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ORTHOGONAL POLYNOMIALS
AND QUADRATIC TRANSFORMATIONS

F. Marcellán and J. Petronilho

Abstract: Starting from a sequence {Pn}n≥0 of monic polynomials orthogonal with

respect to a linear functional u, we find a linear functional v such that {Qn}≥0, with

either Q2n(x) = Pn(T (x)) or Q2n+1(x) = (x−a)Pn(T (x)) where T is a monic quadratic

polynomial and a ∈ C, is a sequence of monic orthogonal polynomials with respect to

v. In particular, we discuss the case when u and v are both positive definite linear

functionals. Thus, we obtain a solution for an inverse problem which is a converse, for

quadratic mappings, of one analyzed in [11].

1 – Introduction and preliminaries

In this paper we analyze some problems related to quadratic transformations

in the variable of a given system of monic orthogonal polynomials (MOPS). The

first problem to be considered is the following:

P1. Let {Pn}n≥0 be a MOPS and {Qn}n≥0 a simple set of monic polynomials

such that

Q2n(x) = Pn(T (x)) , n ≥ 0 ,(1)

where T (x) is a (monic) polynomial of degree 2.

a) To find necessary and sufficient conditions in order to guarantee that

{Qn}n≥0 be a MOPS.

b) In such conditions, to find the relation between the moment linear func-

tionals corresponding to {Pn}n≥0 and {Qn}n≥0.
c) In particular, to characterize the positive definite case.
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The motivations to study this problem appear in several works. Among others,

we refer: T.S. Chihara [6] for the case {Pn}n≥0 symmetric, T (x) = x2 and re-

quiring that {Qn}n≥0 were a symmetric MOPS; an important paper of Geronimo

and Van Assche [11] — these authors have proved that given a sequence {Pn}n≥0
of polynomials orthonormal with respect to some positive measure µ supported

on the bounded interval [−1, 1] and a polynomial T (x) of fixed degree k ≥ 2

with distinct zeros and such that |T (yj)| ≥ 1, where yj (j = 1, ..., k−1) are the

zeros of T ′, then there exists always a positive measure ν and a sequence of poly-

nomials {Qn}n≥0 orthonormal with respect to ν such that Qkn(x) = Pn(T (x));

M.H. Ismail [13], J. Charris, M.H. Ismail and S. Monsalve [4] in connection with

sieved orthogonal polynomials; F. Peherstorfer [22],[23] related to orthogonality

on several intervals; D. Bessis and P. Moussa [3],[21] for the analysis of orthog-

onality properties of iterated polynomial mappings; and Gover [12] related to

the eigenproblem of a tridiagonal 2-Toeplitz matrix. Another kind of quadratic

transformations were studied by P. Maroni [18],[20] and L.M. Chihara and T.S.

Chihara [8].

Of course, to solve problem P1 we must give the expressions for the polynomi-

als Q2n+1(x), in order to complete the set {Qn}n≥0. This suggests us the second

problem that we will consider:

P2. The same assumptions and questions as in P1, but with (1) replaced by

Q2n+1(x) = (x−a)Pn(T (x)) , n ≥ 0 ,(2)

(a a fixed complex number).

In the next we will recall some basic definitions and results. The space of all

polynomials with complex coefficients will be denoted by P. Let u : P → C be a

linear functional. A sequence of polynomials {Pn}n≥0 is called orthogonal with

respect to u if each Pn has exact degree n and

〈u, PnPm〉 = kn δnm (kn 6= 0)

holds for all n,m = 0, 1, 2, ... . Given a linear functional u, we say that u is regular

or quasi-definite [6, p. 16] if there exists a sequence of polynomials orthogonal with

respect to it. It is a basic fact that if {Pn}n≥0 and {Qn}n≥0 are two polynomial

sequences orthogonal with respect to the same linear functional then, for each

n, Pn(x) = cnQn(x), where {cn}n≥0 is a sequence of nonzero complex numbers.

Therefore, in this paper we will consider monic orthogonal polynomial sequences
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(MOPS). Every MOPS {Pn}n≥0 satisfies a three-term recurrence relation

Pn+1(x) = (x−βn)Pn(x)− γn Pn−1(x) , n = 1, 2, ...,

P0(x) = 1 , P1(x) = x− β0 ,
(3)

with βn ∈ C and γn ∈ C\{0} for all n. Furthermore, according to a theorem of

J. Favard, if {Pn}n≥0 is a sequence of polynomials which satisfies the three term

recurrence relation (3), with the conditions βn ∈ C and γn ∈ C\{0} for all n,

then it is orthogonal with respect to some linear functional.

Of course, in the previous concepts we have considered “formal orthogonal-

ity”, in the sense that the orthogonal polynomials {Pn}n≥0 are only related to a

numerical sequence un :=〈u, xn〉, n=0, 1, 2, ..., ignoring whether these numbers

are actually moments of some weight or distribution function on some support

or not. In order to answer question c) in problems P1 and P2 , we must ana-

lyze under what conditions a regular linear functional u is positive definite, i.e.,

〈u, f〉 > 0 for all f ∈ P such that f(x) ≥ 0 , ∀x ∈ R and f 6≡ 0. In fact, a se-

quence of polynomials {Pn}n≥0 orthogonal with respect to some linear functional

u is said to be orthogonal in the positive-definite sense if u is positive-definite.

By a representation theorem [6, Chapter II] a linear regular functional u is pos-

itive definite if and only if there exists an integral representation, in terms of a

Stieltjes integral, of the form

〈u, f〉 =
∫ +∞

−∞
f(x) dσ(x) ,

for every polynomial f , where σ is a distribution function, i.e., a function

σ : R → R which is nondecreasing, it has infinitely many points of increase

(those are the elements of the set S :={x : σ(x+δ)−σ(x−δ) > 0, ∀ δ > 0}, called
the spectrum of σ) and all the moments

∫ +∞

−∞
x2n dσ(x) , n = 0, 1, 2, ... ,

are finite. Sometimes, we also say that dσ(x) is a distribution function or measure,

and S is also called the support of dσ, the notation supp(dσ) being also used for

S. A necessary and sufficient condition for {Pn(x)}n≥0 to be orthogonal in the

positive-definite sense (i.e., with respect to a positive-definite linear functional)

is that {Pn(x)}n≥0 satisfies a three-term recurrence relation as (3) with βn ∈ R
and γn ∈ R+ for all n. Notice that if a sequence of polynomials {Pn(x)}n≥0
satisfies such a recurrence relation, then the corresponding distribution function,
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σ, may not be uniquely determined. However, σ is uniquely determined, up to

denumerable many points of discontinuity, if

+∞∑

k=1

p2k(x0) = +∞ , pk(x) :=(u0 γ1 γ2 · · · γk)−1/2 Pk(x)(4)

(pk is the orthonormal polynomial of degree k with positive leading coefficient)

holds at a single real point x0 (Freud [10, p. 66]). Furthermore, if σ is uniquely

determined, up to the points of discontinuity of σ(x), (4) holds for every real x0
[10, p. 63].

Given a sequence of orthogonal polynomials {Pn(x)}n≥0 satisfying (3) with

βn ∈ R and γn ∈ R+ for all n, in order to obtain the corresponding distribution

function σ — if it is unique — we introduce the associated polynomials of the

first kind, {P (1)n (x)}n≥0, which are defined by the shifted recurrence relation

P
(1)
n+1(x) = (x−βn+1)P (1)n (x)− γn+1 P

(1)
n−1(x) , n = 1, 2, ...,

P
(1)
0 (x) = 1 , P

(1)
1 (x) = x− β1 .

They can also be described by

P (1)n (x) =
1

u0

〈
uy,

Pn+1(x)− Pn+1(y)

x− y

〉
, n = 0, 1, ... .

This sequence of polynomials is important, because the asymptotic behavior of

Pn(x) and P
(1)
n−1(x) gives us the Stieltjes transform of dσ(x). According to a well

known result due to A. Markov (see W. Van Assche [27] and C. Berg [2])

lim
n→∞

P
(1)
n−1(z)

Pn(z)
=

1

u0

∫ +∞

−∞

dσ(t)

z − t
, z ∈ C\(X1 ∪X2) ,(5)

uniformly on compact subsets of C\(X1 ∪ X2), provided that σ is uniquely de-

termined. Here, if we denote by xnj (j=1, ..., n) the zeros of Pn, for each fixed

number n, and put Z1 :={xnj : j = 1, ..., n; n = 1, 2, ...}, then

X1 :=Z ′1 (set of accumulation points of Z1) ,

X2 :=
{
x ∈ Z1 : Pn(x) = 0 for infinitely many n

}
.

Notice that supp(dσ) ⊂ X1 ∪ X2 ⊂ co(supp(dσ)), where co(supp(dσ)) is the

convex hull of supp(dσ). Now, the function σ(x) can be recovered from (5) by

applying the Stieltjes inversion formula. Putting

F (z;σ) :=

∫ +∞

−∞

dσ(t)

t− z
,
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then, if supp(dσ) is contained in an half-line,

σ(t2)− σ(t1) = lim
ε→0+

1

2πi

∫ t2

t1

[
F (x+iε;σ)− F (x−iε;σ)

]
dx ,

where we assume that σ is normalized in the following way:

σ(t) =
σ(t+0) + σ(t−0)

2
.

The function F ( · ;σ) is called the Stieltjes function of the distribution function

σ (or the Stieltjes transform of the corresponding measure).

