y1, y1, y1) + . . .+ cum4,y(ym, y1, ym, ym) · · ·

· · · cum4,y(y1, ym, y1, y1) + . . .+ cum4,y(y1, ym, ym, ym)
. . .

...
· · · cum4,y(ym, ym, y1, y1) + . . .+ cum4,y(ym, ym, ym, ym)

 (3.5)

Note that Qy(Im) is equivalent to the ‘quadratically weighted covariance’ matrix (that is the

covariance matrix of the variable |y|y) proposed by Cardoso (1989), but considering fourth-

order cumulants instead fourth-order moments.

Cardoso and Souloumiac (1993) consider a particular case of (3.4) by choosing (N) =

Nkl = eke
′
l with ek denoting the m× 1 vector that takes value 1 in its kth-position and value

0 elsewhere. Thus, Cardoso and Souloumiac (1993) define the (k, l)-th parallel cumulant slice

as the m×m matrix Qy(Nkl) with (i, j)th-element given by cum4,y(yi, yj , yk, yl). That is,

Qy(Nkl) =


cum4,y(y1, y1, yk, yl) cum4,y(y1, y2, yk, yl) · · · cum4,y(y1, ym, yk, yl)
cum4,y(y2, y1, yk, yl) cum4,y(y2, y2, yk, yl) · · · cum4,y(y2, ym, yk, yl)

...
...

. . .
...

cum4,y(ym, y1, yk, yl) cum4,y(ym, y2, yk, yl) · · · cum4,y(ym, ym, yk, yl)


(3.6)

Then, each entry in the matrix Qy(Nkl) has one fourth-order cumulant, and therefore it only

contains m2 instead of all the m4 fourth-order cumulants. The drawback of this approach is

that Nkl should be chosen a-priori and there is no information for choosing the optimal one.

However, since the set of m2 matrices {N11, . . . ,N1m,N21, . . . ,N2m, . . . ,Nm1, . . . ,Nmm} is

an orthonormal basis for the space of m × m real matrices, any m × m matrix, N, can be

written as N =
∑m

k,l=1 Nkl. Then, the problem of choosing a particular matrix Nkl is avoided.

Moreover, from (3.4) it is clear that Qy(N) is given by a linear combination of the (k, l)-th

parallel cumulant slices, where the elements of N are the weights of the linear combination.
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That is,

Qy(N) =

m∑
k,l=1

nklQy(Nkl). (3.7)

An example to illustrate (3.7) is given in the appendix (Section 3.7.1). Thus, instead of

computing directly the matrix Qy(N) (that has the sum of several fourth-order cumulants in

each cell), we can compute it more easily as the sum of several (k, l)-th parallel cumulants

which only have one cumulant per entry. This approach was used by Cardoso and Souloumiac

(1993) to propose the JADE algorithm that was presented in Chapter 2.

From now on, since we are interested in applying higher-order cumulants to perform BSS

for time series data, we will move to review the definition of time-delayed cumulants. Focusing

on the univariate case, let xt be a pth-order stationary stochastic process. Then time-delayed

pth-order cumulant of xt is defined as,

Cp,x(0, τ1, τ2, . . . , τp−1) = cum(xt, xt+τ1 , . . . , xt+τp−1). (3.8)

and, due to the stationarity of xt, (3.8) only depends on the p− 1 lags. As particular cases of

(3.8), the second-, third-, and fourth-order cumulants of xt are given by:

C2,x(0, τ) = E{xtxt+τ} (3.9)

C3,x(0, τ1, τ2) = E{xtxt+τ1xt+τ2} (3.10)

C4,x(0, τ1, τ2, τ3) = E{xtxt+τ1xt+τ2xt+τ3} − C2,x(0, τ1)C2,x(0, τ3 − τ2)− (3.11)

−C2,x(0, τ2)C2,x(0, τ3 − τ1)− C2,x(0, τ3)C2,x(0, τ2 − τ1)

From (3.9) to (3.11) it is clear that, similarly to cumulants of random variables, cumulants

of a stochastic process can be written in terms of its moments. In particular, the second-order

cumulant given by (3.9) is just the autocovariance matrix of xt at lag τ , for any τ > 0.

In the multidimensional case, the definition of time-delayed cumulants for a vector of

stochastic processes is easy extended. Let zt = (z1t, z2t, . . . , zmt)
′ be a zero-mean pth-order

stationary vector of time series. Let (i1, . . . , ip) be a set of p indexes where ij = 1, . . . ,m for

all j = 1, . . . , p. The time-delayed pth-order cumulant of zt is defined as the joint pth-order

cumulant of the random processes zi1t, zi2t+τ1 , . . . , zipt+τp−1 , i.e.,

C
(i1,...,ip)
p,z (0, τ1, τ2, . . . , τp−1) = cum(zi1t, zi2t+τ1 , . . . , zipt+τp−1). (3.12)
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Some particular cases of (3.12) are the time-delayed second-, third-, and fourth-order cumu-

lants of zt, which follow from (3.9)-(3.11), are given by:

C
(i,j)
2,z (0, τ) = E{zitzjt+τ} (3.13)

C
(i,j,k)
3,z (0, τ1, τ2) = E{zitzjt+τ1zkt+τ2} (3.14)

C
(i,j,k,l)
4,z (0, τ1, τ2, τ3) = E{zitzjt+τ1zkt+τ2zlt+τ3} − C

(i,j)
2,z (0, τ1)C

(k,l)
2,z (0, τ3 − τ2)− (3.15)

−C(i,k)
2,z (0, τ2)C

(j,l)
2,z (0, τ3 − τ1)− C(i,l)

2,z (0, τ3)C
(j,k)
2,z (0, τ2 − τ1)

Note that here, as before, the relationship between cumulants and moments is clear. In fact,

the time-delayed second-order cumulant of zt is its τ -time-delayed covariance matrix, for any

lag τ > 0.

The properties P1.-P5. could be easily extended to the time-delayed cumulants. In

particular, the symmetry in the arguments of the time-delayed fourth-order cumulants is

stated as:

Property P5’. Symmetry. For any permutation (i℘, j℘, k℘, l℘) of the indexes (i, j, k, l),

C
(i,j,k,l)
4,z (τi, τj , τk, τl) = C

(i℘,j℘,k℘,l℘)
4,z (τi℘ , τj℘ , τk℘ , τl℘),

where τi and τ(·)℘ , that is the corresponding permutation for τi, are equal to zero.

By the difficulty of working with time-delayed fourth order cumulants, it would be desirable

to have a matrix based notation. For this purpose, we propose to extend the concept of

fourth-order cumulant matrices defined by Cardoso and Souloumiac (1993) (see (3.4)). Let

{(τ1, τ2, τ3)}τi=0,1,...,K any triple of time lags. We define the (τ1, τ2, τ3)-time-delayed fourth-

order cumulant matrix associated to zt, denoted by Q
(0,τ1,τ2,τ3)
z (·), as an m×m matrix whose

(i, j)-th element is given by,

[Q
(0,τ1,τ2,τ3)
z (N)](i,j) =

m∑
k,l=1

cum(zit, zjt+τ1 , zkt+τ2 , zlt+τ3)nkl, 1 ≤ i, j ≤ m, (3.16)

where N is an arbitrary matrix of size m×m. Analogous to the definition given by Cardoso

and Souloumiac (1993), we define (k, l)-th (τ1, τ2, τ3)-time-delayed parallel cumulant slice as

the matrix whose (i, j)th-element is given by Cum(zit, zjt+τ1 , zkt+τ2 , zlt+τ3). Note that it

corresponds to the (τ1, τ2, τ3)-time-delayed fourth-order cumulant matrix Q
(0,τ1,τ2,τ3)
z (Nij),

where Nij = eie
′
j and ei is the m× 1 vector that takes value 1 in its ith-position and value 0
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elsewhere. Then, from (3.16), it is clear that Q
(0,τ1,τ2,τ3)
z (N) is given by a linear combination

of the (k, l)-th (τ1, τ2, τ3)-time-delayed parallel cumulant slice whose coefficients correspond to

the elements of N. For later use, we define the (τ1, τ2, τ3)-time-delayed parallel set N
(τ1,τ2,τ3)
p

as,

N (0,τ1,τ2,τ3)
p = {Q(0,τ1,τ2,τ3)

z (Nij) | Nij = eie
′
j , 1 ≤ i, j ≤ m} (3.17)

So far, we have summarized basic concepts about cumulants, and we have pointed out

some properties that show the advantages of using higher-order cumulants instead of higher-

order moments for BSS. However, working with cumulants has important drawbacks that

should be took into account. First of all, working with higher-order cumulants increases the

computational load of the problem. Fortunately, they have useful symmetry properties that

can reduce it. Moreover, as we mention before, cumulants can be written in terms of moments

so, in order to estimate cumulants, we must estimate moments first. We should be careful

when we estimate moments because they are very sensitive to outliers. Finally, in order to

reduce the variance associated to the sample estimates of the higher-order moments (and then,

the higher-order cumulants), we should have large datasets (the lengths of the datasets for

which HOS methods are applied should be larger than those where SOS methods are applied).

3.2.2 Joint diagonalization approaches

Joint diagonalization techniques play an important role to solve many statistical problems.

For example, common principal components (Flury (1984)) applies joint diagonalization for

testing whether or not several covariance matrices of some groups, that come from differ-

ent populations, have the same eigenvectors. Furthermore, some ICA algorithms as JADE

(Cardoso and Souloumiac (1993)) or SOBI (Belouchrani et al. (1997)), that have been used

for performing BSS, estimate the ICs by the joint diagonalization of a set of fourth-order

cumulant (JADE) or time-delayed covariance matrices (SOBI).

The joint diagonalization problem can be summarized as follows: let M = {M1, ...,MJ} be

a set of J matrices of size m×m. The aim of joint diagonalization is to find a transformation

V of size m × m which makes the matrices VMjV
′, for all j = 1, . . . , J , as diagonal as

possible. That is, it looks for the matrix V that minimizes the following cost function,

J∑
j=1

z(VMjV
′) (3.18)
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where z(·) is a measure of diagonality. The matrix V is called joint diagonalizer of the set

M . The exact diagonalization of more than two matrices simultaneously is not possible unless

the matrices have a certain common structure. Otherwise, we can only speak of approximate

joint diagonalization.

The way to formulate the joint diagonalization problem depends on the notion of diagonal-

ity that is used. Joint diagonalization techniques proposed in the literature can be categorized

into three groups. First, we have joint diagonalization techniques that are based on the Frobe-

nius norm formulation. They look for the transformation V that minimizes the sum of the

squares of the off-diagonal elements in VMjV
′. That is,

z(VMjV
′) =

∑
i6=l

[(VMjV
′)il]

2, ∀Mj ∈M. (3.19)

Algorithms based on this approach (for example, JADE and SOBI) are very efficient and they

converge very quickly to the optimal solution. However, it is obvious that the trivial solution,

V = 0, satisfies this criterion and it is not the optimal transformation we are looking for. In

order to avoid that the algorithm converges to the trivial solution, it is usual to require the

orthogonality of V. The drawback of this approach is that the orthogonality assumption is

too restrictive and may limit its applicability. The second category includes algorithms for

simultaneous diagonalization that follow the positive definite formulation. These algorithms

are based on the assumption that the J matrices of the set M are symmetric and positive-

definited. This approach was Kawamoto et al. (1997) to simultaneously diagonalize several

time-delayed covariance matrices (in Chapter 1, we explained this procedure and the measure

of lack of diagonality that they used).

This approach is computationally efficient but it may fail when the positive-definiteness

of the matrices {Mj}Mj∈M is not guaranteed. For example, it cannot be used in SOBI

because, in general, the time-delayed covariance matrices of any time series vector are not

positive-definite. Finally, within the third group there are joint diagonalization techniques

that are based on subspace fitting formulation. Those methods formulate the approximate

joint diagonalization problem as follows. Given the set of matrices {Mj}Mj∈M , the idea

behind this approach is to find an m×m matrix, Ṽ, and a set of J diagonal m×m matrices,

{Dj}Jj=1, such that the following contrast function, z(·), that is defined in terms of the

Euclidean distance,

z(Ṽ,Dj) = ‖Mj − ṼDjṼ
′‖2F , ∀Mj ∈M. (3.20)
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is minimized. Since this approach does not impose any restriction on the matrices Ṽ and

{Mj}Jj=1 (they are required to be neither orthogonal nor positive-definite matrices), it can be

applied to most of practical problems. The problem is that the computational cost of these

methods is too high (see van der Veen (2001) and Yeredor (2002) as examples).

Then, applying one of these three approaches to solve a joint diagonalization problem

has an important cost: either the algorithm is computationally efficient but strong restric-

tive assumptions are assumed, or no a-priori assumptions are considered but the algorithm

has high computational cost. Combining the ’advantages’ of the three previous approaches,

Ziehe et al. (2004) proposed a new algorithm for joint diagonalization called FFDIAG (fast

Frobenius diagonalization). FFDIAG uses the Frobenius norm formulation (then, it is not

too computationally intensive), but without assuming strong a-priori restrictions. Then, the

FFDIAG algorithm looks for the transformation V that minimizes the cost function given by

(3.18), where the measure of diagonality, z(·), is defined as in (3.19). The FFDIAG, in order

to avoid the convergence to the trivial solution, assumes the invertibility of V, that is less

restrictive than the orthogonality assumption.

3.3 Model and assumptions

In this chapter, we consider the ICA model presented in Chapter 2 (see Section 2.1 for more

details), where the m-dimensional vector of observations is assumed to be generated by a

linear combination of r underlying components that are statistically independent:

xt = Ast, t = 1, 2, ..., T (3.21)

To estimate the set of underlying components, ŝt = Wxt, such that they become as indepen-

dent as possible, we will make the following assumptions:

Assumption A1. The components of st are fourth-order stationary random processes with

zero-mean and identity covariance matrix: E{st} = 0 and Γs(0) = E{sts′t} = Ir.

Assumption A2. A is a full rank matrix: rank(A) = r.

Given a triple of time lags, (τ1, τ2, τ3), let us define the (τ1, τ2, τ3)-time-delayed fourth-order

cumulant set of st, denoted by Q
(0,τ1,τ2,τ3)
s , as:

Q
(0,τ1,τ2,τ3)
s = {cum(sit, sjt+τ1 , skt+τ2 , slt+τ3) | 1 ≤ i, j, k, l ≤ r}.
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The elements of Q
(0,τ1,τ2,τ3)
s with identical indexes corresponds to the (τ1, τ2, τ3)-time-delayed

fourth-order autocumulants of st,

κsq(τ1, τ2, τ3) = cum(sqt, sqt+τ1 , sqt+τ2 , sqt+τ3), ∀q = 1, . . . , r

Assumption A3. No more than one component of st could be Gaussian distributed. That

assumption implies that, for at least r − 1 components, {sqt}r−1
q=1, there exists triples of time

lags, (τ1, τ2, τ3), such that,

κsq(τ1, τ2, τ3) 6= 0, ∀q = 1, . . . , r − 1.

Assumption A4. The components of st are mutually independent. Then, the (τ1, τ2, τ3)-

time-delayed fourth-order cross-cumulants of st vanish and the non-zero elements ofQ
(0,τ1,τ2,τ3)
s

are still κsq(τ1, τ2, τ3), for q = 1, . . . , r.

Assumption A5. There exist consistent estimates for the matrices Γx(τ) and the sets

Q
(0,τ1,τ2,τ3)
x , ∀ τ, τ1, τ2, τ3 ≥ 0.

Under the above assumptions, and according to the model (3.21), we have some structures

on the observations. On the one hand, based on SOS, the (time-delayed) covariance matrices

of the observations are given by:

Γx(0) = AA′, and Γx(τ) = AΓs(τ)A′, ∀τ > 0 (3.22)

where Γs(τ) = E{sts′t+τ} = Diag(γ1(τ), . . . , γr(τ)) (as usual, γq(τ) denotes the autocovari-

ance of sqt at lag τ). On the other hand, based on higher-order cumulants and applying some

of their properties (additivity, multilinearity, and Gaussian rejection), the (τ1, τ2, τ3)-time-

delayed fourth-order cumulant set of xt satisfies:

Q
(0,τ1,τ2,τ3)
x = (A⊗A′)Q

(0,τ1,τ2,τ3)
s (A⊗A′)′, for any triple(τ1, τ2, τ3), (3.23)

where all the elements of Q
(0,τ1,τ2,τ3)
s , with the exception of κsq(τ1, τ2, τ3), are equal to zero.

