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I 
1 Introduction I 

Let X be a random variable with an interval support, having the density, distribution and I 
survival functions j, F and F, respectively, and let X(l:m) ~ X(2:m) ~ .•. ~ X(m:m) de-
note the order statistics from a sample of m independent random variables, all identically 
distributed as X. Raqab and Amin (1996) and Khaledi and Kochar (1999) proved that 

whenever i ~ j and m - i ~ n - j, (1.1) 

where ~lr denotes the likelihood ratio order (the formal definitions of the stochastic orders 
that are mentioned in this section can be found in the sequel or in Shaked and Shanthikumar 
(1994)). Since the likelihood ratio order is stronger than the usual stochastic order ~st, and 
than the hazard rate order ~hn it follows from (1.1) that 

whenever i ~ j and m - i ~ n - j, 

and that 

whenever i ~ j and m - i ~ n - j. 

Khaledi and Kochar (2000) proved that if the survival function F is logconvex (that is, D FR 
(decreasing failure rate)) then 

whenever i ~ j and m - i ~ n - j, 

where ~disp denotes the dispersive order. In this paper we prove, among other things, that 
if j is log concave then 

whenever i ~ j and m - i ~ n - j, (1.2) 

where ~lrt denotes the up shifted likelihood ratio order, formally defined in Section 2 below. 
Now consider another random variable Y with an interval support, having the density, dis­

tribution and survival functions 9, G and G, respectively, and let y(l:n) ~ y(2:n) ~ ... ~ Y(n:n) 

denote the order statistics from a sample of n independent random variables, all identically 
distributed as Y. Khaledi and Kochar (1999) proved that 

whenever i ~ j and m - i ~ n - j. 

Khaledi and Kochar (2000) proved that if the survival functions For G are logconvex (that 
is, DFR) then 

whenever i ~ j and m - i ~ n - j. 

As a corollary they obtained that if the survival functions F or G are logconvex then 

whenever i ~ j and m - i ~ n - j. 

In this paper we show, among other things, that 

whenever i ~ j and m - i ~ n - j. (1.3) 
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1 
As a corollary we also obtain I 

X ~lr Y => X(i:m) ~lr y(j:n) whenever i ~ j and m - i ~ n - j. (1.4) I 
The results (1.3) and (1.4) are also extended in this paper to the case in which the Xi's and 
the }j's are not identically distributed. 

Below, 'increasing' and 'decreasing' mean 'nondecreasing' and 'nonincreasing,' respec­
tively. 

2 The Shifted Likelihood Ratio Orders 

First let us recall the definition of the likelihood ratio order when the compared random 
variables have interval supports (possibly infinite) that need not be identical. Let X and Y 
be two absolutely continuous random variables, each with an interval support. Let Lx and 
Ux be the left and the right endpoints of the support of X. Similarly define Ly and Uy. The 
values Lx, Ux, Ly and Uy may be infinite. Let f and 9 denote the density functions of X and 
Y, respectively. 

Definition 2.1. Let X and Y be two absolutely continuous random variables as above. We 
say that X is smaller than Y in the Likelihood ratio order, denoted as X ~lr Y, if 

g( t) .. .. t (L ) (L ) f(t) IS IncreasIng In E x, Ux U y, Uy . (2.1) 

Note that in (2.1), when Ux < Uy, we use the convention alO = 00 when a > O. In 
particular, it is seen that if Ux < Ly then X ~lr Y. 

Shanthikumar and Yao (1986a) have introduced and studied an order which they called 
the shifted likelihood ratio order. The definition below is slightly more general than the defi­
nition of Shanthikumar and Yao (1986a) who considered only nonnegative random variables. 

Definition 2.2. Let X and Y be two absolutely continuous random variables as above. We 
say that X is smaller than Y in the up shifted likelihood ratio order, denoted as X ~lrt Y, if 

X - X ~lr Y for each x ~ O. (2.2) 

Rewriting (2.2) using (2.1) we obtain the following result. Below f and 9 denote the 
density functions of X and Y, respectively. 

