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1 INTRODUCTION� 

Th€' main goal of this pape.r is to provide. oS-step ahe.ad pre.diction intervals for the observations in 
nearly non stationary first-order autore.gressive models. We consider the sequence of first-order 
autoregressi ve AR( 1) models, 

,
Xt(n)=f3I1Xt-dn)+ct, t=l, ... ,n, (311=1--, ,Em (1.1) 

n 

where {cd are independent and identically distributed random variables with distribution func­
tion F, zero mean and finite variance u 2 • Assume. that Xo(n) =O. To simplify notation, Xt(n) 
will be written as XI throughout this paper. 

This kind of nearly nonstationarity has been previously considered by several authors as 

Bobkoski (198:3), Ahtola and Tiao (1984), Tsay (1985), Chan and Wei (1987), Jeganathan 

(1987), Phillips (1987), Chan (1988), Cox and Llatas (1991) and Cox (1991). In particular, 
Bobkoski (198:3) has studied the asymptotic behaviour of the least-square.s estimate 

showing that 

(1.2) 

where y(t) is the Ornstein-Uhlenlwck process dt"fined by the stochastic differentia.l equation 

dY(t) = -,Y(t)dt +udW(t), Y(O) = 0 

and {lV(t) : 0::; t ::; 1} is a standard Brownian motion. Chan and Wei (1987) obtained that 

(1.3) 

where 

1 }-1/'2 r1.ch) = 1(1 + (eh - 1)tt'2W'2(t)dt lo (1 + (eh - 1)tt1W(t)dW(t).{ 

1 '2 }-1/2 1Finally, Chan (1988) showed that the variables .ch) and { fo Y (t)dt fo Y(t)dW(t) have 

the same distribution. Cox and Llatas (1991) consider the. asymptotic properties of a class of 

maximum likelihood type estimators of (111' 
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Our aJJll is to construct pr~diction int~rvals Ill,s, .S ~ 1, such that, for a gIven coverage 
level 1 - 0', the probability P{XII +S E Ill,s F II } b~ asymptotically at least 1 - a, where1 

F II == O"(X I, ... ,X'I) is the O"-algebra generated by the observations XI, ... ,XII' Since 

s 

X II +S = f3~X71 +L ,B~-j ell+j, (104) 
j=1 

let Gs be the distribution function of L:j=1 f3~-jell+j and consider the interval 

(1.5) 

If Gs is continuous then P{XII+S E 111 ,8 1 F II } = 1 - UI - U2' Let .\'II+S = /3~XII be the predictor 

for X II +S ' 

Since Gs is unknown, we hav~ to estimate it from the sample; to this end, consider the 

residuals it == X t - /3IlXt-h t = 1, ... ,11, and let FII and FII be the empirical distributions 

corresponding to it and Et, t = 1, ... , n, respectively. The sample version of (1.5) is 

(1.6) 

where G'II,S will be an apPl'Opriately weighted 8-fold convolution of FII and given 0 < a < 1, we 

want to get HI and H2 such that 

P{P{X71 +s E ill,s 1 F 7l } ~ 1 - a} -+ 1 a,s 11, -+ 00. (1. 7) 

Analogous prediction intervals in the explosive case have been obtained by Stute and Griinder 
(199:3); the bootstrap version of these intervals can be seen in Stute and Grijnder (1990). 

The article is organized as follows. In S(~ction 2 we prove that these prediction intervals 

contain an oS-step ah~ad value with the given asymptotic coverage probability, conditionally on 

the observations. Section:3 presents the results of a Monte Carlo experiment that gives an 

estimate of the condit.ional coverage probability. Finally, the Appendix contains the proofs of 

some auxiliary results. 

2 RESULTS 

We will obtain our main result assuming that the distribution function function F of the 

innovations satisfies 

AI' F is differentiable with 11 F" 1100< 00. 

A2 • F'(x) =5 I~I for all I x I> J{ and some finite constant c. 



A3 . F-l is continuous. 

We start by giving an expression for the conditional probability in (1.7); since (Cll+l," ., Cll+ S ) 

and (Xl,'" ,XII) are independent, and using (1.4), 

S 

= P{L f3~-j cn+j :s (fi~ -13,:)Xll + G~.~( U2) IF,J 
j=l 

- Gs({/3~ -13~)Xll + G~,~(U2))' 

and the covering probability of the interval in (1.6) is 

Gs((f~~ - #~)Xll + (.,'~,~(U2)) - Gs(((3~ -13~)Xn + (;~,~(ud). 

