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Abstract

Traffic simulation is a growing domain of computational
physics. Many life and industrial applications would bene-
fit from traffic simulation to establish reliable transportation
systems. A core challenge of this science research, however,
is its unbounded scale of computation. This paper explores
an advantage of using the graphics processing unit (GPU)
for this computational challenge. We study two schemes of
maximizing GPU performance in the context of traffic sim-
ulation, and provide some basic experiments. The experi-
mental results show that our GPU implementation improves
simulation speed by five times over the traditional CPU im-
plementation. We also discuss that additional orders-of-
magnitude improvements could be achieved by overcoming
the current hardware limitation of the GPU.

1 Introduction

Transportation systems are part of important infrastruc-
tures for our life and industry. For example, traffic flow
highly influences economy. According to the report from
the Japanese government, economic losses due to traffic
congestion could reach one hundred billion dollars per year
in Japan, which include degradation of transport efficiency,
energy consumption, and environmental poisoning. Albeit
a major issue of transportation systems, the mechanism of
traffic congestion is not well-explained in the literature. Ex-
amples include a “phantom jam” — a traffic jam that natu-
rally occurs on freeways without any car and/or human ac-
cidents. This phantom jam should be addressed by science,
since it is a physical phenomenon but not one caused by
human errors. There is certainly a challenge of real-time
simulation in this line of work, but even a basic scale of
execution times is not understood at all.

In physics, traffic flow is described by mathematical
models [1, 2, 9, 13]. While their mathematical expressions
are not identical, they are commonly compute-intensive
forms. For example, traffic simulation based on the Optimal
Velocity (OV) model [1, 2] computes locations and veloci-
ties of agents every sampling period, solving OV equations.
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Specifically, the location x,, of the nth agent is described by
the following equation, where Ax, = x,+1 — X, is a distance
to a preceding agent, a is a sensitivity, and V() is an optimal
velocity function:

2
X _ a{V(Axn) - dx"}. )

dr? dt

Applying a large number of agents to simulation using
the above formula, it is apparent that computational work-
load increases exponentially. The above formula considers
only one dimension, which restricts applications of sim-
ulation to freeway traffic flows, powder flows, molecular
motors, and so on. Making it multi-dimensional further
increases computational workload, while allowing more
complicated simulations, such as traffic networks, internet
packet flows, evacuation routes, and herd formations of an-
imals, to use similar optimal velocity models. Given a scale
of million agents in the real world, traffic simulation must
be supported by powerful computer systems.

Computational workload is not the only issue of concern.
Deployment of traffic simulation may also require real-time
feedback from the real world, which turns out to be a cyber-
physical systems (CPS) problem indeed. Real-time traffic
simulation is another challenging issue, where the rate and
the preciseness of simulation must be traded to meet the
requirement of a given scenario. For instance, simulation of
emergent evacuation may want very high-rate computation,
even sacrificing preciseness of simulation to some extent.
Unfortunately, none of those challenges has been explored
yet, largely due to a lack of multidisciplinary collaborations
between computational physics and computer science.

This paper explores how to accelerate traffic simulation
using the graphics processing unit (GPU), which integrates
hundreds of processing cores on a chip. Recent GPUs are
becoming more and more suitable for general-purpose data-
parallel applications. The traffic simulation program used in
this paper applies Equation (1) to a large number of agents.
The resulting workload is highly data-parallel and compute-
intensive, which can be offloaded on to the GPU. We also
identify a bottleneck of traffic simulation when accelerated
by the GPU, and provide an insight into some solutions.
The main objective of this paper is to figure out a compu-
tational scale of traffic simulation. Timing guarantees are
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not considered, but our contribution is essential to achieve
real-time traffic simulation in future work.

The rest of this paper is organized as follows. Section 2
describes the basic assumption and terminology behind this
paper. Section 3 explains an overview of traffic simulation
and its literature. Section 4 presents our schemes of GPU
implementations for traffic simulation. Section 5 evaluates
the advantage of using our schemes, and provides an insight
into future work. Section 6 concludes this paper.