Then, based on the above relations, it’s clear that assumption A5. guarantees the existence

of consistent estimates for Γs(τ) and Q
(0,τ1,τ2,τ3)
s , for any τ, τ1, τ2, τ3 ≥ 0.

3.4 A BSS approach for non-Gaussian (non-linear) time series

This section describes our blind identification approach for dealing with non-Gaussian (non-

linear) data that exhibit a significant temporal structure. Our proposal is a higher-order
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cumulants-based approach that performs BSS by the simultaneous diagonalization of several

time-delayed fourth-order cumulants matrices. It combines both SOS as well as HOS. First,

it exploits second-order information to standardize the data and to restrict the estimation of

the mixing matrix to the space of orthogonal matrices (see Chapter 1 for more details about

the multivariate standardization procedure). After the standardization, model (3.21) can be

written as,

zt = Ust, (3.24)

where U is an orthogonal matrix of size r×r and zt is the r-dimensional vector of standardized

observations: E{zt} = 0 and E{ztz′t} = Ir (Note that r = m in the basic ICA model, or

r < m if the dimension of the data is reduced). Second, the FOTBI algorithm introduces

HOS to determine the mixing matrix that guarantees the independence of the non-Gaussian

(or non-linear) time series components.

In the next subsections, we will detail our procedure. Next, we will explain two different

approaches to estimate the r× r orthogonal matrix U using time-delayed fourth-order cumu-

lants. Second, we will show how to combine these two approaches and link them to the joint

diagonalization problem in order to formulate our fourth-order temporal blind identification

(FOTBI) technique. Finally, we will sketch the main steps to implement FOTBI.

3.4.1 Estimation of the orthogonal matrix using HOS

Here two approaches to determine the orthogonal matrix U are presented. On the one hand,

U can be identify as the matrix of eigenvector of a set of some time-delayed fourth-order

cumulant matrices. On the other hand, U can be the solution to the optimization criterion

that consists on minimizing the sum of the squares of several time-delayed high-order cross-

cumulants of the components. In the following, we point out how these approaches could be

applied to our problem.

Approaches based on eigendecomposition

According to the model (3.24), and applying some properties of the cumulants (additivity,

multilinearity, and Gaussian rejection), the (τ1, τ2, τ3)-time-delayed fourth-order cumulant

matrices, given by (3.16), can be written as

Q
(0,τ1,τ2,τ3)
z (N) =

m∑
q=1

κsq(τ1, τ2, τ3) u′qNuq uqu
′
q, for any r × r matrix N, (3.25)
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where κsq(τ1, τ2, τ3) = Cum(sqt, sqt+τ1 , sqt+τ2 , sqt+τ3) and uq = (u1q, u2q, . . . , urq)
′. Equiva-

lently, (3.25) is given by:

Q
(0,τ1,τ2,τ3)
z (N) = UΛ

(τ1,τ2,τ3)
N U′, for any r × r matrix N, (3.26)

where

Λ
(τ1,τ2,τ3)
N = Diag(κs1(τ1, τ2, τ3) u′1Nu1, . . . , κ

s
r(τ1, τ2, τ3) u′rNur), for τ1, τ2, τ3 = 0, 1, . . . ,K.

(3.27)

From expression (3.26), the orthogonal matrix U can be identified as the matrix of eigen-

vectors of Q
(0,τ1,τ2,τ3)
z (N), for any r × r matrix N and for any triple (τ1, τ2, τ3) . However,

due to the indetermination of the eigenvalue decomposition, U could not be identified if the

(τ1, τ2, τ3)-time-delayed fourth-order cumulant matrices has not different eigenvalues. Ac-

cording to (3.26), the eigenvalues of Q
(0,τ1,τ2,τ3)
z (N) are the elements of Λ

(τ1,τ2,τ3)
N given by

(3.27). If N = Ir, due to the orthogonality of U, the eigenvalues of Q
(0,τ1,τ2,τ3)
z (Ir) are the

(τ1, τ2, τ3)-time-delayed autocumulants of the ICs, κsq(τ1, τ2, τ3). Then, the matrix U could be

identified only if all the (τ1, τ2, τ3)-time-delayed autocumulants of the ICs are distinct. Since

this situation is very likely when we consider a particular (τ1, τ2, τ3)-time-delayed parallel set

N
(0,τ1,τ2,τ3)
p , this approach seems to be feasible for our purpose.

Approaches based on optimization of cumulant criteria

Let V be an r × r orthogonal matrix such that,

bt = V′zt. (3.28)

Plugging (3.24) into (3.28), bt = V′Ust. Thus, if V is essentially equal to U, then bt =

st. Therefore, since the components of bt correspond to the ICs, their time-delayed high-

order cross-cumulants should be equal to zero. According to that, the matrix U could be

estimated as the r×r orthogonal transformation that minimizes the sum of the squares of the

(τ1, τ2, τ3)-time-delayed high-order cross-cumulants of bt, that is equivalent to maximize their

(τ1, τ2, τ3)-time-delayed high-order autocumulants. Following this approach, and focusing on

the (τ1, τ2, τ3)-time-delayed fourth-order cumulants of bt, for {(τ1, τ2, τ3)}0≤τ1,τ2,τ3≤K , U could

be estimated as the orthogonal matrix that maximizes,

f1(V) =

K∑
τ1,τ2,τ3=0

r∑
i=1

{cum(bit, bit+τ1 , bit+τ2 , bit+τ3)}2. (3.29)
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We modify the contrast function given by (3.29), and following Cardoso and Souloumiac

(1993), we propose to minimize the sum of the squares of the (τ1, τ2, τ3)-time-delayed fourth-

order cross-cumulants of bt, whose first and second indices are different. That is, U is the

orthogonal matrix that maximizes

f2(V) =
K∑

τ1,τ2,τ3=0

r∑
i,k,l=1

{cum(bit, bit+τ1 , bkt+τ2 , blt+τ3)}2. (3.30)

Note that, considering the contrast function (3.30) allows to perform BSS by the joint diag-

onalization of some (τ1, τ2, τ3)-time-delayed fourth-order cumulant matrices, for any triple of

time lags {(τ1, τ2, τ3)}0≤τ1,τ2,τ3≤K . This fact will be shown next.

3.4.2 Joint diagonalization for our blind identification approach

Our aim is to identify a set of unknown ICs which generate the vector of non-Gaussian

(non-linear) time series that we observe. The ICs will also be non-Gaussian (or non-linear)

and have a significant autocorrelation structure. Then, we would like to estimate the ICs

exploiting both the non-Gaussianity as well as the temporal structure of the observations.

For this purpose, extending the concept of fourth-order cumulant matrices given by Cardoso

and Souloumiac (1993), we combine HOS and temporal dependence to define the time-delayed

fourth-order cumulant matrices (see (3.16)). Assuming that the model (3.21) is the real one,

the (τ1, τ2, τ3)-time-delayed fourth-order cumulant matrices of the standardized data and the

ones of the ICs are related by equation (3.26). Since U is orthogonal, (3.26) is equivalent to,

Λ
(0,τ1,τ2,τ3)
N = U′Q

(0,τ1,τ2,τ3)
z (N)U, for any r × r matrix N, (3.31)

that can be particularized for any (τ1, τ2, τ3)-time-delayed parallel set N
(0,τ1,τ2,τ3)
p defined as

in (3.17). Note that equation (3.31) nests within the formulation of the joint diagonalization,

and U can be obtained by the simultaneous diagonalization of some (τ1, τ2, τ3)-time-delayed

parallel sets N
(0,τ1,τ2,τ3)
p . We propose to follow this estimation principle and identify the

orthogonal matrix U as the joint diagonalizer of a set of some (τ1, τ2, τ3)-time-delayed parallel

set N
(0,τ1,τ2,τ3)
p . That is, according to our proposal, U will be determined as the orthogonal

transformation that minimizes

f3(U,Np) =

K∑
τ1,τ2,τ3=0

r∑
i,j=1

off(U′Q
(0,τ1,τ2,τ3)
z (Nij)U), (3.32)

where Np = {N (0,τ1,τ2,τ3)
p , 0 ≤ τ1, τ2, τ3 ≤ K} and off(·) is defined as the sum of the squares

of the off-diagonal elements of a matrix. This is equivalent to identify U as the orthogonal
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transformation that maximizes the following joint diagonalization criterion:

f4(U,Np) =

K∑
τ1,τ2,τ3=0

r∑
i,j=1

(
diag(U′Q

(0,τ1,τ2,τ3)
z (Nij)U)

)2
, (3.33)

where Np is defined as before and diag(·) represent the sum of the squares of the diagonal

elements of a matrix.

For convenience, we will follow the second joint diagonalization criterion and propose to

determine U as the maximizer of (3.33). Thus, we link our joint diagonalization approach

(given by the criterion (3.33)) to the two approaches introduced in the previous section (the

eigendecomposition-based and the optimization-based approaches) as follows:

Proposition 1. For any r × r orthogonal matrix V, f2(V) = f4(V,Np).

Proof. See the appendix (Section 3.7.2)

Proposition 1 shows the equivalence between maximizing f2(V) and the joint diagonalization

of Np. Then, our proposal to determine the orthogonal transformation, U, as the joint diag-

onalizer of Np can be used as a criterion for BSS. However, the identifiability of U should be

guaranteed. We achieve that fact in two steps: first, we show the uniqueness of the joint diag-

onalizer of any (τ1, τ2, τ3)-time-delayed parallel set, N
(0,τ1,τ2,τ3)
p (first identifiability condition);

then, we generalize the result to the case of several (τ1, τ2, τ3)-time-delayed parallel sets, and

guarantee the identifiability of U via the joint diagonalization of Np (second identifiability

condition). Formally, we have:

Theorem 1. (First identifiability condition) Let (τ1, τ2, τ3) be a triple of time lags and

V be an r × r orthogonal matrix such that:

H1. V is a joint diagonalizer of the (τ1, τ2, τ3)-time-delayed parallel set N
(0,τ1,τ2,τ3)
p . That is:

V′Q
(0,τ1,τ2,τ3)
z (Nij)V = Diag(d1, . . . , dr), for any {Nij}1≤i,j≤r (3.34)

H2. for any {Nij}1≤i,j≤r, the eigenvalues of Q
(0,τ1,τ2,τ3)
z (Nij) are all distinct,

∀ 1 ≤ q1 6= q2 ≤ r, κsq1(τ1, τ2, τ3)u′q1N
ijuq1 6= κsq2(τ1, τ2, τ3)u′q2N

ijuq2 . (3.35)

Then,

1.1. V is essentially equal to U: V = U,
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1.2. it exists a permutation % on {1, . . . , r}, such that:

(κs1(τ1, τ2, τ3)u′1Nu1, . . . , κ
s
r(τ1, τ2, τ3)u′rNur) = (d%(1), . . . , d%(r)). (3.36)

The proof of this theorem is straightforward: applying the spectral theorem for normal ma-

trices to Q
(0,τ1,τ2,τ3)
z (Nij), is guaranteed that there exists an r× r orthogonal matrix, V, that

satisfies (3.34) and then, H1. holds. Furthermore, by linearity of Q
(0,τ1,τ2,τ3)
z (·), the matrix V

also diagonalizes any linear combination of matrices {Nij}, and then, Ṽ′Q
(0,τ1,τ2,τ3)
z (N)Ṽ ′ is

diagonal for any matrix N of size r× r. Then, to guarantee that V is essentially equal to U,

we need to prove that condition (3.35) holds. However, it is not trivial to show the existence

of a triple of time lags, (τ1, τ2, τ3), that satisfies (3.35). Then, the identification of the compo-

nents of st is only possible if the eigenvalues of Q
(0,τ1,τ2,τ3)
z (N), for any triple (τ1, τ2, τ3), are

distinct. As it is not easy to determine a-priori the triple of time lags, (τ1, τ2, τ3), that satis-

fies previous condition, we have proposed to diagonalize, simultaneously, a set of time-delayed

fourth-order cumulant matrices, Q
(0,τ1,τ2,τ3)
z (N), for several triple of time lags, (τ1, τ2, τ3), with

τi = 0, 1, . . . ,K ∀ i = 1, 2, 3. Then, we will estimate U as a joint diagonalizer of Np, but the

uniqueness of the orthogonal matrix U should be guaranteed. This is equivalent to show that

the joint diagonalizer of Np is unique, and is given by:

Theorem 2. (Second identifiability condition) Let = = {(τ1, τ2, τ3), 0 ≤ τ1, τ2, τ3 ≤ K}

be a set of triples of time lags and let N be an arbitrary matrix of size r × r. Furthermore,

let Np = {N (0,τ1,τ2,τ3)
p | (τ1, τ2, τ3) ∈ =} = {Q(0,τ1,τ2,τ3)

z (N) | (τ1, τ2, τ3) ∈ =} be a set of

time-delayed fourth-order cumulant matrices of size r × r such that:

Q
(0,τ1,τ2,τ3)
z (N) = UΛ

(τ1,τ2,τ3)
N U′, ∀(τ1, τ2, τ3) ∈ = (3.37)

where Λ
(τ1,τ2,τ3)
N is an r × r diagonal matrix given by (3.27). Then, any joint diagonalizer of

Np is essentially equal to U if, and only if,

∀1 ≤ q1 6= q2 ≤ r, ∃(τ1, τ2, τ3) ∈ = : κsq1(τ1, τ2, τ3)u′q1N
ijuq1 6= κsq2(τ1, τ2, τ3)u′q2N

ijuq2 .

(3.38)

The proof of this theorem is a consequence of the essential uniqueness of joint diagonalization

(see theorem 3 in Belouchrani et al. (1997)). From theorem 2, if (3.38) holds, then the

uniqueness of the joint diagonalizer of Np is guaranteed, and corresponds to the orthogonal

matrix U. Therefore, the key point is to find a triple of time lags, (τ1, τ2, τ3) ∈ = that satisfies

(3.38), and this is always possible due to the non-Gaussianity assumption. In effect: let’s set
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N =
∑r

q=1 q[κ
s
q(τ1, τ2, τ3)]−1uqu

′
q, for any (τ1, τ2, τ3) ∈ = . By assumption, no more than one

IC can be Gaussian distributed. Then, either the r ICs are non-Gaussian or there is one IC that

is Gaussian and the other are not. In the first case, if the r ICs are non-Gaussian distributed,

κsq(τ1, τ2, τ3) 6= 0 for all q = 1, . . . , r, and then, from (3.25), the eigenvalues of Q
(0,τ1,τ2,τ3)
z (N)

are all distinct. In the second case, let consider, for example, that the Gaussian IC is the

first one. Then, κs1(τ1, τ2, τ3) = 0 and κsq(τ1, τ2, τ3) 6= 0 for all q > 1, and Q
(0,τ1,τ2,τ3)
z (N) has

r integer different eigenvalues (one is equal to zero and the others are different from zero and

different each other too). Therefore, under the non-Gaussianity assumption, (3.38) holds, and

the uniqueness condition for identifiability is guaranteed.

Note that an important fact of our approach is that it does not require the exact diagonal-

ization of each individual time-delayed fourth-order cumulantmatrix. The orthogonal matrix

that maximizes (3.33) can be seen as the ‘approximate joint diagonalizer’ of Np. We will de-

scribe our new approach, that is called FOTBI (Fourth Order Temporal Blind Identification),

in the next section.

3.4.3 Implementation of the FOTBI algorithm

Based on the previous sections, the fourth-order temporal blind identification (FOTBI) algo-

rithm can be described as follows:

1. Remove the mean from the data and compute its sample covariance matrix as Γ̂x(0) =

1
T

∑T
t=1 xtx

′
t. Then, applying the EVD to Γ̂x(0), compute the whitening matrix, M̂,

and obtain the standardized data, zt = M̂xt.

