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Abstract. This paper presents two different classifier fusion algorithms
applied in the domain of Human Action Recognition from video. A set
of cameras observes a person performing an action from a predefined set.
For each camera view a 2D descriptor is computed and a posterior on
the performed activity is obtained using a soft classifier. These posteriors
are combined using voting and a bayesian network to obtain a single
belief measure to use for the final decision on the performed action.
Experiments are conducted with different low level frame descriptors on
the IXMAS dataset, achieving results comparable to state of the art 3D
proposals, but only performing 2D processing.

1 Introduction

Human Action Recognition (HAR) from video is one of the most active research
areas in computer vision. Different surveys of the works in the area have been
published during the last years [1]. Applications of HAR systems range from
video surveillance [2] and Ambient Assisted Living [3] to automatic annotation
of video contents [4].

The recognition of Human Actions from video may be considered as a pat-
tern recognition problem [5]. First, a low level descriptor is computed to try
to capture the variance on the input frames. Popular choices at this level are
motion templates [6], optical flow descriptors [7], spatio-temporal interest points
[4], trajectories [8] or a combination of them [9,2]. This computed descriptor is
introduced into a classifier to obtain the action category it belongs to. Com-
mon choices include Mixtures of Gaussians [8], Support Vector Machines [10],
database searches [7,9,2] or Hierarchical Bayesian Models [11]. A particular fea-
ture in the recognition of Human Actions is that the actions do not happen
isolated, they happen in a temporal sequence. The most popular technique to
model the temporal sequence statistics has been Hidden Markov Models [12].
Other proposed techniques have been Context Free Grammars [13] or Condi-
tional Random Fields [14]. In this work we assume that actions happen isolated,
focusing on the descriptor classification level.

Most of the existing approaches to HAR have considered a single video sensor
to perceive the environment where the actions take place. A single sensor may not
be enough to accurately perceive the actions, due to the presence of occlusions.
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These occlusions may be caused by the relative position of the human body
and the camera (self-occlusions) or by the presence of walls and furniture in the
environment. To deal with these problems, HAR systems may be improved using
a Visual Sensor Networks (VSN) [15] with overlapped cameras.

In this paper we study how to obtain a single classification of the action
perceived by all the cameras from the outputs of a set of single camera soft
classifiers. Single camera soft classifiers provide a posterior for the performed
activity based on the frame descriptor previously computed. We try two different
approaches to solve the problem: the first one is based on a weighted voting
scheme; the second one is based on using a Bayesian Network to model the
error produced by each one of the single view classifiers. Our approach avoids
computing the 3D visual hull, an expensive and centralized task used by state of
the art methods for multiple view human action recognition [16,17], using only
2D pattern recognition techniques.

Paper is organized as follows: on section 2 the problem to solve is formally
defined; on section 3, the classifier fusion algorithms to be tested are presented;
on section 4, we present the single view soft classifier we use to test the classifier
fusion algorithms; on section 5, results of applying the proposed algorithms to
classify the IXMAS dataset are shown; finally, on section 6, the conclusions of
this work are presented.

2 Problem Statement

Let ft =
{
f1

t , . . . , fC
t

}
be a set of action descriptors computed by a set of C

cameras at an arbitrary instant t. The posterior probability p (yn | f c
t ) of action

yn, yn ∈ Y = {y1, . . . , yN} is obtained applying a soft classifier to the descriptor
f c

t . Let B = {p (yn | f c
t )}∀n, c be the set of all the posterior probabilities obtained

after applying the soft classifier to each one of the views. The problem we want to
solve is how to combine the single camera posteriors in B into a single posterior
for all the cameras, p

(
yn | f1

t , . . . , f1
t

)
, yn ∈ Y, in order to decide what is the

activity yn being performed.

3 Fusion of Soft Classifiers

Two different algorithms are going to be tested for this task. The first one, a
voting scheme. The second one, a bayesian network modeling the errors on local
classifications.