Finally we recall some properties fulfilled by the zeros of the orthogonal poly-

nomials in the positive definite case. Each Pn(x), n ≥ 1, has n real and simple

zeros xn,j (j = 1, ..., n), which we will denote in increasing order by

xn,1 < xn,2 < ... < xn,n , n = 1, 2, ... .

The zeros of two consecutive polynomials Pn(x) and Pn+1(x), n ≥ 1, interlace

(separation theorem),

xn+1,j < xn,j < xn+1,j+1 , 1 ≤ j ≤ n, n = 1, 2, ... ,

so that there exist the limits

ξ := lim
n→∞

xn,1 ≥ −∞ and η := lim
n→∞

xn,n ≤ +∞ .

The interval [ξ, η] is called the “true” interval of orthogonality of the sequence

{Pn}n≥0. ]ξ, η[ is the smallest open interval containing the zeros of all the Pn(x),

n ≥ 1, and [ξ, η] is the smallest closed interval which is a supporting set for

any distribution function σ with respect to which {Pn}n≥0 is orthogonal (cf. [6,

p. 29]). We also mention that the condition “[ξ, η] compact” is sufficient in order

that (4) holds [6, p. 110], hence if [ξ, η] is compact then σ is uniquely determined.

2 – Problem P1

The “algebraic” properties of the solution for problem P1, i.e., the answer

to the questions a) and b) in P1, have been presented in [16]. In this case, the

completion of the system {Qn}n≥0 is given by using the sequence {P ∗n(c ; · )}n≥0
of the monic kernel polynomials of K-parameter c corresponding to the sequence

{Pn}n≥0, defined only if Pn(c) 6= 0 for all n = 0, 1, 2, ... by

P ∗n(c;x) =
1

x− c

[
Pn+1(x)−

Pn+1(c)

Pn(c)
Pn(x)

]
,
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{P ∗n(c; ·)}n≥0 being a MOPS with respect to u∗ :=(x−c)u [6, p. 35]. The coeffi-

cients {β∗n, γ∗n+1}n≥0 of the corresponding three-term recurrence are given by

β∗n = βn+1 +
Pn+2(c)

Pn+1(c)
− Pn+1(c)

Pn(c)
, γ∗n+1 = γn+1

Pn+2(c)Pn(c)

P 2n+1(c)
(6)

for n = 0, 1, 2, ... .

Theorem 1 ([16]). Let {Pn}n≥0 be a MOPS and {Qn}n≥0 a simple set of
monic polynomials such that

Q1(x) = x− b , Q2n(x) = Pn(T (x)), n ≥ 0 ,

where T (x) is a (monic) polynomial of degree 2 and b ∈ C. Without loss of
generality, write

T (x) = (x− a) (x− b) + c .

Then {Qn}n≥0 is a MOPS if and only if

Pn(c) 6= 0, Q2n+1(x) = (x− b)P ∗n(c;T (x)) , n ≥ 0 .

In such conditions, if {Pn}n≥0 satisfies the three-term recurrence relation (3)

(with βn ∈ C and γn ∈ C\{0} for all n), then the coefficients β̃n and γ̃n for the
corresponding three term recurrence relation satisfied by {Qn}n≥0 are given by

β̃2n = b, β̃2n+1 = a , n ≥ 0 ,(7)

γ̃2n−1 = −
Pn(c)

Pn−1(c)
, γ̃2n = −Pn−1(c)

Pn(c)
γn , n ≥ 1 .(8)

Moreover, if {Pn}n≥0 is orthogonal with respect to the moment linear functional
u, then {Qn}n≥0 is orthogonal with respect to a moment linear functional v

defined on the basis {T n(x), (x−b)T n(x)}n≥0 of P by means of

〈v, Tn(x)〉 = 〈u, xn〉, 〈v, (x−b)T n(x)〉 = 0 , n ≥ 0 .(9)

Corollary 2. Under the conditions of Theorem 1, the coefficients of the

three-term recurrence relation verified by the MOPS’s {Pn}n≥0, {P ∗n(c; ·)}n≥0
and {Qn}n≥0 are related by

β0 = γ̃1 + c , βn = γ̃2n+1 + γ̃2n + c, n ≥ 1 ,

γn = γ̃2n−1 γ̃2n , n ≥ 1 ,

β∗n = γ̃2n+1 + γ̃2n+2 + c , n ≥ 0 ,

γ∗n = γ̃2n γ̃2n+1 , n ≥ 1 .

(10)
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In order to answer question c), we must analyze under what conditions the

linear functional v can be represented by some distribution function σ̃ provided

that the given linear functional u is represented by some distribution function

σ. In particular, we also must give the relation between the supports of dσ and

dσ̃. We will obtain an answer for these questions via the Markov theorem and

the Stieltjes inversion formula, by using the technique described in the previous

section. We begin by establishing some preliminary lemmas.

Lemma 3. Under the conditions of Theorem 1,

Q
(1)
2n−1(x) = (x− a)P

(1)
n−1(T (x))

holds for all n = 1, 2, ... .

Proof: Put Pn(x) ≡
∑n

i=0 a
(n)
i xi, so that

Pn(x)− Pn(y) = (x−y)
n−1∑

i=0

i∑

j=0

a
(n)
i+1 x

i−j yj .(11)

Then, Pn(T (x))−Pn(T (y)) = [T (x)− T (y)] ∑n−1
i=0

∑i
j=0 a

(n)
i+1 T

i−j(x)T j(y), and

taking into account that T (x)− T (y) = (x− y) [(x−a) + (y−b)], it follows that,
for n ≥ 1,

Q
(1)
2n−1(x) =

1

v0

〈
vy,

Q2n(x)−Q2n(y)

x− y

〉
=

1

u0

〈
vy,

Pn(T (x))− Pn(T (y))

x− y

〉

=
1

u0

〈
vy, [(x−a) + (y−b)]

n−1∑

i=0

i∑

j=0

a
(n)
i+1 T

i−j(x)T j(y)

〉

=
1

u0

n−1∑

i=0

i∑

j=0

a
(n)
i+1 T

i−j(x)
[
(x−a) 〈vy, T j(y)〉+ 〈vy, (y − b)T j(y)〉

]

= (x−a) 1

u0

n−1∑

i=0

i∑

j=0

a
(n)
i+1 T

i−j(x) 〈uy, yj〉

= (x−a) 1

u0

〈
uy,

n−1∑

i=0

i∑

j=0

a
(n)
i+1 T

i−j(x) yj
〉

= (x−a) 1

u0

〈
uy,

Pn(T (x))− Pn(y)

T (x)− y

〉
, by (11)

= (x−a)P (1)n−1(T (x)) .
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Lemma 4. Let a, b, c ∈ R, T (x) ≡ (x−a) (x−b) + c and σ(x) a distribution

function such that supp(dσ) ⊂ [ξ, η], with −∞ < ξ < η ≤ +∞. If c ≤ ξ, then

∫

T−1(]ξ,η[)
x2n

|x− a|
T ′(x)

dσ(T (x)) < +∞ , n = 0, 1, 2, ... .(12)

Proof: Put σT (x) :=σ(T (x)), ∆ :=(b− a)2 − 4c and notice that

T−1(]ξ, η[) =
]
a+b
2 − s, a+b

2 − r
[
∪
]
a+b
2 + r, a+b

2 + s
[
,

with

r :=
√
ξ + ∆

4 , s :=
√
η + ∆

4 .

By expanding x2n =
∑

j [anj + bnj(x − b)]T j(x), one see that, in order to prove

(12) it is sufficient to show that

∫

T−1(]ξ,η[)
|T (x)|n |x− a|

T ′(x)
dσT (x) < +∞(13)

and ∫

T−1(]ξ,η[)
|x− b| |T (x)|n |x− a|

T ′(x)
dσT (x) < +∞(14)

for all n = 0, 1, 2, ... . For a fixed n, consider the functions f+n and f−n defined by

f±n (y) :=





|y|n
(
1± b− a

2
√
y +∆/4

)
, y > −∆4 ,

∣∣∣
∆

4

∣∣∣
n
, y = −∆4 .

By hypothesis, we have −∆4 ≤ T (a) = c ≤ ξ. Hence, if ξ = −∆4 then necessarily

c = −∆4 , so that a = b and f±n (y) = |yn| for y ≥ ξ ≡ −∆4 ; if ξ > −∆4 we have

0 < r =
√
ξ +∆/4 ≤

√
y +∆/4 for y ≥ ξ, so that 1/

√
y +∆/4 ≤ 1/r for y ≥ ξ.

In any case, we get

|f±n (y)| ≤
(
1 +

|b− a|
2r

)
|y|n for y ≥ ξ .

Therefore, since yn ∈ L1(]ξ, η[;σ) — because σ is a distribution function —, we

conclude that also fn ∈ L1(]ξ, η[;σ), and then there exists

I±n :=

∫ η

ξ
|f±n (y)| dσ(y) =

∫ η

ξ
|y|n

∣∣∣∣1±
b− a

2
√
y +∆/4

∣∣∣∣ dσ(y)(15)
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(notice that f±n (y) is continuous for y ∈ [ξ,+∞[). Now, T (x) increases for x > a+b
2

and decreases for x < a+b
2 , and

2(x− a)

T ′(x)
= 1 +

b− a

2
√
T (x) + ∆/4

if x > a+b
2 ,

2(x− a)

T ′(x)
= 1− b− a

2
√
T (x) + ∆/4

if x < a+b
2 .