Let us define the function 

we will show that 

(2.1 ) 

in probability as 11 --+ 00 and this implies (1.7). 
\\le will prove (2.1) in our main result; to this end, we need some previous lemmas. The 

first one gives information on the behaviour of the empirical distribution correspending to the 

residuals it, t = 1, ... ,11. 

LEM11A 2.1. If F satisfies condition Al then 

P1'Oof. See the Appendix. 

1 2Boldin (1982) showed that 11 / 11 Fll - Fll lloo--+p 0 in the stationary case. The convergence 
in probability for the explosive case was estahlished by Koul and Levental (1989) and this result 

was improved to almost sure convergence by Stute and Griinder (199:3). 

LEMMA 2.2. If F satisfies conditions A l and A 2 , then 
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where 

and 

Pmof The Lemma follows in a similar way as Lemma 2.2 in Stute and Griinder (1993). 0 

LEMMA 2.3. Assume that assumptions Al and A 2 hold. Then 

11 (;'n,s - Gs 1100--+ P 0 a.s n --+ 00 

and 

11 G71 ,s - Gs 1I00--+p 0 a.~ n --+ 00. 

Proof The proof is similar to the one of Lemma 2.3 in Stute and Griinder (1993). 0 

LEMMA 2.4. Assul11f' that 111 and 112 are continllity points of G;1. Then, under assumptions A 1 

and A 2, 

11 fl n •s - Hs 1I00--+p 0, aoS n --+ 00, 

wllf're Hs(:r) = Gs(;r +G;I (112)) - Gs(:r +G;I (111))' 

Pmof Tht" proof of this Lemma is an immediate consequence of the Mean Value Theorem, 

Lemma 2.3 and the fact that Gs has Cl. bounded deriva.tive. 0 

Now, we establish our main result which gives that the prediction intervals have asymptoti­

cally the correct covering probability. 

THEOREM 2.1. Assume tha.t assumptions All A 2 and A3 hold. Then, given 0 < a < 1 there 

exist U1 and U2 such that 
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(2.2) 

Proof. We have that 

First, we will prove that 

(2.3) 

By Taylor's formula we get 

(/3~ - f3~)XII = .s(3~-1 (/311 - (311)XlI + ~.s(.s - 1)/3~-2(/311 - (311)2 XII (2.4) 

where /3n is an intermediate point beetwen f~1I and (311' 

From (1.2) and Lemma 2.1 of Chan and Wei (1987) we obtain 

(2.5) 

and 

1 ( ) Qs-2 ( Q 'J )2 v28 oS - 1 ()II ()II - ()II ''\11 ~p 0 a.s 11. ~ 00. (2.6) 

So, from (2.4), (2.5) and (2.6) one concludes (2.:3). 
Since by Lemma 2.5 of Stute and Griinder (199:3), Hs is continuous, it follows from Lemma 

2.4 that 

P{XII+S E ill •s IF II } ~U' Hs(O) a.s 11. ~ 00. (2.7) 

Therefore, if we choose 11] and 112 such that 

and if 1 - (\' is a point of continuity of the limit distribution, we obta.in (2.2). This completes 

our proof. 0 
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3 A MONTE CARLO STUDY� 

\Ve have performed a Monte Carlo study to investigate the approximation (1.7). The pro­
portion of {XIl +S E ill,s} -values, based on 20,000 Monte Carlo replications, has been considered 
and P(XIl +S E ill,s I oFn) was estimated by 

PIl,s''Y = # {XIl+S E i",s} /20,000, 

where #A indicates the cardinality of the set A and recall that I controls the size of !3n. We have 
combined three different sample sizes n (n = 2,5,50,100) with ten values of .'1 (s = 1, ... ,10) and 
F is the standard normal distribution function. 

We have used some routines from IMSL Library : GGUBS (basic uniform (0, 1) pseudo­

random number generator) and GGNML (normal random deviate generator). The computer 
programs were written in FORTRAN and performed in a PC/AT/486 at the Departamento de 
Matematica, Universidad de La Plata. 

For each choice of nand 8, Table 1 and Table 2 contain values of PIl,s''Y with a = 0.05 and 
I = 0, ± 1, ±2, ±5, ± 10 and with 0 = 0.1 and I = 0, 1,2,5,10, respectively. 

