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ABSTRACT 

A severe limitation for the application of robust position and scale estimators 
having a high breakdown point is a consequence of their high computational 
cost. 
In this paper we present and analyze several inexpensive robust estimators 
for the covariance matrix, based on information obtained from projections 
onto certain sets of directions. The properties of these estimators (breakdown 
point, computational cost, bias) are analyzed and compared with those of 
the Stahel-Donohoestimator, through simulation studies. These studies show 
a clear improvement both on the computational requirements and the bias 
properties of the Stahel-Donohoestimator. 
The same ideas are also applied to the construction of procedures to detect 
outliers in multivariate samples. Their performance is analyzed by applying 
them to a set of test cases. 
Keywords: Kurtosis; Multivariate Statistics; Breakdonn Point; Linear Pro­
jection 

1 Introduction 

Most usual multivariate analysis techniques depend on the assumption of normality 
in the data, and require the use of estimates for both the location and scale param­
eters of the distribution. The presence of outliers may distort arbitrarily the values 
of these estimators, and render meaningless the results of the application of these 
techniques. 

To avoid this difficulty many different classes of robust location and scale es­
timators have been proposed in the literature, see Huber (1981), for example. A 
common measure of the sensitivity of these estimators to the presence of outliers in 
the data is the breakdown point of the estimator, f*, defined for a given estimator 
T and a sample X of size n as 

f~{T,X) = ~ min {m: ~.:T{Xm) < oo}, 

where Xm denotes a sample obtained after replacing m observations randomly cho­
sen from X with arbitrary values. 

A high breakdown point will imply that, in the limit, the corresponding esti­
mator will not be greatly affected by the presence of outliers. Also, it is expected 
that this property will be preserved in some measure for finite contaminations. An 
estimator with a breakdown point close to 0.5 would then be protected against 
arbitrary distortions caused by the presence of any outliers in the sample. 

A significant amount of effort has been devoted in recent years to the devel­
opment of procedures for the computation of robust position and scale estimators 
with high breakdown point, see for instance Maronna (1976), Campbell (1980), Sta­
hel, (1981), Donoho (l982), Rousseeuw (1985), Hampel at al. (1986), Rousseeuw 
and Leroy (1987), Davis (1987), Rousseeuw and van Zomeren (1990), Tyler (1991), 

1 This research was supported by CICYT grants PB93-0232 and PB94-0374. 
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Rocke and Woodruff (1993), Maronna and Yohai (1995) and Rocke and Woodruff 
(1996). As a consequence, a large number of alternative estimators having this 
property are available. All these alternatives share the property of being based on 
the maximization of certain non-concave and non-differentiable criteria. As a con­
sequence, a common practice consists on constructing these estimators through a 
resampling process, where candidate solutions are generated randomly from a dis­
crete set. This procedure is terminated when the number of subsamples generated 
is large enough to guarantee, with a certain probability, the computation of the 
optimizer. 

Unfortunately, the number of candidate solutions (total number of subsamples 
of a given size), and the number of subsamples that guarantee the computation of 
a solution for the optimization problem with a given probability, grow exponen­
tialJy with the size of the problem. As a consequence, the corresponding procedures 
become computationally very expensive for even moderately sized problems. Hadi 
(1992, 1994) and Atkinson (1994) have presented methods to compute approxima­
tions for these estimates requiring reasonable computation tim~. 

The robust estimation of the location and covariance matrix is very closely re­
lated to the problem of the identification of multivariate outliers. In the multinormal 
case, the likelihood ratio test leads to identifying outliers as points with large Ma­
halanobis distances from the center of the data. This test requires the estimation of 
the location and covariance matrix from the data, and these values can be greatly 
affected by the presence of more than one outlier. Thus, the identification of outliers 
requires as a first step a reasonably good estimate of the location and covariance 
matrix. 

In this paper we present and analyze several alternative procedures, based on the 
analysis of the projections of the sample points onto a certain set of directions, that 
work well in practice and can be implemented using very moderate computational 
resources, requiring a small computation time. 

2 Description of the algorithms 

In this section we present several variants of an algorithm for the computation of 
robust covariance matrix estimators and the detection of outliers in multivariate 
samples. This algorithm is based on the application of robust univariate estimators 
for position and scale to the projections of the sample points onto certain directions. 
These ideas are similar to those for the Stahel-Donoho estimators for position and 
scale (Donoho, 1982), except for the procedure to select the projection directions. 

