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Abstract. Multi-step prediction is a difficult task that has been attracted increasing the
interest in recent years. It tries to achieve predictions several steps ezhead into the
future starting from information at time k. This paper is focuscd on the development of
nonlinear neural models with the purpose of building leag-term or multi-step time
series prediction schemes. In these context, the most popular neural models are based
on the traditional feedforward neural network. However, these kind of models may
present some problems when a long-term prediction problem is formulated. In this
paper, a neural model based on a partially recurrent neural network is proposed as an
alternative. For the new model, a learning phase with the purpese of long-term
prediction is imposed, which allows to obtain better predictions of time series in the
future. This recurrent neuraj model has been applied to the logistic time series with the
aim to predict the dynamic behaviour of the series in the future, Models based on
feedforward neural networks have been also used and compared against the proposed
model.

1. Introduction

The ability to forecast the behaviour of a system hinges, generally, on the knowledge of
the laws underlying a given phenomenon. When this knowledge is cxpressed as a solvable
equation, one can predict the behaviour along the future once the initial condition is given.
However, phenomenological models are often unknown or extremely time consuming.

Nevertheless, it is also possible to predict the dynamic behaviour of the system along
the future by extracting knowledge from the past. We are interested in time serics processes
which can be viewed as generalized nonlinear autoregressive models, also named NAR
models. In this case, the time series behaviour can be captured by expressing the value
x(k+1) as a function of the d previous values of the time series, x(k},...,x(k-d), that is:

x(k + 1) = F(x(K), .., x(k - d)) (1)

where k is the time variable and F is some function defining a very large and general class
of time serics. This function can be very complex and its explicit form is usually unknown.
The standard prediction method involves approximating the function F in such a way
that the model given by eq. 1 allows to predict or find the sequence x(k+1),x(k+2),x(k+3)....
starting from the observed sequence at the current time k, x(k),...,x(k-d). In many time
series applications, one-step prediction schemes are used to predict the next sample of data
based on previous samples. However, one-step prediction may not provide enough
information, specially in situations where a broader knowledge of the time series behaviour
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can be very useful or in sifuations where it is desirable to anticipate the behaviour of the
fime series process,

The present study deals with long-term or multi-siep prediction, i.e. how to achieve
predictions several steps ahead into the future starting from information at time k. Hence,
the goal is to approximalte the function F such that the model given by eq. 1 can be used as
a multi-step prediction scheme.

The neural models most widely used in time scries applications are built up using
multilayer feedforward neural networks {1-3]. In this paper, two classical neural models are
reviewed analysing their advantages and disadvantages when they are used for multi-step
prediction purpose. The first classical model reviewed consists in approximating the
function F by a multi-layer fecdforward network; after that, the output of the network is fed
back into the input and the model is used to predict the behaviour of the time series along
the interval [k+1Lk+h+1], where b is a natural number named prediction horizon. In the
second neural approach reviewed in this paper, a multilayer feedforward neural network is
used to predict the time series value at instant k+h+1 from the information available at the
current instant k. Both neural models may not produce efficient predictions along the
future. The first model is not trained with a mulii-step prediction purpose and the second
model may not have enough information through the input to predict the future.

In order to solve the troubles of classical models for multi-step prediction, a new
recurrent neural model is proposed in this paper. b is based on a partially recurrent neural
network and consists of adding feedback connections from the output neuron to the input
layer. In this case, the parameters of the model are determined to minimise the error along
interval [k+1.k+h+1]. Thus, the model is frained with the purpose of long-term prediction
and better predictions than classical feedforward neural models may be expected.

2. Classical neural meodels for multi-step prediction

Neural networks have proved their ability in NAR model prediciion. The neural models
most widely used in time series applications are based in feedforward neural networks with
backpropagation learning algorithm. The main difference between them arises in the way of
gathering the data from the time series and how to compute the learned network for
prediction. Here, we review two models (Modell and Model2) outlining theirs advantages

and disadvantages for a multi-step prediction purpose.
Modell consists of approximating the function F appearing in eq. 1 by a multilayer
feedforward neural network as follows:

%(k +1) = F(x(k),...,x(k - d), W,) 2)
where W, is the parameter set of the model, which is obtained using the backpropagation

algorithm {4]. The vpdate of the parameter set is based on the local difference between the
measured and predicted values, i.e.:

ek +1) = % (x(k + 1) - F(k + 1))° (3)