Proposition 2.3. Let X and Y be two absolutely continuous random variables as above. 
Then X ~lrt Y if, and only if, for each x ~ 0 we have 

g(t) 

f(t + x) 
is increasing in t E (Ix - x, Ux - x) u (I y , uy). (2.3) 

Recall that a density function f is said to be logconcave if its support {tlf(t) > O} is 
an interval, with endpoints L < u, say, and if log f is concave on (L, u)j that is, if for any 
x E (0, u -I) we have that 

f(t) 

f(t + x) 
is increasing in t E (L, u - x). 
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I 
Logconcavity, as defined above, can be interpreted as logconcavity over the whole real line I 
with the convention log 0 = -00. When f is a density function of a nonnegative random 
variable, then logconcavity can be interpreted as a positive aging notion (see, for example, I 
Shaked and Shanthikumar (1987)). 

Proposition 2.4. Let X be an absolutely continuous random variable as above. Then X ~lrt 
X if, and only if, f is logconcave on (-00,00). 

Proof. If X ~lrt X then by (2.3), for any x ~ 0 we have that 

f(t) 

f(t + x) 
is increasing in t E (Ix - X,Ux - x) u (/x,ux). 

In particular, for any x E (0, Ux - Ix) we get (2.4). 
Conversely, suppose that f is logconcave. If x E (0, Ux - Ix] then, by (2.4), we have 

that (2.3) holds (because then (Lx - x, Ux - x) U (Lx, ux) is the union of the three disjoint 
intervals (Lx - x, Lx) U [Lx, Ux - x] U (ux - x, ux), and the ratio f(t)/ f(t +x) is equal 0 on the 
first interval, is increasing in t on the second interval, and is equal 00 on the third interval). 
If x> Ux -Lx then (Lx - X,ux - x) and (Lx,ux) are disjoint, and the ratio f(t)/f(t + x) 
is equal 0 on the first interval, and is equal 00 on the second interval; so (2.3) holds in this 
case too. 0 

An important property of the up shifted likelihood ratio order is stated next. Shanthiku­
mar and Yao (1986a) proved it for nonnegative random variables, but it is true in general as 
follows. 

Proposition 2.5. Let (Xl, X 2 ) and (Yi, Y2 ) be two pairs of independent absolutely continu­
ous random variabLes. If Xi ~lrt }i, i = 1,2, then Xl + X 2 ~lrt YI + }2. 

In the sequel we will also touch upon another stochastic order which is given in the 
following definition. 

Definition 2.6. Let X and Y be two absolutely continuous random variables with support 
[0,00). We say that X is smaller than Y in the down shifted likelihood ratio order, denoted 
as X ::;lr.j. Y, if 

X ~lr [Y - xlY > x] for all x ~ o. (2.5) 

Note that in the above definition we compare only nonnegative random variables. This 
is because for the down shifted likelihood ratio order we cannot take an analog of (2.2), such 
as, X ~lr Y - x, as a definition. The reason is that here, by taking x very large, it is seen 
that practically there are no random variables that satisfy such an order relation. Note that 
in the definition above, the right hand side [Y - xlY > x] can take on (when x varies) any 
value in the right neighborhood of O. Therefore we restricted the support of the compared 
random variables to [0,00). 

Let f and 9 denote the density functions of X and Y, respectively. Also, let G denote 
the survival function of Y. For x ~ 0, the density function of [Y - xlY > x] is g(. + x)/G(x) 
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on [0,(0), and is 0 otherwise. Thus, for nonnegative random variables X and Y as above, 
the analog of (2.3) is 

X ~lr.l. Y <==? 9(~~)X) is increasing in t ~ 0 for all x ~ o. (2.6) 

Recall that a density function f with support {tlf(t) > O} = [0,(0) is said to be logconvex 
if log f is convex on [0,(0); that is, if for any x > 0 we have that 

f(t) 

f(t + x) 
is decreasing in t ~ O. 

Using (2.6) and (2.7) we obtain at once the following result. 

(2.7) 

Proposition 2.7. Let X be a nonnegative absolutely continuous random variable as above. 
Then X ~lr.l. X if, and only if, f is logconvex on [0,(0). 

3 Comparisons of Order Statistics 

In this section we first obtain some results that compare, in the likelihood ratio and in the 
shifted likelihood ratio orders, order statistics from two different samples. 

Theorem 3.1. Let Xl, X 2 , • •• , Xm be m independent random variables, and let Y I , Y2 , ••• , 

Yn be other n independent random variables, all having absolutely continuous distributions. 
(a) If Xi ~lrt}j for all 1 ~ i ~ m and 1 ~j ~ n, then 

whenever i ~ j and m - i ~ n - j. 