If nand 1 are fixed PIl,s''Y increases as ,<; in(T(-~ases. For large positive (large negative) values 
of I (i.e., (31l stays away from 1) and for a fixed n PIl,s,'Y is getting closer to the nominal level 

(1 - 0) as 8 increases (decreases). 

For n = 25 and 0:::; I :::; 2 (0.92 :::; f~1l :::; 1), n = 50 and 0:::; 1 :::; 5 (0.90 :::; !3" :::; 1) and 
for n = 100 and 0:::; I :::; 10 (O.!)O :::; (31l :::; 1) the values of Pn,s''Y are close to the nominal level 

1 - 0 = 0.95 or 0.90 for almost all considered values of 8. 

Table 1 shows that the vahws of jJIl.s,'Y are la.rger or equal to 0.95 for I < 0 in all values of s. 

These quantities are close to 0.95 for 1 < (3" :::; 1.05 h = -1 : n = 25 and s :::; 2, n = 50 and 
s :::; 4, n = 100 and 8 :::; 7; I = -2 : n = 50 and s :::; 2, n = 100 and oS :::; .5; I = -5 : n = 100 and 

oS = 1). 
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TABLE 1 
An estimator of P(Xll+S E ill,slFll ) 
when (\' = 0.05 and F is Normal 

s 

n "Y 2 3 4 5 6 7 8 9 10 

25 -10 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
-5 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
-2 0.97 0.97 0.98 0.99 0.~)9 0.99 0.99 0.99 0.99 0.99 
-1 0.96 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 
0 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 
1 0.9:3 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.98 
2 0.92 0.9:3 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.97 
5 0.87 0.91 0.9:3 0.94 0.94 0.95 0.95 0.95 0.96 0.96 
10 0.77 0.86 0.89 0.89 0.90 0.90 0.90 0.91 0.91 0.91 

50 -10 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
-5 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
-2 0.9G 0.9G 0.~17 0.97 0.n8 0.98 o.ns 0.99 0.99 0.99 
-1 0.95 0.9G 0.9G 0.9G 0.97 0.97 0.98 0.98 0.98 0.98 

0 0.94 0.95 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.98 

1 0.9·1 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.97 

2 0.9:3 0.94 0.94 0.94 0.95 0.96 0.96 0.96 0.96 0.96 

5 0.91 0.9:3 0.94 0.94 0.95 0.~)5 0.95 0.96 0.96 0.96 

10 0.87 0.92 0.92 0.9:3 0.9:3 0.94 0.94 0.94 0.95 0.95 

100 -10 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

-5 0.96 0.97 0.97 0.98 0.~)8 0.98 0.99 0.99 0.99 0.99 

-2 0.95 0.96 0.96 0.9G 0.96 0.97 0.97 0.97 0.98 0.98 

-1 0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.97 

0 0.94 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 

1 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.96 0.96 

2 0.9:3 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.96 

5 0.92 0.9:3 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 

10 0.91 0.9:3 0.9:3 0.94 0.94 0.94 0.94 0.95 0.95 0.96 
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TABLE 2� 
An estimator of P( X ll+S E ill,s l,rll)� 

when (\' = 0.1 and F is Normal 

.'l 

n , 2 :3 4 5 6 7 8 9 10 

25 0 0.89 0.90 0.92 0.93 0.94 0.94 0.95 0.96 0.96 0.96 
1 0.87 0.89 0.90 0.92 0.92 0.9:3 0.9:3 0.93 0.94 0.95 
2 0.85 0.88 0.89 0.91 0.91 0.91 0.92 0.92 0.93 0.93 
5 0.79 0.84 0.87 0.88 0.89 0.89 0.89 0.89 0.91 0.91 
10 0.66 0.7G 0.79 0.80 0.80 0.82 0.82 0.82 0.82 0.82 

50 0 0.89 0.90 0.90 0.91 0.92 0.92 0.9:3 0.9:3 0.94 0.94 
1 0.88 0.89 0.89 0.89 0.91 0.91 0.91 0.92 0.92 0.93 
2 0.87 0.89 0.89 0.89 0.90 0.90 0.90 0.91 0.91 0.92 

5 0.85 0.87 0.88 0.88 0.89 0.89 0.89 0.90 0.90 0.91 

10 0.80 0.85 0.8G 0.86 0.87 0.87 0.87 0.88 0.89 0.89 

100 0 0.89 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.92 
1 0.88 0.89 0.89 0.90 0.90 0.90 0.90 0.91 0.91 0.91 

2 0.88 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.91 

5 0.87 0.89 0.89 0.89 0.89 0.89 0.89 0.90 0.90 0.90 

10 0.84 0.87 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.90 

4 CONCLUSION 

We have provided prediction intervals for a nearly nonstationary AR(l) model and we have 
proved that these intervals contain an s-step a.head future value with a given asymptotic proba­
bility conditionally on the observations. 

