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1 Introduction

The notion of diversification is age-old. It consists, roughly speaking, on diminishing risk

by spreading resources in many different areas with very little interdependence. In Finance

this is usually identified with investing in uncorrelated assets (proper diversification) or with

investing in assets negatively correlated (hedging strategies).

However it was not until Markowitz (1952) that the concept of portfolio diversification

was formalized. This author developed a sound theory to study diversification in an optimal

asset allocation context. Markowitz showed that investors should choose assets as if they care

only about the mean and variance of portfolio returns. By upholding the variance as the

pertinent risk measure investors decide to penalize equally departures from expected wealth

in both sides. The conclusion of this analysis is that investors use the variance to guide the

trade-off between risk and return. This can be seen for example in Stiroh and Rumble (2005).

Thus, investors employ an statistical moment used to gauge the presence of uncertainty to take

decisions on asset allocation strategies. Knight (1921) was the first to note that uncertainty

and risk were two different and separate concepts. According to this author uncertainty in

contrast to risk was defined by the absence of knowledge about the likelihood of an event. In

this way Knight concluded that insurance markets cannot develop under uncertainty but they

do under risk given one can always put a fair price to the risk assumed.

The merits of Markowitz’s theory are outstanding however. Investors construct optimal

portfolios by minimizing a simple statistical measure identified with risk. Alternatively, Roy

(1952) developed the concept of safety first portfolios. The aim of investors constructing

these portfolios is to minimize an upper bound of the likelihood of a dread event. This is

usually identified with the left tail of the distribution of returns on the portfolio. Roy also

confined himself to distributions where only the first two moments are known. Building on

this interpretation of risk Markowitz (1959) proposed the semivariance. This risk measure

focused only on deviations below a threshold value determined by the expected return on the

investment. The analysis of this measure however was fraught with difficulties arisen from non-

differentiability problems. Hogan and Warren (1974), Bawa (1975), Arzac and Bawa (1977) or

Bawa and Lindenberg (1977) continued on the idea of risk based on dread events introduced

by Roy and proposed risk measures based on the chance of these events. Building on Roy’s

(1952) formulation of risk and extending the semivariance of Markowitz (1959) these authors

introduced lower partial moments of the distribution of returns to describe risk. These include

in its simplest version the shortfall probability and quantile measures as Value at Risk, or

more involved measures as the expected shortfall or the semivariance. Bawa ((1975), (1976),

(1978)) and later Harlow and Rao (1989) extended these models to asset pricing and developed
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financial portfolio theory for mean-downside-risk averse investors. Finally Ang, Chen and Xing

(2006) revisit the problem and propose asset pricing models accounting for downside-risk but

controlling for other cross sectional variables as coskewness, size effect and the book-to-market

ratio.

Markowitz in his pioneering work assumed that the returns on the portfolio followed a

multivariate normal distribution. In this framework the mean-variance methodology encloses

downside-risk measures. However during the last forty years empirical analyses of the distri-

bution of returns have been consistently rejecting this hypothesis and pointing towards heavy

tailed distributions, see Fama (1965) or modern books on risk management and heavy tails as

Embrechts (2000) or Malevergne and Sornette (2006). This stylized fact has gained further

popularity during the last decade where more sophisticated statistical and probabilistic tech-

niques have been developed to study heavy tails and extreme events, see Chavez-Demoulin,

Embrechts, and Nes̆lehová (2006) in an operational risk context. The use of these techniques

has also made possible the revival of portfolio theories based on downside-risk measures (Hyung

and de Vries, 2005).

The first aim of this paper is to uncover the factors having an influence on asset allocation

for downside-risk averse investors. In order to do this we analyze lower partial moments of order

zero and one of the distribution of returns. By doing this we are able to decompose the shortfall

probability - risk measure employed for safety first portfolios in Roy (1952) - into a probability

function measuring the degree of comovements between the assets in the portfolio, and the

product of marginal tail probabilities of each asset. We extend the analysis to the expected

shortfall because it is a risk measure consistent with utility functions describing preferences of

risk-averse investors (Harlow and Rao, 1989). This further decomposition shows that the tail

index of the distribution of the portfolio and the downside variance have an outstanding role

on diversification.

The previous findings contribute to positive economics in what they are an attempt to

describe the optimal choices of fully rational individuals, while the second contribution of the

paper introduced below is embodied in normative economics, that is, the desire to improve

people’s imperfect choices. In this aspect the paper contributes to the literature by proposing

statistical techniques to measure properly downside-risk and to develop investment strategies

to diminish it. We achieve this by using copula functions to model comovements in the tails;

and by using extreme value theory techniques. These techniques permit to identify useless

diversification strategies based on portfolios consisting of a large number of assets with different

marginal tail behaviour. In this case the shortfall probability of the portfolio is driven by the

shortfall probability of the asset with heavier tail. Therefore adding assets to the portfolio
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does not diminish risk but adds complexity to its management.