2. For a fixed set of triples of time lags, {(τ1, τ2, τ3)}τi=0,...,K , form the sample estimates

of the (τ1, τ2, τ3)-time-delayed parallel set of fourth-order cumulant matrices associated

to zt, N̂
(0,τ1,τ2,τ3)
p = {Q̂(0,τ1,τ2,τ3)

z (Nij)}1≤i,j≤r. Note that, applying definitions (3.9) and

(3.11) in the equation (3.26)), the expression for Q̂
(0,τ1,τ2,τ3)
z (Nij) is simplified and can

be rewritten in terms of moments as:

Q̂
(0,τ1,τ2,τ3)
z (Nij) = E{z′t+τ2N

ijzt+τ3 ztz
′
t+τ1} − Γ̂z(τ1)Tr(NijΓ̂z(τ2 − τ3))(3.39)

−Γ̂z(τ2)NijΓ̂z(τ1 − τ3)− Γ̂z(τ3)NjiΓ̂z(τ1 − τ2).

3. Estimate the orthogonal matrix Û of size r × r as the transformation that jointly di-

agonalizes the set N̂
(0,τ1,τ2,τ3)
p , for some triples {(τ1, τ2, τ3)}τi=0,...,K . In order to obtain
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the joint diagonalizer, Û, Jacobi rotation techniques are applied.

4. An estimate of the loading matrix is given by Â = M̂]Û, and the estimates of the ICs

are ŝt = Ŵxt, where Ŵ = Û′M̂.

3.5 Simulation Experiments

In this section, we illustrate the performance of the FOTBI algorithm by means of a Monte

Carlo simulation. We report the results for three different experiments, which have been

selected to validate the FOTBI algorithm under different scenarios. Furthermore, in order

to test the FOTBI algorithm, we compare its performance with respect to JADE and SOBI

algorithms, which were presented in Chapter 2.

For each experiment, the procedure is as follows. First, in order to satisfy assumption

A1., the r components of st are standardized. Then, they are mixed according to the (3.21)

to get the vector of observations, xt. Finally, the aim is to estimate the ICs (and A) only from

the observations. We apply three ICA algorithms: JADE, SOBI, and FOTBI, and compare

their performance by computing the correlation coefficients and the mean square errors (MSE)

between each original components and its corresponding estimation.

For the three experiments, we generateN = 1000 realizations of each component, {sit}t=1,...,T
i=1,...,r ,

for different sample sizes, T = 100, 500, 1000. For each algorithm, we report the average val-

ues of both, the correlation coefficients and the MSEs between the original and the estimated

components, computed over the N independent replicas for the different sample sizes. Fur-

thermore, we provide the mean average values measured over the r ICs. Thus, we can analyze

the global and the component by component performance of each method, and establish some

ranking among the algorithms depending on the individual features of the ICs.

Experiment 1 : The components are defined as univariate time series that are Gaussian

distributed. In that scenario, where the components are Gaussian and exhibit a strong auto-

correlation, SOBI seems to be the ICA algorithm that provides the most accurate ICs (the ICs

given by SOBI will be temporal decorrelated and temporal independent too). Then, we are

interested in testing the performance of FOTBI, and determining whether it is a competitive

algorithm or not under this scenario.

In this experiment, we consider r = 4 components that follow different ARIMA models
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(they are describe in Table 3.1). Here, the loading matrix is A4×4 = [a1a2a3a4] where

a′1 = (2, 1, 1, 1), a′2 = (1, 2, 1, 1), a′3 = (1, 1, 2, 1), and a′4 = (1, 1, 1, 2).

Table 3.1: Experiment 1: Definition of the original components

Model specification
s1t ∼ AR(1) s1t = 0.68s1t−1 + n1t n1t ∼ N(0, 1)
s2t ∼ ARMA(1, 1) s2t = 0.5s2t−1 + n2t − 0.3n2t−1 n2t ∼ N(0, 1)
s3t ∼MA(1) s3t = n3t − 0.8n3t−1 n3t ∼ N(0, 1)
s4t ∼MA(2) s4t = n4t + 0.6n4t−1 − 0.3n4t−1 n4t ∼ N(0, 1)

NOTE: {njt}4j=1 are Gaussian white noise processes. Then, ∀t1 6= t2, njt1 and njt2 are uncorrelated and, therefore,

under Gaussianity, they are independent too.

Table 3.2: Experiment 1: Average values for the correlation coefficients and the
MSE between the original and the estimated components

sjt Correlation MSE

T j JADE SOBI FOTBI JADE SOBI FOTBI

100 1 0.671 0.913 0.721 0.655 0.172 0.555
2 0.665 0.875 0.734 0.667 0.249 0.529
3 0.636 0.924 0.733 0.724 0.151 0.532
4 0.598 0.844 0.706 0.800 0.311 0.585

Average 0.642 0.889 0.723 0.712 0.221 0.550

500 1 0.748 0.977 0.826 0.504 0.046 0.347
2 0.725 0.979 0.826 0.549 0.041 0.347
3 0.707 0.993 0.844 0.585 0.015 0.312
4 0.676 0.965 0.819 0.647 0.070 0.361

Average 0.714 0.979 0.829 0.571 0.043 0.342

1000 1 0.770 0.986 0.854 0.459 0.028 0.292
2 0.744 0.990 0.850 0.512 0.020 0.300
3 0.716 0.997 0.865 0.569 0.006 0.269
4 0.689 0.983 0.837 0.621 0.033 0.325

Average 0.730 0.989 0.852 0.540 0.022 0.296

According to the average values, shown in Table 3.2, we see that the results are as we

expected: SOBI and JADE present, respectively, the best and the worst performance, inde-

pendently of the sample size. In this experiment, where the ICs are Gaussian (linear) and have

a significant autocorrelation structure, SOBI provides more reliable identification of the un-

observed components than JADE or FOTBI do. Comparing the results of JADE and FOTBI,

we see that the ICs estimated by FOTBI are more correlated to the original ones and have

lower MSEs than those estimated by JADE. This result is in accordance with the assump-

tions made for each algorithm: JADE identifies the ICs based only on their non-Gaussianity,

but FOTBI exploits their temporal structure too. Then, as in this experiment the ICs are
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time-dependent processes, FOTBI outperforms JADE.

Experiment 2 : In this example, we define the components as univariate time series pro-

cesses that are non-Gaussian distributed. We design this experiment because to the fact

of dealing with temporal dependent components, we have added the fact that they are non-

Gaussian distributed, since we have proposed the FOTBI algorithm to estimate the ICs under

these conditions (note that the particular structure handle in this scenario is of course not

exploited by the JADE and the SOBI algorithms).

We generate r = 5 components that fit to non-Gaussian ARIMA models (see Table 3.3

for the model specifications), and fix the parameters of the mixing matrix as: A5×5 =

[a1a2a3a4a5] where a′1 = (2, 1, 1, 1, 1), a′2 = (1, 2, 1, 1, 1), a′3 = (1, 1, 2, 1, 1), a′4 = (1, 1, 1, 2, 1),

and a′5 = (1, 1, 1, 1, 2). We have designed non-linear (non-Gaussian) ICs that are temporal

dependent. As in the first experiment, for comparing the performance of JADE, SOBI and

FOTBI, we compute the average values for the correlation coefficients and the MSEs. From

the results, that are provided in Table 3.4, we see that SOBI performs worse than JADE,

and FOTBI clearly outperforms JADE and SOBI for any sample size. This is to be expected:

if only either the non-Gaussianity (JADE) or the temporal structure (SOBI) of the data is

exploited to identify the ICs then, useful information is ignored and makes the performance

of the separation worse; FOTBI, that combines both the non-Gaussianity and the tempo-

ral structure of the data, seems to be the most reliable method to identify non-Gaussian

(non-linear) time series components. Moreover, we would like to notice that the FOTBI per-

formance improves when the sample size increases, and this is because longer data lengths

reduce the variance associated with the sample time-delayed fourth-order cumulant matrices

estimates.

Table 3.3: Experiment 2: Definition of the original components

Model specification
s1t ∼ ARMA(1, 1) s1t = 0.9s1t−1 + n1t − 0.8n1t−1 n1t ∼ t15

s2t ∼ ARMA(1, 1) s2t = 0.72s2t−1 + n2t − 0.5n2t−1 n2t ∼ GED, κ = 2
s3t ∼ ARMA(1, 2) s3t = 0.75s3t−1 + n3t − 0.2n3t−1 − 0.55n3t−2 n3t ∼ t9
s4t ∼ AR(1) s4t = 0.82s4t−1 + n4t n4t ∼ GED, κ = 1.3
s5t ∼ AR(2) s5t = 0.11s5t−1 + 0.25s5t−2 + n5t n5t ∼ t5

NOTE: The processes {njt}4j=1 are non-Gaussian random noises, where njt1 and njt2 are uncorrelated ∀t1 6= t2.

However, njt1 and njt2 , with t1 6= t2, are not independent (under non-Gaussianity, no-correlation does not imply
independence).

Experiment 3 : Here, the components are non-linear time series processes, and some of
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them are allowed to be non-stationary. According to the assumption A1., the components

should be fourth-order stationary (in fact, stationarity is a general assumption of ICA). How-

ever, we would like to explore how standard ICA algorithms perform when stationary assump-

tion does not hold.

Table 3.4: Experiment 2: Average values for the correlation coefficients and the
MSE between the original and the estimated components

sjt Correlation MSE

T j JADE SOBI FOTBI JADE SOBI FOTBI

100 1 0.864 0.725 0.914 0.224 0.548 0.171
2 0.845 0.725 0.890 0.264 0.548 0.218
3 0.830 0.742 0.875 0.293 0.513 0.248
4 0.900 0.776 0.955 0.154 0.446 0.090
5 0.889 0.729 0.938 0.177 0.539 0.123

Average 0.866 0.739 0.914 0.223 0.519 0.170

500 1 0.920 0.868 0.981 0.081 0.264 0.038
2 0.916 0.856 0.973 0.088 0.288 0.054
3 0.914 0.867 0.968 0.092 0.265 0.064
4 0.929 0.922 0.994 0.061 0.156 0.012
5 0.925 0.881 0.989 0.070 0.238 0.021

Average 0.921 0.879 0.981 0.078 0.242 0.038

1000 1 0.927 0.907 0.990 0.066 0.185 0.021
2 0.926 0.900 0.987 0.068 0.199 0.025
3 0.925 0.901 0.985 0.069 0.199 0.029
4 0.932 0.958 0.997 0.055 0.084 0.005
5 0.930 0.929 0.995 0.059 0.143 0.011

Average 0.928 0.919 0.991 0.064 0.162 0.018

For this purpose, we generate r = 4 non-Gaussian components which are defined in Ta-

ble 3.5. Note that s1t, s2t, and s3t represent, respectively, a deterministic polynomial trend,

a seasonal component, and a cycle, which can be considered the basic components of a time

series processes. Here, the loading matrix A is randomly generated from the U(0, 1) distribu-

tion.

Table 3.5: Experiment 3: Definition of the original components

Model specification
s1t = (1 + 3t+ t2 + 2t3)/15 + n1t n1t ∼ U(0, 1)
s2t = sin(3.3t/π) + 2cos(3.3t/20π) + n2t n2t ∼ U(0, 1)
s3t = 2sin((1/60)πt) + 2cos((1/60)πt) + n3t n3t ∼ U(0, 1)
s4t = n4t n4t ∼ U(0, 1)

For the third experiment, the average values for the correlation coefficients and the MSEs
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are given in Table 3.6. Here, the results are mixed and depend on the sample size. Thus, for

small sample size (T = 100), SOBI has the best separation performance for all the ICs except

for the third one (the cyclical component). FOTBI and JADE performs similarly but slightly

worse than SOBI. When the sample size increases, the three algorithms provide similar results

although FOTBI is slightly better than the others. That is because using HOS, in order to

reduce the variance associated with their estimates, requires longer data lengths that SOS

do. In addition, from the results provided by the third experiment, it seems that any of

the analyzed algorithms, JADE, SOBI and FOTBI, performs quite good to separate non-

stationary time series components. Then, it hints at the possibility of applying these three

BSS algorithms to explore datasets that are non-stationary and have significant temporal

structure.

Table 3.6: Experiment 3: Average values for the correlation coefficients and the
MSE between the original and the estimated components

sjt Correlation MSE

T j JADE SOBI FOTBI JADE SOBI FOTBI

100 1 0.770 0.880 0.764 0.458 0.240 0.470
2 0.960 0.990 0.958 0.081 0.020 0.084
3 0.901 0.777 0.930 0.196 0.445 0.140
4 0.941 0.977 0.965 0.118 0.045 0.071

Average 0.893 0.906 0.904 0.213 0.187 0.191

500 1 0.976 0.953 0.995 0.048 0.094 0.011
2 0.988 0.999 0.999 0.024 0.002 0.002
3 0.979 0.954 0.994 0.043 0.093 0.011
4 0.987 0.990 0.993 0.025 0.008 0.013

Average 0.983 0.974 0.995 0.035 0.049 0.009

1000 1 0.992 0.994 1.000 0.017 0.012 0.000
2 0.996 0.999 1.000 0.008 0.002 0.000
3 0.997 0.998 0.999 0.006 0.002 0.002
4 0.993 0.997 0.998 0.014 0.007 0.005

Average 0.994 0.997 0.999 0.011 0.006 0.002

From these simulations, we conclude that under the assumptions of non-Gaussian (non-

linear) and temporal dependent ICs, FOTBI provides better performance than those algo-

rithms that only exploit one of two previous assumptions and ignore useful information for the

separation (such as JADE and SOBI do). Furthermore, we see that for autocorrelated data,

the performance of FOTBI is acceptable even though the ICs were linear or non-stationary.
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3.6 Concluding remarks

In this chapter we propose a new BSS blind separation approach for non-Gaussian (non-linear)

data that have significant temporal structure. Our fourth-order temporal blind identification

(FOTBI) algorithm is based on the joint diagonalization of several time-delayed fourth-order

cumulant matrices. It firstly uses second order time structure to standardize the data, and

then it introduces high-order information to exploit the non-Gaussianity and to achieve the

independence of the components. The advantage of FOTBI are twofold: one, with FOTBI, it

is not needed to make any a-priori assumption about the features of the data. Then, all the

information is available for the identification of the ICs and the performance of the separation

improves. Two, FOTBI guarantees the independence of the temporally correlated components

in a non-Gaussian environment. Previous algorithms that deal with temporal dependent data

(e.g., SOBI and TDSEP) are based on SOS and obtain uncorrelated components that are not

independent under non-Gaussianity assumption.

The Monte Carlo simulation results show that FOTBI performs better than JADE and

SOBI when the ICs are non-Gaussian and exhibit pronounced autocorrelation structure. This

fact confirms our guess: choosing a-priori one of the two assumptions (either non-Gaussianity

or temporal structure) about the data, deteriorates the separation performance of the method.

Moreover, we see that FOTBI provides quite acceptable results when it is used for the sep-

aration of temporally decorrelated Gaussian components. Finally, the experiments provide

some hints about the possibility of applying FOTBI for the separation of non-stationary time

series components successfully.

Further research will be directed to the analysis of the asymptotic performance of our

method. Furthermore, since the estimation of the sample time-delayed fourth-order cumulants

is quite sensitive to the sample size, it would be interesting to explore additional techniques

for getting more robust and better estimates.
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3.7 Appendix

3.7.1 Example of fourth-order cumulant matrices:

Here we present an example to illustrate the equality given by (3.7). If m = 2 and N =

(3, 2;−1, 4), we apply (3.7) to compute Qy(N) as:

Qy(N) = 3Qy(N11) + 2Qy(N12)−Qy(N21) + 4Qy(N22). (3.40)

Using (3.6) in (3.40), we have:

Qy(N) = 3

(
cum4,y(y1, y1, y1, y1) cum4,y(y1, y2, y1, y1)
cum4,y(y2, y1, y1, y1) cum4,y(y2, y2, y1, y1)

)
+2

(
cum4,y(y1, y1, y1, y2) cum4,y(y1, y2, y1, y2)
cum4,y(y2, y1, y1, y2) cum4,y(y2, y2, y1, y2)

)
−

−
(

cum4,y(y1, y1, y2, y1) cum4,y(y1, y2, y2, y1)
cum4,y(y2, y1, y2, y1) cum4,y(y2, y2, y2, y1)

)
+ 4

(
cum4,y(y1, y1, y2, y2) cum4,y(y1, y2, y2, y2)
cum4,y(y2, y1, y2, y2) cum4,y(y2, y2, y2, y2)

)
(3.41)

3.7.2 Proof of proposition 1:

To proof that is enough to show the maximization of
∑r

i,k,l=1{cum(bit, bit+τ1 , bkt+τ2 , blt+τ3)}2

is equivalent to the joint diagonalization of the (τ1, τ2, τ3)-time delayed parallel set N
(0,τ1,τ2,τ3)
p ,

for any triple of time lags (τ1, τ2, τ3). That is, if we show that, for any triple of time lags,

(τ1, τ2, τ3),

f4(V, N (0,τ1,τ2,τ3)
p ) =

r∑
i,k,l=1

{cum(bit, bit+τ1 , bkt+τ2 , blt+τ3)}2, for any (τ1, τ2, τ3), (3.42)

then, the proposition 1 holds. Let’s prove (3.42): by definitions (3.17) and (3.33), for any

(τ1, τ2, τ3) triple of time lags, we have:

f4(V, N (0,τ1,τ2,τ3)
p ) =

r∑
i,j=1

|diag(V′Q
(0,τ1,τ2,τ3)
z (Nij)V)|2 =

r∑
i,j,h=1

|v′hQ
(0,τ1,τ2,τ3)
z (Nij)vh|2.