2 Assumption and Terminology

We assume the Compute Unified Device Architecture
(CUDA) for GPU programming. In CUDA, a unit of pieces
of code that is launched on the GPU is called a kernel. The
kernel is typically composed of multiple threads that exe-
cutes the code in parallel. A unit of threads that are co-
scheduled by hardware is called a block, while a collection
of blocks for the corresponding kernel is called a grid. The
maximum number of threads that can be contained by an
individual block is defined by the GPU architecture.

CUDA programs use a set of the application program-
ming interface (API) functions to control the GPU. We usu-
ally take the following steps to use the GPU: (i) allocate
space to device memory, (ii) copy data to the allocated de-
vice memory space, (iii) launch the program on the GPU,
(iv) copy resultant data back to host memory, and (v) free
the allocated device memory space.

Our computing platform is composed of a single CPU
and GPU. The traffic simulation program is a single process
from the CPU point of view. Hence, kernels are launched
from the CPU sequentially, while each kernel is executed
by parallelized threads on the GPU.

This paper is particularly focused on CUDA and GPUs,
but the notion of accelerating traffic simulation presented in
this paper is applicable to heterogeneous architectures that
integrate CPUs and accelerators. GPUs are currently the
most well-recognized forms of accelerators, but emerging
alternatives include the Intel Many Integrated Core (MIC)
and AMD Fusion architectures. However, their program-
ming models are almost identical in that a master thread
running on the CPU manages the program flow, while par-
allelized threads are offloaded on to accelerators. CUDA,
OpenCL, HMPP, and AMP are all based on this program-
ming model.

3 Traffic Simulation

The motivation to study traffic flow is to understand the
property of traffic flow, mainly why traffic congestion oc-
curs. The study of traffic flow has a long history, and many
engineering and physical models exist. This paper is par-
ticularly focused on the OV model [1, 2]. In this model,
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a driver is supposed to maintain an optimal velocity that
depends on the driver’s headway. Its motion is given by
Equation (1). The optimal velocity function introduced in
this equation is represented by the relationship between the
driver’s headway and velocity.

The OV model has a simple form with a single parameter
of sensitivity a. This simplicity allows us to understand the
mechanisms of phenomena, and also predict the results of
experiments. The disadvantage of this model, on the other
hand, is a little allowance for control systems to turn up
the parameter. There is indeed a need for collaborations
between the research domains of engineering and physics.
To begin with, however, we restrict our attention to the OV
model. More details are found in [1, 2].

The traffic simulation program based on the OV model
is straightforward, as the model itself has a simple form. In
this paper, we abstract its algorithm by the following stages:

1. Initialize the time ¢, and set the initial values of x,(r)
(also y,(¢) and z,(¥), if necessary for multidimensional
versions).

2. Increase the time ¢ by the sampling period At.

3. Compute the location x,(f) (also y,(#) and z,(¢), if nec-
essary for multidimensional versions), and the velocity
v,(?) at time ¢ for each agent A,,, using the OV model.

4. Go back to Step 2, if the simulation time is expired.
5. Exit the program.

The computational workload in Step 3 exploits a lot of
loop executions to derive locations and velocities of agents.
This is the most compute-intensive part of the algorithm.
The primary goal of this paper is to find out the parallelism
of this workload that can be applied to the GPU. By nature,
traffic simulation based on the OV model is very scalable in
terms of performance with respect to the number of agents.
The location and velocity of each agent depends on only
those of neighbors. It is worth exploring a breakthrough of
this research domain by coordinating computational physics
and computer science technology.

4 GPU Implementation

The primary contribution of this paper is to identify the
fundamental schemes of GPU implementations for traffic
simulation. It is very important to understand that GPU
performance is dominated by the program design. We first
reason about the motivation of our schemes.

GPU-accelerated programs are typically divided into two
pieces of code. The CPU code plays a role of a master
thread that controls the program flow. The GPU code, on
the other hand, spawns a bunch of worker threads to execute
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Figure 1. Block diagram of the Sample-in-CPU
scheme.

compute-intensive parts of the program in parallel, thus ac-
celerating the overall program. What is often argued in per-
formance optimization is how to parallelize the compute-
intensive parts into threads. This is actually the well-studied
problem in the literature. What is not really understood yet
is when to offload the program on to the GPU. This paper
explores two schemes that use the GPU at different timings
to see how GPU performance is affected.

