
Automatic Inductive Programming

Ricardo Aler Mur

Universidad Carlos III de Madrid
http://www.uc3m.es/uc3m/dpto/INF/aler

http://et.evannai.inf.uc3m.es

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Contents

1. Introduction to AIP
2. Genetic Algorithms for AIP (Genetic

Programming)
3. Estimation of Distribution Algorithms for AIP

(Probabilistic Incremental Program
Evolution)

4. Iterative Deepening for AIP (Automatic
Discovery of Algorithms through Evolution)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Aims of the Tutorial

1. Survey of AIP: Automatic Inductive
Programming is a fragmented field
(ILP, GP, Program Synthesis, ...)

2. To understand AIP as an extension to
Machine Learning

3. Focus on search-based techniques
(mostly evolutionary techniques)

INTRODUCTION TO AIP. A
SURVEY

Introduction
Deductive Automatic

Programming
Synthesis of Functional Programs
ILP for Program Synthesis

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Automatic Programming

Automatic Generation of Programs
The user says what to do, the computer
builds a program that does it
Saying what to do must be easier than
writing the program by hand

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Related Fields
Universal Planning
Production Rule Systems (PRS)
Reinforcement Learning (learning general
strategies)
Recurrent Neural Networks (sequences of
executions)
Learning classifier system (rule-based systems.
Pittsburgh and Michigan approaches)
Inductive Logic Programming (powerful
relational language)
...

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Importance of AIP
From a scientific point of view:

A program is the most general structure
that another program can learn (well
beyond propositional Machine Learning)

From a practical point of view:
There are problems whose solution is a
computer program and not some other
Machine Learning propositional structure
(decision trees, neural networks, ...)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Propositional Machine
Learning. Input

Sky Temperature humidity Wind Tennis
Sun 85 85 No No

Sun 80 90 Yes No

Clouds 83 86 No Yes

Rain 70 96 No No

Rain 68 80 No Yes

Clouds 64 65 Yes Yes

Sun 72 95 No No

Sun 69 70 No Yes

Rain 75 80 No Yes

Sun 75 70 Yes Yes

Clouds 72 90 Yes Yes

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Propositional Machine
Learning. Output

Sky

Humidity WindYES

YES NO NO YES

sun
clouds

rain

<=75 > 75 yes no

IF Sky = sun

Humidity <= 75 THEN Play = yes

ELSE IF Sky = sun

Humidity > 75 THEN Play = no

ELSE IF Sky = clouds THEN Play = yes

ELSE IF Sky = rain

Wind = Si THEN Play = yes

ELSE Play = no

Decision trees Rules

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Automatic Programming.
Input (specification)

Input/output pairs: (list sorting)
([2,1], [1,2]); ([2,3,1], [1,2,3]);
([3,5,4], [3,4,5]); ([],[]); ...

Primitives:
(dobl start end work): for loop
(wismaller x y): return smaller
(wibigger x y): return bigger
(swap x y)
(e1+ x) (e1- x) (e- x y) : increase, decrease, substract

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Automatic Programming.
Output

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Equivalente to (kind of
“bubble sort”)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

AIP as an Extension to
Propositional Machine Learning

Variable input size
Use of conditionals (if-then-else, case)
Reuse:

Use of variables (reuse of computations)
Use of subroutines (reuse of code)
Use of loops and recursivity (reuse of code)

Turing-complete languages

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

For What Kind of Problems?

Complex domains where human beings
find difficult to write programs
And, full algorithms are required (with
conditionals, subroutines, loops, ...)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

For What Kind of Problems?
Programming quantum computers
Programming parallel computers
Machine Conde Programming
Programming agents in complex domains (ej:
Robosoccer)
Programming text transformations from user
supplied examples (web pages, ...)
Behavioral cloning
Etc.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Behavioral Cloning (Extracting
Operational Knowledge)

Agent to be cloned

Observer Agent

Inputs /
sensors

Clon Agent
Model (computer program)

Outputs /
Actions

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Types of AIP

Deductive: to generate a program
from a high-level description
Inductive: to generate a program
from a set of instances

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Deductive Automatic
Programming
Artificial Intelligence + Software
Engineering
Main goal: generate a program from a
high-level description, easier (and shorter)
to write than the actual program.
However, this field includes compiler
techniques for the optimisation of
programs, tools for helping programmers,
etc.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Deductive Automatic
Programming Techniques

Program analysis, transformation, and
optimisation (compilers techniques)

Memoization, sentence ordering, tail
recursivity, rewriting rules (* ?x 1) → ?x, ...