The paper is structured as follows. Section 2 describes investors’ optimal asset alloca-

tion decision problem for mean-variance and mean-downside-risk averse investors. The section

studies the factors having an influence on portfolio downside-risk measures by decomposing

them in terms of commovement risk and marginal downside-risks specific of each asset. Sec-

tion 3 introduces statistical techniques to measure properly these factors. The methodology

includes the use of copula functions to measure the degree of asymptotic tail dependence in the

portfolio and extreme value theory to gauge the probability of shortfall and expected shortfall

of each asset and of the overall portfolio. The next section calculates the efficient portfolio

frontier for portfolios simulated from a Student’s-t family of distributions. The efficiency of

these portfolios is assessed in terms of comovements and marginal and portfolio tail behaviour.

Section 5 studies an example of diversification for data from economies with well developed

financial markets. Finally, Section 6 concludes with the main findings of the paper.

2 Investors’ Efficient Portfolio Frontier

Markowitz devised an economy consisting of mean-variance minimizing agents with m risky

assets yielding returns Ri, i = 1, . . . ,m. The return on a portfolio P of these assets is

RP =
m∑

j=1

xjRj , (1)

with
∑

j xj = 1, and X = (x1, . . . , xm) depicting share of investment on each risky asset. The

efficient portfolio frontier for these investors is derived from minimizing

min
xj

σ2
p =

m∑

i=1

m∑

j=1

xixjσij , (2)

with σij standing for the covariance between returns and σ2
j for the variance.

If there exits a risk-free asset in the economy the efficient portfolio frontier is determined

by a straight line of this form

E[Rj ]−Rf = βj(E[Rp]−Rf ), (3)

with βj = σjp

σ2
p

and Rf denoting the return on the risk-free asset.

This diversification strategy is limited however. Investors simply punish deviations from

expected levels of wealth. This was pointed out by Hogan and Warren (1974), Bawa (1975)

or Bawa and Lindenberg (1977) that propose to study Lower Partial Moments (LPMn) of
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the distribution of returns as alternative risk measures to the variance of a portfolio. Bawa

((1975), (1976), (1978)) introduces the following family of utility functions consistent with

these LPMn risk measures, 1

u(Rp;n, τ) = a + bRp − c(τ −Rp)nI(Rp ≤ τ), (4)

where a,b, and c are constants, I(·) is an indicator function and τ denotes a target return.

Investors with preferences described by these functions are denominated downside-risk averse

investors.

While in the mean-variance framework investors maximize their expected utility by min-

imizing the variance of the return on P, downside-risk averse investors achieve that by mini-

mizing LPMn measures. Bawa and Lindenberg (1977) and Harlow and Rao (1989) show that

downside-risk averse investors’ optimal portfolio choice is the solution of the following,

min
X

LPMn(τ ; X) =
∫ τ

−∞
(τ −X ′R)ndF (Rp), (5)

subject to
∑

j xjE[Rj ] = µ, with µ denoting certain return level. This integral is computed

on the probability measure of the variable Rp denoted by F .

The efficient portfolio frontier is the result of minimizing this objective function. If there

exits a risk-free asset the set of optimal portfolios is given by a straight line as (3) with the

following slope

β
lpmn(τ)
j =

∫ τ

−∞
∫∞
−∞(τ −Rp)n−1(Rf −Rj)dF (Rj , Rp)∫∞
−∞(τ −Rp)n−1(Rf −Rj)dF (Rp)

. (6)

The index lpmn stands for n-lower partial moment. For n = 2, τ = Rf and returns normally

distributed both mean-variance and mean-downside-risk efficient portfolio frontiers coincide.

In the downside-risk framework there is no need to impose restrictive and unrealistic as-

sumptions on the distribution of returns. The use of the variance to gauge risk usually requires

assuming normal returns, whereas for LPMn measures F (Rp) can be any one of a class of

distributions simply characterized by a location and a scale parameter (see Harlow and Rao,

1989). On the other hand this entails the difficulty of having to entertain other statistical

moments in conjunction with mean and variance to decide how to allocate resources.

1By consistent utility function we mean that maximizing its expected utility is equal to minimizing LPMn risk
measures.
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2.1 Shortfall probability as downside-risk measure

For illustration purposes we will confine ourselves first to study LPM0. A well diversified

portfolio will be the result of minimizing

P{RP ≤ τ},

for certain expected return level. The parameter τ will be assumed to be known and determined

exogenously. This value is usually identified in the literature with a zero return or with the

return on the risk-free asset.

By Bayes’ theorem portfolio’s P shortfall probability can be written as

P{Rp ≤ τ} = P{Rp ≤ τ |R1 ≤ τ, . . . , Rm ≤ τ}P{R1 ≤ τ, . . . , Rm ≤ τ}+

+P{Rp ≤ τ |R1 > τ or . . . or Rm > τ}P{R1 > τ or . . . or Rm > τ}.

This can be expressed as

P{Rp ≤ τ} = [pc(Rp, τ)− p̃c(Rp, τ)]P{R1 ≤ τ, . . . , Rm ≤ τ}+ p̃c(Rp, τ)

with

pc(Rp, τ) = P{Rp ≤ τ |R1 ≤ τ, . . . , Rm ≤ τ}, and

p̃c(Rp, τ) = P{Rp ≤ τ |R1 > τ or . . . or Rm > τ}.