4.1 Sample-in-CPU Scheme

We first implement such a scheme that uses the GPU only
if necessary. In other words, the program is offloaded on to
the GPU, only when computations of locations and veloc-
ities of agents are accelerated by parallelization. The CPU
bridges across sampling periods to manage simulation. In
this scheme, the control flow of simulation is always re-
turned to the CPU at the end of each sampling period. Such
a synchronized approach makes the programmer easy to ob-
tain intermediate results of simulation, whereas the over-
head imposed on moving back and forth between the CPU
and the GPU must be compromised.

Figure 1 shows a brief overview of the Sample-in-CPU
scheme. This scheme also has several alternatives depend-
ing on how many kernels need to be launched on the GPU
in each period. Suppose that we want to offload n pieces of
for loops on to the GPU. We may return to the CPU n times
in total, that is, return every time one for loop breaks, or
otherwise we may just return once when all the n for loops
end. This is a design decision, and is also dependent on
the GPU architecture and the parallelization structure. In
general, parallelized threads need to be synchronized when
moving across basic blocks. Specifically, when moving to
the next for loop executed in parallel, all the threads rele-
vant to this parallel computing procedure must synchronize
with each other. However, the maximum number of threads
that can be synchronized on the GPU is often limited. As
of 2012, for example, NVIDIA’s GPU architectures limit
the number of such threads to 1024 or less [16]. Our imple-
mentation therefore forces the program to return to the CPU
every time one for loop breaks. Note that this is not a con-
ceptual limitation of GPU computing, but is a current limi-
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call GPU

CPU GPU

next sample

Figure 2. Block diagram of the Sample-in-GPU
scheme.

tation of hardware. We believe that this limitation would be
removed or mitigated in next-generation GPU architectures.

4.2 Sample-in-GPU Scheme

We next implement such a scheme that uses the GPU all
the time, even to control simulation. There is one big ker-
nel running on the GPU, which is launched only once at the
beginning. After offloading the program on to the GPU, the
CPU is going to wait for the completion of simulation. This
scheme is almost optimized in performance, since there is
little overhead in communication between the CPU and the
GPU. The downside of this scheme is that the CPU and the
GPU are not synchronized. The progress of simulation is
not visible from the CPU, unless the program implements
a specific interface to allow the CPU to access intermedi-
ate results of simulation running on the GPU. In our im-
plementation, we consider providing a framework that the
CPU downloads data from the GPU asynchronously with-
out awareness of simulation, when the user requests inter-
mediate results. This asynchronous data access may affect
the performance of simulation, though in reality this access
would not happen more than once in a sampling period.

Figure 2 shows a block diagram of the Sample-in-GPU
scheme. The procedure is very simple. The most portion of
code of simulation is executed on the GPU. Given that the
single-thread performance of recent GPUs is getting more
reliable, this approach is pretty reasonable. As mentioned
in Section 4.1, however, the current limitation of the GPU
architecture prevents us from synchronizing among blocks
at a scale of thousands threads. Therefore, this scheme is
speculative in a sense that it does not work today but may
appear in the future.

This paper provides some degree of insights into how
this scheme is effective. We implement this scheme with the
current GPU architecture under the assumption that global
synchronization among blocks works. There is also another
possible approach for this scheme that we limit the number
of threads to what is supported by the GPU architecture.
This alternative implementation, however, is left open for
future work.
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Figure 3. Performance benefit of the GPU.

5 Evaluation

We evaluate the performance of our GPU-accelerated
traffic simulation programs, using an NVIDIA GeForce
GTX 560 Ti graphics card. This is a middle-end graphics
card based on the Fermi architecture [14], integrating 394
compute cores on a chip. The programs used in this evalua-
tion are written in CUDA, and are compiled by the NVIDIA
CUDA Compiler (NVCC) v4.2 suite [15].

We focus on the one-dimensional OV model [1, 2],
which can be applied to freeways simulation. The origi-
nal program [17] of this simulation is written in C, without
any parallelization. We use the same simulation parameters
as the original default setup, while increasing the number
of agents (cars) to see how simulation performance varies.
The evaluation is conducted by comparing our GPU imple-
mentations with the original CPU implementation.