The Stahel-Donoho estimator proceeds by computing the maximum over all 
possible projections of the robust measure of distance for each sample point Xi, 

that is, the weight assigned to each point is obtained from 

ItFXi - median(dTxj) I 
ri = m;x MAD(dTxj) (1) 

As these values are obtained from all possible projection directions, their com­
putation requires the solution for each sample point of one global optimization 
problem with discontinuous derivatives. The computational cost involved has led 
to the development of alternative procedures, based on resampling schemes. For 
example, in Rousseuw (1993) directions are obtained by randomly selecting p ob­
servations from the original sample, and computing the direction orthogonal to the 
hyperplane defined by these observations. The maximum is then determined only 
for the (finite) set of directions obtained in this way. The resulting value for the 
"outlyingness" measure ri is used to assign weights to the points for the computation 
of the position and scale estimators as the weighted sample mean and covariance. 
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Maronna and Yohai (1995) have shown that this estimator has the least asymptotic 
bias and the maximum efficiency among a set of affine equivariant estimators with 
high breakdown point. 

2.1 Proposed scale estimator 

Our proposed scale estimation algorithms separate from this scheme in the way the 
projection directions are selected, this being the step that poses the most significant 
computational demands. 

In univariate normal data outliers have often been associated to large kurto­
sis values, and some well known tests of normality are based on the asymmetry 
and kurtosis coefficients. These ideas have also been used to test for multivariate 
normality (Malkovich and Afifi (1973)). Finally, some projection indices that have 
been applied in projection pursuit algorithms are related to the third and fourth 
moments (Jones and Sibson (1987), Posse (1995)). 

Following these lines, to compute the measures ri and the associated weights 
w(ri), our proposed schemes make use of a prespecified set of p directions, that 
can be obtained as the solution of a set of p simple smooth optimization problems, 
with limited computational effort. More specifically, we propose computing the 
outlyingness measure ri from the directions that maximize some high moments of 
the projected data (kurtosis), or the coefficients corresponding to these moments. 

The choice of the moments more adequate for our purpose (covariance estima­
tion/outlier identification) is not immediately clear. What we propose is to explore 
several alternatives of the basic algorithm, to determine the best choice for the 
criterion to replace (1). We consider the following variants for this algorithm: 

Algorithm 1. Maximization of the kurtosis. In this first algorithm, the 
projection directions are computed as those that maximize the kurtosis of the pro­
jected observations. The algorithm is constructed so that it retains some invariance 
properties for data transformations. Given the choice of criterion (kurtosis) and 
the need to achieve a high breakdown point, the algorithm will not be invariant to 
affine transformations, but it will be invariant to changes of center and scale. 

l. The data is scaled and centered. Let Xj denote the column vector of obser­
vations corresponding to the j-th variable, the median mdj and the MAD 
Vj for each of the variables. These values are computed, and the points are 
centered and scaled 

yg> == Yij = (Xij - mdj)/vj. (2) 

We set the iteration index k = 1. 

2. The direction that maximizes the kurtosis for the scaled points is obtained as 
the solution of the problem 

n 

d '"'(dTy,<.k))4 k = argmaxd ~ 
i=1 

(3) 
s.t. ~d=l 

3. The sample points are projected onto the subs pace orthogonal to (db ch, ... , dk ), 

(4) 

and we set k = k + 1. If k < n, go to step 2. 
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4. From the set of orthogonal directions we obtain the weights for the robust 
estimators. 

For each sample point the outlyingness measure 

(5) 

is computed. 

5. This measure is then used to estimate a robust center and/or a robust covari­
ance matrix for the observations, 

m 

S 

L~WiXi 
L~Wi 

L;' Wi(Xi - m)(xi - m)T , 

L~Wi 

where Wi = w(ri) is a function of the outlyingness measure ri. For example, 
the Huber function can be used, 

where c = JX~.O.95' 

Algorithm 2. Maximization of the kurtosis coefficient. In order to have an 
algorithm that is affine equivariant, we have replaced the kurtosis by its coefficient in 
the criterion used to determine the projection directions. The resulting algorithm is 
identical to Algorithm 1, except that Step 1 is no longer necessary, as the algorithm 
will be affine equivariant. Step 2 is replaced by changing the normalization of 
the projection direction, so that the kurtosis coefficient (as opposed to the fourth 
moment) is maximized. The new step is 

2. The direction that maximizes the coefficient of kurtosis for the original points 
is obtained as the solution of the problem 

(6) 
s.t. 

The constraint in the preceding formulation is used to normalize the size of d 
by requiring the sample variance to be equal to one. As a consequence, under this 
condition the maximization of the kurtosis coefficient is reduced to the maximization 
of the fourth central moment. 

Note that the property of orthogonality is not preserved by general affine trans­
formations. As a consequence, Step 3 needs also to be modified to ensure that the 
resulting algorithm is affine equivariant. The projection is done to ensure that the 
resulting directions are orthogonal with respect to the sample covariance matrix, 
that is, we require that dTSdj = 0 for all i =I j. The projection step (4) is replaced 
with 

Y(k+l) = (/ _ _ l_ddTS)y(k) 
, ~Sd' , 

where S denotes the original sample covariance matrix. 
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Algorithm 3. Hybrid algorithm. While Algorithm 1 has a high breakdown 
point, Algorithm 2 is affine equivariant but its breakdown point is low (see Appendix 
A). It is possible to combine the procedures in both algorithms, to exploit the 
advantages of each one. This can be done by generating the set of 2p directions 
obtained from the application of both methods, that is, we apply Step 2 from both 
algorithms, and conduct Steps 4 and 5 using the full set of 2p directions, in order 
to obtain the outlyingness measures and the weights for the estimators. 