Programming assistants (Apprentice)
Scientific program generation (Kant)
High-Level languages (SML, SETL –set
theory based-)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Deductive Automatic
Programming Tools

Automatic Programming Server:
http://www.cs.utexas.edu/users/novak/cgi/ap
demo.cgi

Generating procedures for specialized types from
abstract types
Type conversion

Graphical Programming System:
http://www.cs.utexas.edu/users/novak/cgi/gp
server.cgi

http://www.cs.utexas.edu/users/novak/cgi/apdemo.cgi
http://www.cs.utexas.edu/users/novak/cgi/apdemo.cgi
http://www.cs.utexas.edu/users/novak/cgi/gpserver.cgi
http://www.cs.utexas.edu/users/novak/cgi/gpserver.cgi

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Deductive Automatic
Programming
Transformational and Deductive Systems
(Refine, KIDS; Manna & Waldinger 92)
Specifications are written by means of formal
languages
An specification is a theorem to prove
An Automatic Theorem Prover constructs the
program
Specification -> theorem -> proof -> program

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example: Amphion [Stickel, 95]
“Deductive Composition of Astronomical
Software from Subroutine Libraries”
Astronomical domain (solar system)
Example: generate a program that tells where
the shadow of Io is on Jupiter at a particular
time
The program is made of calls to astronomical
subroutines from the SPICE library

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Where is the shadow of Io?

Photon-sun-Io

Photon-Io-Jupiter

Photon-Jupiter-Voyager2

Shadow-point

Ray-Sun-to-Io

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Amphion. Shadow of Io
Theorem
Is there a shadow-point, that is at the
intersection of Ray-Sun-to-Io and Júpiter-
Ellipsoid ?
(exists sp?) in-ray(Sun,Io,Jupiter, Voyager,
sp) & in-elipsoid(Jupiter, sp)
This theorem is represented in graphical form
Then converted to predicate logic
Then a constructive proof is obtained by the
SNARK theorem prover
Then, a FORTRAN program is generated

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Graphical
specification of
theorem

Input

Output

1 2

3

Sun
Io

Voyager

Júpiter

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Theorem (first order logic)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

FORTRAN PROGRAM

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Amphion

Advantages:
Easy to use (after 1h training)

Experts: from 30m to 5m
Non-experts: from several days to 30m

Lmitations:
Programs made of calls to subroutines, no
conditionals, no loops, no recursivity

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Pros/Cons of Deductive AP

+: Generated programs are guaranteed to
be correct
- : In general, it is difficult to write
correct and complete formal
especifications, specially if the problem
is not well-defined

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Automatic Inductive
Programming

Goal: to generate computer programs from
instances
This is usually achieved by a heuristic search
in the space of computer programs
Pros/Cons:

+: Specifications are easier to write
-: Specifications are not complete -> It is not
guaranteed that the generated program will be
absolutelly correct

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

AIP specifications
Specifications are composed of:

Language: primitives to be used by the
AIP system to construct the solution
program
Heuristic: evaluates candidate solutions
(programs). There are basically, two types:

Input / Output pairs
Performance measure
(or combinations of both)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Input / Output specification

Example: create a sorting program
Input / output pairs:

([2,1], [1,2]); ([2,3,1], [1,2,3]);
([3,5,4], [3,4,5]); ([],[]); ...

Primitives:
(dobl start end work) (wismaller x y)
(swap x y) (wibigger x y)
(e1+ x) (e- x y) (e1- x)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Performance Measure
Specification

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Performance measure
specification

Performance measure:
Count how many dots the Pacman ate in
one game

Primitives:
if-obstacle, if-dot, if-big-dot, if-phantom,
Forward, turn-left, turn-right

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example of strategy for
Pacman

if-phantom then {
turn-left;
turn-left;
go-forward;}

else if-big-dot {
go-forward;
girar-derecha;}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Types of Automatic Inductive
Programming

Synthesis-based: the program is built piece
by piece, never actually executed

Synthesis of Functional Programs
Synthesis of Logic Programs

Search-based:
A search technique (genetic algorithms, ...) is
used to search in the space of computer
programs
Basically it is “iterated generate and test”
Candidate programs are executed (run) to
determine how well they perform

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

LISP Program Synthesis

Seminal work: Summers P. 1977. "A
Methodology for LISP Program Construction
from Examples," Journal of the ACM
Smith, D. 1984. “The Synthesis of LISP
Programs from examples. A survey”. Mac
Millan Publishing.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Two Steps in LISP Program
Synthesis

