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1 Introduction

The existence of equilibrium for discontinuous games depends on special definition of the payoff at disconti-
nuities. This was first argued by Simon and Zame (1990) for games of complete information, and by Jackson,
Simon, Swinkels and Zame (2002), henceforth JSSZ, for games of incomplete information.

Both papers offer interesting examples where there is no equilibrium if the payoff at discontinuities are
defined in the usual manner. Indeed, for most of the games there is a natural way to define the payoff at
discontinuities. For auction games, discontinuities occur at ties (with positive probability) and it is usual to
define the payoft at such points through the standard tie-breaking rule consisting in randomly splitting the
object among the tying bidders.

Motivated by examples, they offer a solution concept where the payoff at the discontinuities are defined
as the limit point of a sequence of payoffs. Thus, the payoff is “endogenously defined” at the discontinuities
and impossible to describe, since there is no available criterion to select a priori which accumulation point
is the correct one.

In the standard game theory, a game specifies the payoff of all players for every profile of actions.
Thus, their solution requires a non-trivial conceptual change in the very definition of games. This suggests
the importance of understanding when special rules are really needed and obtaining the explicit payoff at
discontinuities — which for auctions means explicit tie-breaking rules — that ensure equilibrium existence.

Simon and Zame (1990) write: “...the same sharing rule should not be expected to work for all problems.
Indeed, even within the same problem, different sharing rules may be appropriate at different points” (p.
862). Nevertheless, we show that it is possible to define an explicit tie-breaking rule that works for a class
of auctions.

Specifically, we show that the all-pay auction tie-breaking rule is sufficient for the existence of pure
strategy equilibria in a set of symmetric auctions for which the best results available (JSSZ) ensure only the
existence in mixed strategies with an endogenously defined tie-breaking rule.! Furthermore, we completely
characterize when the standard tie-breaking rule is enough.

The rule is: if there is a tie, conduct an all-pay auction among the tying bidders. If again there is a tie,
split the object randomly.? We show that ties occur with zero probability in the second round which ensures
equilibrium existence in pure strategies. Moreover, the all-pay auction tie-breaking rule does not require
communication of private information, as JSSZ’s solution does.

Besides the definition of an explicit tie-breaking rule, we characterize the situations where they are really
needed. We illustrate this characterization with JSSZ’s example 1. This is a standard first-price auction
except for the fact that the bidder’s payoff is decreasing in the opponents’ types, although increasing in her
own (this is also similar to example 3 of Maskin and Riley (2000)). The need of special tie-breaking rules
is then related to non-monotonicities. In fact, it turns out that non-monotonicities of the payoff function is
crucial to the need of special tie-breaking rules — when types and values do not have atoms.?

We argue that non-monotonicities may arise in meaningful economic situations (see sections 4). Thus,

the point goes beyond the technical interest in equilibrium existence. Our results suggest that the all-pay

'n this paper, we focus only on pure strategy equilibria.

2The all-pay auction tie-breaking rule is similar to Maskin and Riley’s second-price auction tie-breaking rule (Maskin and
Riley (2001)), where the tie is broken through a second-price auction, instead of an all-pay auction, as in our case.

3For the case of first-price auctions with atoms in the distribution of private values, see Monteiro (2004).



auction is a good mechanism to “rank” the bidders’ information as required for equilibrium existence (see
the discussion following Theorem 3, in subsection 3.2).

Nevertheless, not all non-monotonic utility functions require special tie-breaking rules. As stated above,
our results allow us to characterize the set of symmetric auctions for which the standard tie-breaking rule
is sufficient to ensure equilibrium existence. It turns out that this strictly contains the set of auctions with
non-decreasing interdependent values, but may also include situations like example 1 of JSSZ. Indeed, we
will show that there are examples close to theirs that do not have equilibrium with the standard tie-breaking
rule.*

The paper is organized as follows: In section 2 we present the model. Section 3 gives the main results
for unidimensional auctions with monotonic equilibria: the all-pay auction tie-breaking rule is introduced
and equilibrium existence proved. In section 4 we discuss why non-monotonicities can be of interest. In
section 5 we extend some results to multidimensional auctions and non-monotonic bidding function. Section

6 concludes with a discussion on the related literature. An appendix collects the proofs.

2 The model

There are N bidders in an auction of a single object.” Player i (i = 1,..., N) has a private information
t; € S, where (S,X, 1) is a non-atomic probabilistic space.® Then, bidder i chooses a bid b; € B =
{bour }U[bmin, +00), where by, > boyr is the minimal valid bid. If b; = boyr, bidder i does not participate
in the auction and gets 0.

Let (SN, 2%, 1Y) be the product of N independent copies of (S, 3, 1), defined in the usual way. Let
t = (t;,t_;) € SN be the profile of signals and b = (b;,b_;) the profile of submitted bids. The cutoff that

determines the winning and losing events for bidder i is
b(—i) = max{bmin, bl, ceey bifl, bi+1, ceey bN}

i.e., the bidder i receives the object if b; > b(_;) and none if b; < b_;. If the tie-breaking rule is not
explicitly mentioned, we assume that ties (b; = b_;)) are broken by the standard tie-breaking rule, that is,
the object is randomly divided among the tying bidders. More specifically, the payoff of bidder i is given by

v (ti; t—i) - pW (bi, b(,i)) , if b; > b(,i)

u; (¢,0) = —pt (bi,b(_i)) , if b; < b(_i)
v(ti,t_i)—bi .
TR if bi = b(—s)

where v (t;,t_;) is the value of the object for bidder i, p" and p’ are the payments made in the events of
winning and losing, respectively, and m(b) is the number of tying bidders.

Our setting is given by the following assumptions:

4The example 2 in subsection 3.2 embeds example 1 of JSSZ in a class of parametrized examples. By “a close example” we
mean a neighborhood of the parameters that specify their example.

5The model can be easily extended to L < N homogenous objects, if each bidder’s demand is unitary.

6In section 3, we consider only the case S = [0,1] C R and N = 2. In section 5, we comment on how these assumptions can

be relaxed.



Assumption 1 Types are independently distributed in (SN SN N ), where p is the marginal distribution
for the type of each bidder. Players are risk neutrals and the value of the object for player i is given by
v (ti,t_;), where the function v: S x SN~ — R, is measurable, its range is the compact interval [v,7] C R,
and it is symmetric in the last N —1 arguments, that is, if t"_; is a permutation of t_;, v (ti, tLi) = ().

1 7

Moreover, ¥ o v~ is absolutely continuous with respect to the Lebesque measure.

The most restrictive requirement of Assumption 1 is symmetry, although independence is also restrictive.
However, available results on pure strategy equilibrium existence are restricted to independency or affiliation.
We only consider symmetric pure strategy equilibria (not necessarily monotonic). On the other hand, note
that Assumption 1 does not require any kind of monotonicity and, thus, generalizes, in this direction,
assumptions usually required in auction models.

The specific auction format is determined by p" and p”. We will alternatively consider two cases. The
first one, embodied in Assumption 2-(i) below, covers first-price auctions and all-pay auctions, for instance.

The second case, defined by Assumption 2-(ii), covers second-price auctions, among other exotic formats.

Assumption 2 For j = W or L, p/ (-,-) > 0, p’ (bour,-) = 0, 01p" = 0, p’ (-,bour) = P’ (-, bmin), P’
is differentiable over (bumin,50) X (bmin, 20), ¥ (bmin, ) = P* (bmin, 0’) for all b and b’ and one of the two
conditions below is satisfied:

(i) O1p™ (-) > 0 or O1p* (-) > 0;

(it) 01p" = 01p* = 0 and 9, (pV —p*) > 0.

Assumption 2 allows us to cover virtually all kinds of standard single-object or multi-unit auctions with
unitary demands and encompasses the use of entry fee. Some important examples are:

(A) All-pay auctions: p" (b;,b(_s)) = b; and p* (b;,b_s)) = b;.

(F) First-price auctions: p" (bi, b(,i)) =b,; and p~ (bi, b(,i)) =0.