Summing and substracting the product of each asset returns’ marginal distribution this

probability reads as

P{Rp ≤ τ} = [pc(Rp, τ)− p̃c(Rp, τ)][cr(τ) + p(R1, τ) · · · p(Rm, τ)] + p̃c(Rp, τ), (7)

where

p(Rj , τ) = P{Rj ≤ τ}, and

cr(τ) = P{R1 ≤ τ, . . . , Rm ≤ τ} − P{R1 ≤ τ} · · ·P{Rm ≤ τ}.
The preceding formula simplifies if investors can only hold long positions. In this case

pc(Rp, τ) = 1. Then under some simple algebra it is easy to see that

P{Rp ≤ τ} = [1− p̃c(Rp, τ)] [cr(τ) + p(R1, τ) · · · p(Rm, τ)− 1] + 1. (8)
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The optimal allocation of risky assets is function of τ ; of conditional probabilities depending

on the shares invested on each asset: pc(Rp, τ) and p̃c(Rp, τ); of the marginal distributions tail

behaviour: p(R1, τ) · · · p(Rm, τ); and finally is function of the degree of dependence between

assets in the tails: cr(τ). Hence the degree of heaviness of the distributional tails of returns

and the extent of tail dependence - comovements hereafter - between assets are fundamental

for a downside-risk averse investor. These factors are modelled as follows.

A probability distribution p(Ri, τ) is exponentially decaying in the tails - determined by τ

- if

p(Ri, τ) = Ai exp−Bi(−τ)βi [1 + o(1)], Ai, Bi, βi > 0, (9)

as τ → −∞. For the standard normal distribution βi = 2 and Bi = 1/2. These distributions

are characterized by having infinite bounded moments. On the contrary we will define heavy-

tailed distributions as those with a polynomial tail decay. These probability functions satisfy

p(Ri, τ) = Ai(−τ)−
1
ξi [1 + o(1)], ξi,−τ, Ai > 0, (10)

as τ → −∞. Probability distributions satisfying this property are also denominated regularly

varying. These are also defined by

p(Ri, τ) = (−τ)−
1
ξ L(−τ),

with ξ > 0 and lim
−τ→∞

L(−tτ)
L(−τ) = 1, ∀t > 0. These distributions are characterized by bounded

moments up to 1/ξ.

For the analysis of comovements and tail dependence we use the concept of positive quad-

rant dependence (PQD) introduced by Lehman (1966). This author defined m random vari-

ables ε1, . . . , εm as PQD if for all (τ, . . . , τ) ∈ Rm,

P{ε1 ≤ τ, . . . , εm ≤ τ} ≥ P{ε1 ≤ τ} · · ·P{εm ≤ τ}, (11)

or equivalently if

P{ε1 > τ, . . . , εm > τ} ≥ P{ε1 > τ} · · ·P{εm > τ}.

Our definition of comovements is derived from the definition of positive quadrant dependence.
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Definition 2.1. There exists Comovement risk at level τ in a portfolio P consisting of m risky

assets if cr(τ) > 0, with

cr(τ) = P{R1 ≤ τ, . . . , Rm ≤ τ} − P{R1 ≤ τ} · · ·P{Rm ≤ τ}, (12)

as denoted before.

From expressions (9), (10) and (12) we can study in detail the optimal portfolio allocation

problem consisting of minimizing (7) given some expected return on portfolio P.

Note the risk measure LPM0 relevant for downside-risk averse investors consists of the

same ingredients than the risk measure for the mean-variance diversification problem (2).

The contribution to risk of measures of linear dependence between assets (covariances) is

replaced now by a measure of comovements cr(τ). The counterpart of assets’ variance (σ2
j ) is

the marginal downside probability p(Rj , τ). The extra remaining terms are used to determine

the optimal weights that minimize the shortfall probability of the portfolio.

2.2 Expected shortfall and semivariance as downside-risk measures

Utility functions consistent with shortfall probability (LPM0) measures (see (4)) fail to de-

scribe any form of risk aversion relevant for the decision-making process. Two features of this

measure are that investors’ marginal utility is constant and that the risk measure assigns the

same weight to each possible outcome of the return in the tail.

This is overcome by LPM measures involving higher moments. Simple and popular ex-

tensions of LPM0 are the expected shortfall (n = 1) and the semivariance (n = 2). These

risk measures are consistent with utility functions describing risk-averse investors’ preferences.

Moreover, as Harlow and Rao (1989) show, the two-fund separation theorem of Ross (1978)

holds allowing to express the value of any asset in the economy in terms of the risk-free asset

and an efficient risky portfolio.

In particular for n = 1 the optimization problem is

min
X

LPM1(τ ; X) =
∫ τ

−∞
(τ −Rp)dF (Rp), (13)

subject to
∑

j xjE[Rj ] = µ and x0 +
∑

j xj = 1.

After some simple algebra the preceding equation becomes

min
X

LPM1(τ ; X) = (τ − E[Rp|Rp ≤ τ ]) p(Rp, τ). (14)
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These portfolios are held by investors with a higher degree of risk aversion than those

simply minimizing shortfall probability or the variance of the portfolio. Negative returns far

from the target are more penalized than exceedances near τ . The importance of comovements

and marginal tail behaviour is stressed in these measures that put an extra weight on large

negative returns.