(3.43)

From definition (3.16), it easy to see that v′hQ
(0,τ1,τ2,τ3)
z (Nij)vh = Trace(NijQ

(τ2,τ3,0,τ1)
z (vhv

′
h)).

Using this property in (3.43), we have:

f4(V, N
(0,τ1,τ2,τ3)
p ) =

∑r
i,j,h=1 |Trace(NijQ

(τ2,τ3,0,τ1)
z (vhv

′
h))|2.

Since {Nij = eie
′
j , 1 ≤ i, j ≤ r} and {viv′j , 1 ≤ i, j ≤ r} are two sets of orthonormal basis for

the space of matrices of size r× r, the Frobenius norm of Q
(τ2,τ3,0,τ1)
z (vhv

′
h) can be expressed
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onto each of this basis and

r∑
i,j,h=1

|Trace(NijQ
(τ2,τ3,0,τ1)
z (vhv

′
h))|2 =

r∑
h=1

‖Q(τ2,τ3,0,τ1)
z (vhv

′
h)‖2FRO = (3.44)

=

r∑
h,k,l=1

|v′kQ
(τ2,τ3,0,τ1)
z (vhv

′
h)vl|2

Using the definition (3.28) for bt and applying the multilinearity of the cumulants (see prop-

erty P4.) to v′kQ
(τ2,τ3,0,τ1)
z (vhv

′
h)vl, we have

∑r
h,k,l=1 |v′kQ

(τ2,τ3,0,τ1)
z (vhv

′
h)vl|2 =

∑r
h,k,l=1 |cum(bkt+τ2 , blt+τ3 , bit, bit+τ1)|2,

that, by symmetries of the cumulants (see property P5’.), is equal to

∑r
h,k,l=1 |cum(bit, bit+τ1 , bkt+τ2 , blt+τ3)|2.

Then, (3.42) holds, and following the previous argument, the proposition 1 is proved.



Chapter 4

Exploring ICA for time series
decomposition

In this chapter, we apply independent component analysis (ICA) to perform signal extraction

in multivariate time series data. Moreover, we explore the idea of forecasting a set of multiple

time series using the predictions of a small number of independent components. Some Monte

Carlo simulation experiments are carried out to investigate the performance of three ICA

algorithms presented in previous chapters, JADE, SOBI, and FOTBI, in order to extract

components such as trend, cycle, and seasonal components. Moreover, we empirically test the

performance of those three ICA procedures on capturing the dynamic relationships among the

industrial production index (IPI) time series of four European countries. We also compare the

accuracy of the IPI time series forecasts using a few JADE, SOBI, and FOTBI components, at

different time horizons. According to the results, FOTBI seems to be a good starting point for

automatic time series signal extraction procedures, and it also provides quite accurate forecasts

for the IPIs.

4.1 Introduction

In many applications of empirical sciences such as Medicine, Engineering, and Economics,

when the data are observed with a high level of noise, extracting the relevant patterns from

the observations becomes an important task. The problem of estimating those underlying

components (components of interest) from the observations is known as signal extraction or

feature extraction problem. Thus, considering the additive decomposition,

xt = χt + νt, (4.1)

94
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where xt is the observed data, χt is the set of interesting components (signal), and νt is the

noise process (not necessarily white) which is assumed to be independent of χt, the aim of

signal extraction is to isolate the signal from the noise. The estimates of the signal will be

obtained by filtering the observations, χ̂t = Fxt, in such a way that the signal estimates

satisfy the minimum mean square error (MMSE) criterion.

If xt is a univariate time series process, model (4.1) might represent the decomposition

of xt as the sum of some underlying components of interest, which are usually interpreted in

terms of trend, seasonality, and cycle, among others. Then, some economic applications such

as seasonal adjustment, detrending, and analysis of the business cycles, can be seen as partic-

ular cases of signal extraction problems, where the interesting signals (χt) are, respectively,

seasonally adjusted components, trends, and cycles.

Several approaches have been developed for solving the signal extraction problem in the

univariate framework. The first one, called ‘ad-hoc’ filter design approach, includes methods

that use moving-average smoothing filters to estimate the signal. These methods are supported

by the main central statistical agencies for trend extraction and seasonal adjustment in time

series. The X-11 filter (Shiskin et al. (1967)) for seasonal adjustment and the Beveridge-

Nelson (Beveridge and Nelson (1981)), the Baxter and King (Baxter and King (1995)), and

the Hodrick-Prescott (Hodrick and Prescott (1997)) filters, which were used to estimate the

trend-cycle components, are some well-known examples of the ‘ad-hoc’ filter design approach.

The main disadvantage of these filters is that they do not take into account the structure

of the time series process and they could produce spurious results and over/under-estimated

components. Trying to solve this important limitation, it has been developed the so-called

model-based procedures, where the filter is derived from statistical models and it is adapted

to the particular structure of the time series processes. Two directions emerge within the

model-based procedures: the ARIMA-model-based approach and the structural modelling

approach.

On the one hand, the ARIMA-model-based procedures (Box et al. (1978), Burman (1980),

Bell and Hillmer (1984), Hillmer and Tiao (1982), among others) directly identify a parsimo-

nious ARIMA model for the observations. Then, univariate models for the components are

derived with the restriction that the aggregation of those models yields the ARIMA model

identified for the data. Because there is not a unique admissible decomposition, these methods

apply the ‘canonical decomposition’ (see Box et al. (1978)) to solve identifiability problems.
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Within this approach, the most popular algorithm is the SEATS/TRAMO software (Gómez

and Maravall (1996), Maravall (1993)) that is based on the filter developed by Burman (1980).

On the other hand, the structural modelling approach (Harvey (1989), Young et al. (1999),

Bujosa et al. (2007), among others), instead of using a-priori information to specify a model

for the observations, directly assumes different stochastic linear models for the unobserved

components. These models are formulated within an stochastic state space setting, and the

Kalman filter is used to estimate the parameters. STAMP (Koopman et al. (1995)) is a well

known software that directly specifies structural models for the components of interest in the

time domain framework. Another implementations of this approach, such as the CAPTAIN

MatLab Toolbox program (Young and Pedregal (1999), Taylor et al. (2007)) and the linear

dynamic harmonic regression algorithm (Bujosa et al. (2007)), are developed in the spectral

framework assuming that the data are periodic time series.

When we move to the multivariate framework, where the issue of information redundancy

in the observed data set is usually arising, capturing the most ‘interesting’ features of the data

might be as important as (or even more than) it was in the univariate case. In particular,

when we observe multiple time series data where dynamic relationships are involved, the

components of interest might be common to different time series. Thus, extracting those

underlying common components, which probably may have a useful interpretation in terms of

common trends or common seasonality, becomes an important task in multivariate time series

analysis. Dynamic factor models (see Forni et al. (2000) and Peña and Poncela (2006b), among

others) and multivariate structural time series models (Harvey (1989)) have traditionally dealt

with this topic. However, it is hard to develop ‘automatic’ (or quasi-automatic) procedures

for signal extraction in the multivariate framework, and STAMP (Koopman et al. (1995)) is

the only model-based procedure that can handle this problem.

As an alternative to model-based procedures, principal component analysis (PCA) is usu-

ally applied to multivariate data sets with the aim of noise and/or dimension reduction, and

signal extraction. PCA can be seen as an ‘automatic’ procedure for signal extraction, where

the relevant information is given by those components that explain the largest amount of vari-

ance in the data. PCA is quite successful in multivariate linear data but, when the data are

non-Gaussian (non-linear), PCA has difficulty in separating the underlying components. Em-

pirical applications show that, under non-Gaussianity assumption, the components extracted

by PCA are quite far away from the real ones (see for example, Oja (1982) and Särelä and
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Valpola (2005), among others). Moreover, these empirical results reveal that independent

component analysis (ICA) estimates the underlying components better than PCA does.

In this chapter, we explore the performance of ICA in multivariate time series signal

extraction, and analyze how the ICA components could be useful to predict the observations.

ICA seems to be appropriate when we observed several economic time series data, where

some components of interest, such as trend or seasonal variations, can be assumed to be fairly

independent.

This chapter is organized as follows. Section 4.2 reviews the main approaches that have

been presented in the literature for signal extraction. Then, we introduce the procedure to

forecast the data using a set of ICA components. In Section 4.4, we carry out some simulation

experiments to support the idea that ICA could be seen as the first step for automatic signal

extraction procedures. Next, we apply ICA to extract the components of interest in the

industrial production indexes of several European countries. In addition, we analyze how these

data are forecasted using a few ICA components. Finally, Section 4.6 gives some concluding

remarks.

4.2 Model-based methods for signal extraction

Most of the latest signal extraction algorithms are model-based procedures where the observa-

tions are decomposed as the sum of some components of interest. For example, for time series

data, estimating the trend and the seasonality is important to analyze the main movements of

the time series, and to obtain seasonal adjusted data, respectively. In general, since an infinite

number of decompositions is possible, the identification of the components is not unique, and

additional assumptions should be made.

An attractive feature of model based-approaches is that, since they are based on specific

statistical models for the observations and/or the components, model-based approaches could

facilitate analysis and inference. Next, we review the ARIMA-model based and the structural

modelling approaches, paying attention to some of their well-known implementations.

4.2.1 ARIMA-model based methods

The ARIMA-model based methodology (Box et al. (1978), Hillmer and Tiao (1982), Burman

(1980), Maravall and Pierce (1987), amongst others) came up as an alternative procedure
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for seasonal adjustment of time series data. The ARIMA-model based approach starts by

applying the Box and Jenkins methodology to specify an ARIMA model that describes the

behavior of the time series data. Then, univariate models for the components are derived so

that their aggregation should be consistent with the original ARIMA model. Two assumption

are made to guarantee the unique identification of the components: first, it is assumed that

the components of interest are mutually uncorrelated; second, it is applied the canonical

principle (Box et al. (1978)) which maximizes the variance of the noise component and leads

the ‘interesting’ components to be as stable as possible (Hillmer and Tiao (1982)). The

underlying components are computed by the Wiener-Kolmogorov filter (Box et al. (1978))

that provides the MMSE estimators of the components, even for non-stationary time series

(Bell (1984)).

Popular procedures that take the ARIMA-model based approach are the X-11-ARIMA

(Dagum (1980)), the X-12-ARIMA (Findley et al. (1998)) and the SEATS/TRAMO software

(Gómez and Maravall (1996); Maravall (1993)). These methods are commonly used by offi-

cial statistical agencies to get seasonally adjusted data (for example, Statistics Canada, US

Bureau of the Census, and Bank of Spain are well-known examples of official agencies that

apply, respectively, X-11-ARIMA, X-12-ARIMA, and SEATS/TRAMO programs, to seasonal

adjustment).

The first two procedures, the X-11-ARIMA and X-12-ARIMA, are based on moving av-

erages filters and then, they are not ARIMA-model based procedures themselves. However,

since at the first stage the two procedures identify an ARIMA model for the observations

and the definitions of the signals are ‘implicit’, the X-11- and the X-12-ARIMA are consid-

ered as ARIMA-model based procedures. Both X-11- and X-12-ARIMA uses the X-11 filter

(Cleveland and Tiao (1976)), that applies a set of centered moving averages to estimate the

seasonal components. The problem is that when moving averages filters are used, many ob-

servations of the beginning and the end of the series are lost and the seasonal effect could be

underestimated. The X-11-ARIMA, trying to avoid the loss of observations, uses the ARIMA

model fitted to the original series for extending the length of the data set (forecasting and

backcasting). The X-12-ARIMA follows the same idea that the X-11-ARIMA but introduces a

pre-adjustment program, REGARIMA, that is applied to the original time series data (before

the identification of the ARIMA model) to detect outliers and to estimate some deterministic

effects (for example, the calendar effect).
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The SEATS/TRAMO programs (Gómez and Maravall (1996); Maravall (1993)) are effi-

cient and automatic procedures which are mainly applied for seasonal adjustment and trend-

cycle estimation. First, TRAMO (Time series Regression with ARIMA noise, Missing values

and Outliers) is a pre-adjustment program that is applied to the univariate time series data to

pre-test for the log-level specification, to detect and correct outliers (additive outliers, transi-

tory changes, and level shifts), to interpolate missing values, and to correct other deterministic

effects such as Trading Day, Leap Year, and Easter effects. Then, TRAMO specifies a set

of possible models for the pre-adjusted data, estimates them by maximum likelihood, and

selects the ‘optimal’ one based on AIC and BIC criteria. Finally, according to the selected

model, TRAMO forecasts the data to extend the time series and thus, it reduces the bias when

a new observation enters to the model. Next, SEATS (Signal Extraction in ARIMA Time

Series) derives univariate ARIMA models for the stochastic components so that they reflect

the usual structures associated to trend, cyclical (or trend-cycle), and seasonal components.

SEATS uses the canonical principle (Box et al. (1978)) to avoid identifiability problems and

applies the Burman-Wilson algorithm (Burman (1980)) to estimate the components (MMSE

estimators). The final estimates for the unobserved components are obtained by the aggrega-

tion of the deterministic effects (computed by TRAMO) of each individual component to the

stochastic components given by SEATS.

ARIMA-model based procedures have two important drawbacks: first, since the models for

the components are not directly specified (they are derived from the original ARIMA model

for the observations and should be consistent with it) those components could not be easily

interpretable, a-posteriori, in terms of trend or seasonality; second, since the ARIMA-model

based procedures consider a common noise for all the components, the components’ estimates

could be correlated, and therefore, the assumption of uncorrelated components would not be

satisfied. In structural modelling procedures, this problem is solved considering independent

noises for each component.

4.2.2 Structural modelling approach

The structural modelling approach is an alternative model-based methodology for signal ex-

traction that is based on unobserved components models. Contrary to the ARIMA-model

based methodology the structural modelling procedures directly specify univariate stochastic

models for the underlying components and then, their interpretability in terms of trends,
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seasonalities and cycles is guaranteed.

We distinguish two structural modelling specifications: the structural time series approach

(Harvey (1989)) that is implemented in the STAMP software (Koopman et al. (1995)), and

the dynamic harmonic regression approach (Young et al. (1999)), that is implemented in the

CAPTAIN Toolbox for Matlab (Young and Pedregal (1999), Taylor et al. (2007)) as well as

in the new linear dynamic harmonic regression algorithm (Bujosa et al. (2007)). The main

differences between the dynamic harmonic regression model (Young et al. (1999)) and Harvey’s

structural model (Harvey (1989)) rely on the model specification for the periodic components

and the optimization method used to estimate the parameters. In the following, we discuss

these two approaches.

Structural time series approach

Structural time series models (Harvey (1989)) are formulated in terms of unobserved com-

ponents which have a direct interpretation. According to Harvey (1989), the structural time

series models ‘are not more than regression models in which explanatory variables are a func-

tion of time and the parameters change with time’. These explanatory variables represent

dynamic features of the data (such as stochastic trends, cycles, and/or seasonalities). The

starting point in structural time series models is to identify those features and model them in

such a way that we can obtain useful predictions for the time series data. Structural time series

models are usually formulated as state space models and the parameters of the unobserved

components models are estimated using the Kalman filter and related algorithms (see Harvey

(1989) for a detailed description of the state space and the Kalman filter methodologies).

