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Abstract

We propose robust inference tools for functional data based on the notion of depth
for curves. We extend the ideas of trimmed regions, contours and central regions to
functions and study their structural properties and asymptotic behavior. Next, we
introduce a scale curve to describe dispersion in a sample of functions. The compu-
tational burden of these techniques is not heavy and so they are also adequate to
analyze high-dimensional data. All these inferential methods are applied to different
real data sets.
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1 Introduction

The wide availability of functional data makes necessary to have robust infe-
rence tools for curves. The idea of statistical depth has been recently extended
to functional observations. Fraiman and Muniz (2001) proposed a definition
of depth as the integral of univariate depths. López-Pintado and Romo (2006)
have introduced and studied the band depth, which is a notion of functional
depth based on the curves graphs. The methods we construct and apply below
can be implemented with any concept of depth for functional observations,
but in this paper we will focus on the notions presented in the second of these
papers.

Depth was introduced to generalize to multivariate observations ideas as me-
dian, order statistics or ranks, that are well established for univariate data.
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Fig. 1. Band defined by three curves.

Among others, some definitions have been provided by Mahalanobis (1936),
Tukey (1975), Oja (1983), Liu (1990), Singh (1991), Vardi and Zhang (2001)
and Zuo (2003). These notions of depth allow to construct a robust nonpara-
metric inference for finite-dimensional observations (see Liu et al., 1999). In
this paper, we extend these ideas to a functional context.

We recall next the band depth definitions and properties that we need through-
out the paper. Let C (I) be the set of continuous functions defined on the
compact interval I in R. Let x1(t), ..., xn(t) be a collection of observations
belonging to C (I). The graph of a function x is the subset of R2 given by

G(x) = {(t, x(t)) : t ∈ I} .

The band in R2 defined by the curves xi1 , ..., xik is

B(xi1 , xi2 , ..., xik) =
{
(t, y) : t ∈ I, min

r=1,...,k
xir(t) ≤ y ≤ max

r=1,...,k
xir(t)

}
=
{
(t, y) : t ∈ I, y = αt min

r=1,...,k
xir(t) + (1− αt) max

r=1,...,k
xir(t),

for some αt ∈ [0, 1]
}

.

Figure 1 shows the band defined by three curves that is the region in the plane
enclosed by all of them.

For any function x in C(I),

S(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

I{G(x) ⊂ B(xi1 , xi2 , ..., xij)}, j ≥ 2, (1)

expresses the proportion of bands B(xi1 , xi2 , ..., xij) given by j different curves
xi1 , xi2 , ..., xij containing the graph of x. (I{A} is one if A is true and zero
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otherwise). Given the sample x1, ..., xn, the band depth of x is

Sn,J(x) =
J∑

j=2

S(j
n (x), J ≥ 2. (2)

Let X1 , X2 , ..., Xn be independent copies of a stochastic process X with proba-
bility distribution P generating the sample x1, ..., xn; the population versions
of these depth indexes are

S(j(x, P ) = S(j(x) = P (G(x) ⊂ B(X1, X2, ..., Xj))

and

SJ(x, P ) = SJ(x) =
J∑

j=2

S(j(x) =
J∑

j=2

P (G(x) ⊂ B(X1, X2, ..., Xj)) .

The definition of depth provides a criterion to order the sample curves from
the center-outward (from the deepest to the most extreme). This allows to
extend order statistics to functional data. In particular, a median is a curve
with maximum depth. An extensive study of the band depth and its properties
can be seen in López-Pintado and Romo (2006).

The band depth finite-dimensional version is an alternative to the already ex-
isting definitions of depth that enjoys an interesting feature: it is computation-
ally very fast and this makes it very convenient to deal with high-dimensional
data. To visualize this particular case, each point x in Rd can be seen as a real
function defined on the index set {1, 2, ..., d}, x = (x(1), x(2), ..., x(d)). Given
points x1, x2, ..., xn in Rd, let

R(x1, x2, ..., xn) =
{
x ∈ Rd : min

i=1,...,n
xi(k) ≤ x(k) ≤ max

i=1,...,n
xi(k)

}
(3)

be the d−dimensional interval with sides parallel to the axes and defined by the
minimum and maximum coordinates of x1, x2, ..., xn. The finite-dimensional
band depth of any of these points x is

