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coverage of the intervals is closer to the nominal value when intervals are constructed incorporating parameter 
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error distribution is not Gaussian. We also analyze the effect of the estimation method on the shape of 

prediction densities comparing prediction densities constructed when the parameters are estimated by OLS and 

by LAD. We show how, when the error distribution is not Gaussian, the average coverage and length of 

intervals based on LAD estimates are closer to nominal values than those based on OLS estimates. Finally, the 

performance of the PRR procedure is illustrated with two empirical examples. 
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EFFECTS OF PARAMETER ESTIMATION ON PREDICTION 

DENSITIES: A BOOTS TRAP APPROACH 

We use a bootstrap procedure to study the impact of parameter estimation on pre­

diction densities. We focus on seasonal ARIMA processes with possibly non normal 

innovations. We compare prediction densities obtained using the Box and Jenkins 

approach with bootstrap densities which may be constructed either taking into ac­

count parameter estimation variability or using parameter estimates as if they were 

known parameters. By means of Monte Carlo experiments, we show that the average 

coverage of the intervals is closer to the nominal value when intervals are constructed 

incorporating parameter uncertainty. The effects of parameter estimation are particu­

larly important for small sample sizes and when the error distribution is not Gaussian. 

We also analyze the effect of the estimation method on the shape of prediction den­

sities comparing prediction densities constructed when the parameters are estimated 

by OL8 and by LAD. We show how, when the error distribution is not Gaussian, 

the average coverage and length of intervals based on LAD estimates are closer to 

nominal values than those based on OL8 estimates. Finally, the performance of the 

PRR procedure is illustrated with two empirical examples. 

Key Words: Forecasting, Least Absolute Deviations, Non normal distributions, 

Ordinary Least Squares. 
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1. INTRODUCTION 

Our main goal in this paper is to study the impact of parameter estimation on 

prediction densities and we use the bootstrap as a device to asses its relevance. In 

the standard approach to construct prediction intervals, based on Box and Jenkins 

(1976), prediction errors are assumed to be Gaussian and intervals are obtained with 

cent er at the point linear predictor and conditioning on parameter estimates. Con­

sequently, Box and Jenkins (BJ) intervals do not take into account the variability 

due to parameter estimation and may have coverage which is badly different from the 

nominal one when the errors are not Gaussian. Alternatively, prediction intervals can 

be built using bootstrap procedures. Bootstrap intervals can incorporate the vari­

ability due to parameter estimation without assuming any particular distribution for 

the errors. We analyze the effect of parameter estimation on the shape of prediction 

densities using the bootstrap procedure proposed by Pascual, Romo and Ruiz (1998) 

for ARIMA(p, d, q) models. 

First, estimating the parameters by conditional Quasi-Maximum Likelihood (QML), 

we compare bootstrap intervals (PRR) constructed taking into account parameter 

variability with intervals obtained by using parameter estimates as if they were the 

true parameters. The latter approach will be referred as conditional bootstrap (CB). 

We compare average covering and length of BJ, CB and PRR intervals. The difference 

between BJ and CB intervals could be assignable to the deviation of the innovation 

distribution from the Gaussian assumption. The difference between CB and PRR 

intervals could be due to parameter estimation uncertainty. Consequently, we can 

distinguish between the two sources which could affect the precision of prediction 

intervals when the specification of the model is known. As expected, given that the 

conditional QML estimator is consistent, the variability due to parameter estimation 

should be taken into account in the construction of prediction intervals when the 
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series sample size is not large enough. In this case, intervals obtained by conditioning 

on parameter estimates have average coverage under the nominal value. As the sam­

ple size increases, the effect of parameter variability is less important. We also study 

the effect of the estimation method on the shape of prediction densities. In partic­

ular, we consider the prediction of future values of ARI(p, d) processes and compare 

prediction intervals obtained when estimating by Ordinary Least Squares (OLS) and 

by Least Absolute Deviations (LAD). When the error distribution is not Gaussian, 

prediction densities based on the LAD estimator have, in general, shapes closer to 

the corresponding empirical prediction densities. As a second objective of this paper, 

we show how the bootstrap procedure proposed by Pascual, Romo and Ruiz (1998) 

can be extended to construct prediction intervals in multiplicative seasonal ARIMA 

models. 

The paper is organized as follows. First, in section 2 we describe the bootstrap 

procedure proposed by Pascual, Romo and Ruiz (1998) to construct prediction inter­

vals. Then, section 3 contains the Monte Carlo results on the effects of parameter 

variability on the shape of prediction densities when seasonal ARIMA models are 

estimated by conditional QML. Also, we carry out experiments to asses the effects 

of the method used to estimate the model parameters on prediction intervals. In 

section 4, we apply the bootstrap PRR procedure to obtain prediction densities for 

two real time series: monthly observations of the Italian Industrial Production Index 

and levels of a luteinizing hormone measured on a healthy woman. Finally, section 5 

contains the conclusions and some suggestions for further research. 