(S) Second-price auctions: p" (bs,b_s)) = b(—s) and p" (b;, b_;)) = 0.
(W) War of attrition: p" (bi, b(_i)) = b(—; and pk (bi, b(_i)) =b;.

An active reserve price, that is, by, that excludes some bidders is dealt with in the Appendix. However,
for a simple statement of the results, we restrict our exposition to the case where the reserve price is not
active, as summarized by the following assumption:

Assumption 3 v, p"', p¥ and byin are such that no bidder plays bour, that is, no bidder prefers to stay

out of the auction.

We denote the auction described above by A = (S, %, u, N,v). Observe that we are considering only
symmetric auctions. Thus, throughout the paper, when we refer to a strategy or to a profile of strategies,
we always mean symmetric pure strategies.

"That is, if C C R has zero Lebesgue measure, then pu™N {(t;,t_;) € SN : v (t;,t—;) € C} = 0. Observe that this implies that

1V is non-atomic. Thus, this part of the assumption is just a generalization of the usual assumption for monotonic auctions,
where v is strictly increasing with ¢; and p? is non-atomic. Indeed, these conditions imply the absolute continuity of u® ov~1.



3 Pure strategy monotonic equilibria for non-monotonic auctions

Our first aim is to characterize the conditions under which there exist symmetric monotonic equilibria in a
setting where the payoff functions are not necessarily monotonic. For all results of this section, we consider
an auction A = (S, %, u, N,v) satisfying assumptions 1, 2 and 3 and such that N = 2 (there are only 2
players) and S = [0,1] C R.S

Let us denote by p(8,b) the expected payment of a bidder that plays a bid 3, when the opponent is
playing an increasing strategy b : [0, 1] — R in the auction A, that is,

b=H(B) 1
p(8,b) 5/0 " (,B,b(a))da—i-/blw)pf‘ (B,b(cx)) do.

The first useful result that we derive is the Revenue Equivalence Theorem for our setting.

Proposition 1 (Revenue Equivalence Theorem) Let b : [0,1] — [bin, +00) be a strictly increasing symmet-

ric equilibrium of A. If v is continuous, then

Yy
p(b(y),b) = / v (e, a) da. (1)
0
Proof. It is a direct consequence of Proposition 6 in the Appendiz. M
We also have the following:

Proposition 2 Assume that v is continuous. If b : [0,1] — [bmin, +00) is a strictly increasing symmetric
equilibrium of A, then Assumption 2-(i) implies that b is differentiable and

Y (z) = v(z,x) —p" (b(x),b(x)) +p" (b(x),b(x))
E [01p" (b(2),b () Lip(z)sb(y) + Op” (b(2),b () Lpy<v(y]’

while Assumption 2-(ii) implies that b is continuous and

(2)

v(z,2) = p" (b(2),b()) +p" (b(x),b(z)) =0. (3)

Proof. The first part is a consequence of Proposition 4, while the second part is a consequence of Proposition
5 in the Appendiz. W

For the four previously mentioned formats, the function b that satisfies (1) is given by:

(All-pay auction) b(x)= / v (o, @) da (4)
0
(First-price auction) b(x) = é/ v (o, ) da (5)
0
(Second-price auction) b(x) =v (z,x) (6)
(War of attrition) b(z) = / Ul(oz,;x) da. (7)
0 _

8 All the results of this section can be extended to N > 2 players, as we explain in section 5, but we keep N = 2 to simplify

notation. In that section we also discuss the extensions to multidimensional type spaces.



It is easy to see that each of these functions is increasing if v is non-decreasing in both arguments.
Nevertheless, since we do not assume such monotonicity, this is not necessarily true in our setting. This
observation will be important below.

Recall that Assumption 2-(ii) requires that 9,p"V = 9;p* = 0 and 0, (pW —pL) > 0. Thus, if v is
continuous, as required by Proposition 2, then (3) always has a solution, by the Intermediate Value Theorem.
However, the existence of b does not imply its monotonicity. Under Assumption 2-(i), we might impose extra
conditions to ensure the existence of a solution to (2), i.e., the existence of b satisfying (1).

The next theorem provides an extra necessary weak monotonicity condition on v for the existence of a
monotonic equilibrium. It turns out that this condition is sufficient to guarantee that an increasing bidding

function b satisfying the payment expression (1) is an equilibrium.

Theorem 1 (Equilibrium Characterization) Suppose that v is continuous. There exists a symmetric monotonic
equiltbrium without ties with positive probability if and only if

(i) there exists a strictly increasing continuous function b that satisfies the payment expression (1);

(ii) for all (z,y) € [0,1] x [0,1],

/ﬂﬂ [v(z,a) —v(a,a)]da > 0. (8)

In the affirmative case, the function b in item (i) is an equilibrium of A. If v is not continuous, the above
conditions are still sufficient and (ii) is necessary.
Proof. Proposition 1 shows that (i) is necessary. The necessity of (ii) and the sufficiency part are shown
by Corollary 1 in the Appendiz. M

The condition (ii) of Theorem 1 is a weak monotonicity condition since (8) is satisfied when [v (z,2) —

v(z,2)] (x —z) >0, for all z,z € [0,1]. In particular, z — v (z, ) increasing for all z € [0, 1] is sufficient for
8).

The condition that b satisfying (1) is increasing is a condition on the primitives of the problem and it
is straightforward to check for specific auction formats. For instance, in the case of a first-price auction we
have only to check whether the function given by (5) is increasing. The same is valid for all-pay auctions
(4), second-price auctions (6) and war of attrition (7). The verification is not straightforward only when (2)
or (3) have no close form solution.

Subsection 3.2 will treat cases where b satisfying (1) is not increasing.

3.1 An example

In Example 1 below, condition (8) is not satisfied and there is no monotonic equilibrium. In the Appendix
we reparametrize the types of Example 1 such that Theorem 1 is satisfied for the new types. The equilibrium
bidding function is not then monotonic in the original types.

Example 1 Consider a symmetric first-price auction between two bidders with independent and uniformly
distributed types in [0,1]. The payoff function is
9(xz+1)2y—z+1)

v(z,y) = 3 .




It is easy to verify that b given by (5) is increasing, but the necessary condition (8) is not satisfied, because

/w (e ) — e 0] da = - 28

for x > y. By Theorem 1, there is no monotonic equilibrium. However, in the Appendix we show that the
following continuous and bell-shaped bidding function is an equilibrium:

3(12+3x—222) . 1
b(l‘) — 3(13+1IG_2$2) ) "lfx € [107 2}
st 2) e (3,1).

Example 1 shows that sometimes only non-monotonic equilibria are possible. Thus, natural questions
arise: when only increasing equilibria exist and when equilibria exist at all (possibly with non-monotonic

strategies). The last question will be tackled in section 5, while the former is treated in the sequel.

3.2 Monotonic equilibria and the all-pay auction tie-breaking rule

The assumption that follows is weaker than the usual assumption of the auction theory which requires in

addition that v is also non-decreasing on y. For the results of this subsection we assume that Assumption 4
also holds.

Assumption 4 For ally € S, x — v (x,y) is increasing.

As we observed before the statement of Theorem 1, Assumption 4 implies (8). Thus, under Assumption
4, the existence result below is an immediate consequence of Theorem 1. Less obvious is the converse part
that states that all equilibria must be increasing.

Theorem 2 (Existence of Regular Equilibrium) b is an equilibrium of A if and only if b is increasing and

satisfies the payment expression (1).

Example 1 does not satisfy Assumption 4 and has a non-monotonic equilibrium obtained through a
reparametrization of types. Under Assumption 4 all repametrizations lead to a monotonic equilibrium. On
the other hand, it is important to emphasize that Assumption 4 does not imply that b is increasing, as the
following example shows.

Example 2 (Example 1 of JSSZ) Let v (x,y) = a+xz+ Py be a utility function clearly satisfying Assumption
4. The first-price bidding function given by (5)

b(x):l/oz@(zvz)dz:i [QHW} :a+%

1s increasing only if 8 > —1. Thus, there is an equilibrium without ties if and only if B > —1, provided that
a 2 max{0,— (1 + 5) /2, =B} (otherwise, there would exist negative values).