STAMP (Structural Time Series Analyzer, Modeler and Predictor) (Koopman et al.

(1995)) is a standard signal extraction procedure that is implemented according to structural

time series models (as they are defined in Harvey (1989)). STAMP, contrary to alterna-

tive signal extraction procedures that are only developed in the univariate framework (e.g.

SEATS/TRAMO), can be applied to extract the components of interest in both univariate as

well as multivariate time series data.

The basic structural time series model assumes that univariate time series can be decom-

posed into additive stochastic components as

yt = µt + ψt + γt + εt. (4.2)
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where µt represents the trend, ψt the cycle, γt the seasonality, and εt the irregular component

(a structural time series model should not be necessarily defined in terms of these four UCs;

it may be defined only by some of them). There are different specifications to formulate the

stochastic process for each component. By default, for univariate time series data, STAMP

considers a basic structural time series model which chooses the local linear trend (LLT)

model for the trend, a stochastic cyclical component, a stochastic trigonometric model for the

seasonality, and a white noise process for the irregular term, εt ∼ NID(0, σ2
ε ).

According to the LLT model, the stochastic trend is given by

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η),

βt = βt−1 + ξt, ξt ∼ NID(0, σ2
ξ ),

(4.3)

where βt is the stochastic slope of the trend. Here, the two noises, ηt and ξt, and the irregular

component in (4.2), εt, are assumed to be mutually uncorrelated. Different specifications for

the trend are possible: either the level (µt) or the slope (βt) could be deterministic instead

of stochastic, and the slope might not be included in the model (see Harvey (1989) for a

complete revision of different specifications).

The stochastic cyclical component is given by(
ψt
ψ∗t

)
= ρψ

(
cosλc sinλc

−sinλc cosλc

)(
ψt−1

ψ∗t−1

)
+

(
κt
κ∗t

)
(4.4)

where ρψ and λc represent, respectively, the damping factor and the cyclical frequency (mea-

sured in radians) which take values 0 < ρψ ≤ 1 and 0 ≤ λc ≤ π, respectively. The period of the

cycle is given by 2π/λc. The cyclical disturbances, κt ∼ NID(0, σ2
κ) and κ∗t ∼ NID(0, σ2

κ),

are assumed to have the same variance and to be mutually uncorrelated.

The trigonometric formulation for the seasonal component is

γt =

[s/2]∑
j=1

γj,t, (4.5)

where [s/2] =

{
s/2, if s is even
(s− 1)/2, if s is odd

(s is the number of seasonal frequencies in a period),

and γj,t is defined as a non-stationary stochastic cycle, for each j = 1, 2, ..., [s/2]. That is, it

is given by (4.4) where ρψ = 1, and the frequency for γj,t, in radians, is λc ≡ λj = 2jπ/s. As

an alternative to the trigonometric form, the seasonality may be formulated using the dummy

variable form (see Harvey (1989) for more details).

When we have more than one time series, dynamic interactions usually appear among

most (or all) of them and capturing those relationships requires the joint estimation of the
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multiple time series within a multivariate framework. Multivariate structural time series

models are straightforward generalized from the univariate ones as follows: the data, that is

now a vector of time series, yt, decompose as in (4.2), but considering vector components

instead of scalars. The models that are specified for each vectorial component generalize the

ones formulated in the univariate case (for instance, models (4.3), (4.4), and (4.5) for the trend,

the cycle, and the seasonal components, respectively), replacing the scalar components with

vectors. In the particular, for multivariate cycles, the damping factor, ρψ, and the cyclical

frequency, λc, are assumed to take the same value for all the series. This kind of models,

called SUTSE (Seemingly Unrelated Time Series Equations), assumes that the disturbances

of different components are multivariate normally distributed and mutually uncorrelated in

all time periods.

In SUTSE models, the disturbance covariance matrices, in particular their ranks, play

an important role to determine the presence of common factors. On the one hand, if the

disturbance covariance matrices are of full-rank, then each individual time series of yt will have

its own components (trend, and/or cycle, and/or seasonality, and/or irregular components),

and the interactions among the different time series are reflected as non-zero off-diagonal

elements in the covariances matrices of the disturbances. On the other hand, if there is

any disturbance covariance matrix with reduced rank, then the component associated to this

disturbance term will be common to more than one series. Thus, multivariate structural

time series models consider the possibility of dealing with cointegrated time series. The

cointegration restrictions, that are interpreted as a lower rank of the disturbance covariance

matrix, can be imposed a-priori, but it may also be given by the result of the model estimation.

The general multivariate unobserved components model nests more specific models with a

restricted number of common components. For instance, the non-stationary dynamic factor

models (Peña and Poncela (2006b)), where the common factors can be formulated in terms

of UC with a useful interpretation.

STAMP solves the signal extraction problem in both cases: general multivariate structural

time series models (SUTSE) and multivariate structural time series models with common

factors and cointegration. STAMP deals with common factor models writing them in terms

of SUTSE models with reduced rank disturbance covariance matrices.

The problem of structural time series models (either univariate or multivariate) the a-

priori structure imposed to the components (which makes easier their interpretation) may
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not be appropriate for the particular series at hand, and wrong specifications could produce

serious misleading errors.

Dynamic harmonic regression approach

As in Harvey’s structural time series approach, the dynamic harmonic regression approach

(Young et al. (1999)) directly specifies unobserved components models for the components

within an stochastic state space setting. However, whereas structural time series models

formulate the unobserved components models in the time domain (see previous section for

more details), the whole process of identification and estimation for the dynamic harmonic

regression model is formulated in the frequency domain.

The dynamic harmonic regression model assumes that the univariate time series, yt, can be

decomposed as in (4.2). According the dynamic harmonic regression approach, these additive

unobserved components (trend, cycle, seasonal and irregular components) have a so-called

dynamic harmonic representation. That is, each component is defined by a linear combination

of sines and cosines with time varying coefficients, which are modelled as generalized random

walk (GRW) stochastic processes (Young et al. (1999)). More formally, the general definition

of the dynamic harmonic regression components is given by

s
pj
t = ajtcos(wjt) + bjtsin(wjt) (4.6)

where pj and wj = 1/pj are, respectively, the period and the frequency associated with

the jth dynamic harmonic regression component, and {ajt, bjt} follow generalized random

walk (GRW) processes, that include the random walk (RW), integrated random walk (IRW),

and smoothed random walk (SRW) processes as special examples. The trend component

corresponds to the zero frequency component, s∞t , that is described by a GRW process of the

form:(
µt
βt

)
=

(
α β
0 γ

)(
µt−1
βt−1

)
+

(
δ 0
0 1

)(
ηt
ξt

)
, where

(
ηt
ξt

)
∼WN

((
0
0

)
,

(
σ2
η 0
0 σ2

ξ

))
(4.7)

where µt and βt are, respectively, the changing level and the slope of the trend component.

The periodic components (cycle, ψt, and seasonality, γt) are given by

ψt ≡ γt =

R∑
j=1

s
pj
t , (4.8)

where j = 1, 2, ..., R are the associated periodic frequencies and s
pj
t are defined as in (4.6). The

time varying coefficients, {ajt, bjt}, that define the seasonal component, are usually assumed
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to be random walk (RW) processes,

ajt = ajt−1 + ηajt, where ηajt ∼ N(0, σ2
ηa),

bjt = bjt−1 + ηbjt, where ηbjt ∼ N(0, σ2
ηb

).
(4.9)

From the state space formulation of the dynamic harmonic regression model, Young et al.

(1999) derive an algorithm that combines the Kalman filter and the fixed interval smoothing

to estimate the structural parameters (usually called hyper-parameters) of the unobserved

components models. The dynamic harmonic regression algorithm estimates the autoregressive

spectrum of the observed time series, and computes the hyper-parameters as the minimum

non-linear least squares estimates of the difference between the logarithmic pseudo-spectrum

of the dynamic harmonic regression model and the logarithmic autoregressive spectrum of the

data (see Young et al. (1999) for more details). The dynamic harmonic regression algorithm

is implemented in the CAPTAIN Toolbox for Matlab (see Young and Pedregal (1999), Taylor

et al. (2007), among others). An alternative algorithm for the identification and estimation

of dynamic harmonic regression models is the linear dynamic harmonic regression (Bujosa

et al. (2007)) that simplifies and reduces the computational complexity of the basic dynamic

harmonic regression algorithm by using an alternative cost function. The advantages of the

linear dynamic harmonic regression algorithm are twofold: first, it eliminates the poles in the

objective function of the dynamic harmonic regression algorithm by considering a quadratic

cost function (that it is obtained by a linear algebraic transformation, using the ARIMA

reduced-form representation of the components). Second, it requires less input information

than other existing alternatives. In fact, the linear dynamic harmonic regression only needs

the time series data (in a row) and the nature of its periodicity to extract the dynamic

harmonic regression components (for a detailed description of the linear dynamic harmonic

regression algorithm see Bujosa et al. (2007)).

4.3 ICA for prediction and signal extraction

In the literature, we can find many applications which use ICA to separate the components

of interest in multivariate data sets (see, for example, Bingham (2001), Funaro et al. (2001)

Hyvärinen (1999b), and Vigàrio et al. (1998), among others). However, ICA has never been

applied to extract the basic components in time series data. In this chapter, we explore the

performance of ICA for decomposing multivariate time series data in terms of trend, cycle,

and seasonal components.
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The ICA model defined in Chapter 1 assumes that the observations are linearly generated

by a set of underlying components that are non-Gaussian and statistically independent. This

model is quite realistic for being applied in many practical situations. In particular, the

classical problem of time series signal extraction, where the time series data are given by the

sum of some basic unobserved components, such as trend, cycle, and seasonality, fits to the

ICA model formulation.

The motivation for applying ICA to multivariate time series signal extraction is twofold.

First, since many multivariate time series data are non-Gaussian distributed, the additive

underlying components that generate the data, will be further away from the Gaussian distri-

bution than the original observations. Then, the signal components in time series decomposi-

tion, trend, cycle, and seasonal components, should be non-Gaussian (non-linear) distributed.

Second, the theory of time series analysis is based on the idea of decomposing a time series

into some components of interest, so that each of them has a certain characteristic or type of

behavior: the trend reflects the long term behavior, the cycle describes repeated but not pe-

riodic fluctuations, and the seasonality is defined as the periodic variations of the time series.

Based on this idea, the trend, cycle, and seasonal components should be as independent as

possible (it is desirable that they do not share common information). Therefore, ICA seems

to be a potential method for signal extraction, where we are looking for trend, cycle, and

seasonal components that should be non-Gaussian and mutually independent components.

The main advantage of ICA with respect to existing signal extraction procedures is that

it is ‘automatic’ in the sense that it is able to extract the components without assuming any

a-priori structure either in the components nor in the loading matrix. ICA is only based

on the assumption of statistical independence, and identifies the signal components as those

linear combinations of the data that are maximally independent. In addition, it requires that

each of the components explains the largest amount of variance in the data. Thus, if we

apply ICA to extract the basic components in multivariate time series data, the estimates

for the trend, cycle and seasonal components will be mutually independent. This fact is of

great importance in time series signal extraction: on contrast to most of the well-known signal

extraction procedures that, in practice, provide correlated components’ estimates (despite that

the components are assumed to be uncorrelated), ICA obtains mutually independent estimates

for the trend, cycle, and seasonal components. Then, ICA can be seen as an ‘automatic’

procedure for time series decomposition where the ICA components do not share common
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information and each of them represent different features of the data. Throughout this chapter,

we will explore the idea of presenting ICA as an automatic method for multivariate time signal

extraction.

Previous empirical applications proposed in the ICA literature assume that the ICs are

stationary stochastic processes. However, our proposal applies ICA to extract the trend, cycle,

and seasonal component in multivariate economic time series and some of the components

could be non-stationary. Therefore, we propose applying ICA to perform the separation of

possible non-stationary components but, does it make sense to think about non-stationary

ICA? This is an open question that we will try to explore next.

One of the first approaches to deal with non-stationary unobserved components was pro-

posed by Peña and Poncela (2006b). They present the non-stationary dynamic factor model

(DFM) that extends the stationary factor model introduced by Peña and Box (1987) to the

non-stationary case. The non-stationary DFM assumes that the dynamic structure of a vec-

tor of time series can be explained by a small number of stationary and/or non-stationary

latent factors. Peña and Poncela (2006b) define the generalized covariance matrices, Cx(k),

that converges to a random matrix which can be diagonalized. Moreover, since ICA can be

seen as dynamic factor model (DFM) with non-linear latent factors (see Section 2.2.3), it

may have sense to think about non-stationary ICA. That is, ICA could be seen as a dynamic

factor model with non-linear ICs that may be non-stationary. In the simulation experiments

of the previous chapter (in particular, in the third experiment) we explore how ICA could

deal with non-stationary components, and it seems that it performs quite well. However, from

a theoretical point of view, non-stationary ICA is an open question that should be studied

deeply.

4.3.1 Forecasting with ICA

In this section, we present the procedure that we will use to forecast multivariate time series

data with some components of interest, that are estimated by ICA. This approach was firstly

applied by Malaroiu et al. (2000) to forecast financial time series data. The idea is to make

the forecasts in the space of the unobserved components, and then transforming back to

the observed dataset. The main advantage of this methodology, in comparison to other

procedures that also used a small number of factors to forecast large dataset, is that here

the components are statistically independent. Then, they can be forecasted separately, fitting
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different univariate models for each one of them. In the following, we summarize this three-

steps procedure:

1. We apply any ICA algorithm to the observations (it is convenient to choose the algorithm

which, a-priori, fits better to the features of the data), and we obtain estimates for both

the ICs, ŝt, and the loading matrix, Â.

2. In this step, we make the ICs forecasts. Since the ICs are statistically independent,

they can be modelled separately. Then, we fit a univariate ARIMA(p, d, q)× (P,D,Q)s

model for each ŝjt, for j = 1, ..., r,

(1− φ(j)
1 B − . . .− φ(j)

p Bp)∆d∆D
s ŝjt = (1− θ(j)

1 B − . . .− θ(j)
q Bq)ajt, t = 1, ..., T. (4.10)

For each ARIMA model, we estimate the parameters and, according to (4.10), the h-

step-ahead forecasts for each IC are given by,

ŝjT (h) = E[ŝj(T+h)|IT ].

3. The forecasts of the observed data set, x̂T (h), are obtained by weighting the ICs fore-

casts, ŝT (h), with the loading matrix. That is, according to model (??),

x̂T (h) = ÂŝT (h), (4.11)

or equivalently,

x̂it(h) =

r∑
j=1

a2
ij ŝjt(h). (4.12)

4.4 Simulation Study

In this section we present some simulation experiments to illustrate the performance of ICA as

an automatic procedure in multivariate time series signal extraction. Since PCA is commonly

used to estimate the components of interest in large data set (see Chapter 1), we will also apply

PCA to the simulations in order to compare the performance of the two methodologies. We

design four simulation experiments where the components are generated by the two different

unobserved components formulations: whereas in two experiments the components are defined

according to Harvey’s structural model (Harvey (1989)), in the other two, they follow the

dynamic harmonic regression specifications (Young et al. (1999)). For each experiment, we
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generate R = 1000 realizations, and the components are generated with three different sample

sizes, T = 150, 300, 500.

The procedure to design the Monte Carlo experiments is similar to the one presented in

Chapters 2 and 3: once the m components are generated, they are mixed according to basic

ICA model to obtain the observations, xt. Then, the unobserved components are estimated

using PCA and the three ICA procedures considered in Chapter 3 (JADE, SOBI, and FOTBI).

The performance of each procedure is analyzed by computing the correlation coefficient and

the MSE between the original and the estimated components.

Table 4.1: Definition of the unobserved components-structural time series compo-
nents (Harvey (1989)) in the Monte Carlo simulation experiments. The components
are defined according to models 4.3, 4.5, and 4.4 for the trend, seasonal, and cyclical
components, respectively.