2. BOOTSTRAP PREDICTION INTERVALS 

We now describe the bootstrap procedure proposed in Pascual, Romo and Ruiz 

(1998) to construct prediction intervals for future values of series generated by ARIMA(p, d, q) 
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processes given by 

where at is a white noise process, \7 is the difference operator such that \7Yt = 

Yt - Yt-l and c/Jo, c/Jl' ... , c/JP' 01, ... , Oq are unknown parameters. From an observed series 

{Yl, Y2, ... , YT}, the parameters can be estimated by a consistent estimator, for example 

conditional QML. Given (~o, ~l' ... , ~P' 81 , ... , 8q ), the residuals are calculated by the 

following recursion 

where the residuals corresponding to periods of time t = 0, -1, -2, ... are set equal 

to zero. Denote by Fa the empirical distribution function of the centered residuals. 

Given a set of p + d initial values of the variable Yt, say {Yl,' .. ,Yp+d}, a bootstrap 

replicate of the series {Y;+d+1' ... , YT} is constructed by the following recursion 

p q 

\7dy:=~O+ L~j\7dY:_j+ L8ia;_j+a;, t=p+d+1, ... ,T, (3) 
j=l j=l 

where Y; = Yt,t = 1, ... ,p + d and Cii+p+d-q,"" ay. are random draws from Fa. Once 
-* -* -* ~ ~ 

the parameters of this bootstrap series are estimated, say (c/Jo, c/J1 , ... , c/JP' 011 ... , 0 q), 

the bootstrap forecast k steps ahead is obtained as follows, 

(4) 

where YT+k-j = YT+k-j , j ~ k, and ar+k-j = aT+k-j, j ~ k, i.e., the last p + 

d observations of the series and the last q residuals are fixed in order to obtain 

the prediction density conditional on the observed data. Finally, in expression (4), 

ay.+k-j,j > k are random draws from Fa. 
As an illustration, we consider an ARIMA(l, 1, 1) model without constant term 

(5) 
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Once the parameters of model (5) have been estimated and the bootstrap draws 

0;;, ... ,ay are available, a bootstrap replicate of the series is constructed by 

t = 3, ... ,T, (6) 

~* -where yr = Yl and Y; = Y2. Then, bootstrap estimates <p and e are obtained for the 

bootstrap series and bootstrap replicates of future values of the series are generated 

by 

(7) 
-* -* ~ 

Y~+2 - (1 + <p )Y~+l - <p YT + 0;~+2 + e o;~+l' 
Y~+3 - (1 + ~*)Y~+2 - ~* Y~+l + 0;;'+3 + 80;;'+2, 

and so on. 

This procedure is repeated B times to produce a set of B bootstrap replicates 

{ Y;~~' ... , Y;C:~ } . Finally, the prediction limits are defined as the quantiles of the 

bootstrap distribution function of Y~+k' i.e., if G*(h) = Pr(Y~+k :::; h) is the distrib­

ution function of Y~+k and its Monte Carlo estimate is G'B(h) = #(y;r:;k :::; h)/ B, a 

100a% prediction interval for YT+k is given by 

h Q* G*-l were B = B . 

[LB,U~l = [QB (l~a) ,QB (l~a)l' (8) 

Notice that in the procedure just described, the last p + d observations of the series 

and the final q residuals are fixed in all bootstrap replicates of future values so we 

can obtain the prediction density conditional on the observed sample. However, we 

do not fix any observation when generating bootstrap replicates of the series used to 

obtain bootstrap estimates of the parameters of the model. 

In the bootstrap procedure proposed by Thombs and Schucany's (1990) for AR(p) 

processes, they fix the last p observed values of Yt to obtain bootstrap replicates 
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of the series used to estimate the parameters and, consequently, they need to used 

the backward representation of the AR(p) process. Therefore, the main advantage 

of the method just described over the technique in Thombs and Schucany (1990) 

is that the computational burden associated with resampling through the backward 

representation is avoided. Consequently, the PRR bootstrap procedure can be easily 

applied to models with moving average components while the procedure proposed by 

Thombs and Schucany (1990) can only be directly applied to autoregressive models. 

In Pascual, Romo and Ruiz (1998) can be seen a proof of the asymptotic validity of 

this bootstrap resampling and a Monte Carlo comparison between both proposals. 