The objective function (14) can be further refined by assuming τ is sufficiently large in

absolute value to use extreme value theory techniques. Note the concept sufficiently large

does not give much guidance about appropriate choices, see Embrechts, Klüppelberg and

Mikosch (1997) or more recently Coles (2001) for a detailed review of these techniques. Then,

for appropriate values of τ the expected value in the tail can be well approximated by the

following

E[Rp|Rp ≤ τ ] =





τ − στ,p

1−ξp
, if ξp 6= 0

τ − στ,p, if ξp = 0,
(15)

with ξp and στ,p parameters of a Generalized Pareto distribution modelling the conditional

distribution of returns below τ . The parameter ξp depicts the ratio of decay of the left tail of

the distribution of Rp. The proof of this result is sketched as follows.

The conditional distribution of Rp for values less than τ is the conditional distribution of

−Rp for values greater than −τ . Thereby

E[Rp|Rp ≤ τ ] = −E[−Rp| −Rp > −τ ].

From extreme value theory we know that the conditional distribution of the upper tail con-

verges to a Generalized Pareto distribution (GPD) as −τ goes to the right end point of the

distribution. This result is the Pickands (1975), Balkema-de Haan (1974) theorem. The GPD

takes the form

GPDξ,σ−τ,p(y) =





1−
(
1 + ξp

y
σ−τ,p

)− 1
ξp if ξp 6= 0

1− e
−y

σ−τ,p if ξp = 0.
(16)

We further assume that the choice of τ is sufficiently low (high −τ) for the GPD to approximate

the conditional distribution of the upper tail. Then it is immediate to derive the conditional

expected value of the exceedances of −τ . This is

E[−Rp| −Rp > −τ ] =





−τ + σ−τ,p

1−ξp
, if ξp 6= 0

−τ + σ−τ,p, if ξp = 0.

Note that σ−τ,p = στ,p by construction.
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It follows then from (14) that the risk measure LPM1 for τ sufficiently low is given by

min
X

LPM1(τ ;X) =
στ,p

1− ξP
p(Rp, τ) (17)

for portfolios with heavy-tailed distributions, and

min
X

LPM1(τ ; X) = στ,pp(Rp, τ) (18)

for portfolios with distributions exponentially decaying.

Formulas (7), (17) and (18) show that the risk profile of downside-risk averse investors

depends on the tail index of portfolio P ; on the downside variance of Rp (στ,p), and on the

shortfall probability of the portfolio. Thereby the presence of comovements and the marginal

tail behaviour of each asset have an important role in optimal asset allocation and diversifica-

tion.

For n = 2 the optimal allocation problem becomes

min
X

LPM2(τ ;X) =
(
V [Rp|Rp ≤ τ ] + (E[Rp|Rp ≤ τ ]− τ)2

)
p(Rp, τ), (19)

where V (·) stands for the variance and hence LPM2 is named a semivariance risk measure.

The proof of this result is obtained by adding and substracting E[Rp|Rp ≤ τ ] into the integrand

in (5).

It is interesting to observe that minimizing LPM2 implies minimizing LPM1. The same

applies to LPM1 and LPM0. For increasing n risk is represented by higher moments of the

conditional distribution of returns below the target. Thereby risk measures based on high n

include extra penalization for heavy-tailed distributions. We will not study this risk measure

further in the paper and concentrate on LPM0 and LPM1 given they can be identified with

the most popular risk measures used nowadays in the risk management literature; these are

Value at Risk and Expected Shortfall respectively.

3 The impact of Heavy Tails and Comovements

In portfolio theory any efficient portfolio has some share of every risky asset in the economy.

The composition depends on the level of investor’s risk aversion. In practice however, a

professional investor, e.g. a fund manager, does not have free access or the possibility to observe

the whole universe of assets trading in a financial market. These professionals specialize in a

subset of these risky assets and construct diversified portfolios by choosing optimal weights

within those assets.
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Asset allocation and portfolio diversification consists of two different aspects; a choice

of optimal assets in the sense of minimizing cross dependencies and a vector X of optimal

proportions invested in each asset. This is not a sequential procedure in the sense the assets

are selected first and then the optimal weights, for it can occur that assets exhibiting higher

comovements have combinations displaying lower LPM1. Therefore in order to construct

optimal portfolios investors need on the one hand to compute the shortfall probability and the

tail index of the efficient portfolio itself; and on the other hand to find optimal weights that

minimize conditional probabilities of the type shown in (7). All these elements depend on the

level of tail dependence between assets in the portfolio (comovements) and on marginal tail

probabilities (heavy tails).

3.1 Heavy tails

Investors’ optimal asset allocation depends on the shape of different distributional tails in two

ways: the contribution of each asset to the risk in the portfolio given by marginal shortfall

probabilities, and the tail index of the portfolio itself.