Example 2 is used by JSSZ to show that the equilibrium may fail to exist under the standard tie-breaking
rule. Building on this example, they propose an endogenously defined tie-breaking rule to ensure equilibrium

existence in general.



Let us consider instead the exogenous all-pay auction tie-breaking rule: if a tie occurs, conduct an all-pay
auction among the tying bidders. If another tie occurs, split the object evenly. The payments of the tying
bidders are made according to the second-stage bids. Our all-pay auction tie-breaking rule has the role of
the second-price auction tie-breaking rule used by Maskin and Riley (2001).

The next theorem shows that the all-pay auction tie-breaking rule always ensures equilibrium existence
for the auctions we are considering. It is also important to note that the all-pay auction tie-breaking rule

does not require announcement of types.’

Theorem 3 (Equilibrium Existence with Ties) Assume that the all-pay auction tie-breaking rule is adopted.
If there is b that satisfies the payment expression (1), then there exists a pure strategy equilibrium.
Proof. This follows from the proof of Theorem 6. M

The function b satisfying the statement of Theorem 3 is an equilibrium only if it is increasing. If not, we
can modify b into a non-decreasing bidding function with a positive-probability set of tying types.
One important ingredient in the proof of Theorem 3 is that the bidding function of an all-pay auction

is always increasing (since v is positive by Assumption 1) and gives exactly the expected payment (1). Any
other auction that has an increasing bidding equilibrium, like the all-pay auction or war of attrition, can be

used as the tie-breaking mechanism.

Example 2 (continuation) For § < —1, the equilibrium of Example 2 is given by a constant bidding
1+8

function b' (z) = b for the first price auction, where b € [Oz + =55, a}, and the bidding function
1
b’ (z) = ax + %ﬂxQ
for the (all-pay) auction tie-breaking rule.ll
Tournaments

When b is not increasing, types are not “correctly” ordered and b fails to conveniently reveal the bidder’s
information. The tie-breaking rule plays exactly the role of sorting the types. Thus, Theorem 3 shows
that all-pay and war-of-attrition auctions are better-revealing information mechanisms than first-price and
second-price auctions.

An important example of all-pay auctions is tournament. Our previous theorem thus gives a justification
for the practice of tournaments. Consider, for instance, the case of research contest among researchers who

have a vector of unobserved characteristics, like technical capabilities, discipline, honesty, creativity, etc. In

9This does not contradict the example of Jackson et al. (2004) on the non-existence of equilibrium with type-independent
tie-breaking rule. Although related, the two concepts are distinct: our rule is type-dependent in their sense because the final
outcome depends on the players’ types through the outcome of the second-stage auction. There is also uncertainty on the
number of available objects in their modified example, while we consider only standard auctions, that is, with a fixed number

of objects.



such cases the object value is usually a very intricate function of these characteristics and tournaments (all-
pay auctions) can perform better the task of revealing this multidimensional information. Thus, tournaments
are most expected in situations where the determination of the best competitor is more complex.

Standard explanations for the use of tournaments in research contest also appeal to the role of information.
Taylor (1995, p. 872) says that: “Contracting for research is often infeasible because research inputs are
unobservable and research outcomes cannot be verified by a court”. Our point is somewhat different but
related to this. The novelty is the comparison between auction mechanisms with respect to information
revelation.

That all-pay auctions are better mechanisms to reveal information is not completely new. Fullerton
and McAfee (1999) observe that all-pay auction implies the existence of an increasing equilibrium in a
setting where the second-price auction does not. They analyze the auction for the right to compete in a
tournament — see our section 4 for more explanation. Their results, including the proofs, are restricted to
their model, which is a particular case of ours. Thus, Theorem 3 extends their basic intuition and shows
that the property of better-revealing information can be used to define an effective tie-breaking rule that

does not require announcement of types.
Multiplicity of equilibria

An interesting corollary of Theorem 3 is the possibility of multiple equilibria when b is not increasing,
even under Assumption 4. There are two sources for this multiplicity. The first is due to the all-pay auction
tie-breaking rule per se, since many bid levels can be chosen as the tying bid. This is shown in Figure 1: any
level by between zy and z; can be chosen in the interval where b is decreasing and gives the same expected

payment and payoff to each bidder in the auction.

Figure 1. Non-monotonic bidding function.

The second source is the fact that the tie-breaking rule is not unique in general. For instance, for
some specifications of v there are cases where b is decreasing with many tie-breaking rules that ensure
equilibrium existence (see Example 1 of JSSZ). However, these tie-breaking rules may result in different
expected revenues, whereas the all-pay auction tie-breaking rule always preserves the Revenue Equivalence

Theorem.



4 Non-monotonicities in multidimensional auctions

In JSSZ the action and type spaces are compact and metric and no monotonicity condition is imposed on the
utility functions. Thus, the need of special tie-breaking rules has to be understood in a more general setup.
Nevertheless, theoretical generality is not the only motivation. Even if we restrict ourselves to auctions,
there are meaningful and interesting situations where the usual monotonic assumptions are too restrictive.

An interesting example occurs when the private information is not directly related to the object value.
For instance, the private information can be the financial constraints of the bidder. In this case, the utility
functions are not necessarily increasing with the private information. Indeed, Zheng (2001) consider a case
where the private information is the financial capacity of the bidder and non-monotonic equilibria can arise
(see his remark 3.2, p. 157).

The possibility of private information not directly related to value is, per se, a motivation to consider
models where the utility function is not necessarily monotonic. But, even if it is directly related to the value,

non-monotonicities can also arise. Consider the following:

Example 3 (Job Market) Let us model the job market for a potential manager as an auction between two
competing firms where the object is the job contract. It is natural to assume that managers have a multi-
dimensional vector of characteristics, m = (m", ..., m*). For simplicity, we consider only one-dimensional
characteristics. The qualification appraisal of the job candidate is private information of the competing firms.
Each firm has just one position with a specific characteristic requirement. In general, for specific jobs firms
have a desirable level of a specific characteristic. To give a concrete example, if the characteristic is experi-
ence, an experienced candidate can be rejected for a junior position.'® Therefore, let d; be such a desirable

level. Thus, the utility of the firms in this auction is modeled as

2
t t t t
vi (tit—i) = a 1; 2b< s 2di>

where a is the weight of the managers’ characteristic and b > 0 is the penalty of the distance from the desired
level d;. It is clear that this utility may be non-monotonic in the types. For some values of the constants, it

is also possible that all equilibria are non-mononotic (a proof of this last claim is available upon request).

Another example where non-monotonicities arise is when the object is the right to compete in a research
tournament analyzed by Fullerton and McAfee (1999). The private information is the cost of conducting
research. The probability of winning the tournament is decreasing with own cost, but increasing with the
opponents’. It turns out that the object value (the right to participate in the tournament) has the same
feature. Thus, the standard assumption that the bidders’ private informations are monotonic in the same
direction is not fulfilled.

Non-monotonicities also arise as consequence of multidimensional and complex information. For instance,

in an oil lease auction, the private information of bidders includes estimates of the track size, oil quality,

10Non-monotonicities seem to be a general feature of job markets. For instance, if the characteristic is the ability to commu-
nicate and the position is a librarian, the desirable level of this ability is much lower than if the position is for a salesman. An
investment bank may want a sufficiently (but not exaggeratedly) high level of risk loving or audacity, while a family business
may want a much lower level. Even efficiency or qualification can be desirable on different levels. Sometimes, the rejection of

a candidate is explained by “over-qualification”.



extraction cost, future international prices, etc. These variables may compound in a non-monotonic fashion:
small firms have larger costs to operate big tracts compared to big firms, but the reverse is true if the
track size is small. Some of these variables are private values (such as the extraction cost), but others
(such as the field size or international oil price) are common value and the assessments of the opponents are
likely to be important. Putting all these together, it is not surprising that non-monotonicities arise in such
multidimensional setting.!!