Alternatively, the bootstrap procedure just described could be also applied to con­

struct prediction intervals conditional on the parameter estimates (CB). In this case, 

it is not necessary to generate bootstrap replicates of the series as in (3) and the boot­

strap forecast k steps ahead depends only on the resampled residuals and is given 

by 

p q 

'VdY~+k = ~o + L~j'VdY~+k_j + Leja~+k-j +a~+k,k = 1,2, ... , (9) 
j=l j=l 

where YT+k-j and ClT+k-j are defined as in (4). The parameter estimates are kept 

fixed in all bootstrap replicates of future values so the CB prediction intervals do 

not incorporate the uncertainty due to parameter estimation. In the case of ARI(p) 

processes, the conditional bootstrap was proposed by Cao et al. (1997). 

3. EFFECTS OF ESTIMATION ON PREDICTION DENSITIES 

In this section, several Monte Carlo experiments are carried out to study the ef­

fect of parameter estimation variability on the shape of estimated prediction densities. 

The focus is on prediction of values of multiplicative seasonal ARIMA(p, d, q)x(P, D, Q)s 

processes, where s is the seasonal period. For example, for monthly data, we consider 
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the model 

(10) 

where L is the backshift operator, \Jd = (1 - L)d, \J~ = (1 - U2)D, and the 

autoregressive and moving average polynomials c/Jp (L) = (1 - c/J1L - ... - c/JpV ) , 

<Pp (L12) = (1 - <p1L12 - ... - <ppL12P ) , Oq (L) = (1 + OIL + ... + OqLq), 8 Q (L12) = 

(1 + 8 1L 12 + ... + 8 QL12Q) have all their roots out of the unit circle to ensure station­

arity and invertibility. Artificial series are generated by model (10) for several choices 

of parameter values and error distributions. In particular, we consider Gaussian and 

exponential errors. First, all the models considered are estimated by conditional 

QML that coincides with OL8 when the model lacks of a moving average compo­

nent. Prediction densities are constructed by the bootstrap procedure described in 

the previous section, either conditioning on parameter estimates (CB) or introducing 

the variability due to parameter estimation (PRR). 

The features of the estimated prediction intervals depend on the properties of the 

estimation method used. Thus, in this section we will also compare intervals for 

ARI(p, d) processes constructed when the parameters of the model are estimated 

either by OL8 or by LAD. 

To illustrate the effect of parameter variability on estimated prediction densities, 

we generated 1000 time series with the ARMA(l, 1) process 

Yt = 0.7Yt-1 + at - 0.3at-b (11) 

where at is Gaussian. For each series, we compute the empirical prediction density by 

generating future values of YT+k conditional on {Y1, Y2, ... , YT}. We also calculate the 

bootstrap prediction densities obtained conditioning on the parameter estimates (CB) 

and by using the technique described in the previous section. Finally, we construct 

prediction intervals based on the Box and Jenkins procedure (BJ). Notice that the 

difference between BJ and CB intervals could be associated with departures of the 
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error distribution from Gaussianity. On the other hand, the differences between 

CB and PRR intervals are assignable to the uncertainty in the estimation of the 

parameters. The average coverage, the average coverage for each tail and the average 

length of intervals constructed with a 95% nominal coverage are reported in Table 1 

for predictions one and three steps ahead and T=25,50 and 100. For the Gaussian 

error distribution in this table, CB intervals have lower average coverage than PRR 

intervals, the latter having average coverage closer to the nominal value. Note that 

the average length of CB intervals is also shorter than the empirical length. This effect 

is more evident for small sample sizes. Consequently, it seems that for relatively small 

sample sizes, it is important to include the uncertainty due to parameter estimation 

in prediction intervals in order to obtain cover ages closer to the nominal values. As 

expected, since the conditional QML estimator is consistent, CB and PRR intervals 

get closer in terms of coverage and length as the sample size increases. The results 

are similar for predictions made one and three steps ahead. 

Insert Table 1 

Table 2 reports the Monte Carlo results for the same model but with innovations 

generated by an exponential distribution centered to have zero mean. It can be seen 

that differences between CB and PRR intervals are even larger than for Gaussian 

errors. Therefore, when the innovations are not normal and estimation is carried out 

by conditional QML, it seems important to include the variability due to parameter 

estimation in prediction intervals. For the shake of comparison, Table 2 also includes 

the results of BJ intervals. As pointed out by Pascual, Romo and Ruiz (1998), BJ 

intervals are clearly distorted when the error distribution is not Gaussian. As an il­

lustration, Figure 1 represents the empirical, BJ, CB and PRR densities obtained for 

one step ahead predictions of one ofthe series generated by model (11) with exponen­

tial errors and T=lQO. This figure shows that the density constructed by taking into 
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account the variability due to parameter estimation is much closer to the empirical 

density than when parameter estimates are considered as fixed. Furthermore, it can 

be seen that BJ density is clearly distorted. 