1. Traces (computations) are created for
individual input/output pairs

2. Then, patterns (like recurrence /
recursivity) are identified in the traces

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

LISP Program Synthesis
Idea: “For some classes of programs, a few well-
chosen input/output pairs, determine the general
program”
Example (last): [(A),A]; [(A B), B]; [(A B C), C]

T1: A=first((A))
T2: B=first(rest ((A B)))
T3: C=first(rest (rest ((A B C))))
TK: last=first(rest ... rest (list))

General pattern (program): “Apply k-1 times rest,
then apply first”

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

LISP Program Synthesis

T1: A=first((A))
T2: B=first(rest ((A B))) =

T2 = T1(rest((A B)))

T3: C=first(rest (rest ((A B C))))
T3 = T2(rest((A B C)))

TK: last=first(rest ... rest (list))
Tk = Tk-1(rest(list))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

LISP Program Synthesis
• That is, traces are obtained from input/output

pairs, and then the general pattern is
identified

• Actually, recursive programs are synthesized
by applying Summers’ Basic Synthesis
Theorem

last(x) =
Case singleton?(x)

Yes: return first(x)
No: return last(rest(x))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Structure of (Recursive)
Learned Programs

G(x) = F(x, constant)
F(x,z) =

Case
p1(x): f1(x,z)
...
pk(x): fk(x,z)
Else H(x, F(b(x), G(x,z)))

X is the main variable, Z is a secondary variable

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Examples of Programs
(last x) =

(cond
((atom (cdr x))

(car x))
(T (last (cdr x)))))

(but-last x) =
(cond

((atom (cdr x)) nil)
(T (cons (car x)

(but-last (cdr
x)))))

(reverse x) = (rev x ‘())

(rev x z) =

(cond ((atom x) z)

(T (rev (cdr x) (cons (car x) z))))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Assumption on Input/Output
Pairs

x/y are sorted from simple to complex

No atom (element) appears twice in x

All atoms (elements) in y are also in x
(selfcontained).

If all this happens, each input/output pair has a
unique trace

Traces can be found by enumeration

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

LISP sublanguage

Language:
Car: (car ‘(a b c)) = a
Cdr: (cdr ‘(a b c)) = (b c)
Cons: (cons ‘a ‘(b c)) = (a b c)
Atom: (atom ‘a) = T
Cond: conditional

Operates only with lists (no numbers)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Obtaining traces
For every input/output pair (x,y), find f such that:

y = f(x)
1. By enumeration of compositions of car and cdr,

try to find a direct relation between x and y:
Ej: trace[(A),A] : y = (car x)

2. If that fails, then divide and conquer: find traces
f1 and f2 such that:

(car y) = f1(x)
(cdr y) = f2(x)
Trace[x,y]= (cons f1(x) f2(x))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Obtaining Traces (Divide and
Conquer)

Trace[x, y]

Trace[x, (car-y . cdr-y)]

f1:Trace[x, car-y] f2: Trace[x, cdr-y]

Cons

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Obtaining Traces

No direct relation for Trace [(A B), (B)]
X = (A B); Y = (B); (car Y) = B; (cdr Y) = ()
Divide and conquer:

f1: (car Y) = B = (car (cdr X)
f2: (cdr Y) = () = ()
Trace[(A B), (B)] = (cons f1(X) f2(X)) =
(cons (car (cdr X)) ())

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Recurrence Detection (Basic
Synthesis Theorem)

Let traces be:
y1 = f1(x1)
y2 = f2(x2)
...

If:∀i fi+1(x) = H(fi(b(x)),x)
fi(b(x)) appears just once in H (b made of car/cdr, H made of
cons/car/cdr)
This means that, for instance, f2 is embedded in f1
Pattern matching algorithms

Then: F(x) = case
p1(x) : f1(x)
Else:H(F(b(x)),x)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions. Synthesis of LISP
programs

[Summers, 77] Identifies recursivity by detecting a
trace being embedded in another trace
It works because:

Restricts input/output (x,y) pairs so that trace f is
unique in y = f(x)
It restricts the target to be learned (one-argument
recursive functions)
It works only on structural tasks on lists. Structural: the
task only depends on the structure of the list, not on its
content. Sorting is beyond its scope.
Trace generation is domain dependent! (lists)

Good idea: using traces

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Applications of Program
Synthesis