Sn,J(x) =
J∑

j=2

S(j
n (x), J ≥ 2, (4)

where

S(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

I{x ∈ R(xi1 , xi2 , ..., xij)}, j ≥ 2, (5)

is the proportion of sets (intervals) R(xi1 , xi2 , ..., xij) defined by j different
points xi1 , xi2 , ..., xij containing x.
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López-Pintado and Romo (2006) propose also a more flexible definition of
depth (the generalized band depth). The indicator function in the definition is
replaced by the length of the set where the function is inside the corresponding
band. For any function x in x1, ..., xn, let

Aj(x) = Ai1,...,ij(x) = A(x; xi1 , xi2 , ..., xij)

=

{
t ∈ I : min

r=i1,...,ij
xr(t) ≤ x(t) ≤ max

r=i1,...,ij
xr(t)

}
, j ≥ 2,

be the set of points in the interval I where the function x is inside the band
given by the observations xi1 , xi2 , ..., xij . If λ is Lebesgue measure in R, λr =
λ(Aj(x))

λ(I)
is the proportion of time that x is inside the band. Now,

GS(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

λr(A(x; xi1 , xi2 , ..., xij)), j ≥ 2, (6)

is a generalized version of S(j
n (x): if x is always inside the band, λr(Aj(x)) is

one and this coincides with the previous definition of band depth.

For functions x1, ..., xn, the generalized band depth of one of these curves x is

GSn,J(x) =
J∑

j=2

GS(j
n (x), J ≥ 2. (7)

If X1 , X2 , ..., Xn are independent copies of the process X generating the ob-
servations x1, ..., xn, the population version of these indexes is

GS(j(x) = E λr(A(x; X1, X2, ..., Xj)), j ≥ 2,

and

GSJ(x) =
J∑

j=2

GS(j(x) =
J∑

j=2

Eλr(A(x; X1, X2, ..., Xj)), J ≥ 2.

The band depth is less adaptive than its generalized version and it is more
depending on the curves shape. Another important difference between both
definitions is their behavior for curves leaving the sample center only for a
short interval, i.e., remaining in the interior of the sample most of the time
but taking extreme values in short intervals: for these curves the generalized
band depth can still be large whereas the band depth takes small values.

In the multivariate case, the generalized band depth of a point x in Rd is the
proportion of its coordinates inside the bands (intervals) given by j different
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Fig. 2. Deepest function (in red) for a sample of twenty curves.

points in the sample:

GS(j
n (x) =

(
n

j

)−1 ∑
i1<...<ij

1

d

d∑
k=1

I

{
min

r=i1,...,ij
xr(k) ≤ x(k) ≤ max

r=i1,...,ij
xr(k)

}

Thus, for example, with j = 2,

GS(2
n (x) =

(
n

2

)−1 ∑
i1<i2

1

d

d∑
k=1

I {x(k) ∈ seg(xi1(k), xi2(k)}

where seg(xi1(k), xi2(k)) is the segment defined by the points xi1(k), xi2(k).

Throughout the paper we will use the generalized band depth with J = 2
(López-Pintado and Romo (2006) provide evidence showing that the order
induced in the sample is very stable with respect to growing J).

Figure 2 gives the deepest curve with the generalized band depth for twenty
functions corresponding to the force exerted on a meter during a brief pinch
by the thumb and forefinger (see Ramsay and Silverman, 2005). This curve
describes adequately the center of the observations.

The remaining of the paper is organized as follows. In the next section,
trimmed regions and contours are defined through the idea of depth. More-
over, it is proved that the trimmed regions constructed with the band depth
verify the properties in Zuo and Serfling (2000) for finite-dimensional obser-
vations. The notion of central region is introduced in the third section, where
some of their estimators are analyzed. Next section proposes a scale curve for
functional data that allows to measure and represent the dispersion of a set
of functions. Finally, all these nonparametric techniques are applied to several
real data sets.
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2 α−trimmed functional regions

Liu et al. (1999) introduced several depth based inferential tools for multivari-
ate data. Zuo and Serfling (2000) studied the structural properties of regions
and contours for statistical depth functions. Next we extend them to func-
tional observations. Let X1, ..., Xn be independent and identically distributed
stochastic processes taking values in C(I) with distribution P . Let D (·, P )
be a functional depth and let D (·, Pn) be the corresponding sampling version.
We will denote them by D(·) and Dn(·), respectively.

Definition 1 Let D(·) be a functional depth and let α ≥ 0. The α−trimmed
region is

Dα = {x ∈ C(I) : D(x) ≥ α}
and the α− contour is

∂Dα = {x ∈ C(I) : D(x) = α} .