Insert Table 2 

To analyze how the presence of unit roots may affect the previous conclusions, we 

generated 1000 series from the ARI(2, 1) process 

(12) 

with exponential errors. The results for 95% prediction intervals are reported in Table 

3 where it can be observed that the one-step ahead intervals have similar behavior 

to the previously commented, i.e., BJ intervals are not able to capture the asymme­

try present in the data and the average coverage of the intervals built conditional 

on parameter estimates is generally under nominal coverage. Also, notice that CB 

intervals are not able to correctly capture the asymmetry of the error distribution. 

Finally, PRR intervals have average coverage close to the nominal value and they 

capture properly the error prediction asymmetry. Notice that when predictions are 

made three steps ahead, the average coverage of BJ intervals is over the nominal 

value, i.e. standard intervals are too wide, implying more uncertainty about the 

future than they should. On the other hand, Table 4 reports the results obtained 

when the nominal coverage is 80%. In this case, the behavior of BJ intervals is even 

worse than before. For example, the average coverage of BJ intervals for three steps 

ahead predictions constructed with 100 observations is 93.54%, i.e. 13.54 % bigger 

than nominal. Of course, BJ intervals are not able to capture the asymmetry in the 

error distribution. The behavior of CB and PRR intervals is similar to that for 95% 

intervals. 

Insert Table 3 
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Insert Table 4 

Next, we consider a model with both stochastic trend and stochastic seasonal com­

ponents. In particular, we generate 1000 series with the following ARIMA(O, 1, l)x(O, 1, 1h2 

model, usually known as airline model: 

(13) 

where at is a Gaussian error. Table 5 reports the results obtained for sample sizes 

120 and 240. For Gaussian errors and sample sizes rather large, the properties of the 

prediction densities constructed by the three methods considered in this paper are 

rather similar. The results for different innovation distributions and sample sizes are 

similar to the ones previously commented for models (11) and (12) and are available 

from the authors. The goal of this Monte Carlo experiment is to show how the PRR 

procedure can be extended to seasonal models with good results. As an illustration, 

the empirical, BJ, CB and PRR densities of one-step ahead predictions for a particular 

series of size 240 generated by model (13) appear in Figure 2 where it can be seen 

that all densities are very similar. 

Insert Table 5 

Finally, Table 6 reports the results of the Monte Carlo experiments designed to 

study the effect of the parameter estimation method on the shape of prediction den­

sities. The results on Table 6 are based on 1000 series generated by model (12) with 

exponential innovations and with the model parameters estimated by LAD. The re­

sults for the same model estimated by OLS were reported in Table 3. Comparing 

tables 3 and 6, we observe that when parameters are estimated by LAD, the average 

coverage of CB and PRR intervals is closer to the nominal value of 95%. For example, 
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with a sample size of 100 and intervals constructed for one-step ahead predictions, 

the average coverage when OLS is used is 93.45 and when the parameters are esti­

mated by LAD, the average coverage is 94.79. The same holds for three-steps ahead 

predictions. Notice that the BJ intervals behavior is quite similar when estimating 

either by OLS or by LAD. It seems that, in this case, the estimation method does 

not have any effect on prediction intervals. 

Insert Table 6 

4. EMPIRICAL APPLICATION 

In this section, we study the implementation of the PRR bootstrap procedure to 

the prediction of future values of two real time series, monthly observations of the 

Italian Industrial Production Index (IPI) and observations of the levels of a luteinizing 

hormone taken from Diggle (1990) that where previously analyzed by Efron and 

Tibshirani (1993). The Italian IPI observed monthly from January 1983 to September 

1998 can be seen in Figure 3 and it presents a strong seasonal component and a 

stochastic trend. The first 165 observations of the series, corresponding to the period 

up to September 1996, are used to estimate the ARIMA(p, d, q)x(P, D, Qh2 model 

which describes the dynamic behavior of the Italian IP!. The last 24 observations are 

used to asses the predictive performance of the Box-Jenkins and bootstrap prediction 

intervals. 

Before estimating the model, the effects of several outliers have been removed from 

the original series using the program TRAMOj see G6mez and Maravall (1996). The 

model estimated by conditional QML from the series without outliers is given by 

'l'l12Yt = (1- 0.59 L)(l- 0.57 L 12 )at. 
(0.07) (0.07) 

(14) 

The standard deviations in parenthesis have been calculated using the habitual ap-
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proximation to the asymptotic distribution. Residuals from model (14) have skewness 

-0.099 and excess kurtosis of -0.16, so the Gaussianity hypothesis is not rejected at 

any usual level. Since the distribution of the residuals is not far from normality and 

the sample size is big enough, the intervals constructed using the standard and PRR 

approaches are very similar. In Figure 4, where 95% prediction intervals for Yr+k, 

k = 1, ... , 24, are plotted together with the actual observations and the linear point 

predictions, it can be seen that BJ and PRR intervals essentially coincide. 