Hence, if we make the substitution x = a+b
2 ±

√
y +∆/4 in the integral on the

right-hand side of (15),

+∞ > I±n =

∫ a+b
2
±s

a+b
2
±r

|T (x)|n
∣∣∣∣
2(x− a)

T ′(x)

∣∣∣∣ dσT (x) ≥ 0 ,

i.e., (13) follows. To prove (14), define

gn(y) :=





(y − c) |y|n
2
√
y +∆/4

, y > −∆4 ,

0, y = −∆4 .

Since c ≤ ξ, then for y ≥ ξ it holds |y − c| = y − c ≤ y + ∆
4 . Hence

|gn(y)| ≤
|y|n
2

√

y +
∆

4
≤ 1

4

(
y2n + y +

∆

4

)
for y ≥ ξ .

It follows that gn ∈ L1(]ξ, η[;σ) and there exists

Jn :=

∫ η

ξ
|gn(y)| dσ(y) =

∫ η

ξ

(y−c) |y|n
2
√
y +∆/4

dσ(y)(16)

(notice also that gn(y) is continuous for y ∈ [−∆4 ,+∞[). Now, as before, making

the substitutions x = a+b
2 ±

√
y +∆/4 we get

+∞ > Jn =

∫ a+b
2
±s

a+b
2
±r

[T (x)− c] |T (x)|n
2 |x− a+b

2 |
dσ(T (x))

=

∫ a+b
2
±s

a+b
2
±r

|x− b| |T (x)|n
∣∣∣∣
x− a

T ′(x)

∣∣∣∣ dσT (x) ,

which completes the proof.
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Assume now that the moment sequence {un}n≥0, corresponding to the linear

functional u in Theorem 1, is uniquely determined by some distribution function

σ. Then, up to the points of discontinuity of σ(x), for every real x0

+∞∑

k=1

p2k(x0) = +∞

holds. Now, using the relations in Corollary 2, for every real number t0 we have

+∞∑

k=1

q2k(t0) ≥
+∞∑

k=1

q22k(t0) =
+∞∑

k=1

p2k(T (t0)) ,

where qk(x) :=(v0 γ̃1 γ̃2 · · · γ̃k)−1/2Qk(x). Hence if x0 is a point of continuity of

σ and it is known a priori that {Qn}n≥0 is orthogonal with respect to some

distribution function σ̃, then the points t0 such that x0 = T (t0) are points of

continuity of σ̃. Therefore, we conclude that if σ(t) is uniquely determined by the

moment sequence {un}n≥0 then σ̃(t) is also uniquely determined by the moment

sequence {vn}n≥0 corresponding to v. In these conditions, by Markov Theorem

and Lemma 3, we can write

F (z; σ̃) = −v0 lim
n→∞

Q
(1)
2n−1(z)

Q2n(z)

= −u0 lim
n→∞

(z−a)P (1)n−1(T (z))

Pn(T (z))
= (z−a)F (T (z);σ) ,

(17)

which gives the relation between F ( · ; σ̃) and F ( · ;σ).
We are now able to give an answer to the question c).

Theorem 5. Let {Pn}n≥0 be a MOPS with respect to some uniquely de-
termined distribution function σ(x) and let [ξ, η] (bounded or not) be the true

interval of orthogonality of {Pn}n≥0. Let b be a fixed real number, T (x) ≡
(x−a) (x−b) + c a real polynomial of degree two and put ∆ :=(b− a)2 − 4c. Let

{Qn}n≥0 be a sequence of polynomials such that

Q1(x) = x− b , Q2n(x) = Pn(T (x))

for all n = 0, 1, 2, ... . Then, {Qn}n≥0is a MOPS with respect to a positive definite
linear functional if and only if

c ≤ ξ , Q2n+1(x) = (x−b)P ∗n(c;T (x))(18)

holds for all n = 0, 1, 2, ... .
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In these conditions, {Qn}n≥0 is orthogonal with respect to the uniquely de-
termined distribution function dσ̃

dσ̃(x) =
|x− a|
T ′(x)

dσ(T (x)) , r ≤ |x− a+b
2 | ≤ s ,(19)

where

r :=
√
ξ + ∆

4 , s :=
√
η + ∆

4 .

Proof: First assume that conditions (18) hold. Since, for each positive

integer number n, the zeros of Pn are in ]ξ, η[, then the condition c ≤ ξ implies

that Pn(c) 6= 0 for all n = 0, 1, 2, ... . From Theorem 1 it follows that {Qn}n≥0
is a MOPS. To conclude that it is a MOPS with respect to a positive measure,

we only need to show that β̃n is real and γ̃n+1 is positive for every n = 0, 1, 2, ...

(these notations are in accordance with Theorem 1). It is clear from (7) that β̃n
is real and, since sgnPn(x) = (−1)n for x ≤ ξ, so that Pn(c)/Pn−1(c) < 0, then

from (8) we deduce γ̃n > 0 for all n = 1, 2, ... .

Conversely, assume that {Qn}n≥0 is a MOPS with respect to a positive definite

linear functional. From Theorem 1 it follows that Q2n+1(x) is given as in (18).

Furthermore, Theorem 1 also gives Pn(c) 6= 0 for all n = 0, 1, 2, ... and the

relations in Corollary 2 hold. They will be used to show that c ≤ ξ. In fact, we

will prove [6, p. 108]

(i) c < βn for n = 0, 1, 2, ... ,

(ii) {αn(c)}n≥1 is a chain sequence ,

where

αn(x) :=
γn

(βn−1− x) (βn − x)
, n = 1, 2, ... .

Since, by hypothesis, {Qn}n≥0 is a MOPS with respect to a positive definite

linear functional, then γ̃n > 0 (n ≥ 1), and (i) follows from Corollary 2. In order

to prove (ii) define a sequence of parameters {mn(c)}n≥0 by

mn(c) := 1− Pn+1(c)

(c−βn)Pn(c)
≡ γn Pn−1(c)

(c−βn)Pn(c)
, n = 0, 1, ... (P−1 ≡ 0)

(which is well defined according to (i) and the conditions Pn(c) 6= 0 for all n ≥ 0).

Now, we get

αn(c) = mn(c) [1−mn−1(c)] , n = 1, 2, ... ,(20)
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and also, by (8) and (i), for n ≥ 1 it holds mn(c) = 1−Pn+1(c) / [(c−βn)Pn(c)] =
1−γ̃2n+1/(βn−c) < 1 and mn(c) = γnPn−1(c) / [(c−βn)Pn(c)] = γ̃2n/(βn−c) > 0,

so that

m0(c) = 0 , 0 < mn(c) < 1, n = 1, 2, ... .(21)

It follows from (20) and (21) that {αn(c)}n≥1 is a chain sequence, {mn(c)}n≥0
being the corresponding minimal parameter sequence (cf. [6, p. 110]). Thus c ≤ ξ.

Now, under such conditions, let dσ̃ be the distribution function with respect

to which {Qn}n≥0 is orthogonal. According to (17), for fixed ε > 0 and x ∈ R,

we have

F (x+ iε; σ̃)− F (x− iε; σ̃) =

∫ η

ξ

(
x− a+ iε

t− T (x+ iε)
− x− a− iε

t− T (x− iε)

)
dσ(t)

= i

∫ η

ξ
fε(t, x) dσ(t) ,

where

fε(t, x) :=
2ε[(x− a)2 − c+ ε2 + t]

[T (x) + ε2 − t]2 + 4 ε2(t+∆/4)
.

Thus

fε(t, x) =

(
1 +

b− a

2
√
t+∆/4

)
ε

(
x− a+b

2 −
√
t+∆/4

)2
+ ε2

+

(
1− b− a

2
√
t+∆/4

)
ε

(
x− a+b

2 +
√
t+∆/4

)2
+ ε2

for t > −∆4 ,

and

fε(−∆4 , x) = 2 ε




(b− a) (x− a+b
2 )

[(
x− a+b

2

)2
+ ε2

]2 +
1

(
x− a+b

2

)2
+ ε2


 .

Hence, since ξ ≥ c ≥ −∆4 , we have

∫ η

ξ
fε(t, x) dσ(t) =

∫ η

ξ

(
1 +

b− a

2
√
t+∆/4

)
ε

(
x− a+b

2 −
√
t+∆/4

)2
+ ε2

dσ(t)

+

∫ η

ξ

(
1− b− a

2
√
t+∆/4

)
ε

(
x− a+b

2 +
√
t+∆/4

)2
+ ε2

dσ(t) ,

where it must be understood that the terms b−a

2
√
t+∆/4

do not appear in this

expression if ξ=−∆4 (remark that the condition c ≤ ξ = −∆4 also implies a = b).
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In each of these integrals, we make the change of variables u =
√
t+∆/4, so that

t = T (a+b2 ± u). Thus

∫ η

ξ
fε(t, x) dσ(t) =

∫ s

r

(
1 +

b− a

2u

)
ε

(
x−

(
a+b
2 + u

))2
+ ε2

dσ
(
T (a+b2 + u)

)

+

∫ s

r

(
1− b− a

2u

)
ε

(
x−

(
a+b
2 −u

))2
+ ε2

dσ
(
T (a+b2 − u)

)
.

