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Abstract. Multi-step prediction is a difficult task ¡hat has been attracted increasing tbe 
inieres! in recen! years. It tries to achieve predictions several sleps ahead ¡nto the 
tuture starting from information al time k. This paper is facllsed on the dcvelopment oí 
nonlinear neural models with tbe purpose oí building long-teTm Uf multi-step time 
series prediction schemes. In these context, the mos! popular neural models are bascd 
on the traditional feedforward neural network. However, ¡hese kind oí models may 
presen! SOrne problems when a long-term prediction problem is formulated. In tbis 
paper, a nenTal model based un a partially recurrent neural network is proposed as an 
altemative. Por fue new model, a learning phase with the purpose of long-term 
prediction is imposed, which allows to obtain bettcr predictions of time series in the 
future. This recurrent neural model has beeo applied to the logislic time series with the 
aim to predict the dynamic behaviour Di the series in the future. Mode1s based 00 

feedforward nemal networks have beeo also llsed and compared against lhe proposed 
model. 

1. Introduction 

The ability to forecast the behaviour of a system hinges, gcnerally, on the knowledge of 
the laws underlying a given phenomenon. When this knowledge is cxpressed as a solvable 
equation, one can predict the behaviour along the future once the initial condition is given. 
Howevcr, phenomenological modeIs are often unknown DI extremely time consuming. 

Nevertheless, it is aIso possible to predict the dynamic behaviour o[ the system along 
the future by extracting knowledge from the past. We are interested in time series processes 
which can be viewed as generalized nonlinear autoregressive modcls, aIso named NAR 
models. In this case, the time series behaviour can be captured by expressing the valuc 
x(k+ 1) as a funetion of the d previous values of the time serics,x(k), ... ,x(k-d), that is: 

x(k +1) = F(x(k), ... ,x(k - d» (1) 

where k is the time variable and F is sorne function dcfining a vcry large and general c1ass 
of time series. This function can be very complex and its explicit form is usually unknown. 

The standard prediction method involves approximating the function F in such a way 
that the model given by eq. 1 allows to prediet or find the s<quenee x(k+ 1),x(k+2),x(k+3), ... 
starting fmm !he observed sequenee at the current time k, x(k), ... ,x(k-d). In many time 
series applications, one-step prediction schemes are used to predict the next sample of data 
based on previous sarnples. However, one-step prediction rnay not provide enough 
information, speeially in situations where a bmader knowledge of the time series behaviour 
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can be very useful or in situations where it is desirable to anticipate the behaviour of the 
time series process. 

The present study deals with long-term or multi-step prediction, Le. how to achieve 
predictions several steps ahead into the future starting from information at time k. Hence, 
the goal is to approximate the funetion F sueh that the mode! givcn by eq. 1 can be used as 
a multi-step prediction scheme. 

The neural models most widely used in time series applications are built up using 
multilayer feedforward neura! networks [1-3]. In this paper, two elassieal neural mode!s are 
reviewed analysing their advantages and disadvantages when they are used for multi-step 
prediction purpose. The first c1assical model reviewed consists in approximating the 
funetion F by a multi-Iayer feedforward network; after (hat, the output of the ne(work is fed 
back into the input and the model is used to predict the behaviour of the time series along 
the interval [k+ l,k+h+ 1], where h is a natural number narned predictio" horizoll. In the 
second neural approach reviewed in this paper, a multilayer feedforward neural network is 
used to predict the time series value at instant k+h+ 1 [rom the information available at the 
current instant k. Both neural mode1s may not produce efficient predictions along the 
future. The first model is not trained with a multi-step prediction purpase aod the second 
madel may not have enough information through the input to predict the future. 

In arder to solve the troubles of c1assical models for multi-step prediction, a oew 
recurrent neural model is proposed in this paper. It is based 00 a partially recurrent neural 
network and consists of adding feedback connections from the output neuran to the input 
layer. In tbis case, the parameters of the model are determincd to minimise the error along 
interva! [k+l,k+h+l]. Thus, the model is trained with the purpose of long-term prediction 
and better predictions than elassical feedforward neural models may be expeeted. 