Algorithm 4. Maximization of an absolute deviation measure. In Ap­
pendix A it is shown that using the kurtosis coefficient as an indication of outlying­
ness has some disadvantages with respect to the breakdown point of the resulting 
estimator. An alternative with better breakdown properties can be constructed by 
replacing the objective function of the optimization problem in Step 2 of Algorithm 
2 with the following maximization problem 

(7) 
s.t. 

that is, the fourth moment has been replaced with the third moment for the absolute 
deviations. 

2.2 Computation of the projection directions 

The most relevant aspect of these algorithms is the computation of the projection 
directions (step 2 in the algorithms); we analyze it in greater detail. Consider first 
Algorithm 1; the optimality conditions for (3) are 

42:::
1 
(d!' y?))3y~k) - 2>'d = 0 

d!'d= 1 

and the first of these conditions can be rewritten as 

(8) 

Note that this equation indicates that the solution of the problem, d, should be an 
eigenvector of the matrix 

that is, of a weighted covariance matrix for the sample, with positive weights (de­

pending on d) given by (dT y}k))2. 

Also, if both sides of equation (8) are multiplied by d and the second condition is 
used, we obtain that>. is equal to the value of the objective function, and from (8) 
it follows that d should be a unit eigenvector of Mk( d) corresponding to its largest 
eigenvalue (the principal component). 

Given this result, we have used the following iterative procedure to compute the 
direction d: 

1. Select a initial value do such that lido II = 1. 

2. Compute dk+1 as the (unit) eigenvector associated with the largest eigenvalue 
of M(dk ). We choose the eigenvector having a positive first component. 
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3. Terminate whenever Ildk+l - dkll < E. 

This procedure converges very quickly for problems of reasonable size, and is 
much faster than the Stahel-Donoho resampling procedure. 

It is easy to see that this algorithm will work as intended in extreme cases. Sup­
pose that we add to a sample of n(l- a) observations Xi from a normal distribution 
N(O, L;) a number na of identical outliers Xa. Note that this case of na identical 
outIiers is, according to Rocke and Woodruff (1996), the hardest to detect. For 
k = 1 (8) can be written as 

(9) 

where the Yi, Ya have been defined according to (2). If we let Ilxall ~ 00, we 
must have that, with probability one, all Yi remain bounded and IIYal1 ~ 00. As a 
consequence, if we let Ya = wu with lIull = 1, condition (9) is equivalent to 

and after taking limits as w ~ 00, the two solutions of the equation that satisfy the 
constraint are 

and d=u, 
.\ 
4=na. 
w 

The first choice corresponds to the minimizer, while the second one defines the 
maximizer. As a consequence, the procedure is able to detect the direction along 
which the outliers are going to infinity. 

Consider now Algorithm 2, and assume that initially the points have been nor­
malized to have mean equal to zero. This normalization poses no problem, as the 
algorithm is affine equivariant. From (6) the optimality conditions are 

4 L~=l (dTy~k))3Yfk) - 2,\ 2:;=1 ~ y~k)Yrk) = ° 
L;=1 (dT y~k))2 = n. 

We obtain the equation 

The solution of the problem, d, should be a vector in the null-space of the matrix 

that is, of a weighted covariance matrix for the sample, with weights (possibly 

negative and depending on d) given by (dTYt))2 - 2:;=1 (dT yjk))4. 

The iterative procedure to compute the direction d is now: 

1. Select a initial direction c4J, and scale it so that the constraint 2:;=1 (~y~k))2 = 

n is satisfied. 

2. Compute dk+l as "the eigenvector associated with the eigenvalue of M(dk) 
closest to zero. \Ve choose the eigenvector having a positive first component. 

3. Terminate whenever I\dk+l - dkll < Eo 
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This procedure also converges very quickly for problems of reasonable size. 
For Algorithm 4, the procedure is similar to the one presented for Algorithm 

2, with the only difference that the equation to be solved, for the case where the 
observations have been normalized to have mean equal to zero (this algorithm is 
also affine equivariant), is now 

2.3 Multivariate outlier detection 

As the preceding procedures are based on the assignment of weights related to the 
outlyingness of each observation, they should be easy to adapt to the detection of 
outliers in a multivariate sample; in this case we would be interested in assigning 
weights zero and one to each point in the sample. 

To formalize this procedure, we propose the following algorithm: 

1. Apply any of the preceding procedures for the estimation of scale to the origi­
nal sample, and obtain the outlyingness measures for each sample point from 
5. 

2. Eliminate from the sample those observations having values Ti > Cl, and 
repeat step 1. 

In our computational experiments we have taken Cl = 3. 