Now, in the first of these integrals we make the substitution v = a+b
2 + u and in

the second one v = a+b
2 − u, which leads to

∫ η

ξ
fε(t, x) dσ(t) = 2

∫ a+b
2
+s

a+b
2
+r

gε(x, v) dσT (v)− 2

∫ a+b
2
−r

a+b
2
−s

gε(x, v) dσT (v)(22)

where

σT (v) :=σ(T (v)) , gε(x, v) :=
ε

(x− v)2 + ε2
v − a

T ′(v)

(notice that if ξ = −∆4 , i.e., r = 0, then the factor (v− a)/T ′(v) does not appear
in the definition of gε). Denote

S+ :=
]
a+b
2 + r, a+b

2 + s
[
, S− :=

]
a+b
2 − s, a+b

2 − r
[

and let ]t1, t2[ (with t1 < t2) be an open interval (bounded or not) such that

either

a+b
2 + r ≤ t1 < t2 ≤ a+b

2 + s or a+b
2 − s ≤ t1 < t2 ≤ a+b

2 − r .

Then the following holds:

(i) for almost all values of v in S±, the function gε(x, v) is continuous with

respect to x in the open interval ]t1, t2[;

(ii) |gε(x, v)| ≤ Gε(v) :=(v − a)/ε T ′(v) for all x ∈ ]t1, t2[ and Gε(v) is an

integrable function over S± with respect to σT (v) (by Lemma 4); and

(iii) if t1 or t2 is infinite (which can occur only if s = +∞, i.e., η = +∞),

so that ]t1, t2[ = ]t1,+∞[ if a+b
2 + r ≤ t1 < t2, or ]t1, t2[ = ]−∞, t2[ if

t1 < t2 ≤ a+b
2 − r, we have, in the first case,

∫ +∞

t1
|gε(x, v)| dx = lim

t2→+∞

∫ t2

t1

ε

(x−v)2 + ε2
dx

v − a

T ′(v)

=

(
π

2
− arctan

t1− v

ε

)
v − a

T ′(v)
≤ π

v − a

T ′(v)
=: G1(v) ,
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with G1(v) an integrable function over S+ with respect to σT (v), and, in

the same way, for the second case

∫ t2

−∞
|gε(x, v)| dx ≤ G1(v) ,

G1(v) being also an integrable function over S− with respect to σT (v).

Therefore, integrating from t1 to t2 both sides of (22) with respect to x,

(i)–(iii) can be used to justify a change in the order of integration (cf. Cramér

[9, pp. 68,69]), and in this way we get

∫ t2

t1

[∫ η

ξ
fε(t, x) dσ(t)

]
dx = 2

∫

S+

ht1,t2(ε, v) dσT (v)− 2

∫

S−
ht1,t2(ε, v) dσT (v) ,

where

ht1,t2(ε, v) :=

∫ t2

t1
gε(x, v) dx =

(
arctan

t2− v

ε
− arctan

t1− v

ε

)
v − a

T ′(v)
.

Notice that

lim
ε→0+

ht1,t2(ε, v) =

(
π χ]t1,t2[(v) +

π

2
χ{t1,t2}(v)

)
v − a

T ′(v)
,(23)

so that the functions h+t1,t2(ε, v) and h
−
t1,t2(ε, v) defined by

h±t1,t2(ε, v) :=





ht1,t2(ε, v), v ∈ S± ε > 0,

lim
ε→0+

ht1,t2(ε, v), v ∈ S± ε = 0 .

satisfy:

(i) for almost all values of v in S± , h±t1,t2(ε, v) is right-continuous with respect

to ε in the point ε = 0; and

(ii) |h±t1,t2(ε, v)| ≤ G2(v) :=π(v − a)/T ′(v) for all ε ≥ 0 and v ∈ S±, G2(v)

being an integrable function over S± with respect to σT (v).

Therefore, it holds [9, p. 67]

lim
ε→0+

∫

S±
ht1,t2(ε, v) dσT (v) = lim

ε→0+

∫

S±
h±t1,t2(ε, v) dσT (v) =

∫

S±
h±t1,t2(0, v) dσT (v) .

Now, if t1 and t2 are points of continuity of the distribution function defined by
|v−a|
T ′(v) dσT (v) (which is a distribution function by Lemma 4), then, according to
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(23), we have
∫

S+

h+t1,t2(0, v) dσT (v) =

∫

S+

π χ]t1,t2[(v)
v − a

T ′(v)
dσT (v)

=





0 if a+b
2 −s≤ t1<t2≤ a+b

2 −r,

π

∫ t2

t1

v − a

T ′(v)
dσT (v) if a+b

2 +r≤ t1<t2≤ a+b
2 +s ,

and

∫

S−
h−t1,t2(0, v) dσT (v) =





π

∫ t2

t1

v − a

T ′(v)
dσT (v) if a+b

2 −s≤ t1<t2≤ a+b
2 −r,

0 if a+b
2 +r≤ t1<t2≤ a+b

2 +s .

Thus, from the Stieltjes inversion formula and using the previous conclusions,

at the points t1 and t2 of continuity of σ̃ and |v−a|
T ′(v) dσT (v), we get

σ̃(t2)− σ̃(t1) = lim
ε→0+

1

2πi

∫ t2

t1

[
F (x+iε; σ̃)− F (x−iε; σ̃)

]
dx

= lim
ε→0+

1

2π

∫ t2

t1

[∫ η

ξ
fε(t, x) dσ(t)

]
dx

= lim
ε→0+

1

π

∫

S+

ht1,t2(ε, v) dσT (v)−
1

π

∫

S−
ht1,t2(ε, v) dσT (v)

=
1

π

∫

S+

h+t1,t2(0, v) dσT (v)−
1

π

∫

S−
h−t1,t2(0, v) dσT (v)

=





∫ t2

t1

v − a

T ′(v)
dσT (v), if a+b

2 +r≤ t1<t2≤ a+b
2 +s,

−
∫ t2

t1

v − a

T ′(v)
dσT (v) if a+b

2 −s≤ t1<t2≤ a+b
2 −r .

and formula (19) follows.

Remark 1. The support of dσ̃ is contained in the union of two intervals

(eventually a unique interval if ξ=−∆4 ):

supp(dσ̃) ⊂
[
a+b
2 − s, a+b

2 − r
]
∪
[
a+b
2 + r, a+b

2 + s
]
= T−1([ξ, η]) .

Corollary 6. Under the conditions of Theorem 5, if σ is absolutely contin-

uous, so that dσ(x) = w(x) dx, then σ̃ is absolutely continuous and dσ̃(x) =

w̃(x) dx where

w̃(x) := |x− a|w(T (x)) , r ≤ |x− a+b
2 | ≤ s .(24)
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Proof: By (19) we get

dσ̃

dx
(x) =




(x− a)w(T (x)) if a+b

2 + r < x < a+b
2 + s,

−(x− a)w(T (x)) if a+b
2 − s < x < a+b

2 − r .

Taking into account that c ≤ ξ, we deduce (24).

Remark 2. Theorem 5 agrees with the results of Geronimo and Van Assche.

In fact, consider the Borel measures µ0 and µ induced, respectively, by σ and σ̃,

and let A be a Borel set in S ≡ supp(dσ). Then, if T−11 (x) and T−12 (x) stand

for the two possible inverse functions for appropriate restrictions of T (x), so that

T1(x) = T (x) for x ∈ ]−∞, a+b2 ] and T2(x) = T (x) for x ∈ [a+b2 ,+∞[ , then we

have

µ(T−1i (A)) =

∫

T−1
i
(A)

dσ̃(x) =

∫

T−1
i
(A)

(−1)i x− a

T ′(x)
dσ(T (x)) , i = 1, 2 ,

which leads, by means of the change of variable t = Ti(x) (notice that T1(x) is

decreasing and T2(x) is increasing), to

µ(T−1i (A)) =

∫

A
wi(t) dµ0(t), wi(t) :=

T−1i (t)− a

T ′(T−1i (t))
, i = 1, 2 .(25)

This was the formula (corresponding to the quadratic case) used by Geronimo

and Van Assche to start with the approach presented in [11, p. 561].

Remark 3. One see that, at least for the quadratic case, it is not need to

impose, a priori, the restrictions “T with distinct zeros” and “supp(dσ) compact”,

considered in [11]. Furthermore, in [11] it is assumed the condition |T (yi)| ≥ 1 on

the zeros yi of T
′, which in our case corresponds to the condition T ( a+b2 ) ≡ −∆4 /∈

]ξ, η[. We have shown that c ≤ ξ is a necessary condition for the orthogonality of

{Qn}n≥0, which implies −∆4 ≤ ξ (because c = T (a) ≥ −∆4 ). Hence −∆4 /∈ ]ξ, η[

must hold necessarily for the orthogonality of {Qn}n≥0.

3 – Problem P2

While for the solution of problem P1 it plays a remarkable role the sequence

{P ∗n(c; ·)}n≥0 of the monic kernel polynomials of K-parameter c corresponding to

the sequence {Pn}n≥0, for the solution of P2 it is the sequence {Pn( · ;λ)}n≥0 of
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the so called co-recursive polynomials that plays the key role. These polynomials,

which are defined by the relation

Pn(x;λ) :=Pn(x)− λP
(1)
n−1(x)

(λ ∈ C), were introduced and studied by T.S. Chihara in [7] (we notice that

some generalizations of these co-recursive polynomials were provided by H.A. Slim

[24] and F. Marcellán, J.S. Dehesa, A. Ronveaux [15]). The polynomials of the

sequence {Pn( · ;λ)}n≥0 satisfy the same recurrence relation (3) as {Pn}n≥0, but
with different initial conditions, namely,

Pn+1(x;λ) = (x−βn)Pn(x;λ)− γn Pn−1(x;λ) , n = 1, 2, ...,

P0(x;λ) = 1 , P1(x;λ) = x− (β0+λ) .
(26)

Therefore, {Pn(·;λ)}n≥0 is a MOPS with respect to some linear functional, which

we will denote by u(λ).