2. Classical Deural models for multi-step predictioD 

Neural networks bave proved their ability in NAR model prediction. The neural models 
most wide1y used in time series applicatioos are based in feedforward neural networks with 
backpropagation learning algorithm. The maio difference betwecn thero arises in the way of 
gathering the data from the time series and how to compute the learned network for 
prediction. Here, we review two models (Modell and Model2) outlining theirs advantages 
and disadvantages tor a multi-step prediction purpose. 

Model1 consists of approximating the function F appearing in eq. 1 by a multilayer 
feedforward neural network as follows: 

x(k + 1) = F(x(k), ... ,x(k - d), W,) (2) 

where W¡ is the parameter set of the model, which is obtained using the backpropagation 
algorithm [4]. The update of lhe parameter set is based on the local difference between the 
measured and predicted values, Le.: 

1 ( ) _ 2 e(k + 1) = -' x(k + 1 - x(k + 1)) 
2 

(3) 

When the mode1 given by eq. 2 has to prediet the behaviour of time series in the future, 
i.e. along the interval [k+ 1, k+h+ 1], its strueture has lo be modified. Therefore, the 



predictive network output must be fed back as an input [or the next step prediction and all 
the remaining input oeuran values are shifted back Dne unit, i.c., 

x(k + 1) ~ F(x(k), ... ,x(k - d), W,) (4) 

x(k + 2) ~ F(x(k + 1),x(k), ... ,x(k - d + 1), W,) (5) 

x(k + h +1) ~ F(x(k + h), ... x(k +1),x(k), ... ,x(k -d + h), W,) (6) 

The maio disadvantage of Modell in the context of multi-stcp prediction is that the 
parameter set has beco obtained with the purpose of one-step prediction, i.c. to minimisc 
the local errors given by eq. 3. During the training phase, the model captures the relation 
between the actual observations of the original time series, x(k), ... ,x(k-d) and the next 
sampling time, x(k+l). However, when the model is acting as a multi-step prediction 
scheme (see eqs. 4-6) a group of the input ocuroos receives the carlier approximated values, 
x(k + h), ... x(k + 1), x(k), ... , x(k - d + h). This faet may produce a non desired behaviour o[ 
the model because crrors occurred at sorne instant are propagated and magnified to future 
sampling times. This effect decreases the capability of these neural models to predict the 
future. 

An alternative neural model structure to be considered (Mode12) consists of using a 
multilayer feedforward nctwark in arder to predict, directly, the time series value at instant 
k+h+ 1 from the information available at the current instant k, x(k), ... ,x(k-d), instead of 
using the immediate d previous values as in Modell (see eq. 2). In this case, the nonlinear 
model becames as foIlows: 

x(k + h + 1) ~ F(x(k), ... ,x(k - d), W,) (7) 

where h is the prediction horizon. The set of parameter W¿ is updated using the 
backpropagation algorithm, following the negative gradient direclion of the error measured 
at instant k+h+l: 

e(k + h+1) ~ .!:.·(x(k + h +1) - x(k + h +1))' 
2 

(8) 

This second neural approach provides directIy the prcdiction of the time series at 
instant k+h+ 1 from the information at instant k (see eq. 7). The inputs to the network, when 
the model is used to predict sorne steps in the future, are the real rneasured time series 
values. Now, the predictions of the network are not fed back into the input, as in the 
previous mode! (Modell). Thus, !he problem conéerning the propagation of errors 
disappears when Mode12 is used as a nonlinear rnulti-step prediction scheme. 

A disadvantage of Model2 is relative to the model structure. The inputs to the model 
may not own enough information about the time series in order to predict the instant k+h+ 1. 
This is, the input vector, x(k), ... ,x(k - d), can be very distant in time from the prediction 
horizon, k+h+ 1, and may not have any relation with that instant. In this case, Mode12 
should not be used for multi-step prediction. This structure has only sense when there exists 
a relation between the information available at the current instant and the prediction 
horizon. In many real cases, it is not possible to know previously the relationship between 
the data in the series, and therefore whether the model is appropriate for the prediction 
problem. 