Moreover we have presented results from a Monte Carlo study that confirm the theoretical 
results. The approximation (1.7) is good even for moderate sample sizes and for 0.90 < f311 < 1.05. 
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ApPENDIX 

In the sequel, o( 1) (01' (1)) will n~present a sequence of numbers (r.v.'s) converging (in prob­
abili ty) to zero; O( 1) stands for a bounded sequence of numbers. For a real number x, [x] is the 
greatest integer smallt>r than x. 

In Lemma A1 we state a preliminary technical result that we need to prove Lemma 2.1. 

LEMMA AI. Let (3n = 1 - , /n, , E m" ::j:. O. Then 

1 n . - L 1(311 12(n-3) -+ (1 - e-2-Y)/2" a$ n -+ 00. (A.I) 
n j=1 

Proof. The following proof is similar to that of (2.:3) in Chan and Wei (1987). For any 8 > 0, 
choose 0 = to ::; t 1 ::; ... ::; tk = 1 such that 

max le-2-r(I-t,) - e- 2-y(I-t i -d I < fi. (A.2) 
l~i~k 

Hence, 

(A.3) 

1 
Bll = - L71 

111111 2(Il-j) - C"I 

n .i=l 

2= ~ t L 1(111 1 (1l-1) - C"I 

11 i=1 lEl, 

= ~ t L[\(3nI 2(n-l) _1(311 !2(1l-[nt i - d)] 
n i=1 lEl, 

k k

+.!. L L Il1nI 2(n-[nt i - d) - L 1(3nI 2(1l-[llt i -tl)(ti - ti-l) (AA) 
n i=1 lEli i=1 

+ L
k 

!f1nI 2(n-[llt i -tl)(t i - f· i_ 1 ) - C-y 

i=l 

= BIll + B211 + 8:311, 
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where 

and 

k 

B, = ~ 1(.1 12(7I-[nl i - 1ll (t, - t, ) - C,371 L..J I~n 'I '1-1 -y' 

i=1 
From 

(A.5) 

and (A.2), we have 

max max II#nI 2(7I-ll - IfW(7I-[nl,-dl l 
1515k lel,� 

max II#nI 2(7I- [nl,ll _ Ii1J2(n-[nl i - l )ll� 
1515 k 

:::; mflx le-2')'(1-I;) - e- 2')'(1-l i - Jl I+0(1) 
1<I<k 

:::; 8 +0(1). 

Thus, 

(A.6) 

Since 

we obtain 

IB2,nl :::; e2hl L
k 

I.!.([ntil - [nt i _ 1]) - (t i - ti-1)1 = 0(1) (A.7)
i=1 n 

Moreover, since c')' = Id e- 2')'(1-lldt it follows that 
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k k 

1B:3n 1 < IL 1j3I~t(n-[nti-Jl)(ti - ti-d - L e-:l1'(1-t i - Jl (t i - ti-dl 
i=1 i=1 

k 1
+1 Le-h (1-t,-Jl(ti - ti-d - [ e-21'(1-t)dtl· (A.S)

i=1 10 

Then from (A.3) a.nd (A.5) there exits No such tha.t 

IB3n l < 28, Vn ~ No. (A.9) 

So, from (AA), (A.G), (A.7) and (A.9) one concludes (A.I) This completes our proof. 0 

P7'00f of Lemma 2.1. \\Te have 

1 n 

Fn(;r) = - L~t(;r) 
71. t=1 

where ~t(;r) = 1 if ft < ;r a.nd 0 otherwise. Since tn,t = Ct - (fin - (3n)Xt- 1 , 

Then 

where 

and 

First, we will show that 

SUpIZ2n(;r)I--+pO a.s 71.--+00. (A.lO) 
x 

By Taylor's formula Wf>- get 
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1 11 1 11 

Z:ln(.Z:) = - F'(;l~ )(f~1l - (3) L '\t-l +-.F"(O(/3ll - (3)2 L xLI (A.ll) 
n t=1 2n t=) 

where ~ is an intermediate point between x and ;z; + (/311 - (3)'\t-l' 
As in Chan and \Vei (1987), we have 