Experiment 1: m=6 monthly time series
s1t ∼ LLT trend σ2

η = 7.49× 10−4 , σ2
ξ = 2.75× 10−6

s2t ∼ seasonal component s=12 (monthly seasonality), ρψ = 1 , σ2
κ = 0.0109

s3t ∼ cyclical component λc = 2π
72 (7-years cycle), ρψ = 0.9 , σ2

κ = 0.0278
s4t ∼ AR(1) φ1 = 0.7 , n4t ∼ t9
s5t ∼ AR(2) φ1 = 0.6 , φ2 = −0.2 , n5t ∼ U(0, 1)
s6t ∼ irregular component s6t ∼ t5

Experiment 2: m=7 quarterly time series
s1t ∼ RW trend σ2

η = 0.0515 , σ2
ξ = 0

s2t ∼ seasonal component s=4 (quarterly seasonality), ρψ = 1 , σ2
κ = 0.8

s3t ∼ I(1)4 s3t = s3t−4 + n3t, n3t ∼ N(0, 1)
s4t ∼ cyclical component λc = 2π

16 (4-years cycle), ρψ = 0.75 , σ2
κ = 0.25

s5t ∼ AR(2) φ1 = 0.5 , φ2 = 0.35 , n5t ∼ t9
s6t ∼ irregular component s6t ∼ U(0, 1)
s7t ∼ irregular component s7t ∼ N(0, 1)

(*) s is the number of seasonal frequencies in a period.

First, we consider the two Monte Carlo experiments where the components follow the

Harvey’s structural time series approach. Experiments 1 and 2 are defined in Table 4.1 (see

the loading matrix for each experiment in Table 4.10 in the appendix). Table 4.2 presents

the average results (measured over the m components) for the correlation coefficients and

the MSE between the original and the corresponding estimated component. (Table 4.11 in

the appendix shows the results for each individual component). We see that the results

for the two experiments are quite similar: independently of the sample size, PCA has the

worst signal extraction performance overall the procedures. It is specially significant the
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value of the MSE of PCA (around 0.52 and 0.73 in Experiments 1 and 2, respectively) that

doubles, and sometimes triples, the values of the MSEs of the ICA procedures. Moving on

the ICA procedures, independently of the sample size, FOTBI provides better unobserved

components estimates than JADE and SOBI do (see Table 4.2). The performance of JADE

and SOBI depends on T . Whereas SOBI performs better (or quite similar) than JADE for

small sample sizes (T = 150), when the sample size increases (T = 300, 500) JADE estimates

the components more accurately than SOBI. As we explained in Chapter 3, this is because

higher-order methods (as JADE and FOTBI), in order to reduce the variance associated to

their estimates, requires longer data sets than the second-order methods (as SOBI and PCA).

Supporting this argument, whereas the values of correlation coefficients and the MSE for

SOBI and PCA are quite similar for all T , the performance of JADE and FOTBI improves

when the sample size increases (see Table 4.2).

Table 4.2: Unobserved components-Harvey’s simulation experiments: comparison
of the mean average of the correlation coefficients and the MSE between the original
and the estimated components by PCA, JADE, FOTBI, and SOBI, measured over

the m components. Corr(·) = 1
m

∑m
i=1

1
R

∑R
r=1 Corr(s

(·)
it , ŝ

(·)
it )

MSE(·) = 1
m

∑m
i=1

1
R

∑R
r=1 MSE(s

(·)
it , ŝ

(·)
it )

Experiment 1
T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE
PCA 0.7264 0.5436 0.7407 0.5169 0.7492 0.5006
JADE 0.7798 0.4390 0.8433 0.3128 0.8681 0.2634
FOTBI 0.8761 0.2471 0.9231 0.1535 0.9375 0.1248
SOBI 0.8204 0.3579 0.8241 0.3513 0.8266 0.3465

Experiment 2
T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE
PCA 0.6290 0.7371 0.6304 0.7367 0.6308 0.7370
JADE 0.7918 0.4151 0.8458 0.3080 0.8692 0.2612
FOTBI 0.8537 0.2917 0.8903 0.2190 0.9105 0.1787
SOBI 0.7818 0.4349 0.7895 0.4204 0.7970 0.4056

Next, we focus on the two Monte Carlo experiments where the components of interest

are generated as dynamic harmonic regression components. These experiments are defined

in Table 4.3. For the first dynamic harmonic regression experiment (Experiment 3), we

generate the four basic components In Experiment 4, we would like to investigate how PCA

and ICA procedures separate two periodic components with weekly and monthly periodicity.
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Table 4.3: Definition of the dynamic harmonic regression components in the Monte
Carlo simulation experiments. The components are defined according to models 4.7
for the trend, and 4.8 for the periodic components.

Experiment 3: m=4 monthly time series
s1t ∼ SRW trend 0 < α < 1 randomly generated, β = γ = 1, δ = 0, σ2

ξ = 0.0015

s2t ∼ periodic component p=12 at, bt ∼ RW, σ2
ηa = 0.01, σ2

ηb
= 0.0005

s3t ∼ periodic component p=60 at, bt ∼ RW, σ2
ηa = 3, σ2

ηb
= 12

s4t ∼ irregular component s4t ∼ U(0, 1)

Experiment 4: m=5 daily time series
s1t ∼ IRW trend α = β = γ = 1, δ = 0, σ2

ξ = 0.00035

s2t ∼ periodic component p=7 ajt, bjt ∼ RW, σ2
ηa = 0.1, σ2

ηb
= 0.05

s3t ∼ periodic component p=30 at, bt ∼ RW, σ2
ηa = 3, σ2

ηb
= 12

s4t ∼ AR(5) φ1 = 0.2, φ2 = 0.5, φ3 = −0.11, φ4 = 0.01, φ5 = 0.005
s5t ∼ irregular component s5t ∼ U(0, 1)

(*) p denotes the periodicity

The loading matrices of each experiment are in the appendix (see Table 4.10). Table 4.4

presents the average results for both measures, the correlation coefficients and the MSEs. The

conclusions from the dynamic harmonic regression experiments are similar to those obtained

from Experiments 1 and 2: PCA and FOTBI have, respectively, the worst and the best

performance to extract the components of interest. Comparing Tables 4.2 and 4.4, we see

that the three ICA procedures provide more accurate estimates for the dynamic harmonic

regression components than for the structural time series Harvey’s components.

According to the results, any of the three ICA procedures which have been considered

here, provides better estimates of the trend, cycle and seasonal components than PCA does.

Moreover, within the ICA procedures, we conclude that FOTBI outperforms JADE and SOBI

algorithms. These results are as we expected. On the one hand, since PCA estimates the

components by maximizing the total variance of the observations, the first PC will increase its

percentage of explained variability by mixing the trend and the peaks of seasonality. Then,

PCA cannot separate the trend, seasonal, and cyclical components from a vector of time

series. On the other hand, since the signals in previous experiments are clearly non-linear and

have a significant autocorrelation structure, FOTBI will provide more reliable component

estimates than the other two ICA procedures do. In addition, as in previous experiments, the

performance of PCA and SOBI does not depend on the sample size, whereas the performance

of JADE and FOTBI improves when T increases.
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Table 4.4: Unobserved components-dynamic harmonic regression simulation exper-
iments: comparison of the mean average of the correlation coefficients and the MSE
between the original and the estimated components by PCA, JADE, FOTBI, and

SOBI, measured over the m components. Corr(·) = 1
m

∑m
i=1

1
R

∑R
r=1 Corr(s

(·)
it , ŝ

(·)
it )

MSE(·) = 1
m

∑m
i=1

1
R

∑R
r=1 MSE(s

(·)
it , ŝ

(·)
it )

Experiment 3
T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE
PCA 0.6477 0.7000 0.6591 0.6795 0.6598 0.6791
JADE 0.9299 0.1397 0.9555 0.0889 0.9609 0.0782
FOTBI 0.9721 0.0555 0.9859 0.0281 0.9879 0.0242
SOBI 0.9083 0.1828 0.9139 0.1718 0.9167 0.1663

Experiment 4
T=150 T=300 T=500

Corr MSE Corr MSE Corr MSE
PCA 0.7355 0.5254 0.7286 0.5410 0.7231 0.5527
JADE 0.9470 0.1058 0.9661 0.0678 0.9716 0.0568
FOTBI 0.9573 0.0851 0.9789 0.0422 0.9831 0.0338
SOBI 0.8521 0.2948 0.8590 0.2816 0.8612 0.2773



4.5. Empirical application 112

4.5 Empirical application

In this section we apply the ICA methodology to extract the signal in a set of economic time

series. First, we introduce the data and describe the estimates of the components obtained

by different ICA algorithms. Then, we evaluate the forecasting performance of those different

estimation procedures to predict the industrial production index of each country.

4.5.1 Data and components estimates

We consider the industrial production indexes (IPI) in four European countries: France,

Germany, Spain, and Italy. They represent the four main economies of the Euro Area, and

in all of them, the IPI is a highly quality indicator of their industrial activity. The data are

monthly time series from the period January 1975 to October 2010 (430 monthly observations).

Then, we have a 4×430 vector of time series, which is denoted by yt. We transform the dataset

taking logs and subtracting the mean from the observations:

xt = log(yt)− log(yt).

Figure 4.1: Series of 4 monthly IPI time series from 1975:01 to 2010:10 (France,
Germany, Spain, and Italy)

The IPI time series (in logs) are shown in Figure 4.1. They are clearly non-stationary time

series which are characterized by strong trend and seasonality patterns. Our aim is to extract

those relevant features and isolate the less interesting ones. For this purpose, we will apply
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PCA and ICA, which extract the underlying signals directly from the observations, without

assuming any a-priori model for the components of interest. Thus, we could compare the PCs

and the ICs components estimates.

To motivate the use of ICA in our data, we compute the Jarque-Bera skewness-kurtosis

statistics of xt to test for normality on each individual series. The results, which are displayed

in the Table 4.5, show that the null hypothesis of normality is rejected at the 1% significance

level for each time series. Therefore, since the dataset is non-Gaussian distributed, it is

reasonable applying ICA to extract the interesting features from the data.

Table 4.5: Jarque-Bera skewness-kurtosis statistic of the IPI (in logs)

France Germany Italy Spain
Jarque-Bera 191.3013 7.9463 416.5863 53.9601

p-value (0.0001) (0.0233) (0.0001) (0.0001)

We apply JADE, SOBI and FOTBI, presented in Chapters 2 and 3, to extract the unob-

served signal from the observations. These three ICA procedures decompose the multivariate

time series data into a set of approximately independent components, but none of them pro-

vide a formal criterion to sort the ICs and to identify the more relevant ones. In this empirical

application, the interest is to separate the trend (or trend-cycle) and the seasonal component

of the IPIs time series. Since these patterns explain most of the variance of the observations

and PCA sorts the components in terms of the total explained variability, we will use PCA

as an intermediate step in the ICA signal extraction procedures. Thus, our proposal can be

summarized by the following steps:

1. Applying PCA to the data and choose the optimal number of PCs, r, that depends on

the percentage of the total variance that we would like to be explained. In time series

signal extraction, usually no more that two or three components are selected.

2. Applying any ICA algorithm to the data to extract the m ICs.

3. Computing the correlation between the PCs and the ICs, and sorting the ICs according

to the maximum correlation criterion. That is, for each i = 1, ...,m, the i-th IC satisfies:

max
1≤j≤m

corr(ŝPCAit , ŝICAjt ). (4.13)

Thus, the first IC will be the component that is maximally correlated to the first PC,
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the second IC will have maximum correlation to the second PC, and so on. Once the

ICs are sorted, we could select the r ICs that provides the estimates for the underlying

signals.

Applying previous procedure for our data, xt, we firstly estimate the four PCs that are

sorted in terms of the total explained variability. From Table 4.6 we have that the two first

PCs explain almost the 98% of total variability, so we can fix r equal to two. Second, we

estimate the four ICs using JADE, FOTBI, and SOBI. Then, we compute the correlation

between the PCs and the different ICA components, and sort them according to the criterion

(4.13). In Table 4.7 we report the value of the correlation coefficients between the two first

PCs and the corresponding ICs. In this particular example, the two SOBI and FOTBI ICs

that have been selected, correspond to the two first ICs which were given automatically by

those ICA algorithms (for the JADE ICs the order is not preserved). However, this fact

cannot be generalized to any empirical application.

Table 4.6: Individual and accumulate percentage of variability explained by the
PCs

ŝPCA1t ŝPCA2t ŝPCA3t ŝPCA4t
% Variability 89.21 8.57 1.26 0.96

% Accumulate Variability 89.21 97.78 99.04 100

Table 4.7: Correlation coefficients between the two first PCs and the corresponding
ICs which are maximally correlated to each of them.

ŝJADEjt ŝFOTBIjt ŝSOBIjt

ŝPCA1t 0.4690 0.7346 0.7034
ŝPCA2t 0.6774 0.7398 0.5937

The PCs and the ICs that represent the relevant patterns of the IPI time series data are

shown on Figure 4.2. The desirable results would provide estimates for the trend in the first

component of interest, and estimates for the seasonal component in the second one. However,

as we can see in Figure 4.2, the results are not very convincing, specially those corresponding

to the first component estimates. Just by graphical inspection of the estimated components,

it is clear that PCA is not able to separate the trend and the seasonal component. The

first PC is a mixture of the trend and seasonality patterns; the second one is dominated by

accentuated seasonality but some evidences of the trend component still remain. According
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to the PCA optimization criterion, that looks for the components that maximize the total

variability, those are the expected results.

(a) PCs (b) JADE

(c) FOTBI (d) SOBI

Figure 4.2: The two estimated components that have been selected for each pro-
cedure. We have the PCs in Figure 4.2(a), the JADE componentes in Figure 4.2(b),
the FOTBI components in Figure 4.2(c), and the SOBI ones in Figure 4.2(d).

Although the results of the three ICA algorithms for our data are quite different, it seems

that ICA provide more encouraging results than PCA for signal extraction purposes. The

differences among the ICs extracted by JADE, FOTBI, and SOBI are due to the different

estimation principle used by each procedure. On the one hand, JADE does not take into

account the time structure of the data and it have the worse performance for the IPIs signal

extraction: JADE cannot separate the trend and the seasonal patterns, and the two com-

ponents are mixed in the first JADE IC (see Figure 4.2(b)). On the other hand, FOTBI

and SOBI exploit the autocorrelation structure of the observations, and they would provide,

a-priori, better estimates for the trend and the seasonal components than JADE and PCA

do. In addition, since economic time series are usually non-Gaussian and the trend and sea-

sonality are non-linear components, FOTBI seems to be more appropriate than SOBI for the

IPI time series signal extraction. Figures 4.2(c)-4.2(d) confirm this fact: the first FOTBI IC

seems to provide the most reliable estimate for the trend component overall the estimated

ICs. The second best performance is given by SOBI, where the first SOBI IC still exhibits

some evidence of seasonality, although it is less accentuated than in the first component given
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by JADE and PC. Then, FOTBI can be seen as a first step for an automatic multivariate

signal extraction procedure.

In the following subsection, we will analyze how the IPIs of four European countries can

be forecasted using the underlying signals extracted by the previous procedures.

4.5.2 Forecasting results

The IPI is usually published with some significant delay, and this fact motivates the interest

in providing accurate forecasts. Here, we analyze the forecasting performance of PCA, JADE,

FOTBI, and SOBI, to predict the IPI of the four main European countries, using the first

two components estimated by each procedure. We use simple univariate ARIMA models for

the IPI of each country as benchmark models. We compute the forecasts at different time

horizons, h = 1, 3, 6, 12 steps ahead. We apply a three-step iterative forecasting procedure:

estimating the components of interest using the whole sample (as it is explained in previous

section), making forecasts in the space of the components, and transforming back to the

original data set.