Next, we analyze the levels ofthe luteinizing hormone measured in a healthy woman 

every 10 minutes during 8 hours. The data set is studied by Efron and Tibshirani 

(1993) and has been plotted in Figure 5. The first 40 observations have been used to 

estimate the model to obtain 

Yt =1.19 + 0.48 Yt-1 + at· 
(0.36) (0.16) 

The histogram of the residuals together with the normal density appears in Figure 

6. The empirical distribution of the residuals has a long tail to the right. The 

skewness coefficient is 0.83 and the excess kurtosis is 0.20, both significantly different 

from the values under normality. We implement our procedure to construct the 

prediction density of the luteinizing hormone k steps ahead for k = 1, ... , 8. The 

estimated densities for k =1 and 3 appear in Figure 7, with the asymmetry observed 

in the residuals distribution; see Figure 6. Finally, from these densities we construct 

prediction intervals. Figure 8 provides the point linear prediction, the observed levels 

of hormone and 80% and 95% prediction intervals constructed using Box-Jenkins and 

bootstrap procedures. It is clear the improvement in constructing prediction intervals 

using the PRR procedure over standard intervals. The 80% Box-Jenkins prediction 

intervals contains 3 out of 8 observations while the PRR intervals are able to cope 

with the asymmetry in the error distribution and include 5 observations without 

increasing the length of the intervals. Even when looking at the 95% prediction 
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intervals, BJ intervals leave out 2 observations while PRR intervals do not leave out 

any observation. We have also computed bootstrap prediction intervals conditional on 

parameter estimates (CB). However, although the sample size is small, CB intervals 

are hardly distinguishable from PRR intervals and, consequently, we have not plotted 

them in Figure 8. Therefore, it seems that for the values of the luteinizing hormone 

analyzed in this paper, the difference between BJ and PRR intervals is due to non­

normality of the errors and not to parameter estimation. Efron and Tibshirani (1993) 

give the bootstrap distribution of the OLS autoregressive parameter estimates with 

observations centered at the sample mean and using all 48 observations; the bootstrap 

standard error for ~ based on 200 bootstrap replicates is 0.12. The standard deviation 

of ~ is rather small with respect to the standard deviation of the errors (0.43) and this 

could explain why the parameter variability does not affect the shape of prediction 

intervals. This example shows how for small sample sizes and non-normal error 

distributions it could be worth considering bootstrap prediction intervals in order to 

improve the prediction performance of ARlMA models. 

Since the error distribution of the luteinizing hormone is not Gaussian, we have 

also estimated the parameters of the AR(l) model by LAD with the following results: 

Yt =0.73 + 0.68 Yt-1 + at· 
(0.37) (0.17) 

The standard deviations in parenthesis have been calculated using the suggestion by 

Bassett and Koenker (1978). The point linear predictions of the luteinizing hormone 

provided by the OLS and LAD estimators have been plotted in Figure 9. It can be 

seen that LAD predictions are systematically larger than OLS predictions and usually 

closer to the observed values. The MSE of the OLS predictions is 0.51 while for the 

LAD estimator the prediction MSE is reduced to 0.38. Figure 9 also represents 

the PRR 80% and 95% bootstrap intervals constructed using the OLS and LAD 

estimators. The LAD intervals adapt better to the asymmetry of the error distribution 
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than the OLS intervals. Remember that the 80% PRR intervals constructed with OLS 

estimates leave out 3 observations when they were supposed to leave approximately 

one out. When PRR intervals are constructed using LAD estimates, they leave out 

only one observation. Consequently, it seems, as expected, that using parameter 

estimators more appropriate to the innovations distribution improves the performance 

of PRR prediction intervals. 