(b) If Xi ~lr }j for all 1 ~ i ~ m and 1 ~ j ~ n, then 

whenever i ~ j and m - i ~ n - j. 

Proof. In this proof we use an idea of Chan, Proschan and Sethuraman (1990) which is also 
described in the proof of Theorem l.C.9 in Shaked and Shanthikumar (1994). 

Let fi' Fi and Fi denote the density, distribution, and survival functions of Xi. Similarly, 
let 9j, Gj and Gj denote the density, distribution, and survival functions of}j. The density 
functions of X(i:m) and y(j:n) are given by 

11' 

and 

u 

where E1I' signifies the sum over all permutations 1r = (71"1, 71"2, ••• ,7I"m) of (1,2, ... , m), and 
Eu similarly denotes the sum over all permutations D' = (0"1,0"2,'" ,O"n) of (1,2, ... , n). 
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In order to prove (a), fix an x ~ 0, and write 

9YU:n)(t) _ Lu9u1(t)Gu2(t)···GuJ(t)GUj+1(t)···Gun(t) 
fX(i:m) (t + x) - L7r f7r1 (t + x)F7r2 (t + x)··. F7ri(t + X)F7riH (t + x) ... F7rm(t + x)" 

(3.1) 

Now, for any choice of a permutation 7r of (1,2, ... , m) and a permutation eT of (1,2, ... , n) 
we have 

90'1 (t)GO'2(t) ... GO'j (t)GO'jt1 (t) ... GO'n(t) 

11<1 (t+X)F1<2 (t+x) ... F1<i (t+x)F 1<i+1 (t+x)···F 7I"m (t+x) 

_ 9O'dt) • GO'2 (t) ... GO'j (t). G aJ+1 (t) ... Gan(t) • Gai+1 (t) ... Gaj (t) 

- 11<1 (t+x) F7I"2 (t+x) ... F7I"; (t+x) F "m-n+j+1 (t+x)· .. F 7I"m (t+x) F 71";+1 (t+x) ... F 7I"m-n+j (t+x)· 

Since X 7r1 ~lrt Ya· 1 we see from (2.3) that the first fraction above is increasing in t. From 
X 7rk ~lrt YUk and (2.2) it follows that X 7rk - X ~rh YUk , where ~rh denotes the reversed 
hazard rate order; but that means that GUk (t)j F7rk (t + x) is increasing in t, k = 2, ... ,i, and 
therefore the second fraction above is increasing in t. From X 7rk+m_n ~lrt YUk and (2.2) it 
also follows that X 7rk+m_n - X ~hr YUk , where ~hr denotes the hazard rate order; but that 
means that G ak (t) j F 7rHm-n (t + x) is increasing in t, k = j + 1, ... , n, and therefore the third 
fraction above is increasing in t. The fourth fraction above obviously increases in t too, and 
thus the whole product increases in t. 

Note that if aI, a2, ... ,am and bl , b2, ... ,bn are all nonnegative univariate functions, such 
that ai(t)jbj(t) is increasing in t for alII ~ i ~ m and 1 ~ j ~ n, then L::I ai(t)j Lj=l bj(t) 
is also increasing in t. It follows from this fact, and from (3.1), that 9Y(J:n) (t)j fX(i:m) (t + x) 
is increasing in t, and from (2.3) we obtain (a). 

The proof of (b) is similar - just take x = 0 in the above argument. D 

One may wonder whether an analog of Theorem 3.1(a) exists for the down likelihood 
ratio order; that is, whether Xi ~lr.j. }j for all 1 ~ i ~ m and 1 ~ j ~ n imply that 
X(i:m) ~lr.j. y(j:n) for i, j, n and m as in Theorem 3.1(a). It will be shown after Theorem 3.5 
below that this is not the case. However, the next result shows that the first order statistics 
can be compared in the order ~lr.j. under the above conditions. 

Theorem 3.2. Let Xl, X 2, ... , Xm be m independent random variables, and let Yi,}2, ... , 
Yn be other n independent random variables, all having absolutely continuous distributions 
with support [0,00). If Xi ~lr.j. }j for aliI ~ i ~ m and 1 ~ j ~ n, then 

whenever m ~ n. 