3. Recnrrent nenral model for mnlti.step prediction 

The recurrent neura! madel proposed in tbis paper is presented as an alternative to 
classical neural models when the goal is to predict the future behaviour of time series in 
sorne prediction horizons. Basica11y, the Recurrent Model consists of imposing a special 
leaming phase with the purpose of long-term prediction. 

The Recurrent Model is based on a partially recurrent neural network [5]. The network 
consists of adding feedback connections to a multilayer feedforward neura! network trom 
the Qutput oeuran to the input layer. The number of recurrent connections depends on the 
prediction horizon valuc. lf the horizon is h, the input layer of the network is tonned by a 
group of h ocuraos that memorize previous network outputs; gencrally, these ocuraos are 
called context neurOlls. The remaining neuraos in the input layer receive the original or 
measured time series data (see fig. 1). When the prediction horiwn, h, is higher than the 
number of external input neurons, d+ 1, aH input neurons of the network are context neurons 
and no measured time series value is fed into the network. 
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Figure 1. PartialIy recurrent neural network 

In the context of multi-step time series prediction, the training procedure of the 
partia11y recurrent neural network is carried out as foHows: 
At each instant k+ 1, starting with k=d, 
Step 1. The neurons in the input layer receive the measured sequence x(k), ... ,x(k - d). 

Hence, in the first step the number of context neurons is zero and the network output is 
given by: 

x(k + 1) = F(x(k) •... , x(k - d), W,) (9) 

Step 2. The number of cantext neurons is increased by ane unít; this neuron memorizes the 
previously calculated output of the network, x(k + 1). Thus, the prediction at instant k+2 
is given by: 

x(k + 2) = F(x(k + l),x(k) •... ,x(k - d + 1), W,) (10) 

Step 3. Step 2 is repeated until h context neurons are achieved. When the instant k+h+ 1 is 
reached, the output of tbe Recurrent Model is given by: 



x(k+ h+ 1) ~ F(x(k + h), ... x(k + I),x(k), ... ,x(k - d + h), W,) (11) 

Step 4. At this moment, the parameter set of the Recurrent Model, W" is updated. In order 
to impase a training phase with the purpose oi long-term prediction, the learning is based 
on the sum of the local errors along the prediction horiwn, i.e. along the interval [k+ 1, 
k+h+ 1]. Hence, the parameter set W, is updated foIlowing (he negativc gradient direction 
of the error function given by: 

e(k + 1) =.!:.. ± (x(k + i + 1) - x(k + i + 1»2 
2 ¡m! 

(12) 

Since the internal structure of the partially recurrent network is likc a fccdforward neural 
network, the training can be realised using the traditional backpropagation algorithm, 
although other extensions of this algorithm should be feasible [6-7]. 

Step 5. At this point the time variable k is increased by one unit and thc procedure returns 
to step 1. The procedure finalises when the instant k;;::N-h is reached, where N stands for 
the number of patterns. 

The structure of the Recurrent Model (eqs. 9-11) is identical (o the s(ructure of Modell 
when it is used for prediction (eqs. 4-6). However, (here exists an important difference 
betwecn them: the way to obtain the parameter sets of the models. This ¡s, the learning 
procedure of the system. 

As it was said before, the parameter set W, of Modell is obtained (raining a multilayer 
feedforward nctwork and remaios fixed during the prediction phase. This means that the 
parameter set W¡ is updated using the local error measured at each instant (eq. 3). When the 
Recurrent Model is used, the update of the parameters at each instant is based on the 
measured error along the prediction interval [k+ 1, k+h+ 1 l. Thus, the set of parameters W3 

has been determined to minimizc the error in the future (cq.12). In consequence, the 
Recurrent Model is trained in such a way that it acts as a multi-step prcdiction schcme as 
opposed to Modell (eq. 2) which is trained to predict exc1usively (he next sampling time 
(one-step prediction scheme). 