The sample versions are

Dα
n = {x ∈ C(I) : Dn(x) ≥ α}

and
∂Dα

n = {x ∈ C(I) : Dn(x) = α} ,

respectively.

The next proposition provides the properties of the α−trimmed region Sα for
the finite-dimensional version of the band depth.

Theorem 2 Let F be an absolutely continuous distribution in Rd with sym-
metric marginal distributions. Then:

i. Sα(FAX+b) = A ∗ Sα(FX) + b and Sα
n (FAX+b) = A ∗ Sα

n (FX) + b, where A is
a diagonal and invertible matrix and b ∈ Rd.

ii. Sα is connected, i.e., it cannot be expressed as the union of two nonempty
sets A and B, such that A ∩ B = ∅ and A ∩ B = ∅, where A and B are
the closure of A and B, respectively.

iii. Sα and Sα
n are nested: for α1 ≥ α2, Sα1 ⊂ Sα2 and Sα1

n ⊂ Sα2
n .

iv. Sα is compact.

Proof. The band depth properties can be seen in López-Pintado and Romo
(2006). Part i follows from the invariance of S(·) and Sn,J(·). If F is absolutely
continuous with symmetric marginals, S(·) is monotone and this implies the
second property. Part iii is straightforward from the definition and, finally, Sα

compactness holds because is bounded since depth tends to zero in infinity,
and is closed under absolutely continuous distributions.
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He and Wang (1997) and Zuo and Serfling (2000) analyze the central regions
and contours asymptotic properties for multivariate data in a very general con-
text. Also, Mizera and Volauf (2002) study properties of contours constructed
with the halfspace depth. Next result provides almost sure consistency of Sα

n ;
it relies on Theorem 4.1 in Zuo and Serfling (2000).

Theorem 3 Let F be an absolutely continuous distribution on Rd. Then, for
all ε > 0, δ < ε, α ≥ 0, and αn → α,

i. Sα+ε ⊂ Sαn+δ
n ⊂ Sαn

n ⊂ Sαn−δ
n ⊂ Sα−ε a.s., for large enough n (uniformly if

αn → α ∈ [0, α0] uniformly as n →∞, for α0 < 1).

ii. Sαn
n → Sα a.s., n →∞, if P

{
x ∈ Rd : S(x) = α

}
= 0. The convergence is

uniform in α if αn → α ∈ [0, α0] uniformly as n →∞, for α0 < 1.

Proof. The proof is analogous to that of Theorem 4.1 in Zuo and Serfling (2000)
since S and Sn verify the hypotheses in that theorem: (C1) S(x) → 0, as
‖x‖∞ →∞ and (C2) sup

x∈Rd

|Sn(x)− S(x)| a.s.→ 0.

The properties for functional regions are contained in the following result. D
is any of the functional depths defined in Section one.

Theorem 4 Let P be a probability distribution on C(I). Then:

i. Dα(Pax+b) = a ∗Dα(Px) + b and Dα
n(Pax+b) = a ∗Dα

n(Px) + b, where a and
b are functions in C(I) and a is different from zero for all t ∈ I.

ii. Dα and Dα
n are nested: for α1 ≥ α2, Dα1 ⊂ Dα2 and Dα1

n ⊂ Dα2
n .

As in the finite-dimensional case, the first property follows from invariance of
the functional depth D. Property ii is straightforward from definitions of Dα

and Dα
n .

3 p-central functional regions

Besides α−trimmed regions, it is possible to extend also central regions and
use them to analyze relevant distribution properties as dispersion. Assume
again that D is any of the depths defined in Section one.

Definition 5 The p-central region is

Cp = ∩
α
{Dα : P (Dα) ≥ p} , 0 ≤ p ≤ 1,

i.e., is the smallest set determined by trimmed regions containing at least prob-
ability p.
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In the finite-dimensional case, the p-central region is compact and connected;
its boundary is the p-contour and is denoted by ∂Cp. Moreover, if the density

function is different from zero in Rd then ∂Cp is the contour of
{
x ∈ Rd : D (x) = αp

}
,

where P
{
x ∈ Rd : D (x) ≥ αp

}
= p. Thus, ∂Cp can be considered as a quantile

surface. Following Liu et al. (1999), if the distribution is absolutely continuous
and the density function different from zero,

Cp = Dαp ,

where P (Dαp) = p.