5. CONCLUSIONS 

This paper focuses on the effects of parameter estimation on the shape of pre­

diction densities for seasonal ARIMA models. Box-Jenkins prediction intervals are 

constructed assuming Gaussianity of the innovation distribution and considering the 

estimated parameters as true parameters. Alternatively, prediction intervals can be 

obtained using bootstrap procedures which do not assume any distribution for the 

errors and can incorporate the variability due to parameter estimation. In particular, 

we consider the bootstrap technique proposed by Pascual, Romo and Ruiz (1998) 

for ARIMA models extending it to models with seasonal components. By means of 

Monte Carlo experiments, we have first studied how coverage and length of predic­

tion intervals are affected by not taking into account the variability due to parameter 

estimation. We show that the average coverage of the intervals is closer to the nom­

inal value when intervals are constructed incorporating parameter uncertainty. As 

expected, since we are considering consistent estimators, the effects of parameter es­

timation are particularly important for small sample sizes. Furthermore, these effects 

are more important when the error distribution is not Gaussian. We also analyze the 

effect of the estimation method on the shape of prediction densities. In particular, we 

compare prediction densities constructed when the parameters of ARI(p, d) models 

are estimated by OLS and by LAD. We show how, when the error distribution is not 

Gaussian, the average coverage and length of intervals based on LAD estimates are 
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closer to nominal values than those based on OLS estimates. Since both estimates 

are consistent, this effect is less evident as the sample size grows. It is remarkable 

how bootstrap prediction intervals adapt to the asymmetry of the problem providing 

asymmetric prediction intervals improving on the necessarily symmetric BJ prediction 

intervals (see, e.g., Figure 8). 

Finally, the performance of the PRR technique is illustrated with two empirical 

examples. First, we estimate prediction densities for a monthly series of the Italian 

IP!. Since the sample size is rather big (165 observations) and the innovation distri­

bution is not far from normality, the prediction intervals obtained by BJ and PRR 

procedures are very similar. However, BJ and PRR prediction intervals constructed 

for the levels of a luteinizing hormone differ significantly. 

Several questions remain open for further research using resampling techniques; for 

example, the effect of the uncertainty on the specification of the model over prediction 

densities. This question has been addressed for autoregressions and using a different 

bootstrap strategy by Masarotto (1990) and Grigoletto (1998). However, they center 

the prediction intervals at a linear combination of past observations and this strategy 

may not be adequate when the distribution of the innovations is not Gaussian. 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

1 11 Empirical 95% 2.5%/2.5% 3.92 

25 BJ 92.74(.05) 3.8/3.4 3.90(.57) 

CB 90.68(.07) 4.87/4.44 3.84(.70) 

PRR 92.70(.05) 3.7/3.6 3.99(.70) 

50 BJ 94.04(.03) 3.1/2.8 3.92(.39) 

CB 92.12(.04) 4.04/3.84 3.79(.52) 

PRR 93.46(.03) 3.3/3.2 3.93(.51) 

100 BJ 94.49(.02) 2.7/2.7 3.92(.29) 

CD 93.66(.03) 3.06/3.28 3.87(.39) 

PRR 94.04(.02) 2.91/3.05 3.91(.37) 

3 n Empirical 95% 2.5%/2.5% 4.35 

25 BJ 93.59(.05) 3.4/3.0 4.48(.79) 

CB 90.79(.07) 4.81/4.40 4.18(.74) 

PRR 93.14(.04) 3.4/3.4 4.38(.77) 

50 BJ 94.39(.03) 2.9/2.8 4.44(.54) 

CB 92.97(.04) 3.67/3.36 4.26(.55) 

PRR 93.84(.03) 3.1/3.1 4.36(.55) 

100 BJ 94.78(.02) 2.6/2.6 4.42 (.39) 

CB 93.95(.25) 2.93/3.12 4.30(.40) 

PRR 94.27(.02) 2.8/2.9 4.34(.41) 

Table 1. Monte Carlo results for model Yt = .7Yt-l + at - .3at-l with Gaussian errors 

Lead Sample Average Coverage Average 

time Size Method Coverage(se) below/above Length 

1 n Empirical 95% 2.5%/2.5% 3.64 

25 BJ 92.97(.06) .58/6.44 3.83( 1.02) 

CB 89.52(.12) 6.34/4.14 3.86(1.30) 

PRR 93.28(.08) 2.8/3.9 4.05(1.39) 

50 BJ 94.09(.03) .01/5.81 3.88(.79) 

CB 90.92(.09) 5.22/3.86 3.64(.96) 

PRR 94.27(.06) 2.2/3.5 3.86(1.04) 

100 BJ 94.44(.02) 0.0/5.56 3.89(.55) 

CB 93.14(.06) 3.64/3.21 3.65(.64) 

PRR 94.91(.05) 1.97/3.12 3.74(.66) 

3 n Empirical 95% 2.5%/2.5% 4.20 

25 BJ 93.64(.04) .39/5.96 4.40(1.25) 

CB 89.40(.10) 6.0/4.59 4.14(1.29) 

PRR 93.25(.06) 2.7/4.07 4.39(1.39) 

50 BJ 94.28(.03) .02/5.53 4.38(.91) 

CB 91.32(.07) 5.0/3.68 4.18(1.00) 

PRR 93.48(.05 ) 3.08/3.4 4.30(1.01) 