It is well known that if the returns on a portfolio are normally distributed and the joint

distribution is also multivariate normal the distribution of Rp is normal and the tail index ξj of

every asset and of the portfolio (ξp) is zero. In this case the downside-risk optimization prob-

lem boils down to study marginal and overall variances (mean-variance methodology). This

result can be extended to portfolios where individual returns have distributions exponentially

decaying and satisfy
1
m

m∑

i=1

m∑

j=1
i6=j

Cov(Ri, Rj) → γ, (20)

with γ a constant value (see Lehman p.107, 1999). In this case the central limit theorem for

dependent variables applies and the preceding nice results on diversification hold.

However, if returns do not exhibit an exponential decay in the tails - as empirical evidence

on asset returns is suggesting since Fama (1965) - standard statistical results on diversification

do not hold and one has to study the probability in the tails for they provide extra information

not contained in the variance-covariance structure. These different tail behaviours determine

some important properties for downside-risk averse investors when constructing well diversified

portfolios (portfolios consisting of independent assets).

Some results.-

• The shortfall probability of returns is smaller for assets with exponentially decreasing

distributions in the left tail.
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• The shortfall probability of two returns with heavy tails is smaller for the asset with

smaller tail index.

• The shortfall probability of a portfolio of assets exhibiting the same tail behaviour (same

ξ) decreases as the number of assets in the portfolio increases. This phenomenon is more

pronounced for exponentially decreasing distributions.

Similar findings are given in Danielsson et al. (2006) from the study of downside-risk measures

for single assets with heavy-tailed distributions.

The proof of these properties is immediately derived from definitions (9) and (10) and

from noting that if the marginal distributions are heavy tailed the tail index characterizing

the distribution of the portfolio is also heavy tailed. Moreover, by applying the convolution

theorem of Feller (1971, VIII.8), Dacorogna et al. (2001) and Hyung and de Vries (2005) find

that the distribution of an equally weighted portfolio consisting of m independent risky assets

with distributions regularly varying at infinity all at the same rate 1
ξ is regularly varying at a

rate 1
ξ . In particular they find that

P{ 1
m

m∑

i=1

Ri ≤ −x} = m1− 1
ξ Ax−

1
ξ [1 + o(1)], as x →∞,

with ξ the common tail index and A a constant. It can be seen that these heavy-tailed

portfolios also benefit from a higher number of assets (m larger) and from thinner tails (a

lower ξ towards zero).

Note however that if the assets in the portfolio have different tail behaviour investors do

not obtain a real benefit from diversification (in the sense of diminishing risk by aggregating

elements to the portfolio). In order to see this we consider a portfolio of independent assets

having each a regularly varying distribution with tail index ξj for j = 1, . . . , m where ξk can be

different from ξl. It follows directly from the definition of regular varying that the sum of these

m independent variables is also regularly varying at infinity with tail index the maximum of

the tail indexes of the marginal distributions. This result is formulated as follows

P{Sm ≤ −x} = Amx−min( 1
ξ1

,..., 1
ξm

)[1 + o(1)], as x →∞, (21)

with Sm =
m∑

i=1

Ri and Am some constant. The proof of the preceding expression for m = 2 is

immediate by observing that

P{R1 ≤ −x}+ P{R2 ≤ −x} − P{R1 ≤ −x,R2 ≤ −x} ≤ P{Sm ≤ −x},

12



and for ε > 0,

P{Sm ≤ −x} ≤ P{R1 ≤ −(1−ε)x,R2 > −εx}+P{R1 > −εx,R2 ≤ −(1−ε)x}+P{R1 ≤ −εx,R2 ≤ −εx}.

If ξ∗ denotes the tail index of the variable Sm and using that R1 and R2 are independent we

have

lim inf
x→∞

P{R1 ≤ −tx}+ P{R2 ≤ −tx}
P{Sm ≤ −x} ≤ lim

x→∞
P{Sm ≤ −tx}
P{Sm ≤ −x} ,

and

lim
x→∞

P{Sm ≤ −tx}
P{Sm ≤ −x} ≤ lim sup

x→∞
P{R1 ≤ −(1− ε)tx}

P{Sm ≤ −x} +
P{R2 ≤ −(1− ε)tx}

P{Sm ≤ −x} .

Then, using the concept of regular variation the preceding result reads as

lim inf
x→∞

(
t−

1
ξ1 x(− 1

ξ1
+ 1

ξ∗ ) + t−
1

ξ2 x(− 1
ξ2

+ 1
ξ∗ )

)
≤ lim

x→∞
P{Sm ≤ −tx}
P{Sm ≤ −x} , (22)

and

lim
x→∞

P{Sm ≤ −tx}
P{Sm ≤ −x} ≤ lim sup

x→∞

(
[(1− ε)t]−

1
ξ1 x(− 1

ξ1
+ 1

ξ∗ ) + [(1− ε)t]−
1

ξ2 x(− 1
ξ2

+ 1
ξ∗ )

)
. (23)

Letting ε → 0 and t > 0 fixed we observe that the ratio of probabilities converges for ξ∗ =

max(ξ1, ξ2), and (21) holds. For m > 2 the proof holds by induction. In this case ξ∗ =

max(ξ1, . . . , ξm). ¤

On the other hand in terms of downside-risk a well diversified portfolio P should at least

satisfy that

P{Rp ≤ −x} ≤ P{Rj ≤ −x} as x →∞. (24)

For the case of multivariate gaussianity of returns these probabilities satisfy

P{Rp ≤ −x}
P{Rj ≤ −x} =

1√
m

exp−
1
2 (m−1)x2

[1 + o(1)] as x →∞.