3. Terminate the procedure either after all remaining observations have outly­
ingness measures smaller than Cl, or before the number of observations left in 
the sample becomes less than half the original number of observations. 

4. The sample mean In and covariance matrix S are computed for the remain­
ing observations, and the Mahalanobis distances for the whole sample are 
computed using these values, 

5. Those observations having distances such that 

v = a/n, 

where a is the desired level of significance, are labelled as outliers. 

The value 'Y < 1 is a factor that attempts to correct the bias introduced in 
S given that some of the observations (those considered most likely to be 
outliers) have been removed prior to its computation. As the test to remove 
the observations depends on the outliers, it is not possible to compensate for 
this bias exactly. The value of 'Y that we have used in our tests has been 
obtained from simulation experiments for an uncontaminated multivariate 
normal sample, and is shown in the following table: 

p 2 3 4 5 6 8 10 15 20 
'] 0.72 0.69 0.65 0.63 0.60 0.55 0.51 0.41 0.33 

Table 1: Correction factors 

7 



In order to justify the choices made in this algorithm note that, for an uncontam­
inated sample from a normal distribution, if we take Cl = 3 the value of P(ri ::; 3) 
converges asymptotically to 0.956 (~0.95), Also, in the limit the values di wiII 
follow a X~ distribution. The Bonferroni bound that leads to 1/ = a./n is probably 
conservative, 

3 Properties of the estimators 

In this section we analyze the properties of the preceding estimators. We first 
concentrate on those properties that may be justified through the use of analytic 
tools, such as the affine equivariance of the estimators and their breakdown point. 
Some other properties (bias, identification errors) have been studied via simulation 
experiments, and these are covered in the latter part of the section. 

An important property of the algorithms presented in this paper is the very re­
duced computational cost associated with its application. The optimization prob­
lems to be solved in Step 2 are much simpler than the corresponding optimiza­
tion problems associated with the computation of the outlyingness measures in the 
Stahel-Donoho procedure. As a consequence, the computation time is significantly 
smaller for problems of a given size, even if a resampling procedure is used in the 
computation of the Stahel-Donoho estimator. 

3.1 Affine equivariance and breakdown points 

Algorithm 1. As a consequence of the transformations introduced in Step 1 of 
the procedure to estimate the sample scale, the estimator computed according to 
this procedure will be invariant to translations and changes of scale; nevertheless, 
it will not be invariant to general affine transformations. 

Regarding the breakdown point, if we have some observations going to infinity, 
the kurtosis along the corresponding direction wiII go to infinity, and the projections 
for these points along the direction maximizing the kurtosis wiII also grow without 
bound. As a consequence, the outlyingness measure ri for these observations wiII 
become arbitrarily large, ensuring a high breakdown point (see also the comments 
in Section 2.2 for the case of point-mass contamination). 

Algorithm 2. The algorithm is affine equivariant. On the other hand, it is not 
possible to show that it has a high breakdown point, even if it works very well 
for contaminations due to outliers grouped in a single cluster. In Appendix A it 
is shown that when all outliers are concentrated at the same point (point-mass 
contamination), the projection direction obtained in Step 2 of the algorithm is 
always (that is, with independence of the proportion of outliers or the distance 
from the outliers to the center of the uncontaminated observations) orthogonal to 
the direction where the outliers are concentrated (measured from the center of the 
uncontaminated observations), except for the last computed direction (when k = p). 
As a consequence, this method may not be able to detect the outliers in the case 
of concentrated contaminations when the observations are slightly apart from each 
other and are far removed from the uncontaminated sample (the direction of the 
outliers may not be recognized in this case due to the condition that all directions 
should be orthogonal with respect to the sample covariance matrix), or when the 
outliers form several clusters. 

Algorithm 3. As a combination of Algorithms 1 and 2, this algorithm wiII have a 
high breakdown point, but will not be affine equivariant. On the other hand (from 
Algorithm 2) some of the directions generated by the algorithm should be preserved 
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under affine transformations, and it should also present a satisfactory behavior for 
point-mass contaminations not far from the sample center. 

Algorithm 4. This last algorithm shares with Algorithm 2 the property of being 
affine equivariant, but it has better breakdown point properties. The breakdown 
point of the algorithm is analyzed in Appendix B. 

3.2 Simulation results. Scale estimation 

We have analyzed the bias and variability of the procedures through an extensive 
set of simulation experiments. As we mentioned above, we have chosen to compare 
these results with those obtained for the Stahel-Donoho estimator with subsampling, 
as it is the estimator with the best asymptotic bias and efficiency, see Maronna and 
Yohai (1995). 

In these simulations, and for a given contamination level a, we have generated a 
set of (1- a)n points from a N(O, 1) distribution, and we have added an additional 
points generated from a N(cel,O.II) distribution, where el denotes the unit vector 
along the first coordinate direction and c is the distance from the origin. The 
choice of a concentrated contamination pattern can be justified from the difficulty 
associated with its detection; see Maronna and Yohai (1995) for some practical 
remarks on these contamination patterns, and Rocke and Woodruff (1996) for a 
theoretical analysis. 

