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Abstract—In this paper we propose a novel variable bit rate
(VBR) controller for real-time H.264/scalable video coding (SVC)
applications. The proposed VBR controller relies on the fact that
consecutive pictures within the same scene often exhibit similar
degrees of complexity, and consequently should be encoded using
similar quantization parameter (QP) values for the sake of quality
consistency. In oder to prevent unnecessary QP fluctuations, the
proposed VBR controller allows for just an incremental variation
of QP with respect to that of the previous picture, focusing
on the design of an effective method for estimating this QP
variation. The implementation in H.264/SVC requires to locate
a rate controller at each dependency layer (spatial or coarse
grain scalability). In particular, the QP increment estimation at
each layer is computed by means of a radial basis function (RBF)
network that is specially designed for this purpose. Furthermore,
the RBF network design process was conceived to provide an
effective solution for a wide range of practical real-time VBR
applications for scalable video content delivery.

In order to assess the proposed VBR controller, two real-
time application scenarios were simulated: mobile live streaming
and IPTV broadcast. It was compared to constant QP encoding
and a recently proposed constant bit rate (CBR) controller for
H.264/SVC. The experimental results show that the proposed
method achieves remarkably consistent quality, outperforming
the reference CBR controller in the two scenarios for all the
spatio-temporal resolutions considered.

Index Terms—Rate Control, Variable Bit Rate (VBR), Scalable
Video Coding (SVC), H.264/SVC, H.264/advanced video coding
(AVC), IPTV, streaming.

I. INTRODUCTION

V IDEO coding has become one of the paramount research

areas in recent years, given the growing popularity of

multimedia communications caused by the development and

improvement of the network infrastructures, the storage capac-

ity, and the processing power of decoding terminals. According

to the target application, two different coding methods can be

distinguished: constant bit rate (CBR) and variable bit rate

(VBR) coding. In CBR coding, commonly used for real-time

video conference, a short-term average bit rate adaptation is

required to ensure low buffer delay. However, in VBR coding,

typically used for video streaming or digital storage, a long-

term bit rate adaptation and, consequently, a longer buffer

delay, is allowed for improving the visual quality consistency

[1], [2].

In order that encoded video sequences can be properly

transmitted and decoded, the rate control (RC) algorithm

located at the encoding side operates in two steps. First, a bit
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budget is allocated to each coding unit according to the video

complexity, the target bit rate and the buffer constraints given

by the hypothetical reference decoder (HRD) requirement [3].

Second, a quantization parameter (QP) value is assigned to the

coding unit so that the buffer fullness is maintained at secure

levels, while minimizing the distortion.

Several RC algorithms for CBR coding have been recom-

mended in the video coding standards, such as the Test Model

Version 5 for MPEG-2 [4], the Verification Model Version 8

for MPEG-4 [5], the Test Model Version 8 for H.263 [6],

Joint Model for H.264/advanced video coding (AVC) [7].

Beyond these baseline algorithms, the RC problem has been

extensively studied. Most of the approaches have focused on

modeling the discrete cosine transform (DCT) coefficients,

providing analytical rate-distortion (R-D) functions for QP

estimation. For instance, assuming a Gaussian probability

density function (PDF) for DCT coefficients, a logarithmic

R-D function can be inferred [8]. Alternatively, assuming a

Cauchy PDF, a simple exponential R-D model is derived [9],

[10]. On the other hand, using a Laplacian PDF, different linear

[11], quadratic [5] or ρ-domain-based [12] R-D models have

been proposed. Furthermore, Chen et al [13] proposed separate

R-D models for the luminance and chrominance components

of color video sequences; and Xie et al [14] proposed a

sequence-based RC method for MPEG-4 that uses a rate-

complexity model to track the non-stationary characteristics

in the video source.

With respect to VBR coding, several RC algorithms have

been proposed to provide a more consistent visual quality in

a variety of applications, such as live streaming and broadcast

[15], [16], one-pass digital storage [17], [18], or two-pass

digital storage [19], [20]. It should be noted that, for digital

storage, the RC algorithm is subject to a budget constraint

instead of to a delay constraint. Other schemes, such as [21]

and [22], have also been proposed taking advantage that VBR

video can be easily incorporated in a networking infrastructure

that supports VBR transport [2], to improve the visual quality

while reducing the buffer delay. From the R-D modeling point

of view, instead of using the analytical models described above

for real-time CBR applications, several methods have been

proposed that relies on the estimation of a QP increment with

respect to a reference QP in order to reduce its variation [16],

[18], [22].

Finally, it is also worth mentioning that an optimal solution

to the RC problem has also been studied. These methods,

which are based on the operational R-D theory, can be only

used in off-line applications. The reader is referred to [23] for

more information on this approach.
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Nowadays, many video transmission services over RTP/IP-

based channels, such as Internet or wireless networks, have

benefited from scalable video coding (SVC) features [24],

[25]. For these kinds of channels, SVC is able to provide

bit rate adaptation for varying channel conditions as well as

for heterogeneous devices with different display resolutions

and computational capabilities. SVC enables the extraction

of either one or a subset of sub-streams from a high-quality

bit stream so that these simpler sub-streams, bearing lower

spatio-temporal resolutions or reduced quality versions of the

original sequence, can be decoded by a given target decoder.

Furthermore, specific forward error correction techniques can

be used to ensure an error free transmission of more important

layers, such as the lowest spatio-temporal resolution.

The scalable extension of the H.264/AVC standard named

H.264/SVC has recently been standardized [26] and evaluated

[27]. It provides both coding efficiency and decoding com-

plexity similar to those achieved using single-layer coding.

H.264/SVC supports spatial, temporal, and quality scalable

coding. For spatial scalability, a layered coding approach

is used to encode different picture sizes of an input video

sequence. The base layer provides an H.264/AVC compatible

bit stream for the lowest spatial resolution, while larger picture

sizes are encoded by the enhancement layers. In addition,

the redundancies between consecutive spatial layers can be

exploited via inter-layer prediction tools in order to improve

the coding efficiency.

Each spatial layer is capable of supporting temporal scal-

ability by using hierarchical prediction structures, which go

from these very efficient ones using hierarchical B pictures

to those with zero structural delay. The pictures of the base

temporal layer can only use previous pictures of the same layer

as references. The pictures of an enhancement temporal layer

can be bidirectionally predicted by pictures of a lower layer.

The number of temporal layers in a spatial layer is determined

by the group of pictures (GOP) size, defined in H.264/SVC

as the distance between two consecutive I or P pictures, also

named key pictures.

For quality or signal-to-noise ratio (SNR) scalability, differ-

ent reconstruction quality levels with the same spatio-temporal

resolution are provided. The H.264/SVC standard defines two

types of SNR scalable coding: coarse grain scalability (CGS)

and medium grain scalability (MGS). The first is a special case

of spatial scalability with identical picture sizes. The second

employs a multilayer approach within a spatial layer in order

to provide a finer bit rate granularity in the R-D space.

Given a video transmission service that offers several qual-

ities of service (QoS) and serves heterogeneous decoding

devices, a layered coding approach implies that the RC scheme

must be able to provide a set of HRD-compliant scalable

sub-streams considering a variety of target bit rates, one per

target decoding terminal bearing a particular spatio-temporal

resolution or computational capability. This is the aim of the

different RC algorithms that have been proposed for SVC

during the last years. Most of them employ well-know analyt-

ical R-D functions for QP estimation: linear [28], quadratic

[29], the so-called square root [30], ρ-domain-based [31],

[32], TMN8-based [33], and exponential [34], [35] models.

The bit allocation formulation for hierarchical GOP structures

has also been studied. In particular, the dependency among

spatial, quality, and temporal layers has been exploited in

[34] and [35], though these solutions are not suitable for

real-time scenarios given the required number of encoding

iterations. In [36], an optimal distribution of the total target

bit rate among the spatial/CGS layers was determined. It is

worth mentioning that the quality scalability was specially

investigated for MPEG-4 fine grain scalability (FGS) [30], [37]

and MGS [34], [38], [39]. Nevertheless, with a few exceptions

[30], [37], [39], the existing RC approaches for SVC are not

still developed for those VBR applications that can benefit

from the SVC features for video content delivery.