Since the ICs are statistically independent, they can be forecasted separately fitting a

different model for each IC. Then, to compute the forecasts for the components, we first apply

the automatic procedure of TRAMO/SEATS program to fit univariate ARIMA(p, d, q) ×

(P,D,Q)s models to the components (since ICA and PCA are automatic procedures, we

decide to use the automatic specification given by the TRAMO/SEATS program). For each

component, we estimate the univariate ARIMA model using observations from 1975:01 to

2007:10 (see Table 4.13 in the appendix for a detailed description of the models), and compute

the h = 1, 3, 6, 12 steps ahead forecasts. This procedure is repeated following a rolling window

approach. That is, after getting the first set of h-steps ahead forecasts (h = 1, 3, 6, 12) for each

component, the estimation sample is extended by one further observation, the parameters of

the corresponding ARIMA model are re-estimated each time (keeping constant the automatic

specification for the ARIMA models thought the procedure), and the new 1−, 3−, 6−, and

12-monthly steps ahead forecasts are built recursively until the end of the sample.

Then, we have computed the forecasts for the components of interest and we will use

them to predict the IPIs time series. By (4.11), the h-steps ahead forecasts for the IPI of

each country can be obtained just weighting the univariate forecasts of the components by the
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corresponding loading matrix coefficients. That is, for the IPIs, a sequence of h-steps ahead

forecasts for h = 1, 3, 6, 12 is performed by:

x̂t0(h) = Âŝt0(h), h = 1, 3, 6, 12, t0 = 2007 : 10, . . . , 2010 : 10− h,

or equivalently, x̂it0(h) =
∑2

j=1 a
2
ij ŝjt0(h), for i = 1, . . . , 4.

In order to evaluate the accuracy of each procedure to forecast the IPIs time series, we

compare the h− step− ahead prediction error associated to each method, given by:

eit0 = xit0+h − x̂it0(h), i = 1, . . . , 4, h = 1, 3, 6, 12, t0 = 2007 : 10, . . . , 2010 : 10− h,

to the one associated to some benchmark model. Here, the benchmark models will be the

univariate ARIMA models fitted to each IPI time series using the automatic TRAMO/SEATS

identification procedure. To compute the h-steps ahead forecasts and prediction errors associ-

ated to the benchmark models, we apply the same recursive procedure that we used to obtain

the forecasts of the components.

To analyze the forecasting performance of PCA and ICA procedures with respect to the

benchmark model, we propose to measure the forecasting accuracy of each procedure by the

following criteria (see Hyndman and Koehler (2006) for a complete revision of measures of

forecast accuracy). For each i = 1, . . . , 4, and h = 1, 3, 6, 12,

1. Root Mean Squared Error: RMSEih =
√∑36−h+1

t=1 e2
it.

2. Mean Absolute Percentage Error: MAPEih =
√∑36−h+1

t=1 |pit|, where pit = eit
xit

.

3. Mean Absolute Scale Error: MASEih =
√∑36−h+1

t=1 |qit|, where qit = eit
1
t−1

∑t−1
l=2 |xil−xil−1|

.

4. Geometric Mean Absolute Error: GMAEih = geomean(|eit|).

We consider the relative values of the four criteria: RelRMSE, RelMAPE, RelMASE, and

RelGMAE. That is, we use the ratios of the corresponding criterion for PCA, JADE, FOTBI,

and SOBI, with respect to the corresponding one for the benchmark model (the value of each

criterion for the univariate ARIMA models):

RelRMSE(·) =
RMSE(·)

RMSEbenchmark
; RelMAPE(·) =

MAPE(·)
MAPEbenchmark

RelMASE(·) =
MASE(·)

MASEbenchmark
; RelGMAE(·) =

GMAE(·)
GMAEbenchmark
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Table 4.8 shows the average results for the relative criteria, measured overall the IPIs of the

four European countries, at different time horizons, h = 1, 3, 6, 12. We obtain similar results,

independently of the criterion used to evaluate the forecasting performance of the different

procedures. The forecasting performance of the PCA and ICA procedures, with respect to

the univariate one, depends on the time horizon, h. It is known that the univariate models

produce quite accurate short-term forecasts (h = 1, 3), but not in the medium- and long-term.

This fact is pointed out in our results, where the forecasting performance of the PCA and

ICA procedures, relative to the univariate models performance, improves when h increases

(Table 4.8).

Table 4.8: Relative values of the different criteria for each of the procedures (Uni-
variate=1). The results represent the average values measured over the IPIs of the
four main European countries: France, Germany, Italy, and Spain.

RelRMSE RelMAPE RelMASE RelGMAE

h=1 PCA 1.7982 1.1469 2.0040 1.7410
JADE 3.7799 1.8392 4.6462 4.5830
FOTBI 1.0439 0.9561 1.0462 0.9934
SOBI 2.6876 2.0061 2.4041 2.5748
UNIV 1.0000 1.0000 1.0000 1.0000

h=3 PCA 1.1509 0.9665 1.2660 1.1772
JADE 2.1590 0.8465 2.5701 2.5803
FOTBI 0.9827 0.8261 1.0176 0.9834
SOBI 1.7867 1.3246 1.6353 1.8116
UNIV 1.0000 1.0000 1.0000 1.0000

h=6 PCA 0.9992 0.9034 1.0033 0.9456
JADE 1.2020 0.7009 1.3301 1.1830
FOTBI 0.8817 0.5039 0.8895 0.7982
SOBI 1.3271 1.0703 1.1608 1.0937
UNIV 1.0000 1.0000 1.0000 1.0000

h=12 PCA 1.0924 1.0362 1.0628 1.0191
JADE 0.7922 0.7209 0.7657 0.6155
FOTBI 0.7897 0.4502 0.7335 0.6145
SOBI 1.0757 0.9474 0.8759 0.6713
UNIV 1.0000 1.0000 1.0000 1.0000

Within the ICA procedures, FOTBI performs better than JADE and SOBI at any time

horizon, h = 1, 3, 6, 12. However, the forecasting performance of FOTBI in comparison to the

univariate ARIMA models (benchmark models) depends on h. In the short-term (h = 1, 3),

both procedures, FOTBI and univariate models, have similar forecasting performance. They

provide more accurate short-term forecasts than PCA, JADE, and SOBI do. In addition,
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note that, for h = 1, 3, PCA performs better than SOBI, and SOBI performs better than

JADE (Table 4.8). In the medium-, and long- term, the results are slightly different. On the

one hand, for h = 6, FOTBI has the best forecasting performance followed by PCA and the

univariate models, which have similar performance and outperform JADE and SOBI. On the

other hand, any of the ICA procedures (although the smallest values of the different criteria

correspond to FOTBI) provide more accurate long-term forecasts (h = 12) than PCA and

the benchmark models do. The results for each individual IPI time series are provided in the

appendix (see Table 4.14). The conclusions are analogous to the ones explained above for the

average results.

According to previous results, our main interest is to compare the forecasting performance

of FOTBI and the univariate models. It seems that both procedures have similar forecasting

performance in the short-term (h = 1, 3), but FOTBI outperforms the univariate models

in medium- and long-term forecasting (h = 6, 12) (Table 4.8). However, we would like to

investigate whether or not these differences are statistically significant applying the Diebold-

Mariano test (Diebold and Mariano (1995)), that is used to compare the forecast accuracy of

two competing models. Under the ‘equal accuracy’ null hypothesis of the Diebold-Mariano

test, there are no-differences in the predictive accuracy of the two models. In this paper, we

carry out the Diebold-Mariano test taking into account two different, squared and absolute

error, loss functions. The outputs of the Diebold-Mariano test applied to the average results

given in Table 4.8 are presented in Table 4.9. We applied the Diebold-Mariano test to all

procedures, two by two, and we report the value of the Diebold-Mariano test statistic, the p-

value (between brackets), and the procedure that produces better forecasts in each comparison

(= means that the two procedures have equal predictive accuracy). The results of the Diebold-

Mariano test to compare the forecast accuracy of the different procedures for each individual

IPI time series are in the appendix (see Tables 4.15 and 4.16) These results are consistent to

the previous ones.

Summarizing the results given by Tables 4.8 and 4.9, we cannot conclude that there is a

procedure which outperforms the others for any time horizons. However, the FOTBI procedure

seems to have quite promising performance: it provides similar forecasts than the univariate

models do in the short-term (h = 1, 3), the best medium-term forecasts (h = 6) overall the

procedures, and more accurate 12-steps ahead forecasts than PCA and the univariate models

(the other ICA procedures, JADE and SOBI, perform equal than FOTBI in the long-run).
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Table 4.9: Results of the Diebold-Mariano test carried out to evaluate the forecast
accuracy (measured as an average over the four IPIs time series) of the different
procedures

Squared Error Loss Function Absolute Error Loss Function

MET A vs MET B h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

PCA vs UNIV 2.4316 0.3024 -0.0021 0.0440 2.1510 0.5897 -0.0013 0.1115
(0.0075) (0.3812) (0.4992) (0.4824) (0.0157) (0.2777) (0.4995) (0.4556)
UNIV = = = UNIV = = =

JADE vs UNIV 5.8395 4.0193 1.1808 -2.0155 7.5484 4.2871 1.0567 -1.9712
(0.0000) (0.0000) (0.1188) (0.0347) (0.0000) (0.0000) (0.1453) (0.0244)
UNIV UNIV = JADE UNIV UNIV = JADE

FOTBI vs UNIV -0.0023 -0.0032 -2.1340 -4.4494 -0.0284 -0.0214 -1.9594 -3.9709
(0.4991) (0.4987) (0.0164) (0.0000) (0.4887) (0.4915) (0.0485) (0.0000)

= = FOTBI FOTBI = = FOTBI FOTBI

SOBI vs UNIV 3.1194 2.7339 1.7258 0.4367 4.0058 2.7723 1.1120 -0.9176
(0.0009) (0.0031) (0.0522) (0.3312) (0.0000) (0.0028) (0.1331) (0.1794)
UNIV UNIV = = UNIV UNIV = =

PCA vs SOBI -2.2202 -2.4832 -1.8237 0.3216 -2.3833 -2.2104 -1.1275 1.2683
(0.0132) (0.0065) (0.0541) (0.3739) (0.0086) (0.0135) (0.1298) (0.1023)
PCA PCA = = PCA PCA = =

JADE vs SOBI 2.6451 1.5609 -0.2912 -1.3380 3.1134 1.9802 0.1126 -0.8315
(0.0041) (0.0593) (0.3854) (0.0904) (0.0009) (0.0375) (0.4552) (0.2029)
SOBI = = = SOBI SOBI = =

FOTBI vs SOBI -3.2780 -3.1143 -2.5614 -1.9808 -4.4839 -3.3646 -2.0629 -1.2128
(0.0005) (0.0009) (0.0052) (0.0238) (0.0000) (0.0004) (0.0196) (0.1126)
FOTBI FOTBI FOTBI FOTBI FOTBI FOTBI FOTBI =

PCA vs FOTBI 2.9578 1.2520 2.2474 4.1526 2.8958 1.3144 1.9822 4.5209
(0.0015) (0.1053) (0.0123) (0.0000) (0.0019) (0.0944) (0.0299) (0.0000)
FOTBI = FOTBI FOTBI FOTBI = FOTBI FOTBI

JADE vs FOTBI 5.9747 4.3287 2.7698 0.0540 8.0409 4.6709 2.4767 -0.1718
(0.0000) (0.0000) (0.0028) (0.4785) (0.0000) (0.0000) (0.0066) (0.4318)
FOTBI FOTBI FOTBI = FOTBI FOTBI FOTBI =

PCA vs JADE -6.0001 -4.7388 -1.4072 2.4965 -7.9074 -5.3897 -1.1535 2.4902
(0.0000) (0.0000) (0.0797) (0.0063) (0.0000) (0.0000) (0.1243) (0.0064)
PCA PCA = JADE PCA PCA = JADE
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4.6 Concluding remarks

In this study we have explored how ICA performs for prediction and signal extraction in

multiple non-stationary time series data.

ICA assumes that the observations are linearly generated by a set of underlying compo-

nents which are statistically independent. It has been traditionally used in different areas

of research, such as medical, biological, and engineering applications, where the data are

observed with high level of noise. ICA is a powerful technique that is able to extract the

underlying components only from the observations, and just by making the assumption of

statistically independence on the components.

Here we have applied ICA to multivariate time series data in which the underlying com-

ponents can be interpreted in terms of trends and seasonality patterns. Most of the pro-

cedures (e.g. TRAMO/SEATS, STAMP, and linear dynamic harmonic regression) found in

the signal extraction literature, are model-based procedures, developed in the univariate case,

that specify directly stochastic linear models either on the observations or on the underlying

components. Despite that those procedures are, in general, quite successful, modelling the

components a-priori could produce specification problems that culminate in crucial estimation

errors.

We present ICA as an alternative methodology for multivariate time series signal ex-

traction. The advantage of ICA with respect to the so called model-based signal extraction

procedures relies on the fact that ICA is an automatic procedure that does not specify any

a-priori structure either in the data nor in the components. ICA looks for the trend, cycle,

and seasonal components by assuming only their statistical independence.

As different ICA algorithms provide different components estimates, we have implemented

three different ICA algorithms, JADE, FOTBI, and SOBI, to analyze their performance as

automatic signal extraction procedures. We have tested the three ICA procedures on four

Monte Carlo simulation experiments, and the results show that FOTBI performs quite well.

Then, it seems that the FOTBI procedure could be considered as a first-step for an automatic

procedure in multivariate time series signal extraction.

We have empirically assess the ability of PCA and the three different ICA procedures to

extract the dynamic relationships among the IPIs of the four main European countries. In this
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analysis, the contribution of the paper are two fold. On the one hand, as it was expected, since

these data were non-Gaussian and they had a pronounced autocorrelation structure, FOTBI

provided the best estimates for the trend and the seasonal components. On the other hand,

we have analyzed the forecasting performance of PCA and ICA, using the univariate ARIMA

models for the IPIs as benchmark models. We have computed h = 1, 3, 6, 12 steps-ahead

forecasts for the IPIs and the results are very promising. When we forecast the IPIs using the

FOTBI ICs, we have: (i) short-term forecasts (h = 1, 3) given by the FOTBI components are

similar to the ones obtained by the univariate models (we know that univariate models perform

well in short-term forecasting); (ii) in medium-forecasting (h = 6), FOTBI outperforms overall

the procedures; and (iii) any of the ICA procures (JADE, FOTBI, and SOBI have equally

predictive power according to the Diebold-Mariano test) provide more accurate long-term

forecasts of the IPIs (h = 12) than the benchmark models does.

Then, FOTBI seems to perform quite well for prediction and signal extraction in multi-

variate time series data, which may be non-stationary.

4.7 Appendix

Table 4.10: Mixing matrices using in the simulation experiments.

Experiment 1 Experiment 2

A

 2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2



−4 3 −1 1 −1
2 −1 1 0 1
3 1 −2 1 0
−1 −1 1 1 0
−2 −4 3 0 −1


Experiment 3 Experiment 4

A


2 1 −1 1 0 0
3 2 2 1 0 1
−2 1 −1 0 0 −1
1 −1 1 −1 0 1
2 −1 −1 0 −1 0
1 1 1 1 1 1





4 3 −2 1 1 0 −1
−2 1 1 1 −1 0 0
−1 1 −1 1 −1 0 1
−3 −2 4 1 −1 −1 1
1 −1 1 −1 1 0 0
2 3 4 0 −2 1 −1
0 1 2 3 −1 0 2
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Table 4.11: Unobserved components-Harvey’s simulation experiments: comparison
of the correlation coefficients and the MSE between the original and the estimated
components by PCA, JADE, FOTBI, and SOBI. For each component, these values
corresponds to the mean average values measured over the R realizations.