As Algorithms 1 and 3 are not affine equivariant, for each sample we have 
generated a random matrix A with singular values equal to ai = 2i. The data for 
the experiments have been obtained as Yi = AXi, where Xi denotes the observations 
from the original sample. 

The experiments have been repeated for different values of the sample space 
dimension (p = 5, 10,15 and 20), contamination level (a = 0.2 and 0.3) and distance 

of the outliers to the uncontaminated sample (c = 2JX~,O.95 and 4Jx~,O.95). The 

number of subsamples for the Stahel-Donoho estimator has been fixed for all cases 
at 5000. Finally, for each set of values 500 samples have been generated, and the 
Stahel-Donoho and proposed robust estimators of the covariance matrix have been 
computed. In order to compare the results, the condition numbers of the matrices 
generated by each ofthe procedures have been obtained, after rescalingthe matrices 
using the transformation that makes the sample covariance of the uncontaminated 
sample equal to the identity matrix. As a result, a low bias using this measure would 
correspond to a value close to one. Table 2 shows the results of this comparison. 

Note that all the proposed algorithms show improvements in the bias of the 
scale estimator with respect to the Stahel-Donoho algorithm with resampling. In 
particular, some of the algorithms are shown to be remarkably efficient, see for 
example the results for the hybrid algorithm (Algorithm 3). 

3.3 Outlier detection 

In order to test the detection of outliers in a meaningful way, we have chosen to 
compare the performance of our proposed algorithms on four datasets obtained from 
the literature. For each dataset a table with the corresponding results is shown, 
indicating the number of observations identified as outliers for each of the preceding 
algorithms, the list of the outliers from largest to smallest Mahalanobis distance, 
and the relative distance between the last observation identified as an outlier and 
the first observation considered" normal". The datasets used for this comparison 
are: 
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c Cl! P SD Alg.1 Alg.2 Alg.3 Alg.4 

2/
2 

Xp,O.95 0.2 5 11.54 10.00 7.13 6.64 6.78 

10 31.19 19.16 16.40 11.46 13.50 
15 68.87 27.08 36.74 17.88 25.81 
20 140.31 34.23 72.38 28.62 48.41 

0.3 5 54.93 26.99 29.49 26.32 27.19 
10 106.56 44.87 67.31 49.38 64.20 
15 153.11 60.24 112.62 83.19 119.83 
20 192.44 74.54 180.90 136.38 184.64 

4JX~.O.95 0.2 5 11.96 12.55 8.60 6.96 7.33 

10 36.05 34.92 29.87 11.75 18.67 
15 97.61 59.11 92.13 18.27 47.11 
20 273.40 87.03 237.14 29.39 119.77 

0.3 5 91.64 45.90 55.15 29.63 39.94 
10 275.18 118.12 238.69 58.90 160.97 
15 536.07 186.30 440.96 103.12 417.44 
20 768.36 247.84 711.80 188.14 729.60 

Table 2: Outlyingness measures 

• The Hawkins, Bradu, Kass set (Hawkins et al. (1984)), composed of 75 obser­
vations in dimension 3. The first 14 observations are outliers. Note that for 

Algorithm # outliers outliers reI. gap 
Stahel-Donoho 14 14,12,13,11,4,5,9,3,10,7,2,6,8,1 0.99 
Algorithm 1 14 14,12,11,13,4,5,9,3,10,7,6,2,8,1 0.98 
Algorithm 2 14 14,12,11,13,4,5,9,3,10,7,6,2,8,1 0.99 
Algorithm 3 14 14,12,13,11,4,5,9,3,10,7,2,6,8,1 0.99 
Algorithm 4 14 14,12,13,11,4,5,9,3,10,7,2,6,8,1 0.98 

Table 3: Hawkins-Bradu-Kass results 

all algorithms the 14 outliers have been correctly identified, and their ordering 
is very similar in all cases. 

• The bushfire dataset, composed of 38 observations in dimension 5. In Maronna 
and Yohai (1995) 13 observations were identified as outliers, from largest to 
smallest 35,38,33, 37,34,36,32, 9, 8, 10, 11,31 and 7. The results shown 
in Table 4 are markedly different for Algorithm 1 and the other methods, 
stressing the importance of using an affine equivariant procedure. Note that 
in all cases too many observations are identified as outliers, suggesting that 
the cutoff point proposed in Section 2.3 may be too conservative. 

• The milk dataset, composed of 86 observations in dimension 8. Atkinson 
(1994) identified the observations 70, 2, 41,1,44,74,12,13,14,3,15,47,75, 
17 and 16 as outliers, for a total of 15 outliers. Again, the results in Table 5 
for the different methods are very similar, and as in the preceding case, they 
identify as outliers a larger number of observations than Atkinson. 