In this paper we propose a novel VBR controller for

real-time H.264/SVC applications. As suggested in [16] for

H.264/AVC, the proposed VBR controller assumes that con-

secutive pictures within the same scene often show similar

degrees of complexity, and aims to prevent unnecessary QP

fluctuations by allowing just an incremental variation of QP

with respect to that of the previous picture. In order to adapt

this idea to H.264/SVC, a rate controller is located at each

dependency layer (spatial or CGS), so that each rate controller

is responsible for determining the proper QP increment. In

particular, this paper focuses on providing an effective QP

increment estimation computed by means of a radial basis

function (RBF) network, which has been specially designed

for this purpose.

The paper is organized as follows. In Section II a detailed

description of the proposed RC algorithm is provided. First, a

brief overview is given. Then, the two main stages of the rate

controller for each dependency layer, parameter updating and

RBF-based QP increment estimation, are described. Section

III describes the design of the RBF network for QP increment

estimation. Section IV shows and discusses the experimental

results. Finally, some conclusions are drawn in Section V.

II. A NOVEL VBR CONTROLLER FOR H.264/SVC

A. System Overview

Before starting to describe the proposed VBR controller, the

notation used along the paper has been summarized in Table

I for reference. The RC scheme is illustrated in Fig. 1 for

a SVC encoder consisting of two dependency layers. Let us

denote as D the number of dependency layers, identified as

d = {0, 1, . . . , D − 1}, and let us denote as T (d) the number

of temporal layers for a particular dependency layer, identified

as t =
{

0, 1, . . . , T (d) − 1
}

.

Each dependency layer d involves a rate controller RC(d)

and a virtual buffer. The virtual buffer at layer d receives

the contributions of layers from 0 to d and simulates the

encoder buffering process of the corresponding sub-stream.

The generation of each sub-stream depends on two fundamen-

tal parameters: the target bit rate R(d) and output frame rate

f
(d)
out. It should be noted that R(d) must be higher than those

associated with lower dependency layers, i.e.,

R(d−i) ≤ R(d) i=0, 1, . . . , d,

since those lower dependency layers form part of the dth sub-

stream.
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TABLE I
SUMMARY OF NOTATION.

d Dependency layer identifier
D Number of dependency layers
t Temporal layer identifier
j Current picture number
BD Buffer size in seconds
nTF Normalized target buffer fullness with respect to BD
L Number of Gaussian-type functions
H Gaussian-type function
C, Σ, w, w0 Centers, widths, weights, and bias of the RBF network
Ψ Cost function for training data labeling

(λ1,λ2,λ3)T Weight vector for Ψ
θ Scale factor for Ψ

For each layer d

T (d) Number of temporal layers

RC(d) Rate control module

R(d) Target bit rate

f
(d)
out Output frame rate

QP (d) Quantization parameter value

Q(d) Quantization step value

∆QP (d) Quantization parameter increment

BS(d) Buffer size in bits

V (d) Buffer fullness

nV (d) Normalized V (d) with respect to BS(d)

G(d) Access unit target bits

AU(d) Access unit output bits

nAU(d) Normalized AU(d) with respect to G(d)

b(d,t) Texture bits of the picture with identifier (d, t)

h(d,t) Header plus motion data bits of the picture with
identifier (d, t)

C
(d,t)
TEX Average texture complexity of the layer (d, t)

C
(d,t)
MOT Average motion complexity of the layer (d, t)

α, β Forgetting factors for complexity computation

G
(d)
NOM

Nominal bit budget

∆G
(d)
TEX

Target bit increment for texture information

∆G
(d)
MOT

Target bit increment for motion information

N(d,t) Number of pictures per GOP with identifier (d, t)

X(d) Input vector to the RBF network

D
(d)
j Distortion of the jth picture

D
(d)

Average distortion

In order to encode the jth picture with spatio-temporal iden-

tifier (d, t), the RC(d) module should provide an appropriate

QP
(d)
j value, on a frame basis, so that the QP fluctuation is

minimized (to improve visual quality consistency), while the

buffer fullness V (d) is maintained at secure levels. To this end,

the RC(d) module operation leans on three input parameters:

1) The fullness V (d) of the corresponding virtual buffer.

2) The amount of bits yield by the encoding of the spatial

layers 0 to d for a given time instant. Henceforth,

following the H.264/SVC nomenclature, we will refer to

this amount of bits as an access unit (AU) output bits

AU (d).

3) The QP value used for encoding the previous picture of

the same dependency layer QP
(d)
j−1.

A proper QP increment ∆QP (d) is estimated from the two

firsts, and QP
(d)
j−1 is employed as a reference value to obtain

the final quantization parameter as follows:

QP
(d)
j =QP

(d)
j−1+∆QP (d). (1)

This approach takes advantage of the fact that the VBR

environments allow for a slow QP evolution in order to

maintain a consistent visual quality. Thus, it assumes similarity

between consecutive frames and aims to model only those QP

changes required to compensate for large bit rate deviations

owing to time-varying video complexity. Consequently, the

method for estimating the QP increment becomes the main

focus of the proposed VBR controller.

It is also worth noting that, in the case of CGS scalability,

the QP obtained is lower bounded by the QP of the reference

layer, so that a higher quality for the enhancement layer is

ensured:

QP
(d)
j =min

[

QP
(d−1)
j , QP

(d)
j

]

. (2)

The VBR control algorithm for a specific spatial or CGS

layer, i.e., the algorithm that obtains an appropriate QP incre-

ment for the jth picture with identifier (d, t) is illustrated in

Fig. 2. As shown in the figure, the RC(d) module is organized

in two stages named parameter updating and RBF-based QP

increment estimation:

• Parameter updating stage: after encoding the (j−1)th

picture with layer identifier (d, t′) (t′ is used instead of

t because the previous picture can belong to a different

temporal layer), some parameters required to estimate the

QP increment are updated. In particular, the following

two parameters are updated: 1) a normalized version of

the buffer fullness, denoted as nV (d); and 2) a normalized

version of the amount of bits generated by the AU,

denoted as nAU (d). The normalized versions of the buffer

fullness and the AU output bits are defined as follows:

nV (d) =
V (d)

BS(d)
, (3)

nAU (d) =
AU (d)

G(d)
, (4)

where V (d) has already been defined as the buffer full-

ness; BS(d) denotes the buffer size, in bits, associated

with the dth dependency layer; AU (d) has already been

defined as the AU output bits; and G(d) denotes the AU

target bits.

• RBF-based QP increment estimation stage: before encod-

ing the jth picture, the proper QP increment ∆QP (d)

is estimated from four parameters (whose selection is

discussed in Subsection II-C1): nV (d), nAU (d), and two

additional constant parameters that are included so that

the achieved solution is able to work in a variety of

scenarios. The first constant parameter, denoted as nTF ,

is the normalized target buffer fullness with respect to

the buffer size, and the second, denoted as BD, is the

maximum buffering delay (or buffer size in seconds),

which is related to that measured in bits as BS(d) =
BD×R(d). Then the ∆QP (d) value is added to QP

(d)
j−1

as indicated in Eq. (1). In particular, a nonlinear relation

between the aforementioned input parameters and the

desired QP increment has been obtained by training an

RBF network that is able to deal with a wide range of

practical situations, as described in Section III.

Both stages are described in detail in the following subsec-

tions.
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Fig. 1. Block diagram of the proposed H.264/SVC rate control scheme for
two dependency layers (D=2).