We described cases where the value functions may be non-monotonic because of multidimensionality
of types. On the other hand, an example of Reny and Zamir (2004) shows that multidimensionality and
correlation of types may lead to nonmonotonic equilibria, even if the value functions are monotonic. In their
example, there are three bidders with bidimensional affiliated signals and monotonic value functions, but all
equilibria are non-monotonic.

Multidimensionality is also a source of non-monotonicities through a different channel. Athey and Levin
(2001) and Ewerhart and Fieseler (2003) consider single-object auctions where bids are multidimensional
(although the information is unidimensional). Athey and Levin (2001) analyze the U.S. Forest Service
timber auction where bids are the unit prices of each specie of timber. Before the auction the Forest
Service (auctioneer) estimates the quantity of each specie in the tract and publicly announces them. Thus,
the auctioneer receives the multidimensional bid or the “supply” curve and obtains the bidders’ scores
multiplying the submitted unit prices by the announced quantities. The highest score bidder is the winner.
Nevertheless, the actual price paid by the winner is obtained by multiplying his unit price by the actual
number of removed trees, which are verified ex-post by the Forest Service. Thus, a bidder who makes a
better estimative of the number of trees of each specie and knows that the initial estimate of the Forest
Service is not accurate, may strategically manipulate his offer. As a result, non-monotonic bids can arise.

A similar situation (see Ewerhart and Fieseler (2003)) is a procurement auction for a service with equip-
ment supply such that bidders should put prices on materials and work hours. Again, a scoring rule deter-
mines the winner through the seller’s initial estimative (of materials and work hours). The final payment is
made according to the actual use of materials and work hours. Again strategic manipulation of bids leads
to non-monotonic bidding functions.

All these examples show the importance of considering auctions with relaxed monotonicity assumptions.
In the next section, we analyze the multidimensional type space and bidding functions that may not be
monotonic. For this setting, we obtain results analogous to those found in section 3 for monotonic unidimen-
sional auctions. However, the characterization is not totally complete as in the previous case, as we explain

below.

5 Extension to multidimensional auctions

In this section we discuss how the results of section 3 can be extended to N players and multidimensional
type space S, which can be, for instance, a universal type space in the sense of Mertens and Zamir (1986).

We consider strategies b : S — R that induce ties with zero probability but are not necessarily monotonic

1Ty many cases, multidimensional information can be reduced to unidimensional types, through a sufficient statistic, as
suggested by Milgrom and Weber (1982). Nevertheless, this approach does not give a justification for the monotonicity of the
value function.
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even if S has a natural order, as in the case of S C R. This will allow us to characterize when this kind of

equilibria does not exist and ties are unavoidable.

Definition 1 A bounded measurable function b: S — R is reqular if the c.d.f. F,(c) =Pr{s € S:b(s) <c}
is absolutely continuous and strictly increasing in its support [bs,b*]. Let S denote the set of these regular

functions.

The set S is formed by functions b that do not induce ties with positive probability (because Fj is
absolutely continuous) and that do not have gaps in the support of bids (because Fj, is increasing). Observe
that S contains non-monotonic bidding functions. As a first step, we will restrict attention to symmetric
equilibria (b, ...,b) € SV. For brevity and with some abuse of notation, we refer to such equilibria as b € S.

As in section 3, our purpose is to characterize conditions on v such that a pure strategy equilibrium b € S
exists. Before the statement of the result we make some observations.

If b € S is an equilibrium, then the c.d.f. of the opponents’ maximum bid, P : R, — [0, 1] such that

P(c)=Pr{t_; € SN :b(t;) <ec,Vj#i}, (9)

is increasing since b is regular. Define b=Pland P=Pob,sothat P: S — [0, 1] is a reparametrization
of the types in § satisfying

P(t))=Pr{t_; € SN 1:b(t;) <b(t;),Vj#i}. (10)

Therefore, P associates to each type her winning probability given b € S. As we show in the Appendix,
this reparametrization has some interesting properties. In particular, b = bo P is such that the (increasing)
function b is an equilibrium bidding function of a reduced auction with only two players, types P (s) € [0, 1]
and utility given by

U (z,y) = Elv(ti, t—)|P(t;) = 2, P—;)(t—;) =y, (11)
where P_;)(t_;) = max;»; P (t;). Thus, we can consider instead the auction A= (g,f],ﬁ,N, 77), where
S = [0,1], ¥ is the Borel o-field, i is the Lebesgue measure on [0,1], N = 2 and ¢ defined by (11)
for a reparametrization P. The relation between auctions A and A is explained by Proposition 8 in the
Appendix.'?

We have an analogous version of Theorem 1:

Theorem 4 There exists a symmetric equilibrium in regular strategies for A if and only if there exists a
reparametrization P : S — [0, 1] such that:

(i) there exists a strictly increasing and continuous function b : [0,1] — R satisfying the payment expres-
sion (1) for v given by (11) using the reparametrization P;

(i) for all (z,y) € [0,1] x [0,1] and s such that P (s) =z,

/ﬂﬂ [0(s,) — ¥ (e, )] dex = 0, (12)

where 0 (s, a) = Elv(s, t—;)|P_i)(t—) = al.

In the affirmative case, the function b is an equilibrium of A.

12The discussion that precedes Proposition 8 also clarifies this construction and shows that the reparametrization may be
defined with no mention of b.
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The main difference between Theorem 1 and Theorem 4 is that the former does not need any reparame-
trization. In fact, Theorem 1 is a special case of Theorem 4 for S = [0, 1] and the identity reparametrization.
Another difference is that, in condition (ii) of Theorem 4 we use two different functions, ¢ and ¥, where in
Theorem 1 we used only v. To understand this difference the reader should note that the auction A satisfies
the assumptions of Theorem 1, replacing v by ©. Thus, condition (ii) of Theorem 1 for A is exactly the

following:

/x [0 (z,a) — ¥ (a, )] dex = 0. (13)

In fact, this is sufficient for equilibrium existence for A but is not sufficient for equilibrium existence for A.
To ensure equilibrium existence for .4, we need to ensure that each type s satisfying P (s) = z, should not
have an incentive for deviation. Thus, we need to specify the above inequality for each of these s and not
only for the reparametrized type x. This explain our definition of ¥, which depends directly on s. It turns
out that (12) implies (13), but the converse does not hold in general.

Theorem 4 implies that, if there exists an equilibrium, we have an outcome-equivalent auction A with
just 2 players and types uniformly distributed on [0, 1]. In other words, a multidimensional auction with an
equilibrium can always be reduced to a simple unidimensional auction preserving some of the properties of
the original one. This reinforces our interest in the auctions considered in section 3: they are the outcome-
equivalent auction of the multi-player and multidimensional auction considered in this section.

Note that Theorem 4 does not make trivial the task of verifying whether an equilibrium exists for a given
auction A, as Theorem 1 does for monotonic equilibria. Indeed, given a reparametrization P : S — [0, 1], in
general, it is trivial to check whether conditions (i) and (ii) are satisfied. The non-trivial part is exactly to find
which reparametrization works. Although we do not have a general method to find the reparametrization,

the following proposition might be useful:

Proposition 3 If A has a pure strategy equilibrium b € S and there exists OpI1(-,-) at (s,b(s)) for all s
such that b(s) € (bs,b*), then the reparametrization map P : S — [0,1] must satisfy the following property:
for all s € S such that P (s) = x, then

U (x,x) = Elv(s,t_)|P—s(t—;) = z], (14)
where ¥ is defined by (11).'3

This proposition can be used to compute explicitly the reparametrization, as the following example
illustrates.

Example 4 Consider a symmetric first-price auction between two bidders with independent and uniformly
distributed types in [0,1]. The utility function is given by v(x,y) = x + a (x)y, where o (v) = 3 — 4x + 222,
Thus, O,v(x,y) can be negative. Although

e 24 — 16z + 322
b(x)Z%/O v(ma)da:x( 12m+ )

I3 This condition is analogous to the one derived by Araujo and Moreira (2000) for screening problems and by Araujo and

Moreira (2003) for signaling games. In these papers, the violation of the single crossing property leads to non-monotonicity.
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is increasing in [0, 1], condition (8)

T 2
/ [v(z,a) —v(a,a)] da = % [3—1—33:2 —8y+3y* +x(—4+ 6y)] >0

does not hold (for instance, take x = 0 and y = 1). Theorem 1 implies that there is no monotonic equilib-
rium for A. Nevertheless, in the Appendiz, we illustrate how to use Proposition 8 to construct a U-shaped

symmetric equilibrium where ties occur with zero probability.