• A synthetic data set with 34 observations, 30 of them generated from a nor­
mal multivariate distribution in dimension 6 with an ill-conditioned covariance 
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Algorithm # outliers outliers reI. gap 
Stahel-Donoho 16 33,35,38,34,37,36,32,9,8, 0.38 

31,10,11,7,12,30,29 
Algorithm 1 9 9,8,7,10,11,12,32,31,29 0.12 
Algorithm 2 16 33,35,34,38,37,36,32,9,8, 0.57 

31,10,11,7,30,29,12 
Algorithm 3 16 33,35,34,38,37,36,32,9,8, 0.57 

31,10,11,7,30,29,12 
Algorithm 4 17 32,33,35,34,36,38,37,31,9, 0.71 

8,7,10,11,30,29,12,28 

Table 4: Bushfire results 

Algorithm # outJiers outliers reI. gap 
Stahel-Donoho 20 70,2,41,44,1,12,74,13,14,15, 0.22 

47,3,75,16,11,20,27,17,77,18 
Algorithm 1 19 70,2,41,1,74,12,44,13,75,3, 0.22 

15,14,47,16,20,11,77,17,18 
Algorithm 2 19 70,2,41,1,44,74,12,15,14,13, 0.02 

47,75,3,16,11,20,17,77,18 
Algorithm 3 20 70,2,41,1,44,74,3,12,75,13, 0.18 

14,15,47,16,20,17,77,11,18,27 
Algorithm 4 20 70,2,1,41,44,74,12,13,15,14, 0.06 

16,75,3,47,20,11,17,18,77,27 

Table 5: Milk results 

matrix, and the last four generated as outliers from a different normal distri­
bution with small covariance matrix, and located along the smallest principal 
component for the initial 30 observations. This dataset corresponds to the 
typically difficult case of a concentrated contamination. Again, Algorithm 1 

Algorithm 
Stahel-Donoho 
Algorithm 1 
Algorithm 2 
Algorithm 3 
Algorithm 4 

# outJiers 
8 
4 
7 
6 
12 

outliers 
33,31,32,34,5,8,22,24 
13,5,8,22 
5,33,31,32,34,14,8 
33,31,32,5,34,8 
33,31,32,14,18,34,10,22,26,20,8 

Table 6: Synthetic data results 

reI. gap 
0.14 
0.20 
0.25 
0.44 
0.15 

does poorly, as could be expected from the properties of the algorithm. The 
remaining procedures perform reasonably well, but again identify too many 
observations as outliers. 

From all these results, the main conclusion is that all algorithms, except for 
Algorithm 1, behave quite acceptably, but the cutoff point for the identification of 
outliers has been chosen as too pessimistic. Nevertheless, the selection of a better 
cutoff value is complicated by two considerations: firstly, a value having a probabilis­
tic interpretation, such as for example identifying outliers with a given probability, 
would be affected by the presence and location of these outliers, and that would 
greatly complicate its determination, and the corresponding algorithm; secondly, 
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for real data it is not always clear which observations should be labeled as outliers. 
To illustrate this situation, consider Algorithm 3 when applied to the milk data. 
Figure 1 shows the ordered values of the logarithms of the Mahalanobis distances 
for the observations. The continuous line gives the cutoff point as described in the 
algorithm, and the dashed line gives a cutoff point that would identify the outliers 
as described in Atkinson, except for observation 20. The difference is not large, 
and if anything it seems that the proposed cutoff point gives a better separation 
between outliers and normal observations. 

9.-------~------~--------.-------~-------, 

8 

7 

6 

5 

4 
~------------------------------~~------

3 

2 

1 

OL-------~------~--------L-------~------~ 
o 20 40 60 80 100 

Figure 1: Milk data: ordered log of Mahalanobis distances and cutoff point using 
Algorithm 3 

3.4 Running times 

Finally, a most important property of the proposed algorithms is their limited com­
putational requirements, both from the point of view of their ease of implementation, 
and of their reduced running times. 

Table 7 illustrates these advantages by comparing the running times required by 
each one of the algorithms and the Stahel-Donoho procedure (for 5000 replications). 
Each value in the table corresponds to the running time to complete the estimation 
of the covariance matrix 100 times, for each one of the datasets described in this 
section. The running times are given in seconds, and have been obtained on an HP 
735 workstation for Matlab versions of each algorithm. 