However for the heavy-tailed portfolio studied here the preceding expression satisfies that

P{Rp ≤ −x}
P{Rj ≤ −x} = m

− 1
ξj [1 + o(1)] as x →∞, (25)

with ξj the higher tail index in the portfolio. This result is immediate by noting that

P{Sm ≤ −mx} = P{Rp ≤ −x} and Sm is regularly varying as shown in (21).

The tail of portfolio P is determined by the tail of the asset with heavier tail. The di-

versification effects of this portfolio are limited. It simply attenuates the downside-risk of the
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riskier asset by adding independent elements to the portfolio.

If the tail of the riskier return is very heavy tailed (slowly varying distribution: ξj → ∞)

it satisfies that
P{Rj ≤ −tx}
P{Rj ≤ −x} = 1 + o(1) for t > 0 as x →∞. (26)

Thus, with similar arguments to those followed for regularly varying distributions we find that

P{Sm ≤ −tx}
P{Sm ≤ −x} = 1 + o(1) for t > 0 as x →∞, (27)

and
P{Rp ≤ −x}
P{Rj ≤ −x} = 1 + o(1) as x →∞, (28)

with t = m. Portfolios comprising assets with very heavy tailed distributions do not diver-

sify risk by adding independent elements because their shortfall probability is driven by the

shortfall probability of the asset with heavier tail.

3.2 Comovement risk

The assumption of multivariate gaussianity implicit in the mean-variance theory has an in-

teresting implication in portfolio theory. The presence of tail dependence diminishes with τ

for τ → −∞, to the point that is asymptotically zero (see Embrechts, McNeil and Straum-

man, 1999) and there is no comovement risk. If the multivariate distribution of returns is

elliptical but not gaussian there can be tail dependence between returns that does not vanish

as τ → −∞. Nevertheless the first two moments are sufficient to describe completely the

structure of dependence between the variables.

If the assets in the portfolio exhibit comovements and the multivariate distribution is not

elliptical investors require further information about the structure of joint dependence. This

is particularly challenging in the tails due to the absence of information that hinders nonpara-

metric as well as parametric techniques for modelling joint dependence. By the conditional

probability theorem the multivariate distribution function of the vector of returns reads as

P{R1 ≤ τ, . . . , Rm ≤ τ} = P{R1 ≤ τ, . . . , Rm ≤ τ |R1 ≤ τo, . . . , Rm ≤ τo}P{R1 ≤ τo, . . . , Rm ≤ τo}
(29)

with (τo, . . . , τo) defining a wider tail region than that determined by the vector of τ ’s. The

joint distribution determined by the vector of τo’s is well estimated by empirical likelihood

methods. Now using Sklar’s theorem (1959) the conditional probability can be written in

terms of a copula function gauging the dependence structure with margins the conditional

14



probabilities ti = P{Ri ≤ τ |R1 ≤ τo, . . . , Rm ≤ τo} for i = 1, . . . , m. Then

P{R1 ≤ τ, . . . , Rm ≤ τ |R1 ≤ τo, . . . , Rm ≤ τo} = C(t1, . . . , tm). (30)

The distribution function C denotes a copula describing the structure of dependence in a

[0, 1]m-cube. For a review on copula theory see Joe (1997), Nelsen (1998) or for applications

in finance see Cherubini, Luciano and Vechiato (2004).

The use of copulas is criticized by the absence of theory to support ad-hoc choices of

copulas often implemented by researchers and by the lack of appropriate goodness of fit tests

to validate these choices, see Mikosch (2005) for the former and Chen, Fan and Patton (2004)

for the latter.

We instead propose to model tail dependence and comovement risk by using the decompo-

sition (30) and a result from Juri and Wülthrich (2002). These authors find that if returns

are polynomially decaying (heavy-tailed) the copula function for the conditional lower tail is

approximately described by the Clayton copula (Clα) as t goes to zero. More formally, for

ti = Ai(−τ)−
1
ξi with Ai some constant and τ < 0,

lim
t1,...,tm→0

C(t1, . . . , tm) = Clα(t1, . . . , tm) (31)

with Clα defined by

Clα(t1, . . . , tm) = (t−α
1 + . . . + t−α

m )−1/α. (32)

The case α →∞ describes perfect dependence or comonotonicity. The amount of extreme tail

dependence between variables decreases with α. Thus for α → 0, the Clayton copula converges

to Cl0(t1, . . . , tm) = t1 · · · tm that describes asymptotic tail independence. It is easy to see

then that comovement risk converges to zero for τ → −∞ (ti → 0, ∀ i).