An important question is that the sample trimmed regions Dα
n are not directly

observed and they have to be approximated. Next, we propose different ways of
estimating both the trimmed regions Dα and the p-central regions Cp. Given
a sample, either of points in Rd or continuous functions x1, ..., xn in C(I),
they can be ordered from the deepest to the less deep object. This provides a
center-outward ordering of the sample. Let x(1), ..., x(n) be the ordered statistic,
where x(1) is the deepest element and x(n) is the most extreme. When depth
ties occur, we consider, for simplicity, the following ordering procedure: if
xi1 , ...xik have the same depth, where i1 < i2 < ... < ik, and there are exactly j
sample points with larger depth, we assign x(j+1), x(j+2), ..., x(j+k) to xi1 , ...xik ,
respectively.

3.1 Finite-dimensional case

Let x(1),..., x(rα) be the points in the ordered sample with depth larger or equal

than α (Dn (xi) ≥ α), i.e., Dn

(
x(1)

)
≥ Dn

(
x(2)

)
≥ .... ≥ Dn

(
x(rα)

)
, where

Dn

(
x(rα)

)
≥ α and Dn

(
x(rα+1)

)
< α.

Liu et al. (1999) proposed to estimate Dα with the convex envelope of the
points having depth larger or equal than α,

D̂α
n = convex envelope

{
x(1), ..., x(rα)

}
.

For this estimation, it holds that D̂α1
n ⊂ D̂α2

n , if α1 ≥ α2. The p-central region
Cp is estimated by the convex envelope of the proportion p of deepest sample
points

Cn,p = convex envelope
{
x(1), ..., x(|np|)

}
,

where

|np| =

 np, if np is integer

1 + [np], in any other case.
(8)
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Fig. 3. Estimated central regions Cn,p for 100 points from a normal distribution with
p = 0.1, 0.2 and 0.5 (using Sn,3 and GS).
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Fig. 4. Estimated central regions Cn,p for 100 points from a bivariate distribution
with exponential marginals for p = 0.1, 0.2 and 0.5 with GS.

Cn,p approximates the sample p-central region and its boundary ∂Cn,p is the
p-contour or the p quantile surface. Figure 3 shows a sample of size 100 from
a bivariate normal distribution with zero mean and covariance matrix Σ =
diag(2, 1). The 50% deepest points for Sn,3 and GS appear in red and the
central regions are estimated by Cn,p with p = 0.1, 0.2 and 0.5. In this example,
the contours based on the band depth and the generalized band depth coincide.
Figure 4 provides 100 points from a bivariate distribution with exponential
marginals and the contours with the generalized band depth.

Trimmed and central regions could be also estimated through different strate-
gies. Set estimates are an interesting alternative. A review of techniques devel-
oped in this area is Cuevas and Rodŕıguez-Casa (2003). For instance, we can
consider balls centered at the sample points with depth larger than or equal
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to α as an estimation of the α−trimmed region Dα,

D
α

n = Ball(x(1), ε) ∪Ball(x(2), ε) ∪ ... ∪Ball(x(rα), ε),

where Ball(x, ε) is the closed ball in Rd centered in x with radius ε. A natural
choice for the radius would be the minimum value for which D

α

n is connected
(Báıllo et al., 2000). By construction, D

α1

n ⊂ D
α2

n , if α1 ≥ α2. The p-central
region Cp could be estimated by Ball(x(1), ε)∪Ball(x(2), ε)∪...∪Ball(x(|np|), ε).

3.2 Functional case

Next we propose approximations for the trimmed and central regions for
functional observations. Let x1, ..., xn be a sample of continuous functions in
C(I). Order them accordingly to the increasing depth Dn: x(1), ..., x(n). Let
x(1), ..., x(rα) be the observations with depth larger or equal than α. We esti-
mate the α−trimmed region Dα as the band B delimited by the sample curves
with depth larger than or equal to α,

D̃α
n = B(x1, ..., xrα)

=
{
(t, y) ∈ I × R : min

i=1,...,rα

{
x(i)(t)

}
≤ y ≤ max

r=1,...,rα

{
x(i)(t)

}}
.

Thus, the p-central region is

Bn,p = B
(
x(1), ..., x(|np|)

)
,

i.e., the band defined by the fraction p of deepest sample curves.

Figure 5 shows the central region Bn,0.15 delimited by the 15% of most central
curves using the band depth Sn,3 and the generalized band depth. The data
(see Ramsay and Silverman, 2005) are the hip angles in the sagittal plane
when 39 children go through a gait cycle. Figure 6 provides the central region
Bn,0.15 with Sn,3 for a different real example containing daily temperatures
in 35 Canadian weather stations for one year (see Ramsay and Silverman,
2005). Both figures illustrate how the band amplitude adapts to the sample
variability; this is an important property, because it reflects very adequately
the structure of the set of functions.