Learning by Demostration / Learning by
Example
Teacher – Student paradigm
Computation traces come from users,
working through graphical interactive
interfaces
Example: TELS learns text-editing macros
from the user and generalizes them with
loops and conditionals [Witten et al. 93]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

References

“Watch What I do. Programming by
Demonstration” [Cypher, 93]
“Your Wish is My Command.
Programming by Example” [Lieberman,
01]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Extensions. Synthesis of
Functional Programs

Schmidt, U. and Wysotzki, F. (1998). “Induction
of Recursive Program Schemes”. ECML’98
Kitzelmann, E., Schmidt, U., Mühlpfordt, M., and
Wysotzki, F. 2002. “Inductive Synthesis of
Functional Programs”. Artificial Intelligence,
Automated Reasoning, and Symbolic Computation,
Joint International Conference
E. Kitzelmann, U. Schmid. 2005. “An Explanation
Based Generalization Approach to Inductive
Synthesis of Functional Programs”. ICML’05

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Schmidt Approach
It goes well beyond Summer’s
Language independent
Multiple recursion
Multiple arguments
Linear, tail, and tree recursion
Mostly, structural tasks (lists, trees, ...)
Learning recursive programs is basically
equivalent to learning some kind of grammars
Application: XSL transformations (traces
generated by Genetic Programming)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Some results (EBG paper)
Total time

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Types of Automatic Inductive
Programming

Synthesis-based:
Synthesis of Functional Programs
Synthesis of Logic Programs:

Without schemes
With schemes

Search-based

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Inductive Logic
Programming (ILP)

Machine Learning framework for learning first-order
logic expressions (horn clauses)
ILP language is more expressive than typical
propositional ML languages
Actually, it is basically Turing-complete (computer
programs can be written in it with recursivity and
“subroutines”)
However, it is mostly used for relational concept
learning, not for program synthesis

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ILP Example

Learned Knowlege:

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

General to Specific (top-down)
Search (FOIL)

Also:

Bottom-up: GOLEM,
CIGOL

Proposicional: LINUS

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ILP Allows for Recursivity

Obtained knowledge:

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ILP for Program Synthesis
Positive and negative instances

Background knowledge: select(a, [2,a,3,4], [2,3,4])

Obtained program

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Types of Synthesizers
No schemes: TIM, MARKUS, SPECTRE, MERLIN,
WIM, FILP, ...
With schemes: SYNAPSE, DIALOG,
METAINDUCE, CRUSTACEAN, CLIP, FORCE2,
SIERES, ...
Pierre Flener, Serap Yilmaz. 1999. Inductive
Synthesis of Recursive Logic Programs:
Achievements and Prospects. Journal of Logic
Programming
Flener et al 1994. ILP and Automatic
Programming: Towards Three Approaches.
4th International Workshop on ILP

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

WIM (top-down, no schemes)
[Popelinsky, 95]

5 seconds to 5 minutes

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

WIM. Results (1 query,
interactive)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Quicksort Code

But
partition
and
append are
primitives!

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

SYNAPSE (With Schemes)
[Flener, 95]

Critique: instances are weak specifications
Goal:

Compress ([a,a,b,b,a,c,c,c], [a,2,b,2,a,1,c,3])
From instances:

Compress ([],[])
Compress ([a], [a,1])
Compress ([b,b], [b,2])
Compress ([c,d], [c,1,d,1])
Compress ([e,e,e], [e,3])
Compress ([f,f,g], [f,2,g,1]
Compress ([j,k,l], [j,1,k,1,l,1])

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

SYNAPSE. Properties

In addition to instances, it adds
background knowledge in the form of
properties:

Compress ([X], [X,1])
X=Y -> Compress([X,Y], [X,2])
X <> Y -> Compress([X,Y], [X,1,Y,1]

Interactive

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

SYNAPSE. Schemes
Divide and conquer:
R(X,Y) iff Minimal(X), Solve(Y)
R(X,Y) ifff

1<= k <= c
Non-Minimal (X)
Decompose (X, HX, TX)
Discriminatek (HX,TX,Y)
R(TX,TY)
Processk (HX,HY)
Composek (HY,TY,Y)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

SYNAPSE. Schemes
(Divide and conquer simplified wrt [Flener,
95])
R(X,Y) iff Minimal(X), Solve(Y)
R(X,Y) ifff

Non-Minimal (X)
Decompose X => Head + Tail
Solve(Head) => HY
Solve(Tail) => TY
Solution Y = HY + HX

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

SYNAPSE. Algorithm
Expansion phase:

Create a first approximation
Synthesis of Minimal and Non-Minimal
Synthesis of Decompose
Insertion of recursive atoms