1 11-1 • I 1 
- - L (3,\i-ll) X n (.:.) - ( e'Y(1-t)X ll (t)dt + ( e'Y(1-t) Xn(t)dt 

n i=1 n lo lo 
1 

= 0,.(1) +1e'Y(I-t)'\n(t)dt (A.l2) 

. " (t) - -1/:l ,,[llt] !'.Jll-iI ' n L."i=I}ll (i.w Jele.l\ll -
From (A.12), Lemma 2.1 of Chan and Wei (1987) and the continuous mapping theorem, 

1 111 

:3/:l LXt- 1 --+w { e'Y(1-t)1;;l(t)dt a8 n --+ 00 (A.l3) 
n t=1 lo 

where {1~1(t) : 0 :::; t :::; I} is a standard Brownian motion. 

From Lemma 2.2 of Chan and \Vei (1987) Wf~ deduce that 

1 11� 

2 "L..J X:lt-I� 
n t=1 

By (A.l4), Lemma 2.1 of Chan and Wei (1987) and the continuous mapping theorem we obtain 

1 11_" v:l 11 :l-y(I-t)1:,1:l( ) I .:l L..J''\ t-l --+w e t (t (l.s n --+ 00. (A.l5) 
n t=1 0 

Hence from (1.2), (A.ll), (A.l:3), (A.lo) and the fact that sUPx F'(;z;) < 00, we obtain (A.lO). 

So to prove the lemma, it suffices to show that 

sup I Zlll(;Z:) I--+p 0 a8 n --+ 00. (A.l6) 
x 

Consider the auxiliary process (Boldin (1982)) 

1 11 

Zn(;z;, 77,,,X) = - L[~t(;t +771l.\t-d - ~t(;r,) - F(;r, + 77llXt-d + F(x)] 
n t=1 

depending on x, the non-random sequence {771l}1l, n E IN, and the vector X = (Xo, ... , X ll- 1 ). 



For all E > 0 

P(sup 1Zlll(:r) 1> cl::s; P(sup sup I ZIl(:r, 1711, X) I> E) + P(n 1fill - /311 I> n1-.,,0) (A.l7) 
x x 1,/,,1::;11--'0 

where :3/5 < 10 < 1. 

From (1.2), 11.(/311 - (311) is bounded in probability. Then 

P(n 1/311 - (311 I> n1-.,,0) -.0 a.s n -. 00. (A. IS) 

So, to prove (A.16) it suffices to show that 

sup sup I ZII (x, 1]," X) 1-.P 0 as n -. 00 (A.19) 
x 1'1,,1::;11--' 

for all I > :3/5. 

Let {mll : nE zN} and {Nil: n E IN}, be sequences of integers such that n-."/43m ,, -. 1 

and 11.- 1/ 2-.,,/4 Nil -. 1, aoS 11. -. 00. We dividl" tlw interval [-11.-"', n-"'] into 3111 " parts using the 

points 

and the real line into 1\'11 parts using the points 

-00 = :ro < :r1 < ... < :rN" = +00, F(:rd = iN,~l. 

We can go OWl' from the slII)],l"mUlll in (A.19) to thl" supremum for a finite set of the points 

x and 1711 such that 

:r E {;ri : i = 0,1, ... ,Nil} and 1711 E {17sll : .S = 0,1, ... , 3111
"}. 

Consider the sequences of randolll variables 

- v· (1 ,) -"")-lll" -1/ ) 1 \1 v (1 2 -."·)-m,, -1/ )Vsk="''\k-1 -_11. ..) 17s11 {Xk_I>O} an( sk=Ak-1 - n.) 1]Sll {Xk_I::;O} 

where / A denotes the indicator of the event A. If 17sll = 0, we set V sk = v'k = Xk-1, k = 1, ... , n. 

