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Abstract—Driving Assistance Systems and Autonomous 
Driving applications require trustable detections. These 
demanding requirements need sensor fusion to provide 
information reliable enough. But data fusion presents the 
problem of data alignment in both rotation and translation. 
Laser scanner and video cameras are widely used in sensor 
fusion. Laser provides operation in darkness, long range 
detection and accurate measurement but lacks the means for 
reliable classification due to the limited information provided. 
The camera provides classification thanks to the amount of data 
provided but lacks accuracy for measurements and is sensitive to 
illumination conditions. Data alignment processes require 
supervised and accurate measurements, that should be 
performed by experts, or require specific patterns or shapes. 
This paper presents an algorithm for inter-calibration between 
the two sensors of our system, requiring only a flat surface for 
pitch and roll calibration and an obstacle visible for both sensors 
for determining the yaw. The advantage of this system is that it 
does not need any particular shape to be located in front of the 
vehicle apart from a flat surface, which is usually the road. This 
way, calibration can be achieved at virtually any time without 
human intervention. 

Keywords—Calibration, Data Alignment, LIDAR, Extrinsic, 
RANSAC, Fusion 

I. INTRODUCTION 

Information fusion between Laser scanner and video 
camera is widely used in both autonomous driving and driving 
assistance systems, in order to complement the virtues of each 
sensor and mitigate its weaknesses. While the laser is able to 
accurately determine distances in any light condition, obstacle 
classification is very inaccurate without the help of a camera, 
which in turn can’t operate in poor light conditions. The 
complementary capabilities of these two sensors make them a 
very suitable solution for obstacle detection and classification 
in automotive applications. 

Different sensors have different field of view and different 
characteristics, but the reality they sense must match in order to 
get useful information from them. We must find the relation 
between each of the sensors and the world, and then the 
relation between the sensors. The extrinsic parameters of the 
sensors are rotation and translation. Determining the translation 
with respect to the reference point of the vehicle is a laborious 
task, but usually is done just once and is relatively easy, 

accurate, and small errors does not affect significantly to the 
precision of the system. Rotation, in the other hand, is more 
difficult to measure and is more prone to involuntary changes. 

The article is divided in the following sections: section II 
provides scientific context through the state of the art 
description. Section III gives a general description of the 
approach. Section IV explains the single sensor parameter 
estimation based on a point cloud. Section V details the 
automatic data alignment process. Section VI describes the 
tests performed and the results obtained and VII provides some 
conclusions to the presented work. 

II. RELATED WORK

Laser scanner and video camera does not share the 
spectrum, so it is not possible to match the rotations without 
the use of computer vision and algebraic algorithms.  

Several possibilities have been proposed in literature to 
provide data alignment: In [1] Li et al. proposed a method for 
calibration based on planar chessboard in different positions 
and the physical constraints related to the chessboard. In [2], 
[3] and [4] projects the features into a 2D plane to minimize 
distances among the features in the different sensors. Other 
approaches based the calibration process in obstacles with 
specific patterns that allows thanks to the physical constraints 
to match the detection in the different sensors. In  [5] Lişca et 
al. used a Calibration Object with a CAD model that allows to 
perform the matching by a single frame. An advanced version 
based on triangular patterns is provided in [6].  In [7] authors 
provide a similar system for a monocular camera based on a 
circular shape pattern for calibration. 

Most of the aforementioned works deal with the calibration 
process by the use of specific patterns and/or cumbersome 
procedures, that involves the implication of the driver or user. 
This need makes impossible to perform the calibration at any 
moment and in any place, restricting the calibration to some 
particular moments and places, and, most important, 
demanding very special conditions or requiring human 
intervention. Thus, it involves difficulties for generalization 
and for commercial applications, in case of eventual changes in 
the configuration. Other approaches, such as [2], [3] and [4] 
require conversion to 2D which implies assumptions. Finally, 
other approaches such as [8], require the supervision of users to 
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The direction of the ሬ݊Ԧ vector is then defined as the cross-
product between  ݑ௣ and ݒ௣, which corresponds to the direction 
of ܼ௣ . Fig. 3 depicts the base generated on the road plane, 
system reference {p}. 

A. Rotation extraction  with respect to the camera on X and 
Y’ 
The vector  ߱ ௖ ௣ ൌ ሾ ߱ ௖ ௣௫ ߱ ௖ ௣௬ ߱ ௖ ௣௭ሿT  normal to the 

road plane as seen from the camera in Fig. 4, correspondent to 
the direction of ܼ௣ is related to the orientation of the  ܼ௖ axis of 
the camera according to (3). ߱ ௖ ௣ ൌ ௫ݐ݋ܴ ቀ2ߨቁ כ ሻߙ௫ሺെݐ݋ܴ כ ሻߪ௬ሺെݐ݋ܴ כ ߱ ௣ ௣ (3)

The rotation on Z’’ is not taken into account, as its 
application does not change the road plane ܼ௣ axis with respect 
to the ܼ௖ axis of the camera. 