Completely ordered auctions

Now we present the analogous version of Theorem 2 for this setting. First, we need a generalization of

Assumption 4:

Assumption 5 v (t;,t_;) is such that if v (t;,t_;) < v (t;,t_;) for some t_;, then v (t;,t_;) <wv (t;,t_;) for
all t;.

When S = [0, 1], Assumption 5 is strictly weaker than Assumption 4, which is already a generalization of
the standard assumptions of the auction theory. However, this does not mean that Assumption 5 is weak in
multidimensional settings and, indeed, it can be quite restrictive. To see this, consider the function o (s) =
E;_, [v(s,t—;)] and the natural complete order in S induced by it: s’ = s < @ (s") > @ (s). Under Assumption
5, this order is equivalent to s’ =;_, s < v (s',t_;) > v (s,t_;), for any ¢t_;. Thus, there is a unique way to

define the reparametrization under Assumption 5:
P(t)=Pr{t; e SN 1u(t;)<v(t;),j#i}. (15)

i.e., it is the winning probability with respect to that order.
However, as in the case of Assumption 4, Assumption 5 does not imply equilibrium existence. Theorem
5 below (a generalization of Theorem 2) shows that b satisfying the payment expression (1) and being an

increasing function is sufficient, under Assumption 5.

Theorem 5 (Necessary and Sufficient Condition for Equilibrium Existence) Consider an auction A satis-
fying Assumptions 1, 2, 3 and 5. Let P be defined by (15) and © by (11) for this P. If ¥ is continuous,
then there exists b € S an equilibrium for A if and only if there exists an increasing function b that satisfies
(1) for ©. In the affirmative case, the equilibrium of A is given by b = bo P. If there is a unique b that
satisfies such a property, the equilibrium of A is also unique in S. If ¥ is not continuous, the condition is
still sufficient.

As commented after Theorem 4, multidimensional auctions with regular equilibria can always be reduced
(through reparametrizations) to unidimensional auctions. Thus, to prove equilibrium existence for multidi-
mensional auctions, it suffices to “reduce” them to unidimensional auctions. This reduction is not an easy
task in general, but it is trivial under Assumption 5 because types can be ordered in a unique and natural
way. 1

Under Assumption 5, the all-pay auction tie-breaking rule also works. We then have a simple general-

ization of Theorem 3.

14The reduction type dimension is not a novelty in auction theory. Studying efficient auctions, Dasgupta and Maskin (2000)

use a close condition to Assumption 5 and Jehiel, et al. (1996) make such reduction for revenue maximization.
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Theorem 6 (Equilibrium Existence with Ties) Consider an auction A where the all-pay auction tie-breaking
rule is adopted. If there is an absolutely continuous function b that satisfies (1), then there exists a pure

strategy equilibrium.

6 Conclusion

Simon and Zame (1990) and JSSZ proposed a solution to the problem of equilibrium existence for discon-
tinuous games when the standard tie-breaking rule is not sufficient to ensure it. Our paper characterizes
when special tie-breaking rules are really needed. We accomplish this task for the set of symmetric auc-
tions with unidimensional types and, partially, for a set of multidimensional symmetric auctions with weak
monotonicity assumption.

When a special tie-breaking rule is needed, we show that the all-pay auction tie-breaking rule is sufficient
to ensure equilibrium existence. This suggests that the all-pay auction (and the war of attrition) are better
mechanisms to reveal information than the first- and second-price auctions.

Our results suggest that new concepts of games with not fully specified payoffs, as suggested by Simon
and Zame (1990) and JSSZ, may not be necessary in general. Instead, we pursue the definition of exoge-
nously defined tie-breaking rules that do not require communication of private information and guarantee

equilibrium existence.

Appendix

For convenience, we follow the notation of section 5, but first we analyze auctions between two players
with independent and uniformly distributed types in [0, 1] and satisfying Assumptions 1 and 2. We allow for
the existence of reserve prices that exclude bidders with types in [0, () from the auction, that is, we relax
Assumption 3 to Assumption 3’ below.

Let S be the set of non-decreasing functions b : [0,1] — {boyr} U [bmin, +00) such that there exists
zo € [0,1] satisfying: b([0,20)) = {bour} and b is strictly increasing in (z9,1]. For b € S, let b, =
inf{b () > bmin : = € [0,1]} and b* = sup{b(z) > bmin : € [0,1]}. Note that zo = 0 when there is no
exclusion.

The interim payoff of a bidder with type = who bids 8 > by, and faces an opponent following b € S is

fi(s.0.0) = [ o o @) =" (B.b(@) ] da— | :(5) P" (8,5 (a)) da, (16)
where b1 (8) = inf {x €[0,1]:b(z) > B}. Let us also define
1

P (B,l;) = /05_1(5) Vv (5,5(0{)) da+ /l;l(ﬁ) pt (ﬁ,l;(oc)) dao.

Assumption 2 requires that p” (buin, b) = p¥ (bmin, &) for all b and b and p" (-, borr) = p" (-, bmin). Thus,
a < x implies B(a) < bmin and the expression of p (bmin, 5) can be simplified to

b~ (bumin) 1
/ pW (bmin7 bmin) do + / PL (bmin7 bmin) dao.
0 b= (bmin)
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‘We assume:

Assumption 3’ There exists xg € [0, 1] such that, alternatively,
(i) xo =0 and

x T 1
/ v (.’E, Oé) da 2 / pW (bmirn bmin) da + / pL (bminu bmin) da
0 0 T
for all x €10,1] or
(ZZ) xg > 0,
o o 1
/ v (x(), O[) do = / pW (bmina bmin) da + / PL (bminv bmin) do
0 0 T

0

and x < xg <y implies

T To Yy
/ 0 (z, @) dag/ 0 (zg, @) da </ 0 (y, @) da.
0 0 0

Note that Assumption 3’-(i) corresponds to the original Assumption 3. In Assumption 3’-(ii), zq is the
type who bids the minimum bid b;,. This type necessarily has zero expected payoff, because she must
be indifferent between participating or not. The inequalities in Assumption 3’(ii) are weak monotonicity
conditions that imply that types below xy do not have incentive to bid above by, since the object value is
not greater than expected payments.

Proposition 4 Suppose that Assumption 2(i) holds. Letb € S be an equilibrium increasing in (z,1). Then,
b is continuous on (z0,1). Moreover, if ¥ is continuous in the second variable, then b is differentiable in
(z0,1) and satisfies

V(z) =

o (@,a) = p" (b(@),b(@) +p* (b(@).b(@)) (17)
b

Eq [&pw (5 (x) ,5(04)) Lp(a)>b(a) +O1P" ( (),

Proof. The proof is an adaptation of the proof of Theorem 2 in Maskin and Riley (1984). It is available
upon request to the authors. M

S
—
Q
S~—
N—
—

>t
=
&

A

o
=
L2

[a—

Proposition 5 Assume that U is continuous and Assumption 2-(ii) holds. Let beS bean mcreasing

equilibrium in (z0,1). Then, b is continuous in (z,1) and
o (z,z) — pV (l; (z) ,E(x)) + pF (I; (x) ,l;(x)) =0,Vz € (zg,1). (18)

Proof. The proof is based on the proof of Theorem 3 of Maskin and Riley (1984). It is also available upon
request to the authors. WM

We have the following:
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Lemma 7 Assume that ¥ is continuous. Let b € S be an increasing equilibrium in (xo,1). Then, I (x, Y I;)
is differentiable in (b, b*).

Proof. Under Assumption 2-(i), Proposition 4 implies that b is differentiable and, since b is mcreasing on
(z0,1), b= is differentiable on (by,b*). We also have that © is continuous and p" and p* are differentiable.