B. Parameter Updating

The aim of this subsection is to describe the updating

procedure for parameters nV (d) and nAU (d). The updating

equations for nV (d) and nAU (d) require the previous compu-

tation of both the buffer fullness and the AU target bits. In turn,

the computation of the buffer fullness requires to obtain the

AU output bits, and the estimation of AU target bits requires

to estimate the average texture and motion complexities for

each temporal layer. Therefore, the calculation of all of these

quantities are described first, to end up with the updating

equations for nV (d) and nAU (d).

1) Computation of AU Output Bits: Assuming that the

picture coding order in SVC is established so that the AUs

are sequentially encoded (the encoding of an AU starts when

the previous has been completed) [26], the total number of

bits generated by AU
(d,t′)
j−1 obeys:

AU
(d,t′)
j−1 =

d
∑

m=0

(

b
(m,t′)
j−1 + h

(m,t′)
j−1

)

, (5)

where b
(m,t′)
j−1 and h

(m,t′)
j−1 are, respectively, the amount of

texture bits and header plus motion data bits generated by the

(j−1)th picture, with spatio-temporal layer identifier (m, t′).
2) Buffer Fullness Updating: Once the AU output bits have

been obtained, the virtual buffer fullness is updated as follows:

V
(d)
j =V

(d)
j−1+AU

(d,t′)
j−1 −

R(d)

f
(d)
out

. (6)

3) Estimation of the Average Texture and Motion Complex-

ities of a Layer (d, t′): Let us define C
(d,t′)

TEX as the average

texture complexity of the encoded pictures at spatial/CGS

layers 0 to d belonging to the temporal layer t′. The following

updating equation is proposed:

C
(d,t′)

TEX =α
d

∑

m=0

(

Q
(m)
j−1b

(m,t′)
j−1

)

+(1− α)C
(d,t′)

TEX , (7)

where α is a forgetting factor that is set to 0.5 in our experi-

ments, and Q
(m)
j−1 is the quantization step value associated with

Fig. 2. Block diagram of the rate controller RC(d) for a specific dependency
layer d. The RC(d) module is organized in two stages named parameter

updating and RBF-based QP increment estimation. The first provides updated
parameters for the second, which estimates the proper QP increment to end

up with the QP value for the current picture, QP
(d)
j .

QP
(m)
j−1 . Likewise, the average motion complexity C

(d,t′)

MOT is

defined as:

C
(d,t′)

MOT =β

d
∑

m=0

h
(m,t′)
j−1 +(1− β)C

(d,t′)

MOT , (8)

where β is a forgetting factor that is also set to 0.5 in our

experiments. It is also worth mentioning that for the lowest

temporal layer, which can include I or P pictures, these average

complexities are reset (that is, α and β are temporary set to 1)

when the current type of picture is different from the previous

one at the same temporal layer, so that potential complexity

mismatches due intrinsic encoding differences between I and

P pictures are prevented.

4) Estimation of AU Target Bits: In order for the sub-

stream associated with the dth dependency layer to satisfy the

target bit rate constraint R(d), the amount of AU output bits

should be controlled according to a bit budget G(d,t′), which

is determined by the following model:

G(d,t′)=G
(d)
NOM+∆G

(d,t′)
TEX+∆G

(d,t′)
MOT , (9)

where G
(d)
NOM is the nominal bit budget:

G
(d)
NOM =

R(d)

f
(d)
out

, (10)

and ∆G
(d,t′)
TEX and ∆G

(d,t′)
MOT represent the bit increments that

depend on the relative texture and motion complexities among

temporal layers, respectively, i.e.:

∆G
(d,t′)
TEX =

R(d)

f
(d)
out





C
(d,t′)

TEX

∑T (d)
−1

u=0 N (d,u)

∑T (d)
−1

u=0

(

C
(d,u)

TEXN
(d,u)

)− 1



 , (11)

∆G
(d,t′)
MOT =C

(d,t′)

MOT−
C

(d,t′)

TEX

∑T (d)
−1

u=0

(

C
(d,u)

MOTN
(d,u)

)

∑T (d)
−1

u=0

(

C
(d,u)

TEXN
(d,u)

) , (12)

with N (d,u) being the total number of pictures per GOP with

layer identifier (d, u).
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5) nV (d) and nAU (d) Updating Equations: After encoding

the (j−1)th picture with layer identifier (d, t′), the parameters

required to estimate the incremental variation of QP for the

next picture are finally updated by means of the following

expressions:

nV (d)=max

[

0,min

[

V (d)

BS(d)
, 1

]]

, (13)

nAU (d)=max

[

1

2
,min

[

AU (d,t′)

G(d,t′)
, 2

]]

. (14)

Since these parameters bear the current state of the encoding

process in terms of buffer occupancy and target bit rate

mismatch, the most appropriate QP variation should be derived

from them. For instance, if nV (d) were close to 1 (overflow

risk) and nAU (d) were close to 2 (large bit rate mismatch),

then the QP increment would be high in order to quickly

correct such mismatches. On the other hand, if nV (d) were

close to 1 but nAU (d) were also close to 1, then the QP

increment would not be high, so that the visual quality is

maintained. Nevertheless, it is not easy to infer practical

decision-making rules from particular examples such as the

previous ones. Instead, this task has been addressed through

a carefully designed QP increment estimation process that is

described in the following subsection.

C. RBF-based QP Increment Estimation

This subsection discusses the reasons behind the features

selected as components of the input vector to the RBF net-

work and describes the proposed method to estimate the QP

increment for the jth picture.

1) Selection of the Input Vector to the RBF Network:

There are many parameters that can potentially influence the

selection of a proper QP increment value, such as measures of

actual buffer fullness and AU output bits, target buffer fullness,

buffer size, reference QP value, video content properties,

GOP size, dependency and temporal layer identifiers, etc.

In order to reach a good compromise between performance

and computational cost, in this work we have selected four

parameters: nV (d), nAU (d), nTF , and BD. The reasons for

selecting these ones and rejecting others are given next.

The normalized versions of both buffer fullness nV (d) and

AU output bits nAU (d) have to be considered in order to

guarantee long-term average bit rate adaptation while main-

taining the buffer occupancy at secure levels. In fact, similar

parameters to these ones have been already successfully used

in previous works on the same subject, as those described in

[16].

The normalized target buffer fullness nTF is used by

the rate controller to lead the buffer occupancy toward that

reference point. Although in VBR scenarios it is common to

operate with target buffer fullness values between 40% and

60% of buffer size, we decided to consider this parameter

because its influence on the selection of ∆QP (d) becomes

crucial when it takes either lower or higher values since the

risk of underflow or overflow, respectively, increases dramat-

ically and must be controlled.

The buffer size BD is related to the region of the R-D

space where the rate controller can operate; in other words,

it determines the operating point between the constant-rate

region (small buffer size) and the constant-quality region (large

buffer size). Thus, the larger the buffer size, the smoother the

QP variation should be so that the visual quality consistency

is high.

On the other hand, the temporal layer identifier has been

taken into account in an alternative manner that will be

described in detail below. In particular, two different RBF

networks were trained, one for the lowest temporal layer, and

the other for the enhancement temporal layers.

Other parameters were considered and discarded for the

sake of the performance-complexity tradeoff, in particular:

reference QP value, video complexity measures, GOP size, and

dependency layer identifier. Although all of these parameters

have an undeniable influence on the selection of the QP

increment, their contribution does not turn out to be essential in

a VBR scenario where a long-term average bit rate adaptation

is sufficient. On the other hand, if they were considered, both

the complexity of the RBF network training process and the

operation complexity would considerably increase due to the

increment of the input vector dimension.

2) QP Increment Estimation: As previously stated, the pro-

posed ∆QP (d) estimation method operates on the following

input vector:

X
(d)=

(

nV (d), nAU (d), nTF,BD
)T

, (15)

implicitly assuming that all the virtual buffers share the same

nTF and BD values.