Due to the recurrent structure of the proposed model, errors occurred at the same 
instant are propagated into the next sampling time as usual in Modell. However, in the 
Recurrent Model the propagated errors are reduced during the training phase because the 
learning is carried out using the predicted output at earlier time steps. Thus, the errors are 
corrected and better predictions in the future may be expected. 

4. Experimental verification 

The simulations have been conducted and applied to the map of the form: 

x(k +1) = A'x(k)'(I-x(k)) (13) 

with A = 3.97 and x(0)=0.5. This map describes a strongly chaotic time series which is 
called logistic time series. 

Two different structures of NAR models have been used to predict the logis tic time 
series. From equation 11, it follows that the logistic map at instant k+ 1 depends on the 
value at instant k. Hence, the first experiment has been realised using the following 
equation: 



Experiment 1: x(k + 1) ~ F(x(k)) (14) 

As the ultimate goal in this paper is to predict the future in an horizon greater tban aoe, 
it is suitable to consider NAR modeIs that own more information about the past behaviour 
of the time series. Thus, a second experiment has beeo carried out, which is based on the 
following strueture: 

Experiment 2: x(k + 1) ~ F(x(k),x(k -1), x(k - 2)) (15) 

In arder to train the neural models, data of the logistic time series from t=O to t=100 are 
used, A different data set eorresponding to t~100 through t=500 has also been used as test 
pattems. 

The eapability of neural models to predict the future has been evaluated using the 
following error funetion, also ealled predietion error: 

1 N-It 

E ~_. ~(x(k+ h +1) - x(k + h + 1)' 
2N f::I, 

(16) 

where h is the prediction horizon and N is the numher of patterns. In this work, four 
predictions horizons have beeo used as test cases, h=O, h=l, h=2 and h=3. 

For eaeh experiment (eqs. 14 and 15), the three previously described models (Modell, 
Mode12 and Recurrent Model) have beeo tested, which implies severa! run simulations. To 
test Modell, the parameters have been dctermined to approximate the functional F in eqs. 
14 and 15 using multilayer feedforward neural networks with 10 units in the hidden layer; 
after that, the respective models have been used to predict the logis tic time series for several 
predietion horizons, h=O, h=l, h=2 and h=3. In the second approaeh (ModeI2), four neural 
networks with 10 hidden units have been trained for each expcrimcnt. The training is 
carried out to approximate the logistic time series at instants k+ 1, k+2, k+3, k+4 (scc eq. 7). 
Finally, the functional Fin eqs. 14 and 15 have also been approximated using the recurrent 
neural network and the learning algorithm presented in section 3. The recurrent neural 
networks have 10 hidden units and the number of contcxt neurons is varying form O to 3. 
The prediction errOIS for each experiment and for each fiodel approach over the training 
data set are presented in Table 1. 

Experiment l. Input: (x(k» Experiment 2. Input: (x(k),x(k-l),x(k-2» 

Prediction Model! Model2 Recurrent Model! Model2 Recurrent 
horizons Model Model 

h=O 0.00125 0.00125 0.00125 . 0.00089 0.00089 0.00089 

h=l 0.00823 0.00188 0.00544 0.00790 0.00154 0.00310 

h_2 0.04149 0.04817 0.01489 0.03925 0.03445 0.00571 

h=J 0.09592 0.09805 0.08135 0.05510 0.06756 0.00701 
.. 

Table 1. PredlctlOn Errors aYer the trammg data set 

In this table it can be observed that there are not apparent differences when learning the 
training set between Modell and Model2 as the prediction horizon inereases (h=2 and h=3). 
However, the Recurrent Model has a considerable aC9uracy on the training set for these 
prediction horizons. When the predietion horizon is fixed to two sampling times, Mode12 
and Recurrent ModeI provide the best approximations. 