Note the decrease by several orders of magnitude in the running times. This 
decrease is particularly marked when the number of observations in the sample is 
large with respect to the dimension (Hawkins, Bradu, Kass data set). Note also that 
as the dimension increases, the number of replications needed by Stahel-Donoho to 
guarantee a satisfactory result would increase exponentially (this number has been 
kept fixed for the preceding experiment), while the proposed algorithms would show 
only a polynomial increase in their running times. 
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Stahel-Donoho Alg.1 Alg.2 Alg.3 Alg.4 
Hawkins, Bradu, Kass 3446.9 4.0 7.8 11.1 10.9 
Bushfire 1530.9 5.4 10.6 15.5 21.3 
Synthetic data 1432.3 10.9 15.6 26.0 25.7 
Milk data 3593.3 22.9 63.9 87.5 120.3 

Table 7: Running times 

4 Concl usions 

From the analysis of the proposed procedures, and although some of their theoretical 
properties may be improved upon, they seem to behave very well in practice, at 
least those that are affine equivariant or make use of information generated in an 
affine equivariant manner. In particular we recommend the hybrid algorithm, as it 
has shown a very good performance on all the tests we have conducted. On the 
other hand, they are much simpler to implement, and much faster than equivalent 
procedures with high breakdown point, such as the Stahel-Donoho estimator. The 
running times are shown to be several orders of magnitude smaller than those 
required by Stahel-Donoho. 

In summary, the procedures presented in this paper for the estimation of robust 
covariance matrices and the identification of outliers seem to be good choices when­
ever these techniques must be applied and computational efficiency is an important 
consideration (large sample sizes or high data dimensions). 

Appendix A 

In this appendix we analyze the breakdown point properties of Algorithm 2 (the 
maximization of the kurtosis coefficient). In particular, we study the behavior 
of the method for a specific but representative contamination pattern, point-mass 
contamination. To model this case consider a sample Y1, ... ,Ym of m == n(l - et) 
observations obtained from a N(O,1) distribution, and a group of net observations 
concentrated at a distance {j along the first coordinate direction, {je1 (where e1 

denotes the first unit vector). To simplify the computations in what follows we will 
assume that the observations satisfy L::1 Yi = 0 and L::1 YiyT = mI. Note that 
Algorithm 2 is affine equivariant, implying no loss of generality due to the preceding 
assumptions. 

Consider now an arbitrary projection direction WU, where lIull = 1. The pro­
jected observations will be composed of a group of n(1 - et) observations following 
a univariate N (0, w2 ) distribution, and a group of net observations concentrated at 
{jWU1, where U1 = er u denotes the first component of u. 

The value of W will be determined by the satisfaction of the constraint (variance 
equal to one) in (6). Replacing the preceding values in this constraint, using the 
notation Xi == WUTYi and taking into account that 2:::1 Xi = 0 and L::1 xr = 
mw2 = n(l - et)w2 , we obtain 

The value of w that satisfies this constraint is 

(11) 
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Consider now the expression for the kurtosis--the objective function in (6), 

m 

1/!(ud == L (x, - et8WUt}4 + net (8WUl - et8WUl)4. 

i=l 

If the terms in this expression are expanded and expected values are taken, we 
have that on the average, 

Replacing the value (11) and rearranging terms we obtain 

Observing that 0 ::; ur ::; 1, the local extrema for this expression as a function 
of Ul lie at 0, 1 and 

2 3 I-et 

u l = 82 3et -1' 

Comparing the values of <p at these points, we have that the global maximizer of 
<P(Ul) is found at Ul = 0, independently of the values of et and 8, that is, on a 
direction orthogonal to the direction where the outliers are located. 

Note that this situation does not pose a difficulty for the proposed algorithm, 
as the direction where the outliers are located will nevertheless be selected as one 
(the last one) of the set of p orthogonal directions generated by the algorithm. 

But if the outliers do not lie exactly in the same point or there is more than 
one cluster of outliers, the last computed direction need not be one along which the 
outliers will be revealed, and the algorithm may not be able to compute the correct 
projection directions. As a consequence it may have a low breakdown point. 

Appendix B 

Consider Algorithm 4, and a sample Xl, ""xn' Consider further that in this sample 
we have n(l - et) arbitrary sample points Yi, i = 1, ... , n(l - et), and we also have 
net points (the outliers) at a set of arbitrary locations, Vi, i = 1, ... , net; some of the 
outliers are made to go to infinity, that is, for some i we have Ilvill --+ 00. 

To analyze the breakdown point of this algorithm, note that the measure of out­
Iyingness (5) is computed in terms of robust univariate location and scale measures. 
It is then sufficient to find the smallest value of et for which the direction d solution 
of the maximization problem (7), is one onto which the outliers have a bounded 
projection. In any other case, by applying iteratively the proposed algorithm and 
removing those observations with very high values of ri, it would be possible to 
detect all outliers with a breakdown point equal to that of the univariate measures 
used in the computation of (5), that is, 50%. 

Another important consideration is that, by requiring that the directions gener­
ated by the algorithm be orthogonal with respect to the sample covariance matrix, 
we have that the breakdown point will be defined by the projections onto the first 
direction obtained from (7). If this direction is not correctly identified, then there 
is no guarantee that any of the remaining directions will be able to identify the 
outliers. To further illustrate this point, from the affine equivariance of the algo­
rithm it is equivalent to consider the case when the observations have been rescaled 
to have S = I. In this case, the defining property of the direction along which 
the (unscaled) outliers go to infinity is that the MAD of its (scaled) projections is 
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equal to zero (in the limit), and this property is quickly lost when small errors are 
introduced in the identification of this direction. 