A carefully designed RBF network is used to estimate

∆QP (d) from the input vector X(d). The RBF-based estima-

tion obeys:

∆QP (d)= round

[

w0+

L
∑

i=1

wiHi

(

X
(d)

)

]

, (16)

where L is the number of basis functions
{

Hi

(

X
(d)

)}

i=1,...,L
of the hidden layer, wi the output weights, and w0 the bias.

It should be noted that the output of the RBF network is

converted into an integer, given the discrete nature of the

quantization parameter in H.264/SVC. The basis functions are

Gaussian-type functions with centers Ci and widths Σ, that

is:

Hi

(

X
(d)

)

=exp






−

4
∑

j=1

(

X
(d)
j −Cij

)2

Σ2
j






. (17)

The Gaussian-type functions are the most common ones

and, as shown later on, have provided good results in our

experiments.

As it will be explained in detail in Section III, the training

of the RBF network relies on a training data set containing

pairs input vector-desired output, which have to be previously

generated. Once these training data were generated, it was

observed that the data distributions for the lowest temporal

layer and the higher temporal layers were different enough to
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Fig. 3. Output of the key-picture RBF network for nTF =0.5 and BD=3.

Fig. 4. Sample outputs of the key-picture RBF network for nTF =0.5 and
several values of BD (Top), and for BD = 3 and several values of nTF
(Bottom). For the sake of clarity, only a cut of the three-dimensional surface
for nAU(d)=1 is drawn.

justify the design of two specific RBF networks. There were

two alternatives for classifying the temporal layers into two

subsets depending on in which subset the layer immediately

higher than the lowest layer is considered. We decided to

design one RBF network for key pictures (the lowest temporal

layer) and the other for non-key pictures given the notable

influence of the key picture quality on the global quality.

Both QP increment models are named key-picture and non-

key-picture RBF networks to emphasize that dependence on

the frame type.

Furthermore, some experiments were performed to properly

dimension the RBF networks. The results led us to select 7
Gaussian-type functions in both cases. It should be said that

similar results were obtained for any higher number of RBFs.

Fig. 5. Output of the non-key-picture RBF network for nTF=0.5 and BD=3.

Fig. 6. Sample outputs of the non-key-picture RBF network for nTF =0.5
and several values of BD (Top), and for BD=3 and several values of nTF
(Bottom). For the sake of clarity, only a cut of the three-dimensional surface
for nAU(d)=1 is drawn.

The output of both the key-picture and non-key-picture RBF

networks are illustrated in Figs. 3 and 5, respectively, for

nTF =0.5 and BD=3. Since the input parameters nTF and

BD are set before starting the encoding process, the proposed

estimation function can be seen as a surface whose shape

depends on these constants. Several outputs are also depicted

in Fig. 4, for the key-picture RBF network, and Fig. 6, for

the non-key-picture RBF network, for different target buffer

levels and buffer sizes. In these cases only a cut of the three-

dimensional surface for nAU (d) = 1 is depicted for clarity

reasons.

Once the system was implemented, some unnecessary fluc-

tuations of the QP value at non-key pictures were observed,

especially in cases of stationary video complexity when the
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buffer level approached the target buffer fullness. The problem

was related to the estimation of nAU (d), which is normal-

ized by a bit budget that is computed from estimated video

complexities. The estimation errors in the complexities cause

random short-term variations in nAU (d) that, in turn, produce

short-term QP fluctuations in non-key pictures since the output

of the corresponding RBF network exhibits small step sizes

∆QP (d) (see Figs. 5 and 6). The proposed modeling for QP

increment estimation can not correct such fluctuations since

the QP time evolution is not considered; in other words,

the non-key-picture RBF network is not aware of the QP

time evolution because the QP increment at the jth time

instant is estimated just from the input vector at the previous

time instant. In order to solve this drawback, three solutions

were studied. The first consisted of enlarging the input vector

to span a couple of time instants; however, the associated

computational cost turned out to be unacceptable. The second

consisted of filtering nAU (d) to smooth its noisy instantaneous

fluctuations [16], but the coding results were not satisfactory,

especially at scene changes. The final solution consisted of

expanding the input region
(

nV (d), nAU (d)
)

for which the

output is ∆QP (d) =0. To this end, a simple post-processing

stage of the output of the non-key picture RBF network is

proposed, that obeys:

∆QP (d)=















−1 if ∆QP (d) = −2
0 if ∆QP (d) = −1
0 if ∆QP (d) = 1
1 if ∆QP (d) = 2.

(18)

This solution is used in every non-key picture and provides

a good tradeoff between the performance in stationary video

complexity and that achieved in time-varying situations.

D. Implementation Considerations

Although the complexity of the RC algorithm is negligible

when compared to that of the encoding process as a whole, it

deserves a brief comment. The RBF-based estimation of the

QP increment can be seen as a parametric two-dimensional

function, where the parameters are nTF and BD, and the

inputs are nV (d) and nAU (d). Furthermore, since the QP

increment is quantized, the output of this two-dimensional

function is discrete. Therefore, if the two input variables are

also quantized the function can be readily implemented as a

look-up table. In summary, a look-up table can be used to

implement the RBF-based estimation of the QP increment.

A different look-up table should be used for each pair of

parameter values (nTF,BD).

III. RBF NETWORK DESIGN

In order to find the most suitable RBF network parameters

for both key and non-key pictures, training and validation

processes were performed. Such processes are described in

the following subsections.

A. Generation of the Training Data Set

A training data set consisting of pairs:
{

X
(d),∆QP ∗(d)

}

, (19)

where X
(d) is the input feature vector defined in Eq. (15)

and ∆QP ∗(d) is the desired output QP increment, should be

generated in order to properly train an RBF network for our

purposes. The generation of these training pairs is actually

a key step in the success of the proposed approach. This

subsection is devoted to describe this process.

The training data set was extracted from a representative

set of video sequences exhibiting a large variety of spatio-

temporal contents, so that the trained RBF networks could

work properly for any type of input sequence. This set of

video sequences used for training consisted on two parts:

• Some of the well-known sequences commonly used in the

field; specifically: ”Akiyo”, ”City”, ”Container”, ”Crew”,

”Hall”, ”Highway”, ”Ice”, ”News”, ”Paris”, ”Silent”,

”Soccer”, and ”Tempete”. We used 300 pictures per se-

quence and some of them were upsampled and/or down-

sampled in order to get common intermediate format

(CIF), quarter CIF (QCIF) and 4×CIF (4CIF) resolutions.

• Some sequences extracted from high-quality digital video

discs (DVD). In this case, we used 900 pictures per

sequence that were downsampled to get QCIF and CIF

resolutions from standard definition (SD).

Furthermore, none of these training sequences was used in

the performance assessment of the proposed VBR controller

conducted in Section IV.

For each training sequence, a reduced number of consec-

utive GOP pairs were selected along the sequence. The first

GOP of each pair was used to initialize the average texture

and motion complexities (a complete GOP is needed because

initial average texture and motion complexities are required

for each spatio-temporal layer). The second GOP was used

to actually extract training data pairs
{

X
(d),∆QP ∗(d)

}

. In

order to obtain training samples for a variety of scenarios,

each GOP pair was encoded using K different configurations.

These K different configurations involved several encoder- and

RC-related parameters: number of dependency layers, spatial

resolutions, GOP size, target bit rate, target buffer level, and

buffer size.

1) Getting Initial Average Complexities: Given an encoding

configuration k, a baseline QP, denoted as QP
(d)
Rk

, was chosen

for each dependency layer d so that the corresponding target

bit rate for the whole sequence R
(d)
k would be generated. Then,

the first GOP of each GOP pair was encoded P times, each

one using a different QP increment with respect to QP
(d)
Rk

,

i.e.,
{

QP
(d)
Rk

+∆QP
(d)
p

}

p=1,..,P
, and the computed average

texture and motion complexities for each QP increment were

stored as initial complexities for the subsequent process.

Specifically, in our experiments the number of encodings for

a given baseline QP was P =10, using QP increments from

−5 to 5.