100 BJ 94.83(.02) .003/5.14 4.38(.64) 

CB 93.06(.05) 3.81/3.12 4.17(.67) 

PRR 93.94(.04) 2.98/3.08 4.22(.69) 

Table 2. Monte Carlo results for model Yt .7Yt-l + at - .3at-l with Exponential 

errors 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below / a hove Length 

1 n Empirical 95% 2.5%/2.5% 3.G5 

25 B.! 93.33(.04) .14/6.5 3.77(1.04) 

CB 88.01(.12) 7.6/4.4 3.62(1.23) 

PRR 91.02(.09) 4.7/4.3 3.72{1.26) 

50 BJ 94.03{.03) .11/5.9 3.84{.72) 

CB 90.15{.09) 6.07/3.77 3.60{.94) 

PRR 92.65{.07) 3.8/3.5 3.70{.89) 

100 BJ 94.44{.02) .00/5.56 3.87{.53) 

CB 91.85{.07) 5.04/3.11 3.65{.66) 

PRR 93.45{.06) 3.5/3.05 3.72{.68) 

3 n Empirical 95% 2.5%/2.5% 19.05 

25 BJ 96.48{.03) .18/3.34 26.09{7.82) 

CB 88.07{.1O) 6.61/5.31 17.34{5.39) 

PRR 90.46{.08) 4.4/5.1 18.01{5.72) 

50 BJ 97.41{.02) .01/2.6 26.96{5.37) 

CB 91.60{.07) 4.79/3.61 18.62{3.99) 

PRR 92.75{.06) 3.7/3.6 18.85{3.90) 

100 BJ 97.75{.01) .00/2.25 27.35{4.02) 

CB 92.96{.05) 3.91/3.13 18.75{2.90) 

PRR 93.55{.04) 3.3/3.13 18.89{2.96) 

Table 3. Monte Carlo results for model (1 - B)2(l - O.5B)Yt at with Exponential 

errors 

Lead Sample Average Coverage Average 

time Size Method Coverage(se) below / a hove Length 

1 n Empirical 80% 10%/10% 2.19 

25 BJ 84.60{.10) 3.7/11.7 2.46{.68) 

CB 73.13{.15) 14.81/12.05 2.11{.60) 

PRR 76.06{.14) 12.72/11.21 2.23{.61) 

50 BJ 87.44{.07) 1.6/10.98 2.51{.(7) 

CB 76.68{.12) 12.30/11.02 2.16{.(3) 

PRR 77.96{.11) 11.25/10.97 2.20{.(2) 

100 BJ 88.86{.03) .52/10.62 2.53{.35) 

CB 77.96{.10) 11.56/10.48 2.18{.31) 

PRR 78.62{.09) 10.99/10.4 2.19{.31) 

3 n Empirical 80% 10%/10% 11.82 

25 BJ 90.14{.08) 1.97/7.9 17.03{5.10) 

CB 73.74(.13) 14.12/12.14 11.28{3.07) 

PRR 75.12(.13) 12.92/11.94 11.47{3.16) 

50 BJ 92.51{.04) .69/6.8 17.60{3.51) 

CB 76.80{.10) 12.08/11.11 11.56{2.15) 

PRR 77.37{.090) 11.55/11.07 11.63{2.15) 

100 BJ 93.54(.02) .17/6.3 17.86(2.63) 

CB 78.08{.07) 11.34/10.58 11.67{1.55) 

PRR 78.48{.07) 10.99/10.5 11.73{1.58) 

Table 4. Monte Carlo results for model (1 - B)2(1 - O.5B)Yt = at with Exponential 

errors 
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Lead Sample Average Coverage Average 

time Size Method Coverage(se) below / a hove Length 

1 n Empirical 95% 2.5%/2.5% 3.92 

120 BJ 95.95(.02) 2.06/1.99 4.25(.31) 

CB 95.14(.03) 2.44/2.42 4.20(.42) 

PRR 95.26(.03) 2.39/2.34 4.23(.41) 

240 BJ 95.66(.01) 2.20/2.15 4.10(.20) 

CB 95.15(.02) 2.38/2.47 4.07(.30) 

PRR 95.19(.02) 2.34/2.46 4.08(.28) 

3 n Empirical 95% 2.5%/2.5% 5.40 

120 BJ 95.89(.02) 2.09/2.02 5.87(.58) 

CB 95.18(.03) 2.42/2.40 5.77(.60) 

PRR 95.41 (.03) 2.29/2.31 5.87(.61) 

240 BJ 95.61(.02) 2.19/2.20 5.65(.38) 

CB 95.20(.02) 2.35/2.45 5.60(.42) 

PRR 95.27(.02) 2.29/2.43 5.65(.43) 