Fig. 4. Road plane rotation  respect to camera reference system 

Expanding (3) we get: ߱ ௖ ൌ ܴ ௖ ௣ כ ߱ ௣
቎ ߱ ௖ ௫߱ ௖ ௬߱ ௖ ௭቏ ൌ ൥ ߪܿ 0 െߪݏെܿߪݏߙ ߙݏ െܿߪݏߙݏߪܿߙ ߙܿ ߪܿߙݏ ൩ כ ൥001൩ ߪ ൌ sinିଵሺെ ߱ ௖ ௫ሻ 

(4)

ߙ ൌ cosିଵ ቀെ ఠ ೎ ೤௖ఙ ቁ  (5)

Last, relating (1) and (2), sensor height is computed as h ൌ– d (6)

B. Algorithm optimization for large PC 
Two strategies were implemented to accelerate the MSAC 

algorithm, RANSAC variant. One consists on eliminating all 
the points allegedly not located in the ground plane, this is, in 
the upper half of the image, as far as it is a PC obtained from a 
stereo reconstruction. The second one consists on extracting a 
uniform sample of the point cloud in order to get a limited 

amount of data representing the environment, thus the PC can 
be processed in real time, less than 100ms. 

V. DATA ALIGNMENT BETWEEN  TWO THREE-DIMENSIONAL 
CAPTURE SENSORS 

The problem to solve then is finding the spatial position of 
a sensor reference system{c} (for the stereo-camera) respect to 
a sensor reference system{l} (for the laser), both attached to a 
mobile system i.e. the vehicle. Each sensor has its own 
position, and its Field of View (FOV) to see the road as the 
mobile system moves on, as shown in Fig. 5. 

Fig. 5. Sensor array configuration, stereo camera located in the windshield, 
and laser scanner located in the bumper. 

The next step is based on the point clouds ܲܥ௖  and ܲܥ௟ ,  
captured from each of the sensors. Each cloud is transformed 
until the most populated plane matches the ܺ௠ െ ௠ܻ plane. In 
each transform ஼ܶ ெ and ௅ܶ ெ , the respective extrinsic 
parameters  ሾߙ௖ ௖ߚ ݄௖ሿ and ሾߙ௟ ௟ߚ ݄௟ሿ are estimated, as 
explained in Section III. 

Fig. 6 shows PC from each sensor, green-red are ܲܥ௖ inliers-outliers respectively and purple-blue are ܲܥ௟  
inliers-outliers. 

Transforms from {c} and {l} into {m} are presented in (7) 
and (8). ܲ௟ ൌ ௠ܶ௟ ௖ܶ ௠ ܲ ௖ (7)

௖ܶ௟ ൌ ௠ܶ௟ ௖ܶ ௠
ሻߙሻܴ௑ሺߚሻܴ௒ሺߛ௓ሺ݄ሻܴ௓ሺܦ ൌ ܴ௑ሺെߙ௟ሻܴ௒ሺെߚ௟ሻ ൉ ܴ௓ሺെߛ௟௖ሻܦ௑௒௓ሺሾെ݀ݔ௟௖ െ݀ݕ௟௖ െ݄௟௖ሿሻ ൉ ܴ௒ሺߚ௖ሻܴ௑ሺߙ௖ሻ      , 

൦ ߛܿߚܿ ߛܿߚݏߙݏ ൅ ߛݏߙܿ െܿߛܿߚݏߙ ൅ ߛݏߚെܿߛݏߙݏ െߛݏߚݏߙݏ ൅ ߛܿߙܿ ߛݏߚݏߙܿ ൅ ߚݏߛܿߙݏ െߚܿߙݏ ߚܿߙܿ 00െ݄0 0 0 1 ൪
ൌ ൦ ଵܶଵ ଵܶଶ ଵܶଷଶܶଵ ଶܶଶ ଶܶଷଷܶଵ ଷܶଶ ଷܶଷ

ଵܶସଶܶସଷܶସସܶଵ ସܶଶ ସܶଷ ସܶସ
൪ 

(8)

Decomposition matrix ௖ܶ ௟  through world reference system 
{m} and its relationship to the global transformation element is 
shown in (8) . 
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As the plane alignment lets free the rotation angle ߛ around ܼ௠ , a rotation of ܲܥ௖ ௠  is made with respect to ܲܥ௟ ௠  in an 
angle ߛ௖௟ , assuming that the translation of the sensors in the ܺ௠i.e. ݀ݔ௖௟  and ௠ܻ i.e. ݀ݕ௖௟  axis is known. 