When the model given by eq. 2 has to predict the behaviour of time series in the future,
ie. along the interval [k+1, k+h+1], its structure has to be modified. Therefore, the



predictive network output must be fed back as an input for the next step prediction and all
the remaining input neuron values are shifted back one unit, i.c.,

%k +1) = F(x(K),...,x(k - d), W,) €]
F(k +2) = F(R(k + 1, x(k),..., x(k - d + 1), W,) (5)
%k + h+1) = FE(K + h),... &k + 1), x(k), ..., x(k ~d + h), W,) (6)

The main disadvantage of Modell in the context of multi-step prediction is that the
parameter set has been obtained with the purpose of one-step prediction, i.e. to minimise
the local errors given by e¢q. 3. During the fraining phase, the model captures the relation
between the actual observations of the original time series, x(k),....x(k-d) and the next
sampling time, x(k+1). However, when the model is acting as a multi-step prediction
scheme (sce €qs. 4-6) a group of the input neurons receives the carlier approximated values,
X(k+h),...%(k + 1), x(k),...,x(k — d + h). This fact may produce a non desired behaviour of
the model because errors occurred at some instant are propagated and magnified to future
sampling times. This effect decreases the capability of these neural models to predict the
future.

An alternative neural model structure to be considered (Model2) consists of using a
multilayer feedforward network in order to predict, directly, the time series value atf instant
k+h+1 from the information available at the current instant k, x(k),...,x(k-d), instead of
using the immediate d previous values as in Modell (see eq. 2). In this case, the nonlinear
model becomes as follows: '

F(k+h+1) = F(x(k),...,x(k — d), W,) ')

where h is the prediction horizon. The set of parameter W, is updated using the
backpropagation algorithm, following the negative gradient direction of the error measured
at instant k+h+1:

e(k+h+1)=§(x<k+h+1)—i(k+h+1))2 ®)

This second neural approach provides directly the prediction of the time series at
instant k+h+1 from the information at instant k (sce eq. 7). The inputs to the network, when
the mode! is used to predict some steps in the future, are the real measured fime series
values. Now, the predictions of the network are not fed back into the input, as in the
previous model (Modell), Thus, the problem concerning the propagation of errors
disappears when Model2 is used as a nonlinear multi-step prediction scheme.

A disadvantage of Model2 is relative to the model structure. The inputs to the model
may not own enough information about the time series in order to predict the instant k+h+1.
This is, the input vector, x{k),...,x(k —d), can be very distant in time from the prediction
horizon, k+h+1, and may not have any relation with that instant. In this case, Model2
should not be used for multi-step prediction, This structure has only sense when there exists
a relation between the information available at the current instant and the prediction
horizon. In many real cases, it is not possible to know previously the relationship between
the data in the serics, and thercfore whether the model is appropriate for the prediction
problem.



3. Recurrent neural model for multi-step prediction

The recurrent neural model proposed in this paper is presented as an alternative to
classical neural models when the goal is to predict the future behaviour of time series in
some prediction horizons. Basically, the Recurrent Model consists of imposing a special
learning phase with the purpose of long-term prediction.

The Recurrent Model is based on a partially recurrent neural network [5]. The network
consists of adding feedback connections to a multilayer feedforward neural network from
the output neuron to the input layer. The number of recurrent connections depends on the
prediction horizon value. If the horizon is h, the input layer of the network is formed by a
group of h neurons that memorize previous network outputs; generally, these neurons are
called context neurons. The remaining neurons in the input layer receive the original or
measured time series data (sec fig. 1). When the prediction borizon, h, is higher than the
number of external input neurons, d+1, all input neurons of the network are context neurons
and no measured time series value is fed into the network.

2 E(k+1)
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Figure 1, Partially recurrent neural network

In the context of mulii-step time series prediction, the training procedure of the
partiaily recurrent neural network is cagried out as follows:
At each instant k+1, starting with k=d,
Step 1. The neurons in the input layer receive the measured sequence x(k),....,x(k-d).
Hence, in the first step the number of context neurons is zero and the network output is
given by:

%(k +1) = F(x(k),..., x(k ~ d), W,) 9)

Step 2. The number of context neurons is increased by one unit; this nevron memorizes the
previously calculated output of the network, X(k +1) . Thus, the prediction at instant k+2

is given by:
F(k +2) = FEE+1,x(K), .., x(k - d + 1), W,) (10)

Step 3. Step 2 is repeated until h context neurons are achieved. When the instant k+h+1 is
reached, the output of the Recurrent Model is given by:




%(k + b+ 1) = F(&(k + h),... %(k + 1), x(K), ..., x(k = d + h), W,) (11)

Step 4. At this moment, the parameter set of the Recurrent Model, W, is updated. In order

1o impose a training phase with the purpose of long-term prediction, the learning is based

on the sum of the local errors along the prediction horizon, i.e. along the interval fk+1,

k+h+1]. Hence, the parameter set W, is updated following the negative gradient direction
of the error function given by:

e(k+1)=%-i(x(k+i+1)-§(k+i+1))2 (12)

1=1

Since the internal structure of the partially recurrent network is like a feedforward neural
network, the training can be realised using the traditional backpropagation algorithm,
although other extensions of this algorithm should be feasible [6-7].

Step 5. At this point the time variable k is increased by one unit and the procedure returns
to step 1. The procedure finalises when the instant k=N-h is reached, where N stands for
the number of patterns.

The structure of the Recurrent Model (egs, 9-11) is identical to the structure of Modell
when it is used for prediction (eqs. 4-6). However, there exists an important difference
between them: the way to obtain the parameter sets of the models. This is, the learning
procedure of the system.

As it was said before, the parameter set W, of Model1 is obtained training a multilayer
feedforward network and remains fixed during the prediction phase. This means that the
parameter set W, is updated using the local error measured at each instant (eq. 3). When the
Recurrent Model is used, the update of the parameters at each instant is based on the
measured error along the prediction interval [k+1, k+h+1]. Thus, the set of parameters W,
has been determined to minimize the error in the future (cq.12). In consequence, the
Recurrent Model is trained in such a way that it acts as a multi-step prediction scheme as
opposed to Modell (eq. 2} which is trained fo predict exclusively the next sampling time
{one-step prediction scheme).

Due to the recurrent structure of the proposed model, errors occurred at the same
instant are propagated into the next sampling time as uvsual in Modell. However, in the
Recurrent Model the propagated errors are reduced during the training phase because the
learning is carried out using the predicted output at carlicr time steps, Thus, the errors are
corrected and better predictions in the future may be expected,

4. Experimentai verification
The simulations have been conducted and applied to the map of the form:
x(k +1) = A x(k)-(1-x(k)) (13)

with A =397 and x(0)=0.5. This map describes a strongly chaotic time series which is
called logistic time series.

Two different structures of NAR models have been used to predict the logistic time
series. From equation 11, it follows that the logistic map at instant k+1 depends on the
value at instant k. Hence, the first experiment has been realised using the following
equation:



Experiment I: x(k +1) = F(x(k)) (i4)

As the ultimate goal in this paper is to predict the future in an horizon greater than one,

it is suitable to consider NAR models that own more information about the past behaviour

of the time series. Thus, a second experiment has been carried out, which is based on the
following structure:

Experiment 2: x(k +1) = F(x(k), x(k - 1), x(k - 2)} (15)

In order to train the neural models, data of the logistic time series from t=0 to t=100 are
used. A different data set corresponding to t=100 through t=500 has also been vsed as test
patiemns,

The capability of neural models to predict the future has been evaluated using the
following error function, also called prediction error:

E=%-}:Z:(x(k+h+1)—§(k+h+1))2 (16)

where b is the prediction horizon and N is the number of patterns, In this work, four
predictions horizons have been used as test cases, h=0, h=1, h=2 and h=3.

For each experiment (eqs. 14 and 15), the three previously described models (Modell,
Model2 and Recurrent Model) have been tested, which implies several run simulations, To
test Modell, the parameters have been determined to approximate the functional F in egs.
14 and 15 using multilayer feedforward neural networks with 10 units in the hidden layer;
after that, the tespective models have been used 10 predict the logistic time series for several
prediction horizons, h=0, h=1, h=2 and h=3. In the second approach (Model2), four neural
networks with 10 hidden units have been trained for cach experiment. The training is
carried out to approximate the logistic time series at instanis k+1, k+2, k+3, k+4 (sec eq. 7).
Finally, the functional F in egs. 14 and 15 have also becn approximated using the recurrent
neural network and the learning algorithm presented in section 3. The recurrent neural
networks have 10 hidden units and the number of context neurons is varying form 0 to 3,
The prediction errors for each experiment and for each model approach over the training
data set are presented in Table 1.