If λ is real and u is a positive definite linear functional (and then so is

u(λ) as well as the linear functional corresponding to the associated polyno-

mials {P (1)n }n≥0), then denoting by xnj , x
(1)
nj and xnj(λ) (j=1, ..., n) the zeros of

Pn, P
(1)
n and Pn( · ;λ), respectively, ordered in such a way that xn,j < xn,j+1, it

was stated in [7] that

λ<0 ⇒ xn,j(λ)<xn,j<x
(1)
n,j<xn,j+1(λ)<xn,j+1, j=1, ..., n−1 .(27)

Therefore, denoting by [ξ(λ), η(λ)] the true interval of orthogonality of

{Pn( · ;λ)}n≥0, it follows that, for λ < 0, ξ(λ) ≤ ξ < η(λ) ≤ η. Let us prove

that ξ(λ) ≥ ξ + λ. We recall that, in general, the coefficient of xn−1 of the poly-

nomial Pn of an MOPS {Pn}n≥0 satisfying a three-term recurrence relation such

as (3) is equal to −∑n−1
j=0 βj (cf. [6, p. 19]) and then

n∑

j=1

xnj =
n−1∑

j=0

βj , n = 1, 2, ... .(28)

Hence, using (28) and the corresponding property for Pn( · ;λ), we can write∑n
j=1 xnj(λ) = (β0 + λ) +

∑n−1
j=1 βj = λ +

∑n−1
j=0 βj = λ +

∑n
j=1 xnj , so that,

taking into account (27),

x11(λ) = λ+ x11 , xn1(λ) = λ+ xn1 +
n∑

j=2

(xnj − xnj(λ)) > λ+ xn1, n ≥ 2 .
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Therefore, ξ(λ) = limn→∞ xn1(λ) ≥ λ+ limn→∞ xn1 = λ+ ξ. We conclude that,

in general, the true interval of orthogonality of {Pn( · ;λ)}n≥0 is contained in

[ξ + λ, η], if λ < 0. However, for any λ, it was proved in [7] that the zeros of

Pn( · ;λ) are all in ]ξ, η[ for all n if and only if

lim
n→+∞

Pn(ξ)

P
(1)
n−1(ξ)

≡ A ≤ λ ≤ B ≡ lim
n→+∞

Pn(η)

P
(1)
n−1(η)

,

where A (B) must be replaced by −∞ (+∞) in case ξ = −∞ (η = +∞).

The co-recursive polynomials are important in order to establish the regularity

conditions for a linear functional associated with an inverse polynomial modifica-

tion of a regular functional (Maroni, [17]). In fact, if u is regular, for fixed λ, c ∈ C
and being u(λ, c) defined by the distributional equation (x − c)u(λ, c) = −λu,

i.e.,

u(λ, c) = u0 δc − λ(x− c)−1 u ,(29)

where δc stands for the Dirac measure at the point c and (x− c)−1u is the linear

functional defined by

〈
(x−c)−1 u, f

〉
:=

〈
u,

f(x)− f(c)

x− c

〉
,

it was shown in [17] that u(λ, c) is regular if and only if λ 6= 0 and Pn(c;λ) 6= 0 for

all n=0, 1, 2, ... . In such conditions, the corresponding MOPS, {Pn( · ;λ, c)}n≥0,
is given by

Pn(x;λ, c) :=Pn(x)−
Pn(c;λ)

Pn−1(c;λ)
Pn−1(x) , n ≥ 0 .

For the set of the coefficients {βn(λ, c), γn+1(λ, c)}n≥0 of the corresponding three-

term recurrence relation we have the relations

β0(λ, c) = β0 + P1(c;λ) , βn(λ, c) = βn +
Pn+1(c;λ)

Pn(c;λ)
− Pn(c;λ)

Pn−1(c;λ)
,(30)

γ1(λ, c) = λP1(c;λ) , γn+1(λ, c) = γn
Pn+1(c;λ)Pn−1(c;λ)

P 2n(c;λ)
,(31)

for n = 1, 2, ... .

Theorem 7. Let {Pn}n≥0 be an MOPS and {Qn}n≥0 a simple set of monic
polynomials such that

Q2(a) = λ , Q2n+1(x) = (x− a)Pn(T (x)), n ≥ 0 ,
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where T (x) is a monic polynomial of degree 2 and a, λ ∈ C. Without loss of
generality, write

T (x) = (x− a) (x− b) + c .

Then, {Qn}n≥0 is a MOPS if and only if

λ 6= 0 , Pn(c;λ) 6= 0, Q2n(x) = Pn(T (x);λ, c) , n ≥ 0 .(32)

In such conditions, if {Pn}n≥0 satisfies the three-term recurrence relation (3), then
the coefficients β̃n and γ̃n for the corresponding three-term recurrence relation

for {Qn}n≥0 can be determined according to the relations

β̃2n = a, β̃2n+1 = b , n ≥ 0 ,(33)

γ̃1 = −λ, γ̃2n = − Pn(c;λ)

Pn−1(c;λ)
, γ̃2n+1 = −γn

Pn−1(c;λ)

Pn(c;λ)
, n ≥ 1 .(34)

Moreover, if {Pn}n≥0 is orthogonal with respect to the linear functional u, then
{Qn}n≥0 is orthogonal with respect to a linear functional v defined on the basis
{Tn(x), (x−a)T n(x)}n≥0 of P by the relations

〈v, Tn(x)〉 = 〈u(λ, c), xn〉, 〈v, (x−a)T n(x)〉 = 0 , n ≥ 0 .(35)

Proof: Expand the polynomial T as

T (x) = x2 + p x+ q , p :=−(a+ b), q := ab+ c .

Assume that {Qn}n≥0 is a MOPS. Thus, it satisfies a three-term recurrence re-

lation

xQn(x) = Qn+1(x) + β̃nQn(x) + γ̃nQn−1(x) , n = 1, 2, ... ,

Q0(x) = 1 , Q1(x) = x− β̃0 ,
(36)

with γ̃n 6= 0 for n ≥ 1. It is clear that β̃0 = a and γ̃1 = −λ. Then λ 6= 0. In the

three-term recurrence relation (3) for {Pn}n≥0 replace x by x2+ px+ q and then

multiply by x−a, so that

(x2+px+q)Q2n+1(x) = Q2n+3(x) + βnQ2n+1(x) + γnQ2n−1(x) , n≥0 .(37)

Now, use successively (36) to expand xQ2n+1(x) and x2Q2n+1(x) as a linear

combination of the Qi(x) and then substitute the obtained expressions in the left

hand side of (37). This yields a linear combination of elements of the sequence
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{Qn}n≥0 which vanishes identically. Therefore, since this sequence is a basis for

P, we find the following relations:

β̃2n+2 + β̃2n+1 + p = 0 , n ≥ 0 ,(38)

γ̃2n+2 + β̃22n+1 + γ̃2n+1 + p β̃2n+1 + q = βn , n ≥ 0 ,(39)

β̃2n+1 + β̃2n + p = 0 , n ≥ 0 ,(40)

γ̃2n γ̃2n+1 = γn , n ≥ 1 .(41)

Combining (40) (after the change of indices n → n + 1) with (38) it leads to

β̃2n+3= β̃2n+1 for n≥0, so that β̃2n+1= β̃1=b (n≥0) and, consequently, from (38),

β̃2n = −b− p = a (n≥0). Hence, we can rewrite (39) as γ̃2n+2 + γ̃2n+1 = βn − c

(n≥0), or, according to (41),

γ̃2n+2 +
γn
γ̃2n

= βn− c , n ≥ 1 .(42)

Now, define recurrently a sequence {yn}n≥0 by

y0 = 1 , yn+1 = −γ̃2n+2 yn, n ≥ 0 .

Remark that yn 6= 0 for all n ≥ 0, hence γ̃2n+2 = −yn+1/yn for n ≥ 0 ; if we

substitute in (42), we can deduce

yn+1 = (c−βn) yn − γn yn−1 , n ≥ 1 .(43)

For n = 0, we have y1 = −γ̃2 = −(β0 − c− γ̃1) = −(β0 − c+ λ), so that

y0 = 1 , y1 = c− (β0 + λ) .(44)

It follows from (43) and (44) that yn = Pn(c;λ) for n ≥ 0 and, therefore,

Pn(c;λ) 6= 0 , n ≥ 0 .

Furthermore, we have

γ̃2n+2=−
yn+1
yn

=−Pn+1(c;λ)
Pn(c;λ)

, γ̃2n+3=
γn+1
γ̃2n+2

=−γn+1
Pn(c;λ)

Pn+1(c;λ)
, n ≥ 0 .

Now, using these relations, the change of indices n → 2n in the recurrence

relation (36) yields

(x−a)Q2n(x) = (x−a)Pn(T (x))−
Pn(c;λ)

Pn−1(c;λ)
(x−a)Pn−1(T (x)) , n ≥ 0 ,
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and then the expression for Q2n(x) as in (32) follows. Thus, conditions (32) are

necessary for the orthogonality of the sequence {Qn}n≥0. We also have proved

that relations (33) and (34) hold.