2) Generating Training Pairs: As previously mentioned,

once the initial average texture and motion complexities had

been obtained for every layer, the second GOP was used to

extract the training pairs. For each picture j of the second

GOP, the aim was to determine the optimum QP increment

for a wide range of potential conditions concerning the buffer

occupancy and the adjustment to the AU target bits. In order
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to achieve this variety of encoding conditions, the multiple

encoding process initiated for the first GOP continued along

the second GOP for the same set of P quantization values.

As a result, before encoding the jth picture, all the previous

pictures had been encoded P times, so that a set of P input

vectors would be available:

X
(d)
j,k,p=

(

nV
(d)
j,k,p, nAU

(d)
j,k,p, nTFk, BDk

)T

,

where variables nV
(d)
j,k,p and nAU

(d)
j,k,p summarize the encoding

state after the (j − 1)th picture. Then the challenge was to

find the optimum ∆QP ∗(d) for each one of the P possible

input vectors, which represent a variety of encoding condi-

tions. To this end, a second set of Q quantization increments
{

∆QP
(d)
q

}

q=1,...,Q
with respect to

{

QP
(d)
Rk

+∆QP
(d)
p

}

was

used to encode the jth picture. Particularly, in our experiments

a total of Q=23 quantization increments from −11 to 11 were

used to find the optimum ∆QP ∗(d).

Finally, for each input vector X
(d)
j,k,p, the QP increment

∆QP
(d)
q that minimized certain cost function Ψ was chosen

as the optimum one:

∆QP ∗(d)=argmin
∆QP

(d)
q

Ψ
(

∆QP (d)
q

)

. (20)

The cost function has been designed ad hoc for this problem

aiming at properly balance several conflicting factors: quality

consistency, buffer control, and QP consistency. Specifically

Ψ adopts the following form:

Ψ
(

∆QP (d)
q

)

=λ1θ





D
(d)
j −D

(d)

255





2

+

λ2

(

V
(d)
j+1

BDk×R
(d)
k

−nTFk

)2

+ λ3

(

∆QP
(d)
q

∆QP
(d)
MAX

)2

. (21)

The first term monitors the quality consistency by means of

the squared normalized difference between the distortion D
(d)
j

of the current picture and the average distortion D
(d)

of all the

previously encoded pictures. The mean of the absolute error

between the original and reconstructed luminance pictures was

used as distortion metric.

The second term considers the buffer control through the

squared difference between the normalized current buffer level

V
(d)
j+1 /BDk×R

(d)
k and normalized target buffer fullness nTFk.

The third term watches over the QP consistency by means of

the squared ratio of the considered ∆QP and the maximum

allowed QP deviation ∆QP
(d)
MAX , which was set to 11 QP

units in our experiments. The motivation for this third term

comes from the fact that, in same cases, due to the high coding

efficiency of SVC at high spatio-temporal layers, several

QP increments yield quite similar distortion and number of

output bits because of the low energy of the AC transformed

coefficients.

The weight vector (λ1, λ2, λ3)
T was selected by means of a

validation process (described in the next subsection) to achieve

the best tradeoff among the three terms of the cost function.

In order to obtain more meaningful values for the weights,

the first term of the cost function was scaled by introducing

an additional factor θ such that its dynamic range would be

similar to those of the second and third terms. In particular,

θ was set to 100 in our experiments. Finally, as we are only

interested in the relative weights, the three weights are made

to sum up to one.

Before starting out the network training, a set of possi-

ble weight vectors for the cost function was pre-established

by considering different tradeoffs among quality consistency,

buffer control, and QP consistency. Subsequently, several sets

of training data were generated per dependency layer following

the method previously described. Additionally, a reduced set

of values for both the normalized target buffer fullness nTF
and buffer size BD were selected, so that a wide range of

VBR applications would be covered; specifically, nTF and

BD were sampled in the following ranges: 0.1≤nTF ≤ 0.9
and 1≤BD≤3.

For any of the pre-established cost function weight vectors,

the following conclusions were drawn from the training data

distributions:

1) Figs. 7 and 8 show superimposed training data distri-

butions for both key and non-key pictures. Each figure

was obtained for a different weight vector: Fig. 7 comes

from the weight vector selected for key pictures (see next

subsection), while Fig. 8 uses the weight vector selected

for non-key pictures. As can be observed, in any case

the data distributions were different enough to justify the

design of two specific RBF networks.

2) As shown in Figs. 9 and 10, the training data distributions

for each dependency layer were similar enough to each

other to justify the use of the same RBF network for

all the layers considered. Fig. 9 shows the data for key

pictures and the corresponding weight vector, while Fig.

10 focuses on non-key pictures.

B. RBF Network Training and Parameter Selection

For each pre-established weight vector, two training data

sets, one for key pictures and the other for non-key pictures,

were generated. Each RBF network was trained several times

considering each one of the pre-established weight vectors,

different random initializations, and different numbers L of

radial basis functions. For this purpose, a training algorithm

based on Gaussian processes (GP) [40] was used because it

provides a robust solution for the network parameters that

relies on maximizing a marginal likelihood. In particular, a

Matlab toolbox due to Snelson and Gharahmani [41] avail-

able in [42] was used. This toolbox implements a sparse

approximation to GP regression to reduce the training process

complexity.

In order to select the best weight vector and the best L value,

the resulting RBF networks were experimentally assessed

for different RC configurations by encoding several video

sequences belonging to the training set. First, the weight vector

that provided the best quality consistency without incurring in

buffer overflows and underflows was selected. The results for

both key-picture and non-key-picture RBF networks are given

in Table II. Second, once the best weight vector had been fixed,

the lowest L value that properly fitted the data was selected
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Fig. 7. Training data distributions for key pictures (black) and non-key
pictures (gray), with nTF =0.5 and BD=3. The weight vector in Eq. (21)
used for generating these distributions was: λ1=0.90, λ2=0.09, λ3=0.01.
A high-quality plot is available on-line in [43].

Fig. 8. Training data distributions for key pictures (black) and non-key
pictures (gray), with nTF =0.5 and BD=3. The weight vector in Eq. (21)
used for generating these distributions was: λ1=0.75, λ2=0.24, λ3=0.01.
A high-quality plot is available on-line in [43].

to be L=7. The resulting RBF network parameters for both

key and non-key pictures are given in Appendix A.

IV. EXPERIMENTS AND RESULTS

The Joint Scalable Video Model (JSVM) H.264/SVC ref-

erence software version JSVM 9.16 [44] was used to im-

plement the proposed VBR controller. In order to assess its

performance, our proposal was compared to two methods:

1) constant QP (CQP) encoding1, which can be seen as an

unconstrained VBR controller [1], was used as a reference

for nearly constant quality video; and 2) the frame level CBR

control algorithm described in [28].

1Constant QP encoding means that every temporal layer within a spa-
tial/CGS layer shares the same QP value, while the QP value of each
spatial/CGS layer can be different in order to reach the pre-established target
bit rate R(d).

Fig. 9. Key-picture training data distributions for the base layer (black) and
the enhancement layers (gray), with nTF = 0.5 and BD = 3. The weight
vector in Eq. (21) used for generating these distributions was: λ1 = 0.90,
λ2=0.09, λ3=0.01. A high-quality plot is available on-line in [43].

Fig. 10. Non-key-picture training data distributions for the base layer (black)
and the enhancement layers (gray), with nTF =0.5 and BD=3. The weight
vector in Eq. (21) used for generating these distributions was: λ1 = 0.75,
λ2=0.24, λ3=0.01. A high-quality plot is available on-line in [43].

Following the recommendations for SVC testing conditions

described in [45], both the H.264/SVC encoder and the pro-

posed RC algorithm were configured to simulate on a personal

computer two real-time application scenarios: mobile live

streaming and IPTV broadcast. In the following subsections,

both the SVC and RC configurations for each of the proposed

testing scenarios are described, and then the experimental

results are shown and discussed.