3.1 Voting

The first algorithm we are going to test for the fusion of single view soft classi-
fications is defined to be the sum of the posterior probabilities.

p
(
ai | f1

t , . . . , fC
t

) ∝
C∑

c=1

p (ai | f c
t ) (1)
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3.2 Bayesian Network

The second algorithm we are going to test for the fusion of single view soft
classifications is based on the Bayesian Network shown on figure 1. The network
is composed of observation nodes f c

t , representing the observation at instant t
on camera c, a node αt representing the activity at time t and a set of latent
nodes vc

t , to model the single view classification.
Given a set of frame descriptors ft = f1

t , . . . , fC
t , a set of latent variables

vt = v1
t , . . . , vc

t , and the activity label αt, their joint probability is factorized as:

p (αt,vt, ft) = p (αt | vt)
C∏

c=1

p (vc
t ) p (f c

t | vc
t ) (2)

The probability of αt is defined as a product of independent factors, assuming
independence between hidden variables vc

t :

p (αt | vt)
.=

C∏

c=1

p (αt | vc
t ) (3)

With this assumption we refuse to model correlations between local classification
errors. In this way, when adding a new camera to the system only 2 conditional
probability distributions need to be estimated, instead of the exponential number
of them if the assumption were not made. Thus, equation 2 can be rewritten as:

p (αt,vt, ft) =
C∏

c=1

p (αt | vc
t ) p (vc

t ) p (f c
t | vc

t ) (4)

The posterior probability of an activity label αt and a set of hidden variables vt

is proportional to the joint probability:

p (αt,vt | ft) ∝ p (αt,vt, ft) (5)

Given a set of frame descriptors ft, the posterior probability of the activity label
αt is obtained marginalizing equation 5 over the set of latent variables vt:

p (αt = ai | fc
t ) =

N∑

j=1

C∏

c=1

p (αt = ai | vc
t = aj) p (vc

t = aj) p (f c
t | vc

t = aj) (6)

p (f c
t | vc

t = aj) may be computed in terms of p (vc
t = aj | f c

t ) using Bayes theo-
rem:

p (f c
t | vc

t = aj) =
p (vc

t = aj | f c
t ) p (f c

t )
p (vc

t = aj)
.=

p (vc
t = aj | f c

t )
p (vc

t = aj)
(7)

The term p (f c
t ) vanishes assuming that f c

t ∼ Uniform. The final expression for
the posterior is obtained introducing the RHS of equation 7 into equation 6:
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Fig. 1. Plate model of the Bayesian Network used to combine the outputs from the
classifiers at each camera

p (αt = ai | fc
t ) =

N∑

j=1

C∏

c=1

p (αt = ai | vc
t = aj) p (vc

t = aj | f c
t ) (8)

Network parameters are estimated using labeled training samples. p (vc
t | f c

t )
is known, being provided by the single view soft classifiers, so only p (αt | vt

c)
needs to be estimated. Be Oc = (oc

1, . . . , o
c
K} the set of K training frame de-

scriptors computed at camera c with their corresponding activity labels Y c =
{yc

1, . . . , y
c
K}, yc

k ∈ A. Model parameters are estimated as:

p
(
αt = ai | vc

t = aj

)
=

K∑

k=1

γkp (vc
t = aj | oc

k)

N∑

l=1

K∑

k=1

γkp (vc
t = al | oc

k)

(9)

where γk = 1 if yk = aj and γk = 0 otherwise.

4 Soft Classifier

The classifier we are going to use to obtain the probability of each single frame
being an instance of each action category is based on a k-Nearest Neighbor
setting (kNN). Let D = {xi, yi}, 1 ≤ i ≤ M be a set of M training samples,
being yi ∈ {y1, yN} the label corresponding to the instance xi. The posterior
probability p

(
y | xj

)
of a new sample xj to predict is decided sampling from the

neighborhood of xi, transforming the distances to the k nearest neighbors into
likelihood values:

p
(
y = yn | xj

) ∝
K∑

k=1

γk

(
ρj −

∣
∣
∣
∣xj − xk

∣
∣
∣
∣) (10)

where ρj =
∑K

k=1

∣
∣
∣
∣xj − xk

∣
∣
∣
∣,i.e. the sum of the distances to the k nearest neigh-

bors of xj ; γk = 1 if yn = yk and γk = 0. The main advantage of this classifier is
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that it captures the local structure of the data, being able to model multimodal
distributions. Training is also very fast because only requires storing the samples
on the database.