Thus, one can easily see from (16) that
051 (2.6,5) = o (2,571 (8)) —p" (8,8)—p" (8,5)
b= (B) B - ’ 1 N - ’
[ o (pb@) - [ )] da- | L 27 (BR(@) 7 4)] da
Under Assumption 2-(ii), O1p" (-,-) = 01p* (-,-) = 0 and 351:1 (:r,ﬂ, l;) exists,with

O3l (2,8,) = (2,671 (8)) — " (8,8) — " (5.8)..
|

Now let us consider cases where b is not monotonic since this is exactly the setting of Theorem 3. To

treat non-increasing b, we define the following:

MODIFIED AUCTION. Fix b such that l;(xo) = bmin and E(y) > byin for y > 9. The bidder bids a
type y € [0,1]. If y < g, the payment is zero. If y > x(, the payment is determined as if the bidder has
submitted the bid B(y) The bidder wins against opponents who announce types below y and loses against
who announce types above y. If there is a tie, the object is given to each bidder with probability 1/2.

Observe that if b is increasing, the modified auction is the standard auction where all bidders follow b. If
b is not increasing, the difference is that the winning events are not determined by b but by the announced
type y. The rule of the modified auction implies the following interim payoft:
. { foy {f} (z,a) — pW (I; (v) 7B(oz))] da — fyl pl (I; (v) 75(0[)) do, ify> a0
0

I (x,y) = .
if y < .

We can simplify the above expression to

fl(x y) — f()yﬂ(xva) da—ﬁ(y)a lfy > g (19)
7 0 ify<;p0

where

H(y) E{ A (6<y),6(a)) do+ [ p* (z;(y)j(a)) da, ify > o

0, if y < .

Proposition 6 (Payment Rule) Assume that ¥ is continuous. If truth-telling is an equilibrium for the
modified auction, then
P (o) + ffo 0 (o, a)da, if y > xo
py) =14 [0 (x0,a)da, if y =mo (20)
0, if y < xo.
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Proof. In the case of Assumption 2-(i), b, p and p* are differentiable on (xo,1). Thus, p and II are also
differentiable. So, for everyy € (zo,1), we have

7 =0,{ [ (.0 da T} =5 (00) - 0,11 ().

The first-order condition for truth-telling optimality gives for x > xq, A1l (@,Y) |y=2= 0, which implies

that p' (x) = 0 (z,x). Thus,
y

p<y>:ﬁ<xo>+/ 3 (,0) da

o
fory = xg. Now, let us turn to Assumption 2-(ii). Since b is only continuous, p is not necessarily differen-

tiable. Nevertheless, if y > xg,

p(y)

/prw (bw).b(@) da+ /p (5w .b(@)) da
/wy [pw (5 (y),b (a)) -p" (E (y),

o]

/:h(z}(a)) da + (o)

0

S

()] e+ (o)

_ /:@(a,a)dmﬁ(xo),

0

where h(z) = p" (b, 2) — p* (V/,2) does not depend on b and b’ by Assumption 2-(ii). For y < xo, the
payment is zero by the definition of the modified auction. Fory = xg, p (y) is obtained from Assumption 3’
|

Now we turn to the equilibrium existence. We will not assume that v is continuous. Instead, we assume
only the validity of the payment expression (20).

Proposition 7 (Equilibrium) Assume (20). Then, truth-telling is an equilibrium of the modified auction if

and only if
f; [0(z,a) — ¥ (o, )] dex > 0, if x,y = o
f;i) [0 (z,0) — 0 (a, )l da+ [° [0 (z,a) =0 (z0, )] da >0, if x>m0>y (21)

0> fzyo [0 (z,0) = ¥ (a, )] dev + [ [0 (w, ) = T (w0, )] dev  if y > a0 > .

Proof. Given (20), the optimity condition for truth-telling, namely 11 (z,z) — 11 (z,y) = 0, is equivalent to

/Ozﬂ(x’a)do‘/:f’(a’o‘)do‘f’(%)/Oyﬁ(xaa)da+/y17(a,a)da+z3(xo)

0 xo
_ / [ (2, 0) — 5 (@, )] da > 0 (22)
Yy
if ¢,y > xg. The other cases are similar. W

As previously said, if b is increasing, the modified auction is just the original (unmodified) auction. Thus,

we have:
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Corollary 1 Assume that b is increasing on (xo,1) and implies (20). Then, b is equilibrium of the auction
A if and only if (21) holds.

Observe that Proposition 7 and Corollary 1 do not require ¢ to be continuous.
Definition of the reparametrized auction

Fix b € S. Define the map P’ = P by (10), that is,
P(t)=Pr{t_; € SN 1:b(t;) <b(t;),Vji#i}.

P associates each type to the winning probability given b € S. From the symmetry, P does not depend on
and P (t;) § P (t;) if and only if b (¢;) § b(t;). Obviously, two players have the same probability of winning
if and only if they choose the same bid. Thus,

{t_i S SNil : b(,z) (t_i) < b(tl)} = {t_i S SNil : P(,i) (t_i) <P (ti)},
where P(_;) (t_;) = max;; P’ (t;). The equality of these events and (10) imply that
P(tl) =Pr {t,i € SN_l : P(—i) (t,i) < P(tl)}

This can be used as a definition of an admissible reparametrization, even if the bidding function b is not
given. This and the fact that the range of P is [0, 1] imply

Pr {t_i S SN-1. P(_l) (t_z') < C} =c, (23)

for all ¢ € [0,1]. The above equation means that the distribution of P(_; (t_;) is uniform on [0, 1].
The c.d.f. of opponents’ maximum bid, P, is given by (9) and b= P!, Since P (t;) = P (b(t;)), b (t;) =
P~10 P(t;) =bo P (t;). Moreover, b strictly increasing implies that

E [U (ti, ) ‘ti =S, b(,z) (t_i) = ,6] =F [U (ti, ) |ti =S, P(,l) (t_i) = ﬁ] . (24)

Ifb:S — Ris an equilibrium of A, II(¢;,b(¢;)) > IL(¢;,¢), for all ¢ € R, where II(¢;,c) is the interim
payoff of A. Let us define
I (z,¢) = E[I(t,¢) |P(t;) = x]. (25)
The notation suggests that I (z,c) is the interim payoff of A. This is exactly the content of Proposition
8 below which justifies the interpretation of A as the outcome-equivalent of A, mentioned in Section 5.
Since we can prove the equality of the interim payoffs, there is no loss of generality to work with uniform
distribution of (reparametrized) types on [0, 1].

Proposition 8 Consider an auction A satisfying Assumptions 1, 2 and 3 and A defined above for a given
P:S —[0,1]. Following the previous notation, we have:
(i)
1

I (z,¢) = /051(0) [17 (z,a) —p"V (c,l;(a))} da — /131((;) pt (c,l;(oz)) da. (26)
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(ii) Suppose that b is strictly increasing and satisfies the payment expression (20). If, for all (z,y) €
[0,1] x [0,1] and all s such that P (s) =z,

/x [0 (s,a) — 0 (e, )] dex > 0, (27)

where ¥ (s, ) = Elv(s,t_;)|P—;)(t—;) = yl, then b is an equilibrium of A and b=bo P is an equilibrium of
A.