A. Description of the Application Scenarios

1) Mobile Live Streaming: A brief description of the SVC

encoder configuration for mobile live streaming is given in the

following paragraphs. For a more detailed explanation of this

application the reader is referred to [24].

A high-quality scalable bit stream that consists of a base

layer and a set of enhancement layers is made available
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TABLE II
SELECTED WEIGHT VECTORS FOR THE COST FUNCTION IN EQ. (21).

λ1 λ2 λ3

Key Picture 0.90 0.09 0.01

Non-Key Picture 0.75 0.24 0.01

by a service provider. A mobile terminal, which can be a

multimedia phone, PDA or laptop, accesses that scalable bit

stream through a wireless network and decodes the sub-stream

that complies with the arranged QoS. Particularly, starting out

with the design suggested in [45] as reference, the following

spatial/CGS encoding and RC configuration was used:

• Number of pictures: 900.

• GOP size/Intra period: 8/32 pictures.

• GOP structure: hierarchical B pictures.

• Search range for motion estimation: 16×16 pixels.

• Number of dependency layers: D=5

- d=0 : QCIF, f
(0)
out=6.25 Hz

(

T (0)=2
)

- d=1 : QCIF, f
(1)
out=12.5 Hz

(

T (1)=3
)

- d=2 : CIF, f
(2)
out=12.5 Hz

(

T (2)=3
)

- d=3 : CIF, f
(3)
out=12.5 Hz

(

T (3)=3
)

- d=4 : CIF, f
(4)
out=25 Hz

(

T (4)=4
)

• Symbol mode: CAVLC at every dependency layer (as

suggested in [25]).

• Rate control parameters

- Target buffer fullness: nTF =50%.

- Buffer size: BD=3 s.

Two sets of video sequences at 25 Hz exhibiting a variety

of complexities were used in our experiments. The first set

consisted of four well-known test sequences recommended in

[45] for streaming applications: ”Bus”, ”Football”, ”Foreman”

and ”Mobile”. These sequences were concatenated to them-

selves several times to reach the aforementioned number of

pictures. The second set consisted of three sequences display-

ing scene changes: ”Soccer-Mobile-Foreman”, ”Spiderman”

(movie), and ”The Lord of the Rings” (movie). ”Soccer-

Mobile-Foreman” was formed by concatenating 300 frames

of each sequence. The other two were extracted from high-

quality DVDs and downsampled to either QCIF or CIF format,

and have been made available on-line in [43]. They show many

scene cuts, so they are challenging from the RC point of view.

All the sequences were encoded using the set of QP values

that best approached some pre-established target bit rates. For

the first group of sequences the target bit rates were those

suggested in [45] for the spatial/CGS testing scenario. For the

second group, the following medium-quality target bit rates

were selected: 64 (d=0), 96 (d=1), 192 (d=2), 384 (d=3)

and 512 kbps (d=4). In all cases, the exact output bit rates

obtained by CQP encoding were used as target bit rates R(d)

for both the RC algorithm in [28] and the proposed VBR

controller.

2) IPTV Broadcast: TV broadcast through IP networks

involving heterogeneous terminals (resolutions) is one of the

natural fields of application for scalable video coding [25].

According to both the IP network characteristics and the target

IPTV set-top box definition, a wide variety of scenarios can be

specified. Nevertheless, in order to define the IPTV broadcast

scenario used in this paper, we only took into consideration

the display resolution and computational capabilities of the

receiving devices, regardless the actual underlying type of IP

network (fixed or mobile access, managed or unmanaged core).

In particular, SD and high definition (HD) TV were selected

as target resolutions (emphasizing the difference with respect

to those employed for the mobile live streaming scenario) for

the following spatial/CGS encoding and RC configuration:

• Number of pictures: 500/600.

• GOP size/Intra period: 16/16 pictures.

• GOP structure: hierarchical B pictures.

• Search range for motion estimation: 32×32 pixels.

• Number of dependency layers: D=4

- d=0 : SDTV, f
(0)
out=25/30 Hz

(

T (0)=4
)

- d=1 : SDTV, f
(1)
out=25/30 Hz

(

T (1)=4
)

- d=2 : HDTV (720p), f
(2)
out=50/60 Hz

(

T (2)=5
)

- d=3 : HDTV (720p), f
(3)
out=50/60 Hz

(

T (3)=5
)

• Symbol mode: CABAC at every dependency layer.

• Rate control parameters:

- Target buffer fullness: nTF =40%.

- Buffer size: BD=1.5 s.

The following set of HDTV test video sequences of du-

ration 10 s, which are available on-line in [46], were used

in our experiments: ”Mobcal 720p50”, ”Parkrun 720p50”,

”Shields 720p50” and ”Stockholm 720p60”. They were

downsampled to obtain the corresponding SDTV versions.

The criterion used to select the target bit rate for each

dependency layer was that recommended in [45] for the testing

scenario. The criterion suggests doubling the rate starting from

the lowest until reaching the highest for each spatial resolution,

and increasing the minimum rate by a factor of four between

consecutive spatial resolutions. Thus, the following target bit

rates were proposed to cover the medium-quality range: 1024
(d=0), 2048 (d=1), 4096 (d=2) and 8192 kbps (d=3).

Similarly to the mobile live streaming application, the set of

QP values that best approached the target bit rates was found,

and the actual output bit rates were used as target bit rates for

the two RC algorithms.

B. Experimental Results and Discussion

In order to assess the performance of the proposed VBR

controller from a quality point of view, the average luminance

PSNR µPSNR was used. The Bjøntegaard recommendation

[47] was followed to compute PSNR differences with re-

spect to CQP encoding. The average results over all the test

video sequences in terms of PSNR increments ∆µPSNR are

summarized in Tables III and IV for mobile live streaming

and IPTV broadcast scenarios, respectively. Two rows per

spatial/CGS layer are shown, one for [28] and another for

the proposed method. As can be observed, the performance

achieved by the proposed method in terms of average PSNR

was similar to that of CQP encoding, and notably superior to

that of [28]. Furthermore, the good results achieved by the

proposed method at layers 2 and 3 in the IPTV broadcast

scenario (Table IV) deserve a special comment. These layers

correspond to HD sequences and no samples of HD sequences
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TABLE III
AVERAGE RESULTS ACHIEVED BY BOTH THE RC ALGORITHM IN [28]

AND THE PROPOSED VBR CONTROLLER FOR THE MOBILE LIVE

STREAMING SCENARIO. INCREMENTAL RESULTS ARE GIVEN WITH

RESPECT TO CONSTANT QP ENCODING.

d Algorithm ∆µPSNR ∆σPSNR,j Bit Rate #O/#U µV

(dB) (dB) Error (%) (%)

0 [28] -0.19 0.41 1.87 8/0 57.42
Proposed -0,13 0.12 0.93 0/0 52.45

1 [28] -0.43 0.75 1.35 9/0 57.29
Proposed -0,14 0.14 1.25 0/0 59.30

2 [28] -0.33 0.35 0.68 6/0 54.91
Proposed -0,10 0.05 0.87 0/0 53.41

3 [28] -0.20 0.36 0.44 0/0 52.81
Proposed -0,07 0.05 0.69 0/0 52.81

4 [28] -0.46 0.51 0.30 0/0 53.45
Proposed -0,07 0.06 0.90 0/0 57.29

were used for training. Therefore, these results prove that the

RBF networks generalize properly and are able to work well

for any resolution.

Tables V and VI show a detailed comparison of the three

assessed algorithms for two representative video sequences.

”The Lord of the Rings”, taken from the mobile live streaming

scenario, is a good example of non-stationary video complex-

ity. On the other hand, ”Stockholm”, from the IPTV broad-

cast scenario, is an example of stationary video complexity.