Conversely, it is straightforward to verify that conditions (32) are sufficient in

order to guarantee that {Qn}n≥0 be a MOPS. For that, define complex numbers

β̃n and γ̃n by formulas (33) and (34). These parameters are well defined, according

to the hypothesis that Pn(c;λ) 6= 0 for all n ≥ 0, and, in addition, γ̃n 6= 0 for all

n ≥ 1. Then {Qn}n≥0 satisfies the three-term recurrence relation (36), so that,

by Favard’s theorem, it is a MOPS.

Finally, if conditions (32) are satisfied, we prove that {Qn}n≥0 is orthogonal

with respect to the linear functional v defined by (35). For this, since {Qn}n≥0
is a MOPS, it is sufficient to show that

〈v, 1〉 6= 0 , 〈v, Qn〉 = 0, n ≥ 1 .

If we set n = 0 in the first relation of (35), then 〈v, 1〉 = 〈u(λ, c), 1〉 6= 0 follows

because u(λ, c) is regular. Next, notice that

〈
v, (x−a) f(T (x))

〉
= 0 ,

〈
v, f(T (x))

〉
=
〈
u(λ, c), f(x)

〉
,

for all f ∈P. Hence 〈v, Q2n+1(x)〉 = 〈v, (x−a)Pn(T (x))〉 = 0 and 〈v, Q2n+2(x)〉 =
〈v, Pn+1(T (x);λ, c)〉 = 〈u(λ, c), Pn+1(x;λ, c)〉 = 0 holds for n= 0, 1, 2, ..., which

completes the proof.

Corollary 8. Under the conditions of Theorem 7, the coefficients of the three-

term recurrence relation verified by the MOPS’s {Pn}n≥0, {Pn( · ;λ, c)}n≥0 and
{Qn}n≥0 are related by

β0(λ, c) = γ̃1 + c , βn(λ, c) = γ̃2n+1 + γ̃2n + c, n ≥ 1 ,

γn(λ, c) = γ̃2n−1 γ̃2n , n ≥ 1 ,

βn = γ̃2n+1 + γ̃2n+2 + c , n ≥ 0 ,

γn = γ̃2n γ̃2n+1 , n ≥ 1 .

(45)

In order to provide an answer for question c) in P2, we establish some pre-

liminar lemmas.

Lemma 9. Under the conditions of Theorem 7,

Q
(1)
2n−1(x) = (x−b)P (1)n−1(T (x);λ, c) , n = 1, 2, ... .
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Proof: We begin by putting Pn(x;λ, c) ≡
∑n

i=0 a
(n)
i xi and then, mutatis

mutandis, we follow the same steps as in the proof of Lemma 3.

Lemma 10. Under the conditions of Lemma 4, if c ≤ ξ and
∫ η
ξ
dσ(x)
|x−c| <+∞,

then ∫

T−1(]ξ,η[)
x2n

dσ(T (x))

|x−a|T ′(x) < +∞ , n = 0, 1, 2, ... .(46)

Proof: First, assume c < ξ. Then, we can write

∫

T−1(]ξ,η[)
x2n

dσ(T (x))

|x−a|T ′(x) =

∫

T−1(]ξ,η[)

x2n

|T (x)−c|
|x−b|
T ′(x)

dσ(T (x))

≤ 1

ξ−c

∫

T−1(]ξ,η[)
x2n

|x−b|
T ′(x)

dσ(T (x)) < +∞

where the last inequality follows from Lemma 4, interchanging the roles of a and

b. Suppose now that c = ξ. Since we can write x2n =
∑

j [anj + bnj(x−a)]T j(x),

to prove (46) it is sufficient to show that

∫

T−1(]ξ,η[)
|T (x)|n dσT (x)

|x−a|T ′(x) < +∞(47)

and ∫

T−1(]ξ,η[)
|T (x)|n dσT (x)

T ′(x)
< +∞(48)

for all n=0, 1, 2, ... . In fact, using

1

|T (x)−c|

(
1± a− b

2
√
T (x) + ∆/4

)
=

2

(x−a)T ′(x) , x ∈ T−1(]ξ, η[) ,

where we take the sign + if x > a+b
2 and the sign − if x < a+b

2 , we can verify

that
∫

T−1(]ξ,η[)
|T (x)|n dσ(T (x))

|x−a|T ′(x) ≤ 2

(
1+
|b−a|
2r

) ∫ η

ξ

|y|n
|y−c| dσ(y) < +∞ .

The last integral is finite since, for each fixed n, we can find nonnegative numbers

kj (j=0, ..., n+1) such that |y|n/|y− c| ≤ k0/|y− c|+
∑n

j=0 kj+1|y|j , and because
∫ η
ξ
dσ(x)
|x−c| <+∞. Hence (47) is proved. To prove (48), observe first that if ξ > −∆4

then a 6= b, hence 1/|T ′(x)| = 1/2
√
T (x) + ∆/4 ≤ 1/2r, so that

∫

T−1(]ξ,η[)
|T (x)|n dσ(T (x))

T ′(x)
≤ 1

r

∫ η

ξ
|y|n dσ(y) < +∞ ;
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and, if ξ = −∆4 then c = −∆4 and a = b, hence (x−a)T ′(x) = 2[T (x)−c] and
|T (x)|n|x− a| ≤ (|T (x)|2n + |x− a|2)/2 = (|T (x)|2n + |T (x)− c|)/2, so that

∫

T−1(]ξ,η[)
|T (x)|n dσ(T (x))

T ′(x)
=

∫

T−1(]ξ,η[)
|T (x)|n |x−a| dσ(T (x))

|x−a|T ′(x)

≤ 1

2

∫ η

ξ

(
1 +

|y|2n
|y−c|

)
dσ(y) < +∞ .

Remark 4. If c < ξ, then the condition
∫ η
ξ
dσ(x)
|x−c| < +∞ in (46) holds.

Theorem 11. Let {Pn}n≥0 be a MOPS with respect to some uniquely de-
termined distribution function dσ(x) and let [ξ, η] be the true interval of ortho-

gonality of {Pn}n≥0, with −∞ < ξ ≤ +∞. Let a and λ be fixed real numbers,
T (x) ≡ (x−a)(x−b)+c a real polynomial of degree two and put ∆ :=(b−a)2−4c.

Let {Qn}n≥0 be a sequence of polynomials such that

Q2(a) = λ , Q2n+1(x) = (x− a)Pn(T (x))

for all n=0, 1, 2, ... . Assume that one of the following two conditions hold:

(i) c ≤ ξ + λ;

(ii) c ≤ ξ, −∞ < lim
n→+∞

Pn(ξ)

P
(1)
n−1(ξ)

≡ A ≤ λ ≤ B ≡ lim
n→+∞

Pn(η)

P
(1)
n−1(η)

(with B ≡ +∞ if η = +∞).
Then, {Qn}n≥0is a MOPS with respect to a positive definite linear functional if
and only if

λ < 0 , Q2n(x) = Pn(T (x);λ, c) ,(49)

hold for all n=0, 1, 2, ... .

In these conditions, {Qn}n≥0 is orthogonal with respect to the uniquely de-
termined distribution function σ̃ defined as

dσ̃(x) =M δa(x)−
λ

|x−a|
dσ(T (x))

T ′(x)
, r < |x− a+b

2 | < s ,(50)

where

M :=u0 + λF (c;σ) ≥ 0 , r :=
√
ξ + ∆

4 , s :=
√
η + ∆

4 .

Proof: Suppose that {Qn}n≥0 is a MOPS with respect to a positive definite

linear functional. It follows immediately from Theorem 7 that λ = −γ̃1 < 0 and

Q2n+1(x) is given as in (49).
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Conversely, assume that conditions (49) hold. We will show that {Qn}n≥0 is
a MOPS with respect to a positive definite linear functional if (i) or (ii) hold.

Assume that (i) holds. Since, for λ < 0, the zeros of Pn( · ;λ) belong to ]ξ+λ, η[,

then the condition c ≤ ξ + λ implies that Pn(c;λ) 6= 0 for all n = 0, 1, 2, ... .

Hence, from Theorem 7, {Qn}n≥0 is a MOPS. Now, it is obvious from (33) that

β̃n is real for every n = 0, 1, 2, ... and, using again the fact that all the zeros

of Pn( · ;λ) are in ]ξ+λ, η[, so that sgnPn(x;λ) = (−1)n for x ≤ ξ + λ, then

Pn(c;λ)/Pn−1(c;λ) < 0 holds and (34) gives γ̃n > 0 for all n = 1, 2, ... . Thus,

{Qn}n≥0 is a MOPS with respect to a positive definite linear functional in the

case (i). Assume now that (ii) holds. Then, the zeros of Pn( · ;λ) are in ]ξ, η[,

and so the condition c ≤ ξ implies that Pn(c;λ) 6= 0 for all n = 0, 1, 2, ..., hence

{Qn}n≥0 is a MOPS. As before, we can show that β̃n is real and γ̃n > 0 for all n,

so that {Qn}n≥0 is a MOPS in the positive definite sense, also in situation (ii).