4 A scale curve for functional data

In the multivariate context, the idea of depth has been used to describe graph-
ically different properties of the underlying distribution, as, i.e., dispersion or
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Fig. 5. Hip angle in the sagittal plane when 39 children go through a gait cycle.
Estimated central region (in green) with the 15% deepest curves for the band depth
(left panel) and the generalized band depth (right panel).
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Fig. 6. Daily temperature in 35 Canadian weather stations for one year. Estimated
central region (in green) given by the 15% deepest curves for S 3.

kurtosis. In Rousseeuw et al. (1999) and Liu et al. (1999), the box-plot is ex-
tended to multivariate observations using the central region. The scale curve
(Liu et al., 1999) allows to measure and visualize the dispersion of a sample
in Rd. Any of these concepts can be now extended to functional observations.
Next we generalize and apply the scale curve to functional data.

Definition 6 The scale curve is the volume of the p-central region, sc(p) =
vol(Cp).

In the finite-dimensional case, the curve sc(p) can be estimated through the
estimates of Cp; for example, the convex envelope Cn,p of the deepest points.
The scale curve for functional data that we propose is based on the central
region Bn,p and is the area of the band delimited by the proportion p of deepest
functions.
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Fig. 7. Size logarithm for two groups of trees. Blue curves correspond to a normal
environment and red ones to an ozone enriched environment.

Definition 7 The scale curve of a set of functions x1, ..., xn in C(I) is

A(p) = area

{
(t, y) ∈ I × R : min

i=1,...,|np|

{
x(i)(t)

}
≤ y ≤ max

i=1,...,|np|

{
x(i)(t)

}}
=

= area
{
B(x|1|, ..., x|np|)

}
= area {Bn,p} .

Thus, A(p) is the area of the band delimited by the |np| most central curves.
The scale curve measures how the p-central region expands when p grows and
is characterized by the speed of depth decreasing. From the computational
point of view, it is convenient to rewrite A(p) as

A(p) =
∫

I

(
max

i=1,...,|np|
x(i)(t)− min

i=1,...,|np|
x(i)(t)

)
dt.

Next, we calculate and analyze the scale curve A(p) for several real functional
data sets. In all cases we have used Sn,3.

Figure 7 shows the growth of 39 trees. Twenty-nine of them live in an ozone
enriched environment (represented in red) and the remaining ones are in a
normal atmosphere (the blue ones). We consider the logarithm of the size
(product of height and squared diameter of the trees) measured in thirteen
different days (Diggle et al., 1994). The corresponding scale curves can be seen
in Figure 8. The blue one corresponds to normal atmosphere and the red curve
describes dispersion in an ozone enriched ambience.

For p smaller than 0.8, the scale curve A(p) for the trees in a normal atmo-
sphere is smaller than the curve for trees in an ozone enriched ambience. This
means that dispersion is similar for central data; however, for p larger than
0.8, the dispersion of the ozone trees grows suddenly taking larger values.
This reflects the presence of outliers. Looking back to Figure 7, we can find
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Fig. 8. Scale curves for the trees growth data. The blue curve corresponds to normal
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Fig. 9. Heights of fifty four girls (in red) and thirty nine boys (in blue).

an extreme blue curve.

The second real data set corresponds to the growth curves of thirty nine boys
and fifty four girls measured at different instants from 1 to 18 years (Ramsay
and Silverman, 2005). There are twenty nine values per child and they have
been smoothed with a B-spline basis (Figure 9). The scale curves for these
functions can be seen in Figure 10. Dispersion for girls is smaller than for boys
when p < 0.35 and larger for p > 0.35. Moreover, the derivative of the scale
curve reflects the dispersion rate of change with p; this rate of change is larger,
except at the beginning, for girls than for boys.
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5 Conclusions

We have proposed a robust nonparametric methodology for functional data
based on the idea of depth. The depth ordering of the curves leads to extend
to functions some finite-dimensional inference concepts and techniques. Thus,
we have introduced the notions of trimmed and central regions for functions
and established their properties. They allow to analyze the structure of a
collection of curves. Also, we have defined a scale curve for functional data
that provides a visual description of the sample data variability. All these tools
have been applied to several real data sets. An important characteristic of all
these techniques is that they are computationally very fast and can be also
used for very high-dimensional observations.
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