Proof. Fix an x ~ O. Using the notation of the proof of Theorem 3.1 we write 

9Y(1:n)(t+x) _ Lu9ul(t+X)Gu2(t+X)···Gun(t+x) 
fX(1:m) (t) L7r f7r1 (t)F 7r2 (t) ... F 7rm (t) 

Now, for any choice of a permutation 7r of (1,2, ... , m) and a permutation eT of (1,2, ... , n) 
we have 

9a1 (t + x)Gu2 (t + x)·.· Gun(t + x) 
f7rl (t)F7r2 (t) ... F7rm(t) 

9Ul (t +;1;) GU2 (t + x)··· GUn(t + x) 
f 7rl (t) F 7r2 ( t) ... F 7rn ( t ) 
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Since X11"l :::;lr.!. Yo- 1 we see from (2.6) that the first fraction above is increasing in t. From -
X11"k :::;lr.!. Yo-k and (2.5) it follows that X :::;hr [Y - xlY > x]; but that means that GUk(t + a 
x) / F 11"k (t) is increasing in t, k = 2, ... , n, and therefore the second fraction above is increasing r 
in t. The third fraction above obviously increases in t too, and thus the whole product 
increases in t. To end the proof use the final argument in the proof of Theorem 3.1 to 
conclude that gY(1:n) (t + x)/ fX(l:m) (t) is increasing in t and use (2.6). 0 

As a corollary of Theorem 3.1 we will now obtain the results stated in (1.3) and (1.4) as 
described below. Recall the notation used in Section 1; that is, let below X(l:m) :::; X(2:m) :::; 

... :::; X(m:m) be the order statistics from a sample of m independent random variables, all 
identically distributed as some X, and let y(l:n) :::; y(2:n) :::; ... :::; Y(n:n) be the order statistics 
from a sample of n independent random variables, all identically distributed as some Y. By 
letting all the Xi'S in Theorem 3.1 be distributed as X, and all the }j's be distributed as Y, 

we get the following results. 

Corollary 3.3. Let X and Y be two absolutely continuous random variables with interval 
supports. Then 

whenever i:::; j and m - i 2: n - j, (3.2) 

and 

whenever i:::; j and m - i 2: n - j. (3.3) 

Similarly we have the following corollary of Theorem 3.2. 

Corollary 3.4. Let X and Y be two absolutely continuous random variables with support 
[0,00). Then 

whenever m 2: n. 

Taking X =st Y in Corollaries 3.3 and 3.4 we obtain the following results (in particular, 
(1.2)) from Propositions 2.4 and 2.7. 

Theorem 3.5. (a) Let X be an absolutely continuous random variable with an interval 
support_ If X has a logconcave density function then 

whenever i:::; j and m - i 2: n - j. (3.4) 

(b) Let X be an absolutely continuous random variable with support [0,00). If X has a 
logconvex density function then 

whenever m 2: n. (3.5) 

It is not true that if a nonnegative random variable X has a logconvex density on [0,00) 
then X(i:m) :::;lr.!. X(j:n) for i, j, n and m as in (3.4). For example, let X be an exponential 
random variable. Then X has a logconvex density on [0,00). If the inequality above were 
true, then we would have obtained, for instance, that X(2:2) :::;lr.!. X(2:2); which, by Proposi­
tion 2.7, would have implied that X(2:2) had a logconvex density - a contradiction to the 
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I 
fact that X(2:2) is strictly IFR (increasing failure rate). This discussion also shows that it is I 
not possible to replace ::;lrt by ::;lr.j. in (3.2). 

One may wonder whether the conditions that X has a logconcave or logconvex density I 
are necessary for the conclusions of Theorem 3.5. The following counterexample shows that 
this is indeed the case - it shows that for any fixed i, j, n and m such that 

i ::; j and m - i 2: n - j, (3.6) 

there exists a random variable X whose density is not logconcave such that the inequality 
in (3.4) does not hold. The following counterexample also shows that for any fixed m and 
n such that m 2: n, there exists a random variable whose density is not logconvex such the 
inequality in (3.5) does not hold. 

Counterexample 3.6. Consider the random variable X with density function 

f(x) = {3:, 
3x2 , 

o ::; x ::; 1; 

x>1. 