The analysis of these results allowed us to draw two main

conclusions: 1) for non-stationary complexity sequences, the

performance of the proposed method was remarkably good,

exceeding even that of the nearly constant quality system

at some dependency layers; and 2) for stationary complexity

sequences, the performance of the proposed method was quite

close to that of the nearly constant quality system.

Representative behaviors of the encoder buffer occupancy

and the PSNR and QP time evolutions corresponding to the

third enhancement layer (d=3) are depicted in Figs. 11 (”The

Lord of the Rings”) and 12 (”Stockholm”). When compared

to [28], the proposed VBR controller made better use of

the buffer to provide PSNR and QP time evolutions closer

to those of the nearly constant quality system. Furthermore,

in the non-stationary scenario, the strong correlation among

buffer occupancy, PSNR time evolution, and QP time evolution

reveals that the proposed method made a proper use of the

buffer to successfully allocate larger amounts of bits for more

complex scenes, and vice versa. Consequently, the potential

quality fluctuation of the compressed video was kept low, in

particular at scene changes (see, for example, the PSNR time

evolution around pictures #260 and #703). It is also worth

noting that the proposed method did an excellent work on

minimizing unnecessary changes in QP time evolution, which

is our main design goal; particularly, in the stationary scenario,

it was able to provide a performance close to that of the nearly

constant quality system. In terms of PSNR time evolution, the

results were not so good for some sequences, such as that

shown in Fig. 12. In these cases, the GOP-periodic PSNR

leaps are due to large R-D differences between key and non-

key pictures. As can be observed, this behavior also happens

in CQP encoding whose performance we intend to meet.

TABLE IV
AVERAGE RESULTS ACHIEVED BY THE RC ALGORITHM IN [28] AND THE

PROPOSED VBR CONTROLLER FOR THE IPTV BROADCAST SCENARIO.
INCREMENTAL RESULTS ARE GIVEN WITH RESPECT TO CONSTANT QP

ENCODING.

d Algorithm ∆µPSNR ∆σPSNR,j Bit Rate #O/#U µV

(dB) (dB) Error (%) (%)

0 [28] -0.07 0.70 0.57 0/0 49.77
Proposed -0.11 0.31 1.86 0/0 38.16

1 [28] -0.52 0.45 0.41 0/0 46.55
Proposed -0.15 0.26 1.99 0/0 35.80

2 [28] -0.74 0.25 0.31 0/0 45.42
Proposed 0.06 0.16 1.77 0/0 37.43

3 [28] -0.40 0.20 0.14 0/0 44.16
Proposed 0.06 0.20 1.43 0/0 35.14

In order to assess the proposed VBR control algorithm from

the quality consistency point of view, a time-local version of

the PSNR standard deviation was computed. This local PSNR

standard deviation aims to measure the quality consistency

within a scene, so reducing the impact of the scene changes on

the PSNR standard deviation. Thus, small local PSNR standard

deviations indicate smooth short-term PSNR fluctuations and

therefore high quality consistency. In particular, the local

PSNR standard deviation was computed over a time-window

as follows:

σPSNR,j=

√

√

√

√

√

1

W

j+W/2−1
∑

i=j−W/2

(

PSNRi−µPSNR,W

)2

, (22)

where W denotes the time-window size (in number of pic-

tures) and µPSNR,W the average PSNR for a given window

size. In particular, W was set to 2T
(d)

pictures in our ex-

periments, which is a time interval short enough to minimize

the influence of PSNR leaps at the scene changes. Finally, in

order to summarize the results in an unique measurement, the

mean value of the local PSNR standard deviation, denoted as

σPSNR,j , was computed.

Additionally, it should be noticed that, since the local PSNR

standard deviation does not take into account any buffer con-

straint, CQP encoding provided a smaller local PSNR standard

deviation (see Fig. 11). Obviously, this smaller local PSNR

standard deviation was in exchange for high instantaneous bit

rate variations at the scene changes that are not allowed in a

constrained buffer scenario. The results in terms of σPSNR,j

increment with respect to CQP encoding, ∆σPSNR,j , are

provided in Tables III and IV. As can be observed, the

proposed VBR controller achieved better quality consistency

than that of the RC algorithm in [28]. Furthermore, the results,

especially at higher spatial/CGS layers, were remarkably close

to those of CQP encoding, in spite of the buffer constraint.

The proposed VBR controller was also assessed in terms of

target bit rate adjustment and mean buffer level. In particular,

its performance was comparatively evaluated by computing the

output bit rate error, the number of pictures in which either

an overflow (#O) or an underflow (#U) occurred, and the

mean buffer level, µV . As can be observed in Tables III –

VI, both the RC scheme in [28] and the proposed algorithm

provided in most cases output bit rate differences below 2%,
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE RC ALGORITHM IN [28] AND

THE PROPOSED VBR CONTROLLER FOR A SPECIFIC NON-STATIONARY

COMPLEXITY VIDEO SEQUENCE, ”THE LORD OF THE RINGS”. THE

RESULTS ACHIEVED BY CONSTANT QP ENCODING HAVE ALSO BEEN

INCLUDED FOR REFERENCE. THE EXPERIMENTS WERE CONDUCTED

USING THE CONFIGURATION OF THE MOBILE LIVE STREAMING SCENARIO

FOR THE FOLLOWING TARGET BIT RATES: 66.47 (d = 0), 97.32 (d = 1),
189.47 (d = 2), 388.07 (d = 3) AND 500.56 kbps (d = 4).

d Algorithm µPSNR σPSNR,j Bit Rate #O/#U µV

(dB) (dB) Error (%) (%)

CQP 34.45 0.66 - 42/48 49.76
0 [28] 33.14 1.10 3.82 55/0 78.04

Proposed 34.35 0.90 1.57 0/0 53.46

CQP 34.39 0.67 - 100/107 46.90
1 [28] 33.19 2.05 1.72 66/0 69.65

Proposed 34.30 0.97 1.93 0/0 58.08

CQP 32.88 0.91 - 96/111 47.15
2 [28] 32.26 1.51 0.30 40/0 63.69

Proposed 32.80 1.09 1.93 0/0 52.19

CQP 35.24 0.82 - 92/114 45.22
3 [28] 35.43 1.31 1.26 0/0 52.99

Proposed 35.33 0.97 1.57 0/0 52.97

CQP 35.14 0.82 - 205/237 45.58
4 [28] 34.86 1.57 1.00 0/0 53.82

Proposed 35.23 0.98 2.43 0/0 63.35

which is the maximum bit rate error recommended in [45]

for the spatial/CGS testing scenario. The average results in

terms of µV achieved by the proposed method were close

to the target buffer fullness, thus proving a good long-term

adaptation to the target bit rate at each dependency layer.

Furthermore, the results in terms of #O and #U revealed

that the proposed VBR controller was able to significantly

reduce both the overflow and underflow risks in sequences

with scene changes, such as ”The Lord of the Rings”. The

poor performance of the RC algorithm in [28] at scene changes

was due to the lack of a specif mechanism to deal with such

events. The use of a scene change detector would be helpful

to improve its performance in such cases.

