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Incoherent exciton trapping in self-similar aperiodic lattices 
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Incoherent exciton dynamics in one-dimensional perfect lattices with traps at sites arranged ac­
cording to aperiodic deterministic sequences is studied. We focus our attention on Thue-Morse and 
Fibonacci systems as canonical examples of self-similar aperiodic systems. Solving numerically the 
corresponding master equation we evaluate the survival probability and the mean-square displace­
ment of an exciton initially created at a single site. Results are compared to systems of the same 
size with the same concentration of traps randomly as well as periodically distributed over the whole 
lattice. Excitons progressively extend over the lattice on increasing time and, in this sense, they act 
as a probe of the particular arrangements of traps in each system considered. The analysis of the 
characteristic features of their time decay indicates that exciton dynamics in self-similar aperiodic 
arrangements of traps is quite close to that observed in periodic ones, but differs significantly from 
that corresponding to random lattices. We also report on characteristic features of exciton motion 
suggesting that Fibonacci and Thue-Morse orderings might be clearly observed by appropriate ex­
perimental measurements. In the conclusions we comment on the implications of our work on the 
way towards a unified theory of the ordering of matter. 

I. INTRODUCTION 

Interest in the study of the physical properties of ele­
mentary excitations in one-dimensional (ID) self-similar 
aperiodic systems has considerably grown during the 
last years. Albeit these systems were originally con­
sidered as somewhat intermediate between the peri­
odic (crystalline) and random (amorphous, glassy) or­
derings of matter, it has been progressively realized that 
systems containing basic units arranged according to 
the Fibonacci,1-3 Thue-Morse,4,5 period-doubling,6 or 
Rudin-Shapiro7 sequences display novel properties which 
are not shared by the systems usually considered in con­
densed matter physics. In this way, we have recently 
provided strong evidence supporting the idea that self­
similar aperiodic systems reveal a new kind of order, 
namely, aperiodic order, rather than representing a con­
fuse mixture of periodic order and randomness.8,9 As 
experimental realizations of such systems become avail­
able in the fields of quasicrystalline phase research10 and 
multilayered heterostructures technology,11-15 interest in 
these aperiodically ordered forms of matter goes beyond 
a mere conceptual interest. 

It is well known that self-similar aperiodic systems, 
described by tight-binding and Kroning-Penney models, 
possess singular continuous energy spectra. This point 
has been rigorously proven for Fibonacci, 16, 17 period­
doubling, and Thue-Morse18 sequences and it has re­
cently been conjectured that this spectral type may be a 
common characteristic of all aperiodic systems obtained 
by the application of a substitution sequence.19 Accord-
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ingly, numerical analyses have shown that this kind of 
spectra exhibits a highly fragmented structure, with a hi­
erarchy of splitting subbands displaying self-similar pat­
terns and that the associated (generalized) eigenstates 
behave in a very peculiar manner, characterized by dra­
matic spatial fluctuations and becoming neither localized 
nor extended in the usual sense.20- 23 Hence, the ques­
tion as to whether the peculiar structure of the energy 
spectrum of self-similar aperiodic systems influences the 
transport properties through the sample follows in a nat­
ural way.8 In this work we will investigate incoherent 
exciton dynamics in ID self-similar aperiodic systems, 
considering the Fibonacci and Thue-Morse sequences as 
canonical examples. The aim of this study is threefold. 
In the first place we show how time evolution of quasi­
particles (excitons in the present case) may be usefully 
employed to determine structural features of lattices. In 
particular, we demonstrate that excitons, initially cre­
ated at a single site, act as a probe of the underlying 
structure as time evolves and the quasiparticle interacts 
with larger and larger regions of the system via the com­
bined action of diffusion and trapping. In this sense exci­
ton dynamics might be regarded as a diagnostic tool from 
an experimental viewpoint. In the second place we ascer­
tain how self-similar order modifies exciton dynamics in 
comparison with the dynamics associated with the long­
range disorder of random systems. Finally, we determine 
the differences between exciton propagation through pe­
riodic chains and exciton transport in aperiodic systems 
displaying quasiperiodic order (Fibonacci) on the one 
hand, and nonquasiperiodic order (Thue-Morse) on the 
other hand. In this way we are able to report on two 
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interesting results. First, regarding exciton dynamics, 
self-similar aperiodic lattices are more similar to peri­
odic lattices than they are to random ones and, second, 
exciton motion in quasiperiodic lattices also differs from 
the corresponding motion in nonquasiperiodic chains. 

We will report on these issues according to the fol­
lowing scheme. In Sec. II we describe our model and the 
physical magnitudes we will compute in order to properly 
characterize exciton dynamics. Section III contains our 
main results concerning survival probabilities and mean­
square displacements of incoherent excitons, along with 
the corresponding interpretation of the obtained results. 
Section IV concludes the paper with a brief account on 
practical implications of our results. 