Experiment 1. Input: (x{(k)) Experiment 2. Input: (x{k},x(k-1),x(k-2})

Prediction Model 1 Model 2 Recurrent Model 1 Model 2 Recurrent
horizons Model Model
h=0 0.00125 (.00125 00125 © 0.00089 0.00089 0.00089
h=1 0.00823 0.00188 0.00544 0.00750 (.00154 000310
h=2 0.04149 0.04817 0.01489 0.03925 0.03445 000571
=3 0.09592 0.09805 0.08135 0.05510 0.00756 0.00701

Table 1. Prediction Errors over the training data set

In this table it can be observed that there are not apparent differences when learning the
training sct between Modell and Model2 as the prediction horizon increases (h=2 and h=3).
However, the Recurrent Model has a considerable accuracy on the fraining set for these
prediction horizons. When the prediction horizon is fixed to two sampling times, Model2
and Recurrent Model provide the best approximations.



In some cases, an excessive adaptation to the training set affects the generalization
ability of the models. In order to validate this assumption, the prediction errors have been
evaluated over the test set. The results are shown in Table 2,

Experiment 1. Input: (x(k)) Experiment 2. Input: (x(k),x(k-1),x(k-2))
Prediction Model 1 Model 2 Recurrent Model 1 Modei 2 Recurrent
horizons Model Model
h=0 0,00154 0,00154 0,00154 0,00152 0,00152 0,00152
h=1 0,01006 0,00347 0,00586 0,00904 0,00358 0,00464
h=2 0,04667 0,07866 (,01809 0,04807 0,04961 0,00784
h=3 0,11900 0,09876 0,09592 0,07827 0,10371 0,01123

Table 2. Prediction Errors over the test data set

In some cases it seems that the superiority of the Recurrent Model is nof relevant, for
instance in Experiment 1 with h=3 (see Tables 1 and 2). This could be due to the guadratic
crror is not always the best way to measure the predictive capability of a sysiem (compare
in the following graph the predicted values for Model 1 and Model 2 which have
nevertheless similar quadratic errors).

In order to see the predictive behaviour of neural models some graphical results are
presented. In figure 2 the predictions of the logistic lime serics provided by the first
experiment for the prediction horizon h=3 arc shown, The predictions for h=3 provided by
the second experiment are shown in figure 3.
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Figure 2. Predictions of logistic time series for h=3. Experiment I.




As it is possible to observe in figure 2, Model2 does not capture the temporal behaviour
of the logistic time series. Modell and the Recurrent Model do not provide the most
appropriate predictions, however, their performance is higher, being more accurate the
Recurrent Model.

The superiority of the Recurrent Model for large prediction horizons is more evident
for the Experiment 2, as shown in figure 3. In this case, the predictions provided by Modell
and Model2 are very poor, while the Recurrent Model is able to obtain convenient Iong-

time predictions,

Modell

Figure 3. Predictions of logistic time series for k=3, Experiment 2.




5. Discussion and conclusions

From the experimental results we can conclude that the second structure (Experiment
2) is more adequate to predict the future of the logistic time series because the model has
more information about the behaviour of the time series through the extended number of
input neurons, The three approaches studied in this work provide betler approximations
when this structure is used (see Table1 and Table2).

The Experiment 1 is able to predict the future when short prediction horizons are
defined, However, when the prediction horizon is increased, the performance of this
structure decreases. When the prediction horizon {s fixed to four sampling times, classical
neural models (Modell and Model2) and Recurrent Model do not provide appropriate
predictions. This is due to the fact that these models do not own enough information about
the time series. Hence, in multi-step prediction, the number of inputs have an important
significance on the quality of predictions.

Assuming that the structure of NAR model has enough information through the input
in order to predict the future, the immediate question that arises concerns the choice of the
neural approach to be used. The results presented in the previous section show that models
based on the recurrent neural network provide betler approximations than models built up
with multilayer feedforward neural networks. The réecurrent neural model has been trained
with the purpose of multi-step prediction which seems to be a better approach.

Furthermore, it is pointed out that the improvement of recurrent neural models over
classical ones is more relevant when the prediction horizon is increased. For short
prediction horizons (h=1), the performance of the second neural approach (Model2) is
slightly better that the Recurrent Model. In this case, Model2 is able to provide appropriale
predictions because¢ the inputs of the network, (x(k), x(k-1), x(k-2)), own enough
information to approximate the time series valuc at instant k+2. However, when the
prediction horizon is increased, the best approximations are provided by the Recurrent
Mode] and its superiority is more evident,

In consequence, for short prediction horizons Model2 may be more suitable because it
supplies acceptable predictions and is easier to train. However, if the prediction horizon
increases, the most convenient performance is provided by the Recurrent Model.
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