4 Simulations of portfolios: The Student’s-t family

The aim of this simulation experiment is to observe the effect of heavy tails and comovements in

an environment where mean-variance agents are correct and see how their decisions worsen as

the distribution of the portfolio starts to move away from ideal assumptions given by elliptically

distributed returns. In order to do this we simulate four different portfolios consisting of three

assets with n=1000 observations each. The multivariate distribution of these portfolios belongs

to the Student’s-t family. In particular we consider ν = 30, ν = 10, ν = 5 and ν = 3 degrees of

freedom, a vector of means [2 3 5] and the same following variance-covariance dependence

structure for each distribution
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It is well known this distribution is elliptical (Patton (2001) or Malevergne et Sornette

(2006)). This as described in Embrechts, McNeil and Straumman (1999) implies that mean-

variance averse investors will take optimal investment decisions. Nevertheless in contrast

to multivariate gaussian distributions the multivariate Student’s-t has marginal heavy-tailed

distributions and exhibits positive tail dependence that increases as the number of degrees of

freedom decreases. This can be observed in figure 4.1.

The tail index of each marginal distribution is well approximated by the inverse of ν (see

chapter III in Embrechts, Klüppelberg and Mikosch (1997)). Note then that ν = 2 corresponds

to a process with infinite variance. This choice of degrees of freedom implies that a) the smaller

ν the heavier the marginal tails, and b) the tail index of each portfolio is given by the inverse

of the common ν describing the tail behaviour of every asset in each portfolio (see Subsection

3.1.)
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Figure 4.1. Scatter plot for n=1000 observations of different Student’s t distributions. Upper-

left panel plots t30; Upper-right t10; Lower-left t5 and Lower-right t3.
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The efficient portfolio frontier is consistent across risk measures (see figure 4.2). The

most efficient portfolio is ν = 30 for it exhibits the thinner tail and no comovements (it is

roughly a multivariate normal distribution). Then t10, t5 and finally t3. Mean-variance and

downside-risk averse investors agree on their portfolios. It is interesting however that while

mean-variance averse investors do not have strong reasons to discard t3 on the grounds of the

variance-covariance structure downside-risk measures are capable of clearly discriminating t3

from the rest of optimal portfolios.
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Figure 4.2. Mean-variance efficient portfolio frontier in the left panel. Shortfall probability

efficient portfolio frontier in the right panel. (+) in black color describes the curve for t30; (·)
in blue is used for t10, (−−) and red color for t5 and (−) and green for t3.

The efficient portfolio frontiers for LPM1 (see figure 4.3) support these findings. It is ex-

pected that as the returns on the portfolio depart more from the elliptical world downside-risk

averse investors take more informed decisions in contrast to mean-variance averse investors.

Furthermore, individuals with a higher level of risk aversion as measured by LPM1 rather than

LPM0 will better discriminate between these portfolios. With this measure we also disregard

t5 in addition to t3 in the analysis of efficient portfolios. Portfolios t30 and t10 are still very

similar however in terms of downside-risk as it can be seen from figure 4.3.
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Figure 4.3. Expected shortfall efficient portfolio frontier for t30, t10, and t5 in the left panel.

Expected shortfall efficient portfolio frontier for t3 in the right panel. (+) in black color de-

scribes the curve for t30; (·) in blue is used for t10, (−−) and red color for t5 and (−) and

green for t3.

The results of this section are carried out for τ = 3 (roughly the sample mean of an equally-

weighted portfolio) but are consistent across targets. Results for other thresholds are available

upon request as well as for other non-elliptical distributions (in particular generalized hyper-

bolic distributions as studied in Menćıa and Sentana (2005)) where results are more discordant

between mean-variance and downside-risk averse investors due to the impact of heavy tails and

comovement risk.

5 A real example of diversification

The aim of this application is to study the impact of heavy tails and comovements, between

portfolios of important financial indexes, on constructing well diversified portfolios for mean-

variance as well as for downside-risk averse investors. As in Harlow (1991), we work with

financial equity and bond indexes. In particular we use data from US and UK : Dow-Jones

Corporate bonds with 2-years maturity Index (djbc) describing US debt market; Dow-Jones

Stock Index (djsi) for US equity market, and Ftse100 Index (ftse) for UK equity market.

The data spans the period 22/1/2001 - 24/09/2004 and are obtained from Freelunch.com

website. There are three possible combinations by pairs with these assets: A = [djbc, djsi],

B = [djbc, ftse], and C = [djsi, ftse]. The scatterplots of log-returns forming these portfolios

are in figure 5.1.
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Figure 5.1. Left panel plots Portfolio A; middle panel Portfolio B; and right panel Portfolio

C.

In contrast to the previous section the variance-covariance matrix is not identical across

portfolios. The relevant second order moments are V (djbc) = 0.0337, V (djsi) = 1.579,

V (ftse) = 1.806, Cov(djbc, djsi) = −0.019, Cov(djbc, ftse) = −0.046 and Cov(djsi, ftse) =

0.3128. From these values and the plots in figure 5.1 it seems portfolio A has uncorrelated

components and exhibits the lower level of tail dependence. Portfolio C on the other hand

reports strong positive comovements. The study of the tails reveals that the three assets

are heavy-tailed. The tail index takes a value close to 0.3 indicating a significant degree of

heaviness. These estimates are obtained by using Hill’s estimator (Hill, 1975),

ξ̂n(k) =
1
k

k∑

i=1

lnr(i) − lnr(k+1),

where r(1) < r(2) < . . . < r(n) denote order statistics corresponding to portfolio returns.2

Figure 5.2 shows that the estimates of ξ stabilize after inaccurate initial estimates defined by

the first order statistics and indexed by k. These results indicate that diversification in this

example makes sense and is not driven by the asset with heavier tail.