5.1 Performance Benefit

Figure 3 demonstrates the performance benefit of the
GPU under the current hardware limitation. The Sample-in-
CPU scheme herein exploits synchronization between the
CPU and the GPU after every for loop to overcome the
limitation that CUDA threads cannot synchronize beyond
blocks. Despite of this restricted implementation, our GPU
implementation outperforms the original CPU implementa-
tion by about five times in simulation time, when the num-
ber of agents exceeds a scale of 1000. This evinces an affin-
ity of the GPU and parallel computing for traffic simulation.
It is also interesting to see that the CPU implementation has
a better performance for a small number of agents. Thus,
the overhead of communication between the CPU and the
GPU has non-trivial impact if the achievable parallelism is
not sufficient. Another notable observation is that the dif-
ference in performance of the CPU and the GPU imple-
mentations is saturated when the number of agents reaches
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Figure 4. Impact of the hardware limitation.

1000. This saturation implies the hardware potential of the
NVIDIA GeForce GTX 560 Ti graphics card used in this
evaluation. Using high-end graphics cards, the difference in
performance may not be saturated at the same scale.

5.2 Impact of Hardware Limitation

Figure 4 demonstrates the impact of the current hardware
limitation that CUDA threads cannot synchronize beyond
blocks. In this experiment, we observe “what would hap-
pen if this hardware limitation is removed?”, compromis-
ing the preciseness of simulation results. Namely, we use
the current CUDA synchronization function to synchronize
threads running in different blocks, even though it does not
work as expected. All the GPU implementations of the plot-
ted schemes use this assumption. Therefore, the Sample-in-
CPU scheme is now different from what we have evaluated
in Figure 3, since there is no need anymore to return to the
CPU every time one for loop breaks. We instead put a syn-
chronization function between for loops on the GPU. The
Sample-in-CPU-Sync scheme is an alternative version of
the Sample-in-CPU scheme in that we download interme-
diate results from the GPU to the CPU at the end of each
sampling period. The Sample-in-GPU scheme is what is
presented in Section 4.2.

It is very notable that the Sample-in-GPU scheme im-
proves the simulation time by a factor of 1000 as compared
to the original CPU implementation. This result encourage
support for thread synchronization among blocks in CUDA
programming. There are also several interesting observa-
tions obtained in this experiment. Comparing the Sample-
in-CPU and the Sample-in-CPU-Sync schemes, it turns out
that the cost of downloading intermediate results from the
GPU to the CPU is becoming trivial as the scale of simula-
tion increases. Hence, a common argument of “host-device
data communication in GPU programming is expensive”
does not apply to large-scale traffic simulation. Another is-
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Figure 5. Error in location and velocity due to
imprecise synchronization.

sue of concern often discussed in GPU programming is that
a single-thread performance of GPUs is weak as compared
to that of CPUs. This is true in general, but our experimen-
tal result shows that the performance loss caused by push-
ing most pieces of code into the GPU in the Sample-in-GPU
scheme is not significant even for a small number of agents.
This observation leads to some conclusion that the Sample-
in-GPU scheme would be the best choice for any scale of
traffic simulation.

5.3 Practical Concern

We finally examine the impact of misbehavior of thread
synchronization in our GPU implementations. The simula-
tion results produced by our GPU implementations are not
precise except for those of the Sample-in-CPU scheme pre-
sented in Figure 3, due to our optimistic use of thread syn-
chronization on the GPU. We need to wait for new GPU ar-
chitectures removing the limitation of thread synchroniza-
tion in order to make them precise. Practically speaking,
however, imprecise results of simulation are still valuable
and meaningful as far as they are limited to an acceptable
range of errors for traffic flow.