11. MODEL 

We consider excitations in a ID lattice whose time evo­
lution is described by the following master equation for 
the probability Pk(t) to find the exciton at site k: 24 

d 
dtPk = W(Pk+1 + Pk- 1 - 2Pk) - GkPk, (1) 

where W > 0 is the intersite rate constant, which is as­
sumed to be independent of k hereafter and Gk is the 
trapping rate at site k. The quantity of interest in lu­
minescence experiments is the survival probability net) 
defined as 

net) = L Pk(t), (2) 
k 

where the index k runs over all lattice sites. More­
over, assuming that the excitation is initially at site ko 
[Pk(O) = 8kko ], we can also calculate the mean-square 
displacement of the excitation (which is related to the 
diffusion coefficient24) as follows: 

R2(t) = L (k - kO)2 Pk(t), (3) 
k 

where the lattice spacing is taken to be unity hereafter. 
These two functions characterize the dynamics of exci­
tons in the lattice under the combined action of diffusion 
and trapping. Thus, it is known that, in infinite lat­
tices without traps (Gk = 0), the survival probability is 
conserved (n(t) = 1) and the mean-square displacement 
increases linearly with time25 [R2(t) = 2Dt, D being the 
diffusion coefficient]. 

In what follows we consider that G k can only take on 
two values G A = 0 and GB = G > 0; that is, only 
sites B are able to trap excitons. We will arrange sites 
A and B according to the Thue-Morse sequence and the 
Fibonacci sequence, at random, or periodically, depend­
ing on the particular kind of lattice we are interested 
in. For convenience we define c as the ratio between 
the number of traps and the total number of sites in the 
considered lattice,N. Deterministic aperiodic sequences 
can be generated by simple substitution rules. Thus, we 
have A -t AB, B -t BA for the Thue-Morse sequence 
and A -t AB, B -t A for the Fibonacci one. Finite, self-

similar lattices are obtained in this way by l successive 
applications of the substitution rule. The lth generation 
lattice has 21 elements for the Thue-Morse lattice (TML) 
and FI elements for the Fibonacci lattice (FL), where FI 
denotes the Fibonacci numbers. Such numbers are gen­
erated from the recurrence relationship FI = FI- 1 + FI-2 
with Fo = Fl = 1; as l increases the ratio FI-dFI 
converges toward T = (v's - 1)/2 = 0.618 ... , which is 
known as the inverse golden mean. Therefore, sites are 
arranged according to the sequence AB B A B A AB . .. 
in the TMLand AB AAB AB A ... in theFL. The value 
of c is strictly equal to 0.5 for any generation of the TML. 
On the contrary, the value of c depends on the particu­
lar generation of the FL, but for large enough systems 
one has c '" 1 - T = 0.3819... . Disordered lattices 
are obtained by placing traps (sites B) at random over 
the lattice, maintaining fixed the concentration of traps 
c. Finally, we consider in this work periodic lattices of 
two types. One of them is set with c = 0.5 and traps 
placed at sites with even index. This periodic lattice will 
be compared to the TML. The other type is obtained 
from a periodic superposition of unit cells of the form 
A B A A B A B A, which is nothing but the fifth-order ap­
proximant to the Fibonacci sequence. The concentration 
of traps is c = 0.375 for this periodic arrangement, a 
value rather close to the value 1 - T corresponding to 
infinite FL's. 

Ill. NUMERICAL RESULTS 
AND DISCUSSION 

We have numerically solved the master equation (1) 
for Thue-Morse, random, and periodic lattices of N = 
210 = 1024 units and for Fibonacci, random, and pe­
riodic lattices of N = F 15 = 987 units using an im­
plicit (Crank-Nicholson) integration scheme. To avoid 
free ends effects, spatial periodic boundary conditions are 
introduced, so that the detailed balance required by Eq. 
(1) is preserved. The initial condition for the exciton mo­
tion is Pk(O) = 8kko ' with ko = 500 (ko = 494) for lattices 
with N = 1024 (N = 987) sites; that is, we will assume 
that the exciton is created, for instance, by a pulsed exci­
tation, roughly at the middle of the lattice. The trapping 
rate G will be measured in units of W whereas time will 
be expressed in units of W- 1 • The maximum integra­
tion time and the integration step are 250 and 5 x 10-4 , 