Fig. 6. Alignment and segmentation of the road plane in point clouds  ܲܮܥ௖ 
and ܲܮܥ௟ green-red are ܲܮܥ௖ inliers-outliers and purple-blue are ܲܮܥ௟ inliers-
outliers. 

As the point clouds are different, in order to find the ߛ௖௟ 
angle, it is necessary to adjust the data by looking for the 
highest similarity. To do so, outliers from ܲܥ௟ ௠   further than 
10m from the ܼ௠axis are removed, obtaining ܲܥ௢௨௧_௟ ௠ . Then, 
the minimal and maximal distance to ܼ௠, ܲܥ௢௨௧_௟௠ : ሾ݀௠௜௡ ݀௠௔௫ሿୄ௓೘ are calculated among the filtered 
points, and then the minimal and maximal distance along the ܼ௠ ௢௨௧_௟ ௠ܥܲ , : ሾ݄௠௜௡ ݄௠௔௫ሿ௓೘ . Using the computed 
boundaries in cylindrical coordinates, information from ܲܥ௖ ௠  
is filtered in order to extract the ܲܥ௢௨௧_௖ ௠  cloud. Both filtered 
clouds are shown on the right of Fig. 7, ܲܥ௢௨௧_௟ ௠  in blue and ܲܥ௢௨௧_௖௠  in green. 

Fig. 7. ܲܮܥ௢௨௧_௟ ௠  and ܲܮܥ௢௨௧_௖ ௠  in the Region Of Interest ሾ݀݉݅݊ ሿ٣ܼ݉and ሾ݄݉݅݊ݔܽ݉݀ .ሿܼ݉ݔ݄ܽ݉

The final procedure for finding ߛ௖௟ consists on obtaining the 
projections from each cloud ܲݕ݋ݎ௑௒൫ ௢௨௧_௖ ௠ܥܲ ൯ and  ܲݕ݋ݎ௑௒൫ ௢௨௧_௟ ௠ܥܲ ൯, or ܲܥ௢௨௧_௖ ௑௒  y ܲܥ௢௨௧_௟ ௑௒  . To do so, the Z 
coordinate is eliminated from the definition of every point, as 
show in Fig. 8. 

Fig. 8.  PC camera and PC laser projections. 

Next, we obtain the signature from each projection, ݁ݎݑݐܽ݊݃݅ݏ൫ܲܥ௢௨௧_௖௑௒൯  and ݁ݎݑݐܽ݊݃݅ݏ൫ܲܥ௢௨௧_௟௑௒൯  or ݏ௢௨௧_௖ 
and  ݏ௢௨௧_௟ . To do so, the bi-dimensional PC is translated into 
polar coordinates as magnitude and angle of a vector S, 
meaning the angle of every point the position n, where the 
magnitude S of the point will be stored, as shown in Fig. 9. 

Fig. 9.  Profile signatures for PC, camera and laser projections in XY. ݏሺ݊ሻ ൌ ሺ݅ሻ௑௒ሻ൯ܥ൫ܽ݊݃ሺܲݏ ൌ ݉ܽ݃ሺܲܥሺ݅ሻ௑௒ሻ (9)

Next, the correlation between both signatures is found. ܧሺ݉ሻ ൌ ෍ ቀݏ௢௨௧_௖ሺ݉ െ ݊ሻ െ ௢௨௧_௟ሺ݊ሻቁଶݏ
௡ (10)

Fig. 10 shows the correlation between profile signatures for 
PC, laser and camera projection. 
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Fig. 10. Correlation between profile signatures on camera and laser PC 
projections. 

The minimal value of E is found on a ݉כ shifting, whose 
value matches the rotation ߛ௖௟ we was looking for. ߛ௖௟ ൌ :כ݉ ݉݅݊൫ܧሺ݉ሻ൯ہ௠כ  (11)

After finding ߛ௖௟  we can get rotation angles between 
sensors, and sensors’ height from (8) . So, െܿߛݏߚ ൌ ଵܶଶߚݏ ൌ ଵܶଷ െߚܿߙݏ ൌ ଶܶଷ ܿߚܿߙ ൌ ଷܶଷ ݄ ൌ ݄஼௅ ߚ  ൌ ଵሺି݊݅ݏ ଵܶଷሻߙ ൌ ଵିݏ݋ܿ ൬ ଷܶଷܿߚ ൰ , ߙ ൌ ଵି݊݅ݏ ൬െ ଶܶଷܿߚ ൰ ߛ ൌ ଵି݊݅ݏ ൬െ ଵܶଶܿߚ ൰ 

(12)

VI. TEST

A. Explanation 
Two different sets of tests are performed to the presented 

algorithms. The first set of tests measure the accuracy of the 
single sensor extrinsic parameters identification algorithm, 
explained in section IV. Once the performance for the single 
sensor algorithm is proved, the next set of tests intend to check 
the accuracy of the relative extrinsic parameters estimation 
algorithm, detailed in section V. To do so, the first tests use a 
single frame, and later the algorithm is tested in a recorded 
sequence. 