Let 

Vs = (\is1 ,"" ~~1l) and Vs = ("Vs1 , ... , V Sll )' 

If 1]jll satisfies the condition 0 ::s; 17,i1l - 1]11 ::s; 2n-"';3-111
", it follows that 
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Thus, for x E [xr, ;r,,+d, we have 

'y../e obtain 

and 

Hence, 

~	 sup sup I Zll(;ri, 1}Sll' Vs) I (A.20) 
i$N" s$:3"''' 

+� Slip sup I Zll(;ri+l,1}Sll,\IS) I (A.21 )
i$N.. -l s$:3"''' 

1 " +� Slip - I L:[~I(F-l(td) - t1 - ~1(F-l(t2)) + t 2] I (A.22) 
III-121$N;;-1 n k=1 

1� " " ~ 
+� sup sup - L:[F(;ri+l + 1}jll Vii) - F(;ri + TJjll Vit)]. (A.23) 

i$N.. -l s$:3"''' n 1=1 

Term (A.22) converges to zero in probability by Theorem 1:3.1 of Billingsley (1968) (p. 105 

-108). Now we will show that (A.2:3) tends to zero ill probability as n -+ 00. By Taylor's formula, 

(A.2:3) is bounded above by 

SUPi$Nn_dF(:ri+d - F(xd] + supx IF'(x) ISUPs$3mn (~IE;:"1 TJslIVstl + ~ IE~~1 TJSllVstl) 

+~ supx I F"(;r) I sUPs$3"''' ~ E~I=11};'I(VS~ + Vs~)' (A.24) 
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From definitions of f'~t and \Ist we have 

(A.25) 

1.1 . 11 .) -"Y')- lIln -I 1< 3 flV oreover, Slllce - _n.) 1]SIl _ or any .s, 

Then 

11 11 

" 2 (V~2 VA2
) < 18 -2')''' v2L..J 1]slI st + st _ n L..J /\t_I' (A.26) 

t=1 t=1 

Therefore (A.24) is bounded by 

1 I 1 1 'l )II IIr-I -"Y ' -"Y' -lIl" ' -2"Y 2All +c 
( 
n -2::.~t-1 +11.3 -2::I A t-ll+n -2::Xt-1 , (A.27) 

1 11. t=1 11. t=1 n t=1 

where c is a constant. 

From Lemma 2.1 and 2.2 in Chan and \Vt>i (1987) and from the continuous mapping theorem, 

it follows that ,)/2 L~~I I X t- I I is bounded in probability. Hence from (A.1:3), (A.15) and the 
fact that n-"Y/4;311l " _ 1 and 1I- 1/ 2-"Y/4Nll _ 1, as n _ 00, one concludes that (A.27) tends to 

zero in probability as 11. - 00. Thus, the convergence of (A.23) to zero in probability is proved. 

Only remains to show that 

sup sup I Z,Jri,1]SIl' lis) I-p 0 as n - 00 (A.28) 
i:S:l\'" s:S::3 111 

" 

and 

sup sup IZll(;ri+l,1]sll,\is)\_pO as 11.-00. (A.29) 
i:s:N,,-1 s:S::3 111 

" 

We wi]] establish (A.28) and (A.29) can be prowd similarly. For each sequence {ill : n E IN} 
of non-negative integers we define 

/,,-1 

X;_I = 2:: f3;;C:t-I-r 
,'=0 

and 

~* v* (1 ') -"Y.)-m" -1/ )Vst = /\ t-I - _11.) 1]sn {X;_I >O} . 

So, we can write ZIl(:ri,1]sn, lis) in the form 
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and 

Hence 

sup sup I ZII(Xi,T/sII, 'Vs) 1:5 sup sup (I! t111(i,'S)1 +I! tet(i'S)I) . 
i~Nn s~3mn i~N" s~3m" n 1=1 n t=1 

So, for all 8 > 0, 

(A.30) 

As in Lemma 1 of Boldin (1982) w(" obtain 

1 (1 1 
11 

4

) = 0(1) (A.31 )"\sup sup E "1Ti L~I(l,$) 1• 

11 11 i~N"s~:3m.. 11. 1=1 

1� 4 15where A,l = 11.- -"1 I~ +n-:h. Then if we choose I'l = 11. / it follows from (A.:31) that 

N" :311l 

" 11(1 4)
~~E ;;:~~1(i,8) -+0 a.s n-+oo� (A.32) 

for� any "y > :3/5. 
From Lemma A1 and Lemma 2 in Boldill (1982) we have 

Therefore� 
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1/, - 00 (A.33) 

for any, > 3/5. 

Hence from (A.:32) and (A.:n) we obtain that (A.30) tends to zero in probability for any 

, > 3/5. Then (A.28) holds and therefore (A.19) follows. Thus, from (A.17), (A.18) and (A.l9) 
one now concludes (A.16). This completes our proof. 0 
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