It remains to show that the distribution function, σ̃, with respect to which

{Qn}n≥0 is orthogonal is given by (50). As for problem P1, one can easily show

that σ̃ is uniquely determined. Now, observe that, since λ < 0, condition (i)

implies that c < ξ. On the other hand, conditions (ii) imply
∫ η
ξ
dσ(t)
|t−c| <+∞. In

fact, by hypothesis −∞ < lim
n→+∞

Pn(ξ)

P
(1)
n−1(ξ)

≡ A ≤ λ < 0, then lim
n→+∞

P
(1)
n−1(ξ)

Pn(ξ)
≡ 1

A ,

hence there exists the integral
∫+∞
−∞

dσ(t)
t−ξ ≡ F (ξ;σ) = −u0

A , so that
∫ η
ξ
dσ(t)
|t−c| =

∫ η
ξ
dσ(t)
t−c ≤

∫ η
ξ
dσ(t)
t−ξ < +∞. We have shown that the hypotheses of Lemma 10

are verified, in both situations (i) and (ii). Thus, we can define a distribution

function, σ1, such that

dσ1(x) :=
dσ(T (x))

|x−a|T ′(x) ,

with supp(dσ1) ⊂ T−1([ξ, η]). Let’s show that

F (z;σ1) =
1

z−a
[
F (T (z);σ)− F (c;σ)

]
, z ∈ C\T−1(]ξ, η[) .(51)

In fact, with the notations of the proof of Lemma 4, for z ∈ C\T−1(]ξ, η[) we can
write

F (z;σ1) =

∫ +∞

−∞

1

t−z dσ1(t) =
∫ +∞

−∞

1

t−z
dσ(T (t))

|t−a|T ′(t) = I1(z) + I2(z)(52)

where

I1(z) :=

∫ a+b
2
+s

a+b
2
+r

dσ(T (t))

(t−z) (t−a)T ′(t) , I2(z) :=−
∫ a+b

2
−r

a+b
2
−s

dσ(T (t))

(t−z) (t−a)T ′(t) .
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Now, by hypothesis, we have ξ ≥ c ≥ −∆/4. Hence, if ξ > −∆/4 then also

y > −∆/4 for y ∈ [ξ, η], and since for y > −∆/4 it holds

1

(z−a) (y−T (z)) =
1

z−a
1

y−c

− 1

2
(
z − a+b

2 −
√
y +∆/4

) (
b−a
2 +

√
y +∆/4

)√
y +∆/4

+
1

2
(
z − a+b

2 +
√
y +∆/4

) (
b−a
2 −

√
y +∆/4

)√
y +∆/4

,

integrating both sides of this equality with respect to σ(y) over [ξ, η] we get

1

z−a

∫ η

ξ

dσ(y)

y − T (z)
=

1

z−a

∫ η

ξ

dσ(y)

y − c
+ I1(z) + I2(z) .(53)

We have used the relations

T ′(t) = 2 sign(T ′(t))
√
T (t) + ∆/4 , t− a = b−a

2 + 1
2 T

′(t) ,

t− z = −(z − a+b
2 − 1

2 T
′(t)) , T (a+b2 ± r) = ξ , T (a+b2 ± s) = η ,

as well as the substitution y = T (t) in the above integrals I1 and I2 in order to

show that

I1(z) = −
1

2

∫ η

ξ

dσ(y)(
z − a+b

2 −
√
y +∆/4

) (
b−a
2 +

√
y +∆/4

)√
y +∆/4

,

I2(z) =
1

2

∫ η

ξ

dσ(y)(
z − a+b

2 +
√
y +∆/4

) (
b−a
2 −

√
y +∆/4

)√
y +∆/4

.

Therefore, (51) follows from (52) and (53), in case ξ > −∆/4. Consider now the

other possible case, ξ =−∆/4. Then, also c =−∆/4, so that a=b, (t−a)T ′(t) =
2[T (t)−c], t − z = a − z +

√
T (t)−c if t> a and t − z = a − z −

√
T (t)−c if

t < a. Hence, it follows directly from the definition of I1 and I2, again after the

change of variable y = T (t),

I1(z) = −
1

2

∫ η

ξ

dσ(y)

(z − a−√y−c) (y−c) , I2(z) = −
1

2

∫ η

ξ

dσ(y)

(z − a+
√
y−c) (y−c)

and, consequently,

F (z;σ1) = I1(z) + I2(z) = −
1

2

∫ η

ξ

(
1

z − a−√y−c +
1

z − a+
√
y−c

)
dσ(y)

y−c =

= (z − a)

∫ η

ξ

dσ(y)

(y−T (z)) (y−c) =
1

z−a

[∫ η

ξ

dσ(y)

y−T (z) −
∫ η

ξ

dσ(y)

y−c

]
,
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which completes the proof of (51). Now, we proceed by finding the relationship

between the Stieltjes functions F ( · ;σ) and F ( · ; σ̃). By Markov Theorem and

Lemma 9 we can write

F (z; σ̃) = (z − b)F (T (z);σλ,c) ,

where σλ,c is the distribution function with respect to which the sequence

{Pn( · ;λ, c)}n≥0 is orthogonal, and since (Marcellán [14, p. 116])

F (z;σλ,c) = −
1

z−c [u0 + λF (z;σ)] ,

we obtain

F (z; σ̃) = − u0
z−a −

λ

z−a F (T (z);σ) = −u0 + λF (c;σ)

z − a
− λF (z;σ1) .(54)

One see that σ̃ has, possibly, a mass point at x = a, with jumpM :=u0+λF (c;σ).

Combining (54) with (51), we obtain (50). Finally, we show that the jump M

is nonnegative. In fact, in situation (i), we have 0 < 1/(t − c) ≤ 1/(ξ − c), for

t ∈ [ξ, η], so that

0 ≤
∫ η

ξ

1

t−c dσ(t) ≤
∫ η

ξ

1

ξ−c dσ(t) =⇒ 0 ≤ F (c;σ) ≤ u0
ξ−c = −u0

λ

−λ
ξ−c ≤ −

u0
λ

(notice that 0 < −λ
ξ−c ≤ 1 because it holds 0 < −λ ≤ ξ−c), hence u0+λF (c;σ) ≥ 0;

and, in situation (ii), we deduce F (c;σ) ≤ F (ξ;σ) = −u0/A ≤ −u0/λ (remark

that −∞ < A ≤ λ < 0) and so, again, u0 + λF (c;σ) ≥ 0.

Remark 5. One can deduce that dσ̃ has a mass point at x = a, with jump

M ≡ u0 + λF (c;σ), by showing that

[+∞∑

n=0

q2n(a)
]−1

=M , qn(x) :=
(
v0

n∏

i=1

γ̃i
)−1/2

Qn(x) .

In fact, using the well known identity Pn(c)P
(1)
n−2(c) − Pn−1(c)P

(1)
n−1(c) =

−∏n−1
i=1 γi (n ≥ 1), it is straightforward to verify that Pn(c)Pn−1(c;λ) −

Pn(c;λ)Pn−1(c) = λ
∏n−1
i=1 γi (n≥1), and so we easily get Q2n(a) = Pn(c;λ, c) =

λ
∏n−1
i=1 γi/Pn−1(c;λ), Q2n+1(a) = 0. Therefore, since, by Theorem 7,

∏2n
i=1 γ̃i =
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λ
∏n−1
i=1 γi Pn(c;λ)/Pn−1(c;λ), we can write

+∞∑

n=0

q2n(a) =
1

v0
+
+∞∑

n=1

Q22n(a)

v0
∏2n
i=1γ̃i

=
1

u0
+

1

u0

+∞∑

n=1

λ
∏n−1
i=1 γi

Pn−1(c;λ)Pn(c;λ)
=

=
1

u0
+

1

u0

+∞∑

n=1

(
Pn(c)

Pn(c;λ)
− Pn−1(c)

Pn−1(c;λ)

)
=

1

u0
lim

n→+∞

Pn(c)

Pn(c;λ)
=

=
1

u0
lim

n→+∞

Pn(c)

Pn(c)− λP
(1)
n−1(c)

=

[
u0

(
1− λ lim

n→+∞

P
(1)
n−1(c)

Pn(c)

)]−1
,

hence, if 1 6= λ limP
(1)
n−1(c)/Pn(c), then there exists a mass point at x = a, with

jump u0[1− λ limP
(1)
n−1(c)/Pn(c)] = u0 + λF (c;σ).

Remark 6. In Theorem 3 in [11] is described how the Stieltjes transforms

associated with σ(1) and σ̃(1), the orthogonality measures for {P (1)n }n≥0 and

{Q(1)n }n≥0, respectively, are related. Our result gives a direct proof of the re-

lation between σ and σ̃.

Corollary 12. Under the conditions of Theorem 11, if σ is absolutely con-

tinuous, i.e., dσ(x) = w(x) dx and w is supported on the interval [ξ, η], then

dσ̃(x) =Mδa(x) dx−
λ

|x−a| w(T (x)) dx(55)

with

supp(dσ̃) ⊂
[
a+b
2 −s, a+b

2 −r
]
∪ {a} ∪

[
a+b
2 +r, a+b

2 +s
]
.

4 – Examples

As an application of Theorem 11, we can find examples of families of orthogo-

nal polynomials {Qn}n≥0 such that there exist mass points located at the interior

of the support of the absolutely continuous part of the corresponding measure.

This fact was observed by Geronimo and Van Assche [11, p. 580] by starting with

some families of Jacobi polynomials. We also refer that, in a very interesting

work [5], J. Charris, G. Salas and V. Silva studied another family of orthogonal

polynomials, {Rn}n≥0, for which this fact appears. Consider

xR2n = R2n+1 +
n+2

4(n+1)
R2n−1 , xR2n+1 = R2n+2 +

n+1

4(n+2)
R2n
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(n ≥ 0), with initial conditions R−1 = 0 and R0 = 1. They found that {Rn}n≥0
is orthogonal with respect to dµ := 1

π

√
1−x2 dx + 1

2 δ0(x) dx, −1 ≤ x ≤ 1. We

will find this sequence {Rn}n≥0 in our next example 1, for the particular choice

α = 1/2, λ = −1/8.