It is easy to verify that f is neither logconcave nor logconvex. Let i, j, n and m satisfy (3.6). 
For x > 0 and t > 1 note that 

h( ) = fX(j:n)(t) = C(t + x)m+l(3t - 2)i-l 
t - fx. (t + x) tn+l(3t + 3x - 2)i-l ' 

(I'm) 

where C is a positive constant. Thus 

d 1 h() m + 1 3j - 3 n + 1 3i - 3 
dt og t = t + x + 3t - 2 - -t - - -3t-+-3x---2 

If x is very large, then the first and the fourth fractions above are negligible. The remaining 
difference is negative when t > 3(~~~:i). Thus h decreases on some interval of [0,00), and 
therefore, by (2.3), the inequality in (3.4) does not hold. 

On the other hand, for 0 < x < 1 and 0 ::; t ::; 1 - x we have 

h(t)= fX(I:n)(t+x) =C,(t+x)(3-(x+t)2)n-l 
- Ix (t) t(3 - t2)m-l ' 

(I:m) 

where C' is a positive constant. Thus 

~ 10 h(t) = _1 __ 2(n - 1)(x + t) _ ~ 2(m - 1)t. 
dt g t + x 3 - (t + x)2 t + 3 - t2 

Let t -+ o. Then the third fraction tends to 00, and therefore it dominates the sign of the 
above expression which is negative in some right neighborhood of O. Thus h decreases there, 
and therefore, by (2.6), the inequality in (3.5) does not hold. .... 
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The shifted likelihood ratio orders can often be easily identified or derived. Suppose that 
the random variables X and Y have differentiable densities 1 and g, respectively. Define the 
transforms kx = 1'/1 and ky = g' / g; these are continuous analogs of the discrete equilibrium 
rates studied in Shanthikumar and Yao (1986a, 1986b). From (2.1) it is seen that 

X ::;Ir Y {:::::} kx(t) ::; ky(t) for all t E (iy, ux). 

Similarly, 

X ::;ht Y {:::::} kx(t') ::; ky(t) whenever iy ::; t ::; t' ::; ux; (3.7) 

and for random variables with supports [0,00) we have 

X ::;Ir.). Y {:::::} kx(t) ::; ky(t') whenever t' ~ t ~ O. 

The easy identification of the shifted likelihood ratio orders, combined with the fact that 
order statistics are lifetimes of k-out-of-n systems, yield interesting bounds in reliability 
theory. As an example, consider a k-out-of-n reliability system with independent identi­
cally distributed component lifetimes Xl, X 2 , ••• ,Xn . The lifetime of the system then is 
X(n-k+l:n)' Suppose that another such system, with component lifetimes X~, X~, . .. ,X~ 
that are distributed as the Xi's, is used as a cold standby; that is, it replaces the original 
system when it fails. Thus the total lifetime of the combined system is X(n-k+l:n) + X(n-k+l:n) ' 

where X(n-k+l:n) and X(n-k+l:n) are identically distributed and independent. Denote by X 

the lifetime of a generic component; that is, X =st Xi =st XI, i = 1,2, ... ,n. Suppose that 
the density 1 of X is not completely known or that it is complicated, but that it can be 
bounded from above, in the sense of ::;Irt, by a lifetime Y that has a simple distribution. 
For example, if the distribution of X is only known to have a transform k = 1'/1 such that 
sup{k(t), t ~ O} ::; -A for some known A > 0, then Y can be taken to be an exponen­
tial random variable with hazard rate A. From Corollary 3.3 and (3.7) we then get that 
X(n-k+l:n) ::;Irt y(n-k+l:n), and Proposition 2.5 then yields 

X(n-k+l:n) + X(n-k+l:n) ::;Irt y(n-k+l:n) + }('n-k+l:n) , 

where the notation Y(~-k+l:n) is self-explanatory. Various probabilistic quantities of interest 
in reliability theory (such as the survival function) can be computed, at least numerically, 
for }(n-k+l:n) + y('n-k+l:n) ' and we thus obtain upper bounds on the respective quantities that 
are associated with the lifetime X(n-k+l:n) + X(n-k+l:n)' 

Of course, bounds as above can also be obtained when the lifetimes Xi are not identically 
distributed (use Theorem 3.1 with identically distributed l'j's), or when more information 
about the transform k of X is known (so that the transform of Y can be taken to be, say, 
some step function, rather than a constant). 
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