12 n Empirical 95% 2.5%/2.5% 9.54 

120 BJ 95.53(.03) 2.26/2.20 10.38(1.45) 

CB 94.06(.04) 2.96/2.97 10.22(1.44) 

PRR 94.55(.04) 2.70/2.71 10.43(1.45) 

240 BJ 95.42(.02) 2.26/2.32 9.99(.95) 

CB 94.59(.03) 2.63/2.77 9.90(1.01) 

PRR 94.82(.03) 2.49/2.68 10.01(.99) 

24 n Empirical 95% 2.5%/2.5% 14.42 

120 BJ 96.35(.03) 1.85/1.80 16.72(2.61) 

CB 94.59(.05) 2.71/2.70 16.50(2.64) 

PRR 95.77(.04) 2.11/2.12 17.50(2.64) 

240 BJ 95.97(.02) 1.99/2.04 15.64(1.67) 

CB 94.92(.03) 2.47/2.61 15.52(1.73) 

PRR 95.66(.02) 2.09/2.25 16.12(1.73) 

Table 5. Monte Carlo results for model (1- B)(l- B12)Yt - (1- .33B)(1- .82B12 )at 

with Gaussian errors 
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Lead Sam pIe Average Coverage Average 

time Size Method Coverage(se) below / above Length 

1 n Empirical 95% 2.5%/2.5% 3.65 

25 BJ 93.11(.05) .38/6.51 3.83(1.04) 

CB 89.91(.11) 5.72/4.37 3.75(1.23) 

PRR 93.17(.08) 2.62/4.21 3.89(1.26) 

50 BJ 93.90(.04) .24/5.87 3.88(.72) 

CB 91.13(.10) 5.10/3.77 3.68(.94) 

PRR 94.01(.07) 2.51/3.48 3.81(.88) 

100 BJ 94.41(.02) .03/5.56 3.89(.53) 

CB 92.74(.07) 4.17/3.10 3.70(.64) 

PRR 94.79(.05) 2.21/3.00 3.80(.68) 

3 n Empirical 95% 2.5%/2.5% 10.05 

25 BJ 96.55(.04) .30/3.15 27.11(7.91) 

CB 89.25(.10) 5.66/5.09 18.25(5.61) 

PRR 92.42(.08) 2.98/4.60 19.77(6.23) 

50 BJ 97.51(.02) .03/2.45 27.64(5.37) 

CB 92.01(.08) 4.50/3.49 19.21(3.99) 

PRR 93.96(.06) 2.72/3.32 19.99(4.10) 

100 BJ 97.83(.01) .00/2.16 27.76(3.85) 

CB 93.47(.05) 3.48/3.04 19.09(2.80) 

PRR 94.70(.04) 2.36/2.95 19.64(2.99) 

Table 6. Monte Carlo results for model (1 - B)2(1 - O.5B)Yt = at with Exponential 

errors and LAD estimation 
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Figure 1: Densities of one-step ahead predictions of one series of size 1 00 generated by 
model Yt = O.7Yt-l + at - O.3at-l with exponential innovations. 
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Figure 2: One-step ahead prediction densities of one series of size 240 generated by model 
(13) with Gaussian innovations. 
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Figure 3: Italian Industrial Production Index observed monthly from January 1983 to Sep­
tember 1998. Continuous line corresponds to estimation period and dashed line to predic­
tion period. 
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Figure 4: Real observations of IPI Ce) together with point linear predictions C+). 95% 
prediction intervals constructed by Box-Jenkins and bootstrap procedures. 
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Figure 5: Observations of the luteinizing honnone measured in a healthy woman every 
minute during 8 hours. Continuous line corresponds to estimation period and dashed line 
to prediction period. 
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Figure 6: Histogram of residuals from ARCl) model for the luteinizing hormone and normal 
density. 
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Figure 7: Densities of one and three steps ahead predictions of the luteinizing hormone 
constructed by BI and PRR procedures. 

30 

4 



o 
<'i 

It) 

N 

o 
N 

2 3 

1 ~~R ==-1 

---r-'~~ 
............ ~. 

.q 
~ 

~ 
~ 

4 5 6 7 8 

..... ~ 

................. 

.--.--. 

. . . . . . . ........ . ........... 

2 3 4 5 6 7 8 

nominal coverage .80 nominal coverage .95 

Figure 8: Observations of luteinizing honnone (.) and point linear predictions (.). 80% 
and 95% intervals constructed by BJ and PRR procedures. 
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Figure 9: Observations of luteinizing honnone C.) and point linear predictions obtained 
using OLS CA) and LAD ct). 80% and 95% PRR intervals constructed using OLS and 
LAD. 
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