In sorne cases, an excessive adaptation to the training set affects the generalization 
ability of Ihe models. In arder lO validale Ihis assumption, Ihe prediclion errors have been 
evaluated over the test set The results are shown in Table 2 

Experiment 1. Input: (x{k» Experiment 2. Input: (x(k),x(k-l),x(k-2» 

Prediction Model! Model2 Recurrent Mode)! Model2 Recurrent 
horizons Mode) Modcl 

h=O 0,00154 0,00154 0,00154 0,00152 0,00152 0,00152 

h-l 0,01006 0,00347 0,00586 0,00904 0,00358 0,00464 

h=2 0,04667 0,07866 0,01809 0,04807 0,04961 0,00784 

h=3 0,11900 0,09876 0,09592 0,07827 0,10371 0,01123 

Table 2. Predlctlon Errors over Ihe test data sel 

In sorne cases it seems that the superiority of the Recurrent Model is not relevant, for 
inslance in Experiment 1 wilh h=3 (see Tables 1 and 2). This could be due lo Ihe quadratic 
error is not always the best way to measure the predictivc capability of a system (compare 
in Ihe following graph the predicted values for Model 1 and Model 2 which have 
nevertheless similar quadratic errors). 

In order to see the predictive behaviour of neural models sorne graphical results are 
presenled. In figure 2 Ihe prediclions of the logistic time series provided by the first 
experiment for the prediction horiwn h=3 are shown. The predictions for h=3 provided by 
the second experiment are shown in figure 3. 
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Figure 2. Predictions of logistic time series for h=3. Experiment 1. 



As it is possible to observe in figure 2, Model2 does not capture the temporal behaviour 
of the logis tic time series. Modell and the Recurrent Model do not provide the most 
appropriate predictions, however, their perfonnance is higher, being more accurate the 
Recurrent Mode!. 

The superiority of the Recurrent Model for large prediction harimos is more evident 
for the Experiment 2, as shown in figure 3. In this case, the predictions provided by Modell 
and Mode12 are very poor, while the Recurrent Model is able to obtain convenient long­
time predictions. 
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Figure 3. Predictions of logistic time series for h=3. Experimen12. 



5. Discussion and conclusions 

From the experimental results we can conclude that the second structure (Experiment 
2) is more adequate to predict the future of the logistic time series because the mode! has 
more information about the behaviour of the time series through the extended number of 
input neurons. The three approaches studied in this work provide better approximations 
when this structure is used (see Tab!el and Tab!e2). 

The Experiment 1 is ab!e to predict the future when short prediction horiwns are 
defined. However, when the prediction horizon is increased, the performance of this 
structure decreases. When the prediction horizon is fixed to four sampling times, c1assical 
neura! models (Modell and Model2) and Recurrent Model do not provide appropriate 
predictions. This is due to the fact that thcse models do not own enough information about 
the time series. Hence, in multi-step prediction, the number of inputs have an important 
significance on the quality of predictions. 

Assuming that the structure of NAR model has enough information through the input 
in order to predict the future, the immediate question that arises concerns the choice o[ the 
neural approach to be used. The results presented in the previous section show that mode1s 
based on the recurrent neural network provide betler approximations than models built up 
with multilayer feedforward neural networks. The recurrent neural rnodel has been trained 
with the purpose of multi-step prediction which seems to be a better approach. 

Furthermore, it is pointed out that thc improvement of recurrent nemal madels over 
classical anes is more relevant when the prediction horizon is increased. For short 
prediction horizons (h=I). the performance of the sccond ncura! approach (ModeI2) is 
slightly better that the Recurrent Model. In this case, Modc12 is ab1e to provide appropriale 
predictions because the inputs of the network, (x(k), x(k-l), x(k-2)), own enough 
information to approximate the time series valuc at instant k+2. However, when the 
prediction horizon is increased, the best approxirnations are provided by the Recurrent 
Model and its superiority is more evident. 

In consequence, for short prediction horizons Mode12 rnay be more suitablc becausc it 
supplies acceptable predictions and is easier to train. Howevcr, if the prediction horiwn 
increases, the most convenient performance is provided by the Recurrcnt Model. 
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