Finally, from the complexity point of view, the central

processing unit (CPU) time consumed by the proposed VBR

controller and the RC scheme in [28] were measured by

means of a high-resolution performance counter. In order to

minimize the measurement error caused by occasional multi-

task operations, each sequence was encoded five times and the

minimum CPU time was selected for the complexity analysis

(nevertheless, it is worth mentioning that the variance of the

measured CPU times was very small). The complexity results

using an Intel Core2 Duo CPU E8400@3.0 GHz are given in

Table VII for the mobile live streaming scenario and in Table

VIII for the IPTV broadcast scenario. As can be observed, the

RC algorithm in [28] consumed an average CPU time per AU

of 239 µs for the mobile live streaming scenario and 2071
µs for the IPTV broadcast scenario, while the proposed VBR

controller only consumed 26 µs and 33 µs, respectively. These

differences in terms of complexity between both algorithms are

mainly due to the R-D model employed by the CBR controller

in [28]. This RC algorithm, which follows the usual approach

in H.264/AVC [7], first estimates the frame complexity and

subsequently the QP value. The QP value estimation relies

TABLE VI
PERFORMANCE COMPARISON BETWEEN THE RC ALGORITHM IN [28] AND

THE PROPOSED VBR CONTROLLER FOR A SPECIFIC STATIONARY

COMPLEXITY VIDEO SEQUENCE, ”STOCKHOLM”. THE RESULTS

ACHIEVED BY CONSTANT QP ENCODING HAVE ALSO BEEN INCLUDED FOR

REFERENCE. THE EXPERIMENTS WERE CONDUCTED USING THE

CONFIGURATION OF THE IPTV BROADCAST SCENARIO FOR THE

FOLLOWING TARGET BIT RATES: 975.92 (d = 0), 1885.90 (d = 1),
4209.83 (d = 2) AND 7331.63 kbps (d = 3).

d Algorithm µPSNR σPSNR,j Bit Rate #O/#U µV

(dB) (dB) Error (%) (%)

CQP 35.54 0.20 - 0/0 50.31
0 [28] 35.47 0.91 0.80 0/0 49.48

Proposed 35,53 0.34 -1.64 0/0 37.20

CQP 38.60 0.14 - 0/0 50.55
1 [28] 37.94 0.54 0.21 0/0 46.14

Proposed 38,58 0.26 -1.89 0/0 35.36

CQP 34.18 0.18 - 0/0 43.30
2 [28] 33.60 0.34 0.29 0/0 45.10

Proposed 34,27 0.23 -1.88 0/0 35.59

CQP 34.93 0.25 - 0/0 40.71
3 [28] 34.53 0.32 0.15 0/0 43.91

Proposed 34.98 0.32 -1.17 0/0 33.95

on a linear regression that is computationally heavier than

the proposed RBF networks. Furthermore, the complexity

estimation requires performing simple operations on the whole

picture, what explains the significant CPU time increment that

happens in the IPTV broadcast scenario (which operates on

larger pictures).

Furthermore, as previously described in Section II-D, the

complexity of the RBF-based QP estimation can be reduced

even more by means of a look-up table-based implemen-

tation. In particular, preliminary experiments using 10× 8
(

nV (d)×nAU (d)
)

look-up tables for QP increment estimation

were conducted, achieving nearly equivalent results. There-

fore, the proposed RBF networks can be successfully imple-

mented using look-up tables.

V. CONCLUSIONS AND FURTHER WORK

In this paper a novel VBR controller for real-time

H.264/SVC video coding applications has been proposed.

The VBR controller aims to improve the quality consistency

by preventing unnecessary QP fluctuations. The proper QP

increment estimation at each dependency layer is computed

by means of two RBF networks, one for key pictures and

the other for non-key pictures, that are specially designed for

this purpose. This approach offers the additional advantage of

not using any analytic R-D model for QP estimation, so the

chicken-and-egg dilemma for frame complexity estimation is

no longer a concern. Furthermore, the input vector to the RBF-

based QP increment model is enlarged with two additional

constant parameters to provide an effective solution for a wide

range of both target buffer fullness and buffer size.

Two real-time application scenarios were simulated to assess

the performance of the VBR controller, which was compared

to both constant QP encoding, as a reference for nearly

constant quality, and a recently proposed CBR controller for

SVC [28]. For stationary complexity sequences, the average

quality achieved by the VBR controller was quite close to

that of the nearly constant quality system, since the time
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Fig. 11. Encoder buffer occupancy, PSNR and QP time evolutions corre-
sponding to the third enhancement layer from ”The Lord of the Rings”. High-
quality plots corresponding to every spatial/CGS layer are available on-line
in [43].

TABLE VII
CPU TIME COMPARISON BETWEEN THE RC ALGORITHM IN [28] AND THE

PROPOSED VBR CONTROLLER FOR THE MOBILE LIVE STREAMING

SCENARIO USING AN INTEL CORE2 DUO CPU E8400@3.0 GHZ.

Sequence CPU Time (µs)
[28] Proposed

”Bus” 211355 23658
”Football” 221029 22555
”Foreman” 220253 23793
”Mobile” 209543 23149

Average 215545 23289

Average per access unit 239 26

evolution of QP was maintained almost constant in time. For

non-stationary complexity sequences, the average quality of

the proposed algorithm was remarkably good, exceeding even

that of the nearly constant quality system at some dependency

layers, since it was able to allocate larger amounts of bits for

more complex scenes, and vice versa.

In terms of quality consistency, the performance of the pro-

posed VBR controller was significantly better than that of the

CBR algorithm in [28]. Furthermore, the experimental results,

especially at higher spatial/CGS layers, were remarkably close

to those of CQP encoding, in spite of the buffer constraint.

With respect to the overflow and underflow risks, again the

results revealed that the proposed VBR control algorithm was

notably superior.

Finally, from the complexity point of view, the proposed

method notably outperformed the RC scheme in [28].

To sum up, the proposed VBR controller achieved an

excellent performance in terms of average quality, quality

consistency, long-term adjustment to the target rate, and buffer

overflow and underflow prevention at each spatial/CGS layer,

with low complexity.

As future work, we plan to extend the VBR controller to

MGS coding.

Fig. 12. Encoder buffer occupancy, PSNR and QP time evolutions cor-
responding to the third enhancement layer from ”Stockholm”. High-quality
plots corresponding to every spatial/CGS layer are available on-line in [43].

TABLE VIII
CPU TIME COMPARISON BETWEEN THE RC ALGORITHM IN [28] AND THE

PROPOSED VBR CONTROLLER FOR THE IPTV BROADCAST SCENARIO

USING AN INTEL CORE2 DUO CPU E8400@3.0 GHZ.

Sequence CPU Time (µs)
[28] Proposed

”Mobcal” 1065523 16349
”Parkrun” 1038447 17061
”Shields” 1049664 16758

”Stockholm” (first 500 pictures) 988212 16550

Average 1035462 16679

Average per access unit 2071 33

APPENDIX A

RBF PARAMETERS

The centers, widths and weights of the Gaussian-type func-

tions used in our experiments for both key-picture and non-

key-picture RBF networks are the following (also available

on-line in electronic format in [43]):

1) Key-picture RBF parameters

w0=−1.94234, w=





















116.92009
45.00974
22.41989
−14.39316
−100.53808
−57.14093
−127.18792





















,

C=





















0.34878 2.24208 0.32736 2.57098
0.64341 4.02300 0.56932 −4.81181
0.75362 1.56418 0.47553 3.07934
0.72347 −0.25308 −0.10081 −0.12420
−0.99480 −0.34192 −1.39094 1.72556
0.06001 1.14999 3.47226 −2.24075
0.40772 2.43468 0.39291 2.68413





















,
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Σ=









0.68895
4.29915
2.31009
5.84732









.

2) Non-key-picture RBF parameters

w0=−0.41095, w=





















1485.93883
−206.80386
−486.69837
−1.91249
−1366.10007
536.11049
33.63052





















,

C=





















0.48170 −0.18319 0.33508 −0.20148
0.80986 −0.12825 0.24415 0.45383
0.62855 0.77388 0.47196 2.75271
0.24348 1.16350 0.18820 2.71590
0.44971 −0.22937 0.35083 −0.19297
0.63746 0.66580 0.44850 2.63895
1.51031 1.34230 0.36623 1.02694





















,

Σ=









0.92423
3.38358
1.09690
3.75779









.
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de Madrid, Madrid, Spain. From October 1996, he is
an Associate Professor at the Department of Signal
Theory and Communications, Universidad Carlos III
de Madrid, Madrid, Spain. From Oct. 97, he has
held several offices in both, his Department and his
University.

His primary research interests include image and
video analysis and coding. He has led numerous

projects and contracts in these fields. He is co-author of several papers in
prestigious international journals, two chapters in international books and quite
a few papers in revised national and international conferences.