Corr(·) = 1
R

∑R
r=1 Corr(s

(·)
it , ŝ

(·)
it ); MSE(·) = 1

R

∑R
r=1 MSE(s

(·)
it , ŝ

(·)
it )

Experiment 1
Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.8839 0.8614 0.9504 0.8374 0.2307 0.2762 0.0989 0.3240
s2t 0.7689 0.8366 0.9161 0.8419 0.4592 0.3257 0.1672 0.3151
s3t 0.7068 0.7212 0.8295 0.8150 0.5825 0.5558 0.3398 0.3687
s4t 0.6822 0.7110 0.8245 0.7940 0.6313 0.5760 0.3499 0.4106
s5t 0.6343 0.7026 0.8301 0.8009 0.7266 0.5928 0.3388 0.3969
s6t 0.6823 0.8457 0.9058 0.8334 0.6312 0.3077 0.1879 0.3321

T=300 s1t 0.8813 0.9165 0.9627 0.8337 0.2366 0.1667 0.0745 0.3320
s2t 0.7785 0.8992 0.9769 0.8457 0.4416 0.2013 0.0462 0.3082
s3t 0.7391 0.7862 0.8743 0.8240 0.5201 0.4270 0.2509 0.3514
s4t 0.6937 0.7649 0.8708 0.7928 0.6106 0.4695 0.2580 0.4138
s5t 0.6361 0.7671 0.8988 0.8076 0.7253 0.4651 0.2021 0.3842
s6t 0.7154 0.9262 0.9554 0.8406 0.5673 0.1473 0.0891 0.3183

T=500 s1t 0.8817 0.9407 0.9651 0.8405 0.2362 0.1185 0.0698 0.3187
s2t 0.7870 0.9217 0.9887 0.8498 0.4252 0.1565 0.0226 0.3002
s3t 0.7534 0.8075 0.8895 0.8221 0.4923 0.3847 0.2208 0.3554
s4t 0.6975 0.7878 0.8907 0.7985 0.6038 0.4241 0.2185 0.4027
s5t 0.6377 0.7932 0.9215 0.8087 0.7231 0.4131 0.1568 0.3822
s6t 0.7380 0.9581 0.9698 0.8398 0.5229 0.0837 0.0604 0.3200

Experiment 2
Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.6670 0.8043 0.9112 0.8517 0.6615 0.3900 0.1770 0.2956
s2t 0.6651 0.8591 0.9026 0.7820 0.6653 0.2808 0.1941 0.4345
s3t 0.5047 0.6967 0.7735 0.7301 0.9841 0.6045 0.4514 0.5380
s4t 0.5431 0.7732 0.8462 0.8329 0.9077 0.4521 0.3066 0.3332
s5t 0.5718 0.7166 0.8153 0.7786 0.8508 0.5650 0.3682 0.4412
s6t 0.8290 0.8832 0.8411 0.7317 0.3398 0.2329 0.3168 0.5349
s7t 0.6222 0.8092 0.8857 0.7658 0.7506 0.3803 0.2279 0.4669

T=300 s1t 0.6545 0.8432 0.9298 0.8502 0.6888 0.3130 0.1401 0.2991
s2t 0.6607 0.8786 0.9097 0.7889 0.6764 0.2423 0.1802 0.4215
s3t 0.4950 0.7192 0.7802 0.7410 1.0066 0.5607 0.4390 0.5172
s4t 0.5381 0.8373 0.8982 0.8320 0.9206 0.3248 0.2032 0.3355
s5t 0.5802 0.7772 0.8708 0.7852 0.8369 0.4448 0.2579 0.4289
s6t 0.8419 0.9700 0.9067 0.7498 0.3151 0.0599 0.1862 0.4995
s7t 0.6424 0.8947 0.9368 0.7792 0.7127 0.2103 0.1262 0.4408

T=500 s1t 0.6448 0.8619 0.9443 0.8570 0.7089 0.2759 0.1113 0.2858
s2t 0.6513 0.8804 0.9115 0.7994 0.6959 0.2390 0.1768 0.4008
s3t 0.4896 0.7257 0.7886 0.7368 1.0188 0.5481 0.4224 0.5258
s4t 0.5353 0.8674 0.9292 0.8418 0.9274 0.2649 0.1414 0.3162
s5t 0.5878 0.8262 0.9015 0.7955 0.8227 0.3472 0.1968 0.4087
s6t 0.8572 0.9869 0.9395 0.7602 0.2850 0.0262 0.1210 0.4791
s7t 0.6493 0.9363 0.9593 0.7884 0.7000 0.1273 0.0814 0.4227
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Table 4.12: Unobserved components-dynamic harmonic regression simulation ex-
periments: comparison of the correlation coefficients and the MSE between the orig-
inal and the estimated components by PCA, JADE, FOTBI, and SOBI. For each
component, these values corresponds to the mean average values measured over the

R realizations. Corr(·) = 1
R

∑R
r=1 Corr(s

(·)
it , ŝ

(·)
it ); MSE(·) = 1

R

∑R
r=1 MSE(s

(·)
it , ŝ

(·)
it )

Experiment 3
Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.7129 0.9250 0.9602 0.9061 0.5703 0.1496 0.0794 0.1871
s2t 0.7235 0.9362 0.9807 0.9285 0.5493 0.1271 0.0385 0.1425
s3t 0.5923 0.9586 0.9766 0.8842 0.8100 0.0825 0.0467 0.2309
s4t 0.5620 0.8998 0.9711 0.9144 0.8702 0.1997 0.0576 0.1705

T=300 s1t 0.6998 0.9517 0.9777 0.9112 0.5983 0.0965 0.0446 0.1774
s2t 0.7044 0.9558 0.9938 0.9289 0.5893 0.0882 0.0125 0.1420
s3t 0.6252 0.9768 0.9847 0.8970 0.7470 0.0464 0.0306 0.2056
s4t 0.6070 0.9375 0.9876 0.9187 0.7834 0.1247 0.0248 0.1623

T=500 s1t 0.7065 0.9583 0.9807 0.9104 0.5859 0.0833 0.0385 0.1789
s2t 0.6711 0.9552 0.9937 0.9282 0.6565 0.0894 0.0127 0.1435
s3t 0.6547 0.9815 0.9854 0.9067 0.6891 0.0369 0.0292 0.1864
s4t 0.6067 0.9484 0.9917 0.9216 0.7850 0.1030 0.0165 0.1566

Experiment 4
Correlation Coefficient MSE

T st PCA JADE FOTBI SOBI PCA JADE FOTBI SOBI

T=150 s1t 0.7848 0.9568 0.9814 0.8814 0.4276 0.0861 0.0370 0.2365
s2t 0.6322 0.9423 0.9704 0.8691 0.7307 0.1151 0.0590 0.2609
s3t 0.5904 0.9786 0.9854 0.8457 0.8138 0.0426 0.0292 0.3075
s4t 0.9696 0.8818 0.9176 0.8317 0.0603 0.2356 0.1643 0.3356
s5t 0.7007 0.9753 0.9318 0.8327 0.5945 0.0493 0.1359 0.3335

T=300 s1t 0.7656 0.9666 0.9862 0.8814 0.4672 0.0667 0.0276 0.2369
s2t 0.6173 0.9576 0.9873 0.8714 0.7629 0.0847 0.0254 0.2567
s3t 0.5919 0.9816 0.9899 0.8557 0.8134 0.0367 0.0202 0.2881
s4t 0.9810 0.9308 0.9554 0.8390 0.0378 0.1382 0.0890 0.3214
s5t 0.6871 0.9937 0.9756 0.8473 0.6236 0.0126 0.0486 0.3050

T=500 s1t 0.7634 0.9680 0.9857 0.8746 0.4723 0.0639 0.0285 0.2505
s2t 0.6048 0.9605 0.9843 0.8701 0.7889 0.0790 0.0314 0.2596
s3t 0.5936 0.9820 0.9881 0.8710 0.8111 0.0359 0.0237 0.2578
s4t 0.9865 0.9504 0.9705 0.8391 0.0270 0.0991 0.0590 0.3214
s5t 0.6671 0.9969 0.9867 0.8513 0.6645 0.0062 0.0265 0.2971
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Chapter 5

Conclusions and Future Research

Finding an ‘interesting representation’ of large data sets becomes an important task in multi-

variate data analysis. Classical methods such as PCA and FA have been proposed to obtain

a meaningful representation of Gaussian data. However, in many practical situations, we are

far away from Gaussianity and previous procedures fail. Recently ICA has emerged in the

literature to get an ‘interesting representation’ of non-Gaussian data by using higher-order

statistics. The idea of ICA is looking for the projections of the data which become as indepen-

dent as possible. In Chapter 1, we investigate the relationship between ICA and other classical

multivariate methods. We present ICA as an extension of PCA, in the sense that the ICs will

be estimated as the rotation of the PCs that makes them maximally independent. Moreover,

ICA can be seen as a non-linear factor model where the ICs are statistically independent

instead of mutually uncorrelated. Moreover, moving to higher-order methods, if the statisti-

cal independence of the components is measured in terms of their non-Gaussianity, ICA is a

special case of PP. In addition, ICA is related to the algorithm proposed by Peña and Prieto

(2001): both procedures detect the outliers of the data set by projecting the observations onto

the directions of maximum kurtosis.

We present in Chapter 2 a new multivariate conditionally heteroskedastic factor model,

the GICA-GARCH model, where the observations are assumed to be linearly generated by

a set of latent factors which are statistically independent and have GARCH effects. The

GICA-GARCH model assumes factor structure in the unconditional distribution of the data

and applies ICA to estimate the set of conditionally heteroskedastic components which ex-

plain the co-movements of the observations. In addition, the GICA-GARCH also assumes

factor structure in the conditional distribution of the data and computes the conditional co-

variance matrix of the observations as a linear combination of the conditional variances of

129
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those common factors. The advantages of the GICA-GARCH model over existing multivari-

ate volatilities modelling approaches relies on the use of ICA to estimate the conditionally

heteroskedastic factors. First, as the Monte Carlo experiments of Chapter 2 show, ICA is

a powerful methodology to reproduce excess kurtosis: ICA procedures, specially FastICA

and JADE, perform quite well to identify the non-Gaussian latent factors when their excess

kurtosis comes from either different GARCH specifications or different conditional distribu-

tions. Second, since the ICs are assumed to be statistically independent, the latent factors

in the GICA-GARCH model do not need to be jointly estimated and a univariate (ARMA)-

GARCH model is fitted to each of them. Therefore, the GICA-GARCH model transform

the complexity associated with the estimation of a multidimensional ARMA-GARCH model

into the estimation of a few univariate (ARMA)-GARCH models. The third advantage of the

GICA-GARCH model is illustrated in our empirical application to the Madrid stock market,

where we compare the forecasting performance of our model with respect to existing models

such as the orthogonal GARCH model (Alexander (2001)) and the CUC-GARCH (Fan et al.

(2008)). We show that the GICA-GARCH model, where the underlying components are es-

timated by JADE and modelled as ARMA-GARCH processes with conditional Student’s t

innovations, provides the most accurate one-step ahead forecasts for the stocks of the IBEX

35 index.

In Chapter 2, we also investigate the relationship between the GICA-GARCH and al-

ternative factor GARCH models, depending on whether the factor structure refers to the

unconditional or conditional distribution of the data. On the other hand, since the GICA-

GARCH assumes factor structure in the unconditional distribution of the data, it can be

seen a latent factor model with GARCH effects (Diebold and Nerlove (1989)). Moreover,

we present the GICA-GARCH model as a parsimonious version of the DF-GARCH (Alessi

et al. (2006)): whereas the DF-GARCH assumes that the common factors evolve according

to a MGARCH model, the GICA-GARCH model fits different univariate (ARMA)-GARCH

models to each of them. On the other hand, since GICA-GARCH model assumes factor struc-

ture in the conditional distribution of the data, it is related to the FACTOR-ARCH model

(Engle (1987)): for both models the data conditional covariance matrix is given by a linear

combination of the conditional variances of some portfolios. The GICA-GARCH model is

also related to some orthogonal GARCH models: it can be seen as a generalization of the

O-GARCH (Alexander (2001)), where the estimates of the factors are given by the ICs instead
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of the PCs, and it extends the GOF-GARCH (Lanne and Saikkonen (2007)) by allowing the

noisy components to be conditionally heteroskedastic. In addition, we show that the GICA-

GARCH model is quite similar to the the CUC-GARCH (Fan et al. (2008)) model but making

the stronger assumption of mutually independence, instead of conditionally uncorrelatedness,

on the components.

In Chapter 3, we present a new ICA procedure for multivariate time series data. Our

procedure, called FOTBI, is designed to obtain the set of non-Gaussian and statistically

independent components in a multivariate time series vector of observations. FOTBI is a

fourth-order method that is based on the joint diagonalization of several time-delayed fourth-

order cumulant matrices. In contrast to other ICA algorithms, FOTBI exploits the temporal

structure as well as the non-Gaussianity of the data: on the one hand, FOTBI extend the

JADE algorithm (Cardoso and Souloumiac (1993)) by taking into account the temporal de-

pendencies among the observations; on the other hand, FOTBI broadens the SOBI procedure

(Belouchrani et al. (1997)) by introducing higher-order statistics which guarantees the statis-

tical independence of the components under non-Gaussianity assumption. The results of the

simulation experiments show the advantage of FOTBI to extract non-linear time series inde-

pendent components: for multivariate time series data sets that are non-Gaussian distributed,

FOTBI outperforms the rest of the ICA procedures at different sample sizes. However, since

FOTBI is a fourth-order method and requires large sample sizes to reduce the variance of the

estimates, the performance of FOTBI improves when the sample size increases. Moreover, the

Monte Carlo experiment show that, although SOBI has the best performance for Gaussian

time series data, FOTBI seems to be a ‘good’ competitor, specially for large sample sizes.

Chapter 4 is concern with the problem of prediction and signal extraction in multivariate

time series data by using ICA. We present ICA as an alternative multivariate time series signal

extraction procedure. ICA is applied for finding the possible non-stationary components, such

as the trend and the seasonal components, in a multivariate time series vector of observations.

The advantage of ICA over the existing signal extraction procedures is that it is automatic

and does not assumes any a-priori structure either in the observations nor in the underlying

components of interest. ICA only assumes that the basic components are mutually indepen-

dent and such that they explain as much of the total variability as possible. According to the

results of some Monte Carlo experiments, FOTBI provides the most reliable estimates for the

components and is able to separate the trend, cyclical, and seasonal components. Therefore,
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FOTBI could be seen as the first-step for designing an automatic procedure in multivariate

time series signal extraction. The empirical application to the industrial production index

(IPI) time series of four European countries confirms the usefulness of FOTBI to identify the

trend and seasonality patterns. However, the FOTBI components are a bit noisy and some

smoothing techniques should be applied to consider FOTBI as a proper signal extraction

procedure.

Moreover, in Chapter 4, we investigate the usefulness of forecasting multivariate time se-

ries data sets by using a small number of ICs. Since the ICs are statistically independent,

they can be forecasted separately by using different univariate models to each of them. Based

on this idea, our forecasting approach consist in making the forecasts in the space of the ICs,

and then using these predictions and transforming them back to the space of the observations.

We empirically test our approach for predicting the IPI time series of four European countries

by using two ICs: the trend and the seasonal components. We analyze the forecasting per-

formance of FOTBI and alternative ICA procedures with respect to some benchmark models,

which are the univariate specifications given by the automatic TRAMO/SEATS identifica-

tion procedure (Gómez and Maravall (1996)). The results show the potential of FOTBI to

forecast the IPIs: the short-term IPIs forecasts (h = 1, 3) given by FOTBI and the univariate

models (which performs well in the short-term) are quite similar; FOTBI outperforms overall

procedures when h = 6; the most accurate long-term IPIs forecasts (h = 12) are provided by

FOTBI, JADE, and SOBI (the three ICA procedures have equally forecasting performance).

In the following, we summarize several topics that have been arising while working on this

thesis, and which will be the directions of the future research:

• To propose a formal criterion to sort the ICs. In Chapter 2, as PCA does, the ICs

are sorted in terms of variability. However, since ICA uses higher-order information to

identify the statistically independent underlying components, it could be interesting to

define a new criterion based on the independence of the components.

• To extend the empirical application in Chapter 2 by analyzing the performance of the

DF-GARCH model (Alessi et al. (2006)). The GICA-GARCH model assumes factor

structure in the conditional as well as in the unconditional distribution of the data. In

Chapter 2, we compare the performance of the GICA-GARCH model with the O- and

the CUC-GARCH models, which assumes factor structure in the conditional distribution
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of the data. However, there is no comparison of the GICA-GARCH model with models

that assume factor structure in the unconditional distribution such as the DF-GARCH

model.

• To investigate more about the statistical properties of the ICs estimates. Moreover, in

Chapter 3, it would be interesting to analyze the asymptotic performance of FOTBI.

• To study more deeply the issue of non-stationarity in the ICA model. In Chapter 4,

we apply ICA to a vector of non-stationary time series data, and the results are quite

‘good’. However, additional theoretical research on non-stationary ICA is needed.

• To propose a procedure to test for the optimal number of ICs, stationary or not.
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