2Note that returns on financial assets are characterized by exhibiting serial dependence on the conditional
variance. It is well known that in this framework estimates of ξ are still consistent but no longer efficient unless
we filter the dependence in volatility. This is further the intention of our application where we assume returns are
serially independent as in the literature in portfolio diversification.
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Figure 5.2. Hill’s plot. (-) depicts the path of tail index estimates of DJBC Index, (·−) of

DJSI Index and (+−) of Ftse100.

Figure 5.3 presents the efficient portfolio frontier corresponding to each risk measure for

a threshold τ = 0.
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Figure 5.3. Left panel plots mean-variance efficient portfolio frontier; middle panel mean-

LPM0 efficient curve and right panel mean-LPM1 both for τ = 0. (−) in black color describes

Portfolio A; (−−) in blue depicts Portfolio B, and (+−) in red is for Portfolio C.

In the case of the LPM1 risk measure the scale of the plot is driven by portfolio C. For

this reason, in order to observe properly the distance between the efficient sets for A and B

we present figure 5.4.
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Figure 5.4. Mean-LPM1 portfolio frontier for τ = 0. (−) in black color describes Portfolio

A and (−−) in blue Portfolio B.

Three conclusions can be obtained from the efficient portfolio frontier. First, it is clear

that Portfolio C is ruled out by both mean-variance and downside-risk averse investors. This

portfolio has higher positive comovements and higher variance, and the analysis of the efficient

portfolio frontier reveals that shorting one of the assets and thereby benefiting from the exis-

tence of positive comovements does not lead to portfolios outperforming A and B. This result

is in accordance with existing literature in portfolio diversification and flight to quality, where

it is commonly agreed that investors prefer to invest in bonds and stocks than solely in stocks

in different marketplaces. Second, the ranking of mean-variance averse investors differs from

that of those downside-risk averse investors penalizing negative returns on the portfolio. The

choice of a threshold τ = 0 is motivated by our willing of studying individuals with high risk

aversion profile. These investors are concerned about the occurrence of losses in the portfolio

and not just about large negative returns. From the efficient curves in the middle and right

panel of figure 5.3 it seems that they prefer portfolio A to B. This outcome is not surprising

since this high level of risk aversion and the choice of A over B can be due to country risk,

that is, investors overvaluing domestic assets over foreign investments. On the other hand

mean-variance averse investors prefer cross-borders diversification. The flight to quality in

this case includes fleeing to other international markets. The rationale for this diversification

seems to be different from the rationale of downside-risk averse investors. The latter type min-

imizes losses by exploiting complementarity of domestic financial markets, while the former

type smooth investment returns by investing in diverse assets a priori more independent. And

third, different downside-risk measures provide the same ranking of portfolios as observed in

Danielsson et al. (2006). Note that the efficient sets derived from LPM0 are not convex. This

is, as commented in Section 2.2, because this measure assigns the same weight to each possible

21



negative return below the threshold failing to describe any form of risk aversion.

6 Conclusions

If returns on a portfolio follow an elliptical distribution, mean-variance minimizing agents

construct efficient and well diversified portfolios. The empirical evidence however consistently

rejects this pointing towards more convoluted multivariate distributions. This phenomenon

challenges investors’ optimal asset allocation in different ways. Rational investors should not

be mean-variance averse but mean-downside-risk averse. The latter type of investors are

concerned about lower partial moments of the distribution of returns. These moments depend

on the presence of comovements between assets, on the marginal tail behavior of each asset,

on an optimal choice of the share invested in each asset, and finally on the tail behaviour and

downside variance of the distribution of the optimal portfolio. By uncovering these factors we

find that investors only allowed to have long positions construct well diversified portfolios by

using asymptotically tail independent assets with tails exponentially decreasing. If they are

allowed to hold short positions investment strategies are more involved and could benefit from

comovements between assets and from heavy tails.

The case of portfolios with assets exhibiting different tail behaviour is also important. In

particular portfolios of assets with very heavy tailed distributions do not diversify risk at all

in case of financial distress because the asset with heavier tail drives the return on the overall

portfolio down. Adding assets to this portfolio will not diminish risk but add complexity to

its management.

Finally from the application to data of UK and US financial markets we conclude that

those portfolios consisting of bonds and stocks achieve higher levels of diversification. This

agrees with existing literature on the topic. More importantly, we find that mean-variance

and downside-risk averse investors construct different efficient portfolios. Thus, according

to downside-risk measures there is also evidence of misleading mean-variance diversification

between domestic (US ) bonds and UK stocks given the comovement risk found between US

and UK equity markets.
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