5 Experiments

5.1 Experimental Setup

Experiments are going to be conducted on the state-of-the art testbed for human
action recognition: the Inria IXMAS dataset 1. The dataset includes samples of
eleven action categories performed by 12 different actors 3 times each (36 clips),
recorded by 5 different camera views. The actions are: check watch, cross arms,
scratch head, sit down, get up, turn around, walk, wave, punch, kick and pick
up. Two different frame descriptors are used to model these actions and test our
algorithms. The first one is the popular Motion History Image (MHI) [6]. This
descriptor is based on a temporal accumulation of the human body shape. The
computed descriptors are resized to a box of 35x20 pixels, obtaining a feature
vector of length lMHI = 700. The second one is the proposed by Tran et al.[9],
including both shape and optical flow information. The extracted descriptor can
be obtained from their web2, being its length lTran = 286.

The evaluation protocol to test the classification and fusion algorithms is
Leave-One-Clip-Out-Cross Validation: algorithms are trained with all the action
clips unless one, that is used for testing. The procedure is repeated until all the
clips have been used for testing. The kNN classification algorithms are going to
be tested using neighborhood values of k = 3 and k = 5. As the length of the
descriptors is too large for practical usage, the well known Principal Component
Analysis is applied to obtain reduced descriptors ranging from l = 10 to l = 45
with a stepsize of 5.

5.2 Results and Discussion

Single camera classification. Figure 2 shows the result of classifying each
one of the camera views with the soft kNN classifier. It is clear that the Tran
descriptor predicts the activity performed on a single frame better than the
MHI. This behavior was expectable until some point, because Tran’s descriptor
includes shape and local motion information, while the MHI only includes shape.
The classifiers with k = 5 always work better than those with K = 3.

Single camera classification results also show that while from cameras 1-4
the obtained accuracy is similar, camera 5 accuracy drops about a 10%. Cam-
era 5 provides a top view of the action, preventing descriptors from accurately
capturing the dynamics of the performed action.

1 http://charibdis.inrialpes.fr/
2 http://vision.cs.uiuc.edu/projects/activity/
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

(e) Camera 5

Fig. 2. Classification results at each camera before and after the fusion. The first
number stands for the number of nearest neighbors used. The suffix stands for the
fusion algorithm used: V for voting and C for the bayesian network.

Fusion results. The different plots shown on figure 2 also show the results
obtained after applying the fusion algorithms to the single camera soft classifi-
cations. The weighted voting proposed on section 3.1 and the bayesian network
proposed on section 3.2 have similar results, being voting slightly better. Fusion
algorithms improve more the classification based on MHI descriptors. This is
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Table 1. Comparison of the accuracy of our method to others

Method Accuracy Type

Tran et al. [9] 81 2D
Srivastava et al. [18] 81.4 2D Multicamera

Our 92.01 Multicamera
Weinland et al. [16] 93.33 3D

Peng et al. [17] 94.59 3D

probably because as the initial result was worse than when using Tran descrip-
tors, it is easier to improve the results using fusion.

Comparison to other proposals. Finally, on table 1, we compare the results
obtained by our method to the obtained by other state of the art approaches.
Our method performs better than other 2D multicamera approaches, obtaining
results comparable to proposals based on computing the 3D visual hull. Re-
sults on the table are for sequence classification. To obtain them, each frame
on a sequence has voted with its posterior distribution to obtain the majority
classification.

6 Conclusions

In this paper we have shown how the accuracy of the task of human action
classification can be improved combining the results of single view classifiers. We
want to remark that our method avoids visual hull computation, being very easy
to implement on a distributed environment. Another advantage of the proposed
method is that it can integrate other sensors without very much effort, because
the fusion level is independent of the type of sensor used. If a posterior for the
activity can be obtained from the hypothetical sensor, it can be used in our
system.

Future works will explore how to model the correlations between the soft
classifications from each camera. We suspect that the independence assumption
made between sensor values is too strong, and that fusion results may be highly
improved introducing dependencies between sensors in our fusion model.
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