Figure 5 demonstrates the error percentage of location
and velocity between the simulation results produced by the
original CPU and the imprecise Sample-in-GPU implemen-
tations. Since this is one-dimensional OV simulation, there
are only forward or backward in location, and high or low
in velocity. Under this constraint, the error in location is
very trivial. This is because the characteristic of traffic flow
is well captured, even though the simulated locations and
velocities have some error in their individual values. A de-
gree of the error in velocity is slightly high as compared to
that in location. This means that velocity is more sensitive
to imprecise results than location. However, the maximum
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error in velocity observed in our experiment is at most 5%.
Suppose that the average driving speed is 50mph. The sim-
ulated speed in our imprecise implementation would still be
within a range of 47.5 to 52.5mph. Intuitively, this scale of
error is acceptable in practice. We plan to further investi-
gate if the same argument can be applied to a more variety
of parameter setups and multidimensional OV simulation
programs.

5.4 Discussion

According to the experimental results, it is highly de-
sired to use the Sample-in-GPU scheme, if available. It pro-
vides an orders-of-magnitude improvement in simulation
time. The downside of this scheme at the moment is a lack
of functionality in thread synchronization due to the cur-
rent hardware limitation. Simulation results are never pre-
cise unless thread synchronization operates correctly. Al-
though we have demonstrated that the error in simulation
results caused by a lack of thread synchronization is accept-
able in our experimental setup, the range of error is never
bounded as depicted in Figure 5. Hence, the availability of
this scheme depends highly on practical setups.

We consider that the problem of this scheme may
be relevant to the Imprecise Computation model [10].
The Sample-in-CPU scheme is precise-but-slow, while the
Sample-in-GPU scheme is imprecise-but-fast. If we are al-
lowed to employ multiple GPUs in the system, we may run
the two types of simulation programs on different GPUs
concurrently. At some point of time ¢, the simulation re-
sult produced by the Sample-in-GPU scheme represents a
scenario way ahead of that produced by the Sample-in-CPU
scheme; the question is how precise it is. Figure 5 demon-
strates that the error in the simulation result produced by
the Sample-in-GPU scheme is getting larger as time goes
by. If we can find such a time duration that causes the value
of error to fall out the acceptable range for practical use,
we define this time duration to be Az. Suppose that the two
simulation programs based on the Sample-in-GPU and the
Sample-in-CPU schemes, respectively, are running concur-
rently. At every interval of time Af, we reset the simula-
tion result produced by the Sample-in-GPU scheme, and
input the latest precise simulation result produced by the
Sample-in-CPU scheme during the same interval. By this
means, the value of error in the simulation result produced
by the Sample-in-GPU scheme never falls out the accept-
able range, while we still benefit from its simulation speed
within an internal of time Az. The value of Af can be de-
termined dynamically based on the Imprecise Computation
model.

So far we have studied a single process of traffic flow. In
reality, however, there are multiple processes of traffic flow.
Real-time feedback from the real road conditions may also
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be additionally required to deploy traffic simulation. All
these pieces of simulation must meet the quality-of-service
(QoS) requirement for users. Imagine how many potential
users exist in the real-world transportation system. We are
now facing a core challenge of next-generation real-time
systems.

Recently real-time systems have been augmented with
GPU resource management techniques [3, 4, 5,6, 7, 8§, 11].
Scheduling, synchronization, and memory management of
GPU applications are becoming key challenges to applying
the GPU for real-time systems. A grander vision of GPU-
accelerated traffic simulation will need a tighter integration
of real-time systems technology and computational physics.
We believe that this paper plays a vital role to facilitate this
line of work.

6 Conclusion

In this paper, we have presented GPU-accelerated traffic
simulation based on the OV model. The current hardware
limitation of the GPU architecture caps improvements in
performance to a factor of ten or less, as compared to the
original CPU implementation. However, we demonstrated
that additional orders-of-magnitude improvements could be
achieved by removing that limitation. We also discussed a
conceivable solution to cope with that limitation, using a
concept of the Imprecise Computation model.

In future work, we extend our scheme to multidimen-
sional OV models. This extension allows our research to
be applied to a broader range of problems beyond free-
ways traffic simulation. We also plan to consider a specific
approach to the integration of the Imprecise Computation
model into our scheme in order to facilitate deployment of
traffic simulation in the real world. This would pose a core
challenge of real-time systems. Another interesting direc-
tion of future work is a coordination with engineering-based
simulation such as AutoMatrix [12].
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