B. Single sensor Ground Truth extrinsic comparison 
As the method for data alignment between two sensors is 

based on the extrinsic measurement for each of the sensors, 
that is, height and roll and pitch rotation angles with respect to 
the ground plane, the first step on the check for the final result 
is to quantify the precision and accuracy of these three 
measurements. For that purpose, data from a reconstruction 
coming from a Bumblebee XB3 stereo camera are compared to 

data obtained from a MicroStrain 3DM-GX2 IMU, attached to 
the camera. 

Accuracy is defined as the difference between the mean of 
the measurements and the mean of the ground truth or real 
value, while the precision is calculated as the standard 
deviation of the measurement, i.e. its repeatability. So, 
accuracy for the measurement of a rotation on the X axis –roll- 
is 0.43 degrees, and the precision is 0.12 degrees. For a Y axis 
–pitch- rotation measurement, the accuracy is 0.53 degrees, and
precision is 0.08 degrees, as shown on Table 1. 

Param\Sensor 
Camera IMU

Mean Std D  Mean Std D
Pitch -17.82 0.08 -18.33 0.09
Roll 5.15 0.12 5.52 0.28

Table 1. Graph depicting Roll and Pitch measurements from a ground plane 
estimated from a camera point cloud, compared to the reading from a 
MicroStrain 3DM-GX2 IMU. 

Next, after metrologic especifications of the sensor have 
been determined, its behaviour will be checked in the range of 
interest, i.e., between -20 and 20 degrees in roll and between -5 
and -20 degrees in pitch, as shown in Fig. 11. 

Fig. 11. Global observation of the extrinsic sensor behaviour based on the 
determination of the ground plane with respect to the readings from a 
reference IMU. 

-200 -150 -100 -50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200
 Correlation signature profiles

Disp

S
qu

ar
e 

er
ro

r c
or

re
la

tio
n

0 100 200 300 400 500 600
-25

-20

-15

-10

-5

0

5

10

15

20

25
Roll X Camera

samples

de
gr

ee
s

 

Covariance=83.3471

0 100 200 300 400 500 600
-30

-25

-20

-15

-10

-5
Pitch Y Camera

samples

de
gr

ee
s

 

Covariance=17.0234

5



C. Relative extrinsic parameters measurement 
Absolute extrinsic parameters measurement for each sensor 

camera and laser, and relative measurement from camera to 
laser, have been done from the configuration presented in Fig. 
5 and considering a scene like the one in Fig. 12. 

Fig. 12. Laser projection on the image. 

The result of the ground plane detection and the subsequent 
alignment in the Z axis is shown in Fig. 13. 

Fig. 13. Ground plane alignment for the point clouds obtained from a stereo 
camera and a laser scanner. 

The experiment is now repeated, this time for a sequence of 
images and laser captures similar to the depicted in Fig. 13. 
Data are shown in Table 2. 

Parám\Sensor 
Camera Laser Camera-Laser

Mean Std D  Mean Std D Mean Std D
High 1.27 0.007 0.267 0.04 -0.937 0.048
Pitch -7.3 0.06 -2.22 0.29 -5.14 0.29
Roll 1.08 0.18 -0.71 0.23 4.12 0.33
Yaw -4.39 0.34 0 0 2.34 0.34

Table 2. Extrinsic parameters measured from a sequence of synchronized 
images and laser captures. 

VII. CONCLUSIONS

The estimation method for extrinsic parameters based on 
the road plane detection from a point cloud shows a pitch angle 
difference respect to the ground truth of 0.5 degrees and 0.4 
degrees for roll angle. Furthermore, the reference sensor (IMU) 
exhibits the same standard deviation of 0.08 degrees for the 
pitch angle than the proposed measurement method. As far as 
the roll angle is concerned, the IMU sensor shows a standard 
deviation of 0.28 against 0.12 in the proposed method. 

After the transformation of the point clouds to the road 
reference system, i.e., the planes estimated for each point cloud 
coming from each sensor are coplanar and superimposed, the 

final alignment produced good results. This alignment was 
achieved by rotating the camera point cloud until the objects, 
out of road, matched in both point clouds. In a static sequence, 
standard deviation of the rotation with respect to the Z axis of 
the road is 0.33 degrees. 

Relative extrinsic estimation between camera and laser was 
tested by projecting the laser on the image and checking 
quantitatively the match, as seen in Fig. 12. 
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