Proof. Let us introduce the following notation:
I (b, ¢) = / [v (i) = P (e by ()] Lo (o) Ha (),
I (t,0) = [ 0% (b () Loy o) oan ().
I~ (¢,0) = B [T (ti,¢) [P (t:) = 9] .
Let us start with the proof for IZI;|r and Hj’. Denote the conditional expectation by
g (0) = B [ (ti,t-0) = p" (e.bay (1) [Py (t-i) = o] - (28)

The event [c > b(_;) (t—;)] occurs if and only if []Sb (c) > P(bfi) (t_i)] occurs. Then,

+ (+. _ ti,c b ) iy .
= (t“c)_/g (PH) (t*”)1[Pb(c>>P(b_i)(t,i)]Hm“(dtﬂ)'

Now we appeal to Lehmann (1959), Lemma 2.2, p. 43. It says that if R is a transformation and p* (B) =
p(R™Y(B)), then

/ g [R ()] 1 (dt) = / 9 () u* (day).
R-1(B)

B

In our case, R = P, and u* ([0,e]) = o* ([0,0)) = 7. ((P¥) ) (10.6))) = Pr{t_ € S¥°1: Pb(1)) <.
Vi # i} = ¢, by (28). So, p* is exactly the Lebesque measure, and

PP(c)
0 (to= [ 9" (a)da (29)
0
From this and the definition of II'*, we have

I (¢,c) = E

PP(e)
/0 9" (o) da| P® (t;) = ¢]

PP(c)
:/0 E [¢¢ (a) |P* (t:;) = ¢] dar

P(e) .
— [ e -0 (ch@)] da.
0
where the second line comes from Fubbini’s Theorem and the last results from independency and the definition

~ ~\ 1 ~
of U (¢, ) and g'¢ (a) (see (11) and (28)). From the fact that b = (Pb) , we can substitute P® to obtain
- b= (c) -
It (¢,c) = / [17 (¢,0) —p" (c, b(a))] da. (30)
0
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Now, we can repeat the same procedures for 11~ (¢, ¢) and obtain

i (6,0) = /;l(c) o (e.b(@)) da. (31)

Adding up, we obtain the interim payoff of the indirect auction II (¢, ¢) = I (¢, ¢) — I~ (¢, ¢).
For the second part, taking conditional expectations (27) implies that

[0 o ada >0

Thus, if bisa strictly increasing function satisfying the payment expression (20), Corollary 1 implies that b
is an equilibrium of A. Now, we prove that I1 (s,b(s)) > I (s,c), for all ¢, where b=bo P. This inequality
18 equivalent to

/ o (5,50 p(ds_s) — p (b(s))
{s—i€5:b(s;)<b(s).¥s}

> / v(s,s5_i)p(ds—;) —p(c),
{s_;€8:b(s5)<c,Vj}

or, if y is such that b(y) = ¢,

/{zE[O,l]:z<P(s)} ¥(s,2)dz—p (B (P (s)>>

> /{ZG[O,I]M} B (s,5-4) p(ds_i) —p (5 (y)) :

Since b satisfies (20), when P (s) = x the above inequality can be written as
/ [0(s,) — ¥ (e, )] dex = 0,
y

which is condition (27). N

Proof of Proposition 3.

We need the following:

Lemma 8 (Payoff Characterization) Consider an auction A satisfying Assumptions 1, 2 and 3. Fix b € S.
The bidder i’s payoff can be expressed by

mmmu»=nmmm+/ O, I1(t1, B, b ())dB,

(bs,bi)

where Oy, I1(t;, B,b () exists for almost all B with

O 10(ti, 5,6 () = E {—fhpw (8, b(—iy (E-0)) Uy o] — OrP™ (B b=y (t-4) 1[ﬁ<b<,i)<t_i>ﬂ
+ Efv (ti,t—i) —p" (8,8) +p" (8,8) by (t—i) = Blfo_,, (B), a-e.

20



If b € S, it defines a reparametrization P® by (10). The bid b (¢;) = /3 is optimal for bidder ¢; against the
strategy b (-) of the opponents. Thus, 9,11 (s,b(s)) = 0 and Lemma 8 imply that

w L
Eii |Ohip 1[bi>b<—i>] + 1[bi<b<—i>]
fb(—i) (ﬂ)
Observe that the right-hand side does not depend on s (it depends on it only through the optimum bid

B =0b(s)). Thus, the left-hand side has to be the same for all s that bid the same bid in equilibrium, which
implies (14).

E[v(ti,)[ti = 5,0 (t-i) = 8] =p" (8. 8) — p" (8,6) —

Through the proof of Theorem 5, we will make successive use of the following:
Lemma 9 For any o—field = on SN, we have

Jt_i 2 v to) >v(s, i) &
Vi, ¢+ ov(s i) >v(s,to) e Eu(ti,t_)|ti=5,Z] > FEv(t,t_:)|t: =s,E], ae.
Proof. Assumption 5 gives the first equivalence. By Assumption 8, if v (s',t_;) > v (s,t—;), Vt_;, then,

for any 2, Elv(s',t_;) —v(s,t_;)|=] > 0 almost surely.'> On the other hand, E[v (t;,t_;)| t; = §',Z] >
Ev (ti,t—;)| t; = s,E] a.e. implies that It_; such that v (s',t_;) > v (s,t—;). A

Proof of Theorem 5.
Equilibrium FExistence. Let P be defined by (15), =,y € [0,1] and s € S be such that P(s) = z. We
claim that Assumption 5 implies

x
/ (6 (s,0) — (0, )] dav > 0.
y
Indeed, if x > y, for all ¢; and ¢ such that P (t}) = x and P (t;) = y, we have v (¢,,t_;) > v (t;,t_;) for all
t_;, by Assumption 5. Then, for all z € [0,1],
0 (s,2) = E [v(ti, t—i) [P (t—;) = 7]
> E [v(tit—i) [P (t:i) =y, Py (t-i) = 2] =7 (y, 2).

Then, ify <a<z=P(s), v(s,a) — 0 (a,a) >0 and
/ [0(s,) — ¥ (e, )] dex = 0.
y

If P(s) =2 < a <y, we have 9 (s,a) — ¥ (a, @) < 0 so that the same inequality is satisfied and the claim is
proved.

By Theorem 4, b is an equilibrium of Aand b=boPisan equilibrium of A.

Now assume that v is continuous. The sufficiency was already established. We now prove the necessity.

Let b € S be an equilibrium of A, P? (given by (10)) be its associate reparametrization and b = bo (P") -
By Proposition 8, b is an equilibrium of A

Define V (z) = E [v (t;,t—;) | P’ (t;) = x]. Then, we have:

15Gee, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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Lemma 10 z >y = V (z) >V (y).
Proof. By absurd, suppose that there exist x and y, © >y, such that V (x) <V (y).

First, we claim that for all t; and t. such that P’ (t;) = x and P® (t)) = y, we have v (t;,t_;) < v (ti,t_;)
for all t_;. Otherwise, v (t;,t_;) = v (t;,t_;) for some t_; and, by Assumption 5, v (t;,t"_;) = v (t},t_;) for
all t'_;. Then, Lemma 9 would imply that V (z) = E [v(t;,t—;) [P’ (t;) = x| = E [v(t;,t—) |[P* (t;) =y] =
V (y), a contradiction. Thus, the claim is proved.

This claim and Lemma 9 imply that
~ _ b _ b _
i(x,2)=E [v (tirt—s) | P (8:) = @, PY_) (t—) = z}
< B [ultit i) [P (6) =y, Py (t-) =2 = 5(3,2).

for all z € [0,1], a.e. Thus,

x

[0 (z,0) — 0 (y, )] da < 0.

S~

The fact that b is an equilibrium of A gives

x

[0 (y, ) — (v, )] dev < 0.

S~

Summing up these two integrals, we obtain

x

[0(z, ) — 0 (a,a)] da <0,

S~

which contradicts Corollary 1. This contradiction establishes the result. W
In fact, V (z) is strictly increasing:

Lemma 11 z >y = V (z) >V (y).
Proof.  Suppose that there exist x > y such that V (z) = V (y). Then, the monotonicity of V (by the

previous lemma) gives
Vo €ly,a],V(g)=V(z)=V(y). (32)

Let ' = {s €S:b(y) <b(s) < l;(x)} From (10), for all s € S', P’(s) € [y,x]. Then, (32) implies
that V (s) = V (z), for s € S’. Assumption 5 requires that u(S") = 0. Observe that S" = A\B, where
A= {s €S:b(s) < l;(x)} and B = {s €S:b(s) < B(y)} Then, p(A) = w(B). However, from the

definition of b as the inverse of P’, we have:
0<a—y=P (b))~ P (b)) = ()" = (um)* ",
which is a contradiction. M

Thus, we proved that z = P° (s') > P (s) = y implies v (s') = V (z)
implies v (s') = @ (s). In other words, P® (s) § P? (s) if and only if & (")
that

V (y) = v (s) and P® (s') = PP (s)
¥ (s) which allows us to conclude

VIA VY

PP (t;)=Pr{t; €T =S""":0(t;))<v(t;),j#i},
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as defined in (15). In other words, the reparametrization is unique.