As a consequence, we will study the breakdown point of this algorithm by com­
paring the smallest value that the criterion 

1 1

3 
1 n TIn T 
- dx-- dx' 

_ n L i =1 'n L j =1 J 

<p(d) = 2 3/2' 

( .!. ~n (dTXi _ .!. ~n dTXj )) 
n~'=1 n~J=1 

(12) 

may take along any direction d where the outliers go to infinity, with the largest 
value that this same criterion may take along any other direction where the outliers 
remain bounded. 

For a given direction d we introduce the notation Zi == dT Yi and Wi == dT Vi. 
Using this notation, the criterion (12) takes the form 

(

n(l-et) 1 1 n(1-et) net 1

3 
net 1 1 n(1-et) net 1

3
) 

Vn i~ Zi -;( j~ Zj + j~ Wj) + i~ Wi -;( jE Zj + j~ Wj) 

<p(d) == --~----------------------'-=-= 

(

n(l- et ) ( 1 n(l-et) net ) 2 net ( 1 n(l-et) net ) 2) 3/2' 
i~ Zi -;( j'fl Zj + j~ Wj) + iE Wi -;( j'fl Zj + jE Wj) 

For a direction along which the out Hers are going to infinity, doe, we may write 
Wi = f3iw, where W -+ 00 and If3;! ::::; 1, with at least one f3i = 1. If we take limits 
when W -+ 00, we obtain 

(13) 
We now derive a lower bound for this expression. From If3il ::::; 1, the denominator 
satisfies 

For the numerator, using lu + vI3 ::::; lul 3 + IvI 3 
we have 

and as a consequence, 

3 3 
net 1 net 

+ L f3i - - L f3j 
i=1 n j=1 

> 

(
net 3 net 

n 1 - 2a) ~f3,' ~ 11313 
n 3 ~ + ~ i . 

;=1 ;=1 
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As at least one of the (3i must be equal to one, a (rough) bound for this expression 
is given by 

Finally, replacing both bounds in the criterion we obtain for doo, 

(14) 

Note that the bound is not tighL 
If we now analyze the projections onto a direction db where all observations take 

bounded values, there is no need to differentiate between outliers and the original 
observations, as all of them may take arbitrary, although bounded, values. We now 
denote by Zi the projections for all the observations, both the original ones and the 
outliers. Due to the affine equivariance of the procedure, we may assume without 

loss of generality that L:~=l Zi = 0 and L:~=l z7 = 1. Under these conditions, the 

criterion (12) takes the value 

n 

ifJ(db) = v'nL: Izi , (15) 
i=1 

and as under the preceding conditions IZi I ::; 1, an upper bound would be 

(16) 

Combining (14) and (16), the values of a for which the proposed algorithm will 
be able to identify the outliers are those satisfying 

no: ::; 1. (17) 

This bound for the breakdown point does not depend on the dimension of the sample 
space, but behaves poorly with respect to n, the sample size. 

Given the derivation procedure, and in particular that the result (17) has been 
obtained from bounds that are not tight, it is reasonable to prove the validity of 
this result by showing a particular contamination pattern that presents this kind of 
behavior. 

Consider a point-mass contamination, and assume that we have n(l-a) observa­

tions Xi, the uncontaminated sample, such that L~i-a) Xi = 0 and L~i-a) XiX~ = 
I (again, note that the procedure is affine equivariant), and na observations (the 
outliers) concentrated at bel, where el denotes the first unit vector. 

For the projections along a direction db orthogonal to e1 the criterion to optimize 
will be given by 

n(1-a) 

ifJ(db ) = v'n L: IZiI 3 ::;-rn, 
;=1 

with Zi == d{; Xi· Note that although this bound is not tight, there are distributions 
for the uncontaminated sample that satisfy asymptotically the bound as n -+ 00, 

such as for example having one isolated sample point, and all other uncontaminated 
sample mass concentrated at a different point. 

Consider now the projections onto el. The value of the criterion is 

",n(l-a) I r:1 3 r:3( )3 
( ) 

_;;;; L..d-l Zi - au + nau 1 - a 
ifJ e1 - v n 3/2 . 

(L~i-a) (Zi - ab)2 + nab2(1 - a)2) 
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If we let 8 ~ 00 and simplify the resulting expression, we have 

The condition under which the maximizing direction is Cl would be <p(ed 2:: <p(db ), 

and this condition will hold if 

From this bound we find again the relationship a = O(n-l) (although with a 
different constant). This result confirms that for this procedure the breakdown 
point presents the expected type of behavior with respect to the sample size. 

Nevertheless, note that this behavior is associated with very unusual dispositions 
for the uncontaminated sample. For example, for the case of point-mass contami­
nation, if the uncontaminated sample would have zero mean, varian~e equal to one 
and a third moment bounded with respect to n (let us say, bounded by k), then the 
breakdown point would be given by an expression of the form 
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