Example 1. Consider the sequence {Un}n≥0 of the Chebyshev polynomials

of second kind, Un(cos θ) := sin(n+1)θ/ sin θ (n≥0), which is orthogonal (in the

positive definite sense) with respect to 2π−1
√
1−x2 dx , −1 ≤ x ≤ 1. The monic

polynomials {Ûn}n≥0 corresponding to {Un}n≥0 are given by Ûn = 2−n Un(x)

and satisfy the three-term recurrence relation x Ûn = Ûn+1 +
1
4 Ûn−1 (n ≥ 1),

with initial conditions Û0 = 1, Û1 = x. Let {Pn}n≥0 be a MOPS defined by

Pn(x) ≡ αn Ûn(
x
α), with α > 0. Therefore, we easily check that {Pn}n≥0 satisfies

the three-term recurrence relation (3), with βn := 0, γn+1 :=α2/4 (n=0, 1, ...).

Let λ ∈ R and {Qn}n≥0 a sequence of monic polynomials such that

Q2(0) :=λ, Q2n+1(x) :=xPn(x
2−α) ≡ αn x Ûn

(x2−α
α

)
, n=0, 1, 2, ... .(56)

Hence, we have T (x) = x2−α, a = b = 0, c = −α (with the notations of

Theorem 7). Using Ûn(1) = (n+1)/2n = (−1)n Ûn(−1) and U
(1)
n ≡ Un, we see

that Pn(−α;λ) = αn Ûn(−1) − λαn−1 Ûn−1(−1) = (−α/2)n [1 + n(1+2λ/α)].

Then, by Theorem 7, {Qn}n≥0 is a MOPS with respect to a quasi-definite linear

functional if and only if

λ 6= 0 , 1 + n(1+2λ/α) 6= 0 , Q2n(x) = αn Ûn
(x2 − α

α
;λ,−α

)
,

hold for all n = 0, 1, 2, ... . In this case, the coefficients of the corresponding

three-term recurrence relation are explicitly given by

β̃n = 0 , γ̃2n+1 =
α

2

1 + (n−1) (1+2λ/α)

1 + n(1+2λ/α)
, γ̃2n+2 =

α

2

1 + (n+1) (1+2λ/α)

1 + n(1+2λ/α)
,

for all n=0, 1, ... .

In order to determine conditions for {Qn}n≥0 to be orthogonal in the positive-

definite sense, notice first that {Pn}n≥0 is orthogonal with respect to dσ(x) :=

w(x) dx, where w is the weight function

w(x) :=
2

πα2

√
α2−x2 , −α ≤ x ≤ α .

The corresponding Stieltjes function is given by F (z;σ) = −2α−2(z−
√
z2−α2),

where the square root is such that |z +
√
z2 − α2| > α whenever z ∈ C\[−α, α]
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(cf. [26, p. 176]). Thus, u0 ≡
∫ α
−α dσ(t) = 1, F (−α;σ) = 2/α and (with the

notations of Theorem 11) A = −α/2, B = α/2, ξ = −η = −α. Consequently, by
Theorem 11, {Qn}n≥0 satisfying (56) is an MOPS in the positive definite sense if

−α
2
≤ λ < 0 , Q2n(x) = αn Ûn

(x2−α
α

;λ,−α
)
, n = 0, 1, 2, ... .

In such conditions, according to Corollary 12, {Qn}n≥0 is orthogonal with respect

to the distribution function

dσ̃(x) :=
(
1 +

2λ

α

)
δ0(x) dx−

2λ

πα2

√
2α− x2 dx , −

√
2α ≤ x ≤

√
2α .

Notice that choosing λ=−α/2, then dσ̃(x) = (πα)−1
√
2α−x2 dx, −

√
2α ≤ x ≤√

2α, so that {Qn}n≥0 is also defined by a linear transformation in the variable

of the Chebyshev polynomials: Qn(x) ≡ (2α)n/2 Ûn(x/
√
2α). In this case, there

is no mass point at x = 0. However, if we choose λ such that −α/2 < λ < 0 ,

then there is always a mass point, located at x = 0, which is an interior point of

the support of the absolutely continuous part of the measure dσ̃(x).

Example 2. We recover a result by Van Assche [25]. We omit the details

(see [1]). Consider the sequence of monic polynomials {Qn}n≥0 defined by a

three-term recurrence relation with recurrence coefficients

β̃2n := a , β̃2n+1 := b , γ̃2n+1 := g , γ̃2n+2 :=h (n = 0, 1, ...) ,

where a, b ∈ R and g, h > 0. Let T (x) :=(x−a) (x−b) and λ :=−g. Starting with

Pn(x) ≡ αn Ûn(
x−β
α ), α := 2

√
gh, β := g+h, one can use Theorem 11 to derive

the representations

Q2n+1(x) = (gh)n/2 (x−a)Un(z) , Q2n(x) = (gh)n/2
[
Un(z) +

√
g
h Un−1(z)

]
,

where z := [(x−a) (x− b) − g − h] (4 gh)−1/2, {Qn}n≥0 being orthogonal with

respect to the distribution function

dσ̃(x) := π
√

h
g

(
1−min(g, h)

h

)
δa(x) +

χE(x)

|x−a|

{
1− [(x−a) (x−b)−g−h]2

4 gh

}1/2
dx

(in fact, this is the expression of dσ̃(x) given by (55) up to the factor
√
g/h /π),

where χE denotes the characteristic function of the set

E :=
[
a+b
2 −s, a+b

2 −r
]
∪
[
a+b
2 +r, a+b

2 +s
]
,
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r and s being defined by

r :=
(
|√g −

√
h|2 + |a−b2 |

2
)1/2

, s :=
(
|√g +

√
h|2 + |a−b2 |

2
)1/2

.

In this example, notice that there is a mass point located at x=0 if g <h, and

there is no mass point if g ≥ h. For a = b = 0, we recover a result by Chihara

[6, p. 91].

Example 3. Now, let {Pn}n≥0 be the sequence of the monic Laguerre

polynomials, Pn ≡ L
(ν)
n . They can be defined by a three-term recurrence relation

as (3), with βn := 2n + ν + 1 and γn+1 :=(n + 1) (n + ν + 1) for n = 0, 1, ...,

provided that ν 6=−1,−2, ... (orthogonality conditions [19]). Consider λ ∈ R and

a sequence of monic polynomials {Qn}n≥0 such that

Q2(0) :=λ , Q2n+1(x) :=xL(ν)n (x2), n = 0, 1, 2, ... .(57)

With the notations of Theorem 7, we have T (x) = x2, a= b= c=0. Moreover,

using the explicit representation L
(ν)
n (x) = (−1)n n! ∑n

k=0(
n+ν
n−k ) (−x)k/k!, we can

deduce L
(ν)
n (0) = (−1)n (ν+1)n and (L

(ν)
n−1)

(1)(0) = (−1)n n! ∑n
k=1(

n+ν
n−k ) (−1)k ·

· (ν+1)k/k! , where (α)0 := 1, (α)n :=α (α+1) · · · (α+n−1) = Γ(n+α)/Γ(α) for

α 6= 0,−1,−2, ... (Γ denotes the Gamma function). Hence, by Theorem 7, we find

that {Qn}n≥0 is a MOPS with respect to a quasi-definite linear functional if and

only if

λ 6= 0 ,
n∑

k=1

( n+ν
n−k

)
(−1)k n!

k!

(ν+1)k
(ν+1)n

6= 1

λ
, Q2n(x) = L(ν)n (x2;λ, 0) ,

hold for all n=0, 1, 2, ... .

In order to have orthogonality in the positive definite sense, we must impose

ν > −1, and in this case {L(ν)n }n≥0 is orthogonal with respect to dσ(x) :=w(x) dx,

where

w(x) :=xν e−x , 0 ≤ x < +∞
(then ξ = 0, η = +∞). If ν > 0, we have F (0;σ) =

∫+∞
0 tν−1 e−t dt = Γ(ν) =

Γ(ν+1)/ν = u0/ν and A = −u0/F (0;σ) = −ν, B ≡ +∞ . Therefore, by

Theorem 11, {Qn}n≥0 satisfying (57) is an MOPS in the positive definite sense if

−ν ≤ λ < 0 , Q2n(x) = L(ν)n (x2;λ, 0), n = 0, 1, 2, ... .

In such conditions, according to Corollary 12, {Qn}n≥0 is orthogonal with respect

to the distribution function

dσ̃(x) := Γ(ν+1)
(
1+

λ

ν

)
δ0(x) dx− λ |x|2ν−1 e−x2

dx , −∞ < x < +∞ .
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Choosing λ =−ν, then dσ̃(x) = ν |x|2µ e−x2
dx, with µ := ν − 1

2 , hence {Qn}n≥0
is the sequence of the generalized Hermite polynomials: Qn ≡ H

(µ)
n , µ > −12

(cf. [6, p. 157]). However, if we choose λ such that −ν < λ < 0 , then there is

always a mass point, located at x = 0.

Remark 7. The quadratic transformations studied here give us new examples

of families of semiclassical orthogonal polynomials (for details about this class of

orthogonal polynomials, see, e.g., [19] and [14]). In fact, it can be proved that if

the starting MOPS {Pn}n≥0 is semiclassical, then {Qn}n≥0 as defined in problems

P1 or P2 is also semiclassical. In particular, related to problem P1, in [16] the

classification of all possible sequences {Qn}n≥0 in case that {Pn}n≥0 be a classical

MOPS has been given.
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