Uniqueness. In the previous step (necessity), we show that the reparametrization is unique, which implies
that © is unique. If 9 is continuous, Proposition 1 says that any equilibrium b satisfies the payment expression
(1). If there is only one b that satisfies such expression, then the equilibrium of A is unique and, hence, of

Al

Proof of Theorem 6. If b is strictly increasing, then b = bo P is an equilibrium of A, by Theorem
5. Thus, we need to show that an equilibrium exists if b is not increasing. In the first part of the proof of
Theorem 5, we established that Assumption 5 implies that

0 (z,2) >0 (y,2),Yz €[0,1]. (33)

whenever x > y. It was also shown that
/ [0(z,0) — (e, )] dae = 0 (34)
y

and that II (P (t;),¢) = I (t;, ¢) for all ¢; and ¢, when the reparametrization is given by (15).

Let us define b (x) = SUP4c(0,4] b(a). As we discussed after the statement of Theorem 3, this is just one
of the possible specification for the equilibrium bidding function. The only exception is when the tie includes
the highest bidder. In such a case, it is mandatory that the bid of tying bidders follows the above definition.
The reason will become clear in the sequel.

Remember that b is absolutely continuous. Then, there is an enumerable set of intervals [ak, ck] where
b(x) is constant. Let by = b(x) for x € [ax,ci] (see Figure 2). Therefore, there is a tie among types in
[ak, cx] for the bidding function b. Let by be the specified bid for types in [ay, cx], that is, b ([ax, cx]) = {bx}.
The tie is solved by an all-pay auction among tying bidders.

bid
b(x)

Figure 2. Definition of b(x).

The only information that bidders have for the second auction is that there is a tie in by, that is,
P(,Z) (t_i) (S [ak,ck].
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By the definition of P in (15), P _;) satisfies

Tr — ag

Pr ({t_i S SNil : P(,i) (t_i) < .T}} |P(7i) (t_i) S [ak,ck]) = o ak.

Thus, in the tie-breaking auction the (direct) type t¢; of bidder ¢ is competing against players t; in the
set {s € S: P(s) € [ak,cx]} and the equilibrium is to bid the increasing function

P (z) = — /Iﬁ(a,a)da.

C — ag ag

Indeed, from (34), we have that

for any x,y € [ag, cx].
In the whole auction, the bidder with indirect type = € [ag, ¢x] who follows the strategy b (x) and b?(z)

in the case of a tie has the expected payoff

/Oak [0(z, ) — ¥ (v, )] dex + (cx ak){ ! /:v [0(z,0) — ¥ (a, )] da}

C — G ag

= /Ow [0 (z, ) — 0 (o, @)] dav.

We claim that deviation in the second auction is suboptimal. By deviating from b but bidding in the
range of b, that is, bidding b (y) # b (z), yields

. _ y
ML (25(0) = | [7(@.0) - 5(aa))da,
0
when b (y) is not a bid with positive probability. This is lower or equal to II; (z,b(z)) by (34). If b(y)
is a bid with positive probability, the second stage will be again an all-pay auction and the bidder cannot
improve his payoff, again by (34).
If x bids 8 < inf,¢[o,1) b(z), then his payoff will be

/0 p* (8,5(e)) da <0,

because p < 0. Therefore, this deviation cannot be profitable as well.
Finally, if  bids 5 > supwe[O’l]E(x) = b(T) = b(1), for some Z. Since dp" (-) > 0, pV (B,b(2)) >

Vv (l;(l) ,5(2)) and
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Then, the payoff of the bidder with type x that bids 3 is

VAN
o\
=
=)
0
£
|
[SH
B
£
=
Q

< /O[ﬁ(x,a)—ﬁ(a,a)]da,

where the last inequality comes from (33). Thus, deviation to S is unprofitable and b is an equilibrium of
the auction A.

From the fact that I (P (¢;), ¢) = I (;, ¢) for all t; and ¢, proved in Theorem 5, b = bo P is an equilibrium
of AN

Example 1 (proofs)

Suppose that a bidder bids # and the opponents follow

3(12+35-257)

H2e27) e 0, ]
b(s) = 5o E
332) e (1,1].

Let g* (8) € [0, 3] and g% (8) € (3,1] denote the types that bid 8 according to b(-). It is not difficult to see
that ¢g' (8) + ¢* (8) = 1. The payoff is then

9" (B) 1
o) = [ ey sl [ s

9(9U—|—1)+9(1—x2) —B]-

(6" (B) +1-¢%(9))

8 8

If we denote g' (3) = s such that g% (8) = 1 — s, we have the following first-order condition on s :

9(2 — 2 3 (12 + 35 — 252 —4
o= |22z —2") 3(12435 257 BTG k) N
8 16 16
—z? s—s?
that is, 9(2+Z ) = 9(2+4 ) The second-order derivative is

—9+125s -9+ 12s
8

because s < 1/2. This concludes the proof of the optimality of b (-).

03I =

<0,

Example 4 (proofs)

We provide conditions on a(x), satisfied by the function specified in Example 4, such that there is a

U-shaped equilibrium. In this case, there are two pooling types, that is, types which bid the same for each
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equilibrium bid. Thus, the pooling type of ¢, ¢ = ¢(t), in a symmetric equilibrium b € S satisfies the
condition of Proposition 3:

t+ a(t)Et2|b(t) = b(t2)] = ¢ + alp)Eta|b(t) = b(t2)].

Since E[t2]b(t) = b(t2)] = (t + ¢)/2 and because of the symmetry and the uniform distribution, then ¢
is the implicit solution of

(t+¢)(alp) —alt) = 2(t - ¢).
The function «(x) defined in Example 4 satisfies the conditions of the following claim which establishes

the existence of a symmetric U-shaped equilibrium.

Claim. Suppose that: (i) « is differentiable, decreasing and convex such that a(0) — «(1) = 2 and (ii)

o/ is convex and o' (z) > —1/x, for all x € (0,1]. Then there exists a U-shaped symmetric equilibrium.

Proof. Define the following reparametrization:

It is easy to see that P is decreasing. Define

E[v(t1,t2)|P (t1) = x, P (t3) = ]

T+ () n (@) +a(e(@)y+ey)
2 2 2

o(z,y)

The specified bidding function is an equilibrium if (z — y) [v(z,y) — ¥(y,y)] = 0. Suppose that « > y. The
last inequality divided by (y + ¢(y))/2 is

vt pla) | ofz) +ale) _ | ofy) + ale(y) )
y+e) 2 2
For each w € (0,1], define g,(2) = Z 4 a(z), for z € [w,1]. It is easy to see that g is non-decreasing

because gl,(z) = = +/(2) 2 + =1 > 0. Fix y and w = %ﬂ). Since « is convex and = > y,

rto@)  a@tale@) o zte@) a(x+w(x)>
y+o(y) 2 oyt ey 2

()

if x+¢(x) >y+ ¢ (y). Then, (35) is true if ¢ + ¢(t) is non-increasing on ¢ or, equivalently, ¢'(t) < —1.
The implicit derivative of ¢ with respect to t is

a(t) —alp () + (E+ ¢ () (t) 42

a(p () —a(t) + (t+ ¢ (1)) () +2

Without loss of generality (because pop(t) = t), we can assume that the denominator is negative and ¢ > t.

Thus,

¢ (t) =

ot) +d(p) J alp) —alt)

"B -1 & >
¢'(t) 5 py—
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Since o’ is a convex function, the above inequality holds if

o (t+<p) Salp)—al) 2

2 o—t  t+o

where the last equality comes from the implicit definition of ¢. However, this inequality is true because
o (x) > —1/z, for all z € (0,1]. W
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