respectively. Smaller time steps led to similar results. 
Since we are mainly interested in the effects due to par­
ticular arrangements of traps rather than in a detailed 
description of the influence that the different parameters 
have in the incoherent motion of excitations, we will fix 
the values of Wand G henceafter. Thus we have set 
W = 1 and G = 0.2 as representative values. For dis­
ordered lattices a series of random distributions of traps 
was generated for a given trap concentration, and ensem­
bles comprising a number of realizations varying from 50 
to 200 were averaged to check the convergence of the 
computed mean values. Since convergence was always 
satisfactory between all the ensembles, we present the 
results corresponding to 50 averages. 
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The obtained results for the mean-square displacement 
and survival probability of excitons propagating through 
the TML are presented in Figs. l(a) and l(b), respec­
tively, along with the corresponding results for random 
and periodic lattices with a trap concentration of c = 0.5. 
Analogous magnitudes describing the motion of incoher­
ent excitons through the FL and related random and 
periodic lattices are shown in Figs. 2(a) and 2(b). Let 
us consider, in the first place, the behavior of the mean­
square displacement of incoherent excitons through these 
systems. In all cases it becomes apparent that the time 
evolution of R2(t) arises from the competition between 
two different processes, namely, diffusion (the exciton is 
transferred from site to site, starting at ko) and trapping 
(the exciton progressively decays in time since possible 
detrapping processes are not considered in our model). 
At short times the first mechanism dominates because 
the exciton is still close to the initial position and, con­
sequently, there exist small chances to be trapped. As 
time elapses, the trapping mechanism plays a major role 
since the exciton can be found in a larger segment of 
the lattice. This competition gives rise to the occurrence 
of a well-defined maximum in R2(t), whose position de-
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FIG. 1. (a) Mean-square displacement and (b) logarithm of 
the survival probability of excitons as a function of time for 
lattices of N = 1024 sites with c = 0.5. Results correspond 
to Thue-Morse (solid lines), periodic (long-dashed lines), and 
random (short-dashed lines) arrangements of traps. 
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FIG. 2. (a) Mean-square displacement and (b) logarithm of 
the survival probability of excitons as a function of time for 
lattices of N = 987 sites with c = 0.382. Results correspond 
to Fibonacci (solid lines), periodic (long-dashed lines), and 
random (short-dashed lines) arrangements of traps. 

pends not only on the concentration of traps but also 
on the spatial distribution of these traps. In addition 
to this quite general behavior we observe significant dif­
ferences between the exciton behavior in quasiperiodic 
(Fibonacci) and nonquasiperiodic (Thue-Morse) aperi­
odic lattices. In fact, the mean-square displacement of 
an exciton propagating through a TML essentially coin­
cides with that corresponding to the case of the periodic 
lattice over the entire time interval we have considered. 
Moreover, the R2(t) curve describing the exciton motion 
in the random lattice appreciably differs from both the 
TML and periodic corresponding curves. On the con­
trary, the mean-square displacement of excitons in the 
FL cannot be easily compared with that of excitons mov­
ing in neither periodic nor random lattices at short times 
but, as time increases, exciton motion in FL's progres­
sively resembles that taking place in the periodic lattice 
approximant. 

Now, we turn our attention to the evolution of the 
survival probability. It is well known that, for any pe­
riodic distribution of traps, the behavior of the survival 
probability is simply exponential in time, and is given 
by the expression n(t) = exp(-cGt), whereas in random 
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lattices it presents a more complex and nonexponential 
dependence on time. Keeping this fact in mind, the in­
terpretation of Figs. l(b) and 2(b) is straightforward. 
The rate of trapping of incoherent excitons in both the 
TML and FL is very similar to that of the correspond­
ing periodic lattices with the same fraction of traps and 
quite different from that associated with the correspond­
ing random lattices. Therefore, from this point of view, 
self-similar aperiodic systems behave as periodic ones in a 
very close manner. In particular we note that not only an 
exponential decay rate for both kind of aperiodic systems 
is observed, but the slope of the corresponding survival 
probabilities fits the value prescribed by the trap concen­
tration c appearing in the general expression for periodic 
systems. Finally, note that the decay rate in random lat­
tices is much slower than in the other lattices (periodic 
and aperiodic). 

IV. CONCLUSIONS 

From the comparison of the mean-square displacement 
and survival probability plots for the lattices consid­
ered in this work, several conclusions can be drawn. In 
the first place we point out that excitons propagating 
through self-similar aperiodic lattices behave in a very 
similar way as they do in periodic ID systems, and con­
sequently exhibit a time evolution completely different 
from that they show in random systems. A second im­
portant result emerging from our numerical simulations is 
that the exciton dynamics in the TML significantly differs 
from that recorded in the FL at short times. This can be 
easily seen by comparing the corresponding mean-square 
displacement curves. The justification for this effect can 
be accounted for starting from the following picture: As 
time evolves the exciton progressively extends over the 
lattice and, in this sense, it acts as a probe, indicating 
the rate of trapping associated with the particular ar­
rangement of traps of the underlying structure. In this 
way, the shape of the R2 (t) curve can be interpreted in a 
topological sense. As has been explained previously the 
characteristic maximum of this curve indicates a cutoff 
between two different transport regimes in the system. 
At short times we have classical diffusion through the 
lattice; meanwhile at longer times the effects of trapping 
become dominant. Figure l(a) indicates that excitons 
propagate through the TML as they will do through a 
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