Reduction phase:
Synthesis of Solve
Synthesis of Processk and Composek

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

SYNAPSE. Other Solved
Problems

Delete (E,L,R) [6 instances, 3
properties]
Sort (L,S) [10 instances, 1 property,
split, partition]. Three programs:

insertion-sort O(N2),
merge-sort O(N log(N)),
quicksort O(N log(N)) were obtained by
backtracking

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ILP for Program Synthesis.
Conclusions

First order logic seems a very natural
framework for learning programs
(recursivity, “subroutines”, ...)
Formal approach
Good idea: General-to-specific and
specific-to-general search
Good idea: schemes
Simple programs can be learned

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Other results on ILP for
program synthesis

J. Stahl. 1993. “Predicate Invention in
ILP – An Overview”. ECML
Hernández-Orallo, Ramírez-Quintana.
1999. “Inductive Functional Logic
Programming”, 8th International Workshop
on Functional and Logic Programming
Rao. 2005. “Learning Recursive Prolog
Programs with Local Variables from
Examples”. ICML (one-recursive)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Search Based AIP. General
Idea

Incremental Search in the space of
computer programs. Generate and Test

Fac(n) = if ()
then {}

Else {}

Fac(n) = if (n=0)
then {1}

Else {n}

Fac(n) = if (n=0)
then {1}

Else {n*fac(n-1)}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Issues
1: Search space is vast
2: Programs are “fragile”. Recursive or
iterative programs are even more fragile

=> How to transform programs?
3: An iterative or recursive program may
never end (or take a long time)

=> How to handle unlimited time?
4: No guarantee that the learned program is
completely correct (induction)

=> How to handle many i/o pairs or long
tests?

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Search-Based AIP
(Mostly, functional/procedural languages)

Genetic Search (Genetic Programming):
Tree-based
Grammar-based

Estimation of Distribution Algorithms:
Tree-based
Grammar-based

Iterative Deepening: ADATE
Other: Levin Search, Ant Colony Optimisation,
...

More general than synthesis-based but require a high
computational effort!!

	Automatic Inductive Programming
	Contents
	Aims of the Tutorial
	INTRODUCTION TO AIP. A SURVEY
	Automatic Programming
	Related Fields
	Importance of AIP
	Propositional Machine Learning. Input
	Propositional Machine Learning. Output
	Automatic Programming. Output
	Equivalente to (kind of “bubble sort”)
	AIP as an Extension to Propositional Machine Learning
	For What Kind of Problems?
	For What Kind of Problems?
	Types of AIP
	Deductive Automatic Programming
	Deductive Automatic Programming Techniques
	Deductive Automatic Programming Tools
	Deductive Automatic Programming
	Example: Amphion [Stickel, 95]
	Where is the shadow of Io?
	Amphion. Shadow of Io Theorem
	FORTRAN PROGRAM
	Amphion
	Pros/Cons of Deductive AP
	Automatic Inductive Programming
	AIP specifications
	Performance Measure Specification
	Example of strategy for Pacman
	Types of Automatic Inductive Programming
	LISP Program Synthesis
	Two Steps in LISP Program Synthesis
	LISP Program Synthesis
	LISP Program Synthesis
	LISP Program Synthesis
	Structure of (Recursive) Learned Programs
	Examples of Programs
	Assumption on Input/Output Pairs
	LISP sublanguage
	Obtaining traces
	Obtaining Traces (Divide and Conquer)
	Obtaining Traces
	Recurrence Detection (Basic Synthesis Theorem)
	Conclusions. Synthesis of LISP programs
	Applications of Program Synthesis
	References
	Extensions. Synthesis of Functional Programs
	Schmidt Approach
	Some results (EBG paper)
	Types of Automatic Inductive Programming
	Inductive Logic�Programming (ILP)
	ILP Example
	General to Specific (top-down) Search (FOIL)
	ILP Allows for Recursivity
	ILP for Program Synthesis
	Types of Synthesizers
	WIM (top-down, no schemes) [Popelinsky, 95]
	WIM. Results (1 query, interactive)
	Quicksort Code
	SYNAPSE (With Schemes) [Flener, 95]
	SYNAPSE. Properties
	SYNAPSE. Schemes
	SYNAPSE. Schemes
	SYNAPSE. Algorithm
	SYNAPSE. Other Solved Problems
	ILP for Program Synthesis. Conclusions
	Search Based AIP. General Idea
	Issues
	Search-Based AIP

