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Abstract 
 
In this article we propose a recombination procedure for previously split data. It is based 
on the study of modes in the density of the data, since departing from unimodality can 
be a sign of the presence of clusters. We develop an algorithm that integrates a splitting 
process inherited from the SAR algorithm (Peña et al., 2004) with unimodality tests 
such as the dip test proposed by Hartigan and Hartigan (1985), and finally, we use a 
network configuration to visualize the results. We show that this can be a useful tool to 
detect heterogeneity in the data, but limited to univariate data because of the nature of 
the dip test. In a second stage we discuss the use of multivariate mode detection tests to 
avoid dimensionality reduction techniques such as projecting multivariate data into one 
dimension. The results of the application of multivariate unimodality tests show that is 
possible to detect the cluster structure of the data, although more research can be 
oriented to estimate the proper fine-tuning of some parameters of the test for a given 
dataset or distribution. 
 

Keywords: Cluster analysis, unimodality, dip test. 
 
 
 
 
 
(1) Álvarez, Adolfo, Departamento de Estadística, Universidad Carlos III de Madrid, C/ 
Madrid 126, 28903 Getafe (Madrid), Spain, e-mail: aaapinto@est-econ.uc3m.es. 
(2) Peña, Daniel, Departamento de Estadística, Universidad Carlos III de Madrid, C/ 
Madrid 126, 28903 Getafe (Madrid), Spain, e-mail: dpena@est-econ.uc3m.es. 
 
 
 
Work partially supported by Spanish Ministry of Science and Innovation, research 
projects SEJ2007-64500 and ECO2012-38442. 



1. Introduction

A useful non parametric strategy to merge partitions is to check whether
the data can be assumed as unimodal or not. Unimodality detection is a
natural way to identify the presence of clusters, understanding each of them
as a mode surrounded by a density and separated enough from other modes,
if they exist. Unimodality is well defined for univariate data sets but these
techniques can be extended to multivariate analysis by: a) projecting the
data into one dimension and then evaluating the unimodality, or b) choosing
one of the possible unimodality definitions and techniques for multivariate
data.

A distribution F is defined as “unimodal”, if F is convex for x < m and
concave for x > m, where m is the mode. Under this definition is clear that
the normal, the student or the chi-squared distributions are unimodal, but
also the uniform(a,b) distribution is considered unimodal under this defini-
tion, given that m can be any value in [a, b].

Hartigan and Hartigan (1985), introduce the “dip test” to detect the
presence of one or multiple modes into the data. Given the empirical dis-
tribution, the dip statistic computes the maximum difference between that
distribution and an unimodal distribution function in the following way:

Let x1, x2, ..., xnbe a set of univariate data coming from a density function
f(x), and Fn(x) be the sample empirical distribution function. Let H(x) be
the closest unimodal c.d.f. respect to the empirical distribution, then the
DIP statistic is given by:

DIP = sup
x
|Fn(x)−H(x)| (1)

Although Bickel and Fan (1996) show that the non-parametric maximum
likelihood estimate of the closest unimodal cdf, given the mode location m0,
is the greatest convex minorant of Fn on (−∞,m0] and the least concave
majorant on [m0,−∞) (Tantrum et al., 2003), the authors of the test propose
the use of an uniform distribution to obtain a critical value to compare the
statistic. They claim that the dip is asymptotically larger for the uniform
than for any unimodal distribution with exponentially decreasing tails, so this
choice implies being very conservative in the assumption of the underlying
distribution of the data.

Cluster methods like M-clust (Fraley and Raftery, 1998), model the un-
derlying distribution of the data by a mixture of normal distributions. The
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parameters are estimated by the EM algorithm, while the Bayesian Informa-
tion Criteria (BIC) is used to decide the number of groups, by estimating
the number of components of the mixture which maximize the likelihood,
penalized by the number of estimated parameters.

The problem with this kind of estimation arises when the true data is
not a mixture of normals, and other distribution can fit better, or when the
concept of “cluster” is not equivalent with the number of components of
the mixture. For example, when a cluster is defined by finding gaps in the
density, a mixture of normals can be not appropriate to define the number
of groups.

The dip test has been used by Tantrum et al. (2003) as a tool to identify
whether a mixture of normal distributions overestimates the real number of
clusters in a sample. They propose an algorithm for pruning the cluster tree
generated by the mixture model chosen by the Model Based Clustering. It
then progressively merges clusters that seems to be unimodal by using the
dip test. A similar approach to Tantrum et al. (2003) is proposed by Ahmed
and Walther (2012) who project multivariate data on its principal curves and
then apply Silverman’s multimodality test (Silverman, 1981) to the resulting
univariate sample. Other methods specifically designed to merge Gaussian
components are reviewed in Hennig (2010).

2. Recombining with the dip test

The procedure is as follows, given a data sample x1, x2, ...xn of n i.i.d.
observations coming from an unknown distribution function, we apply the
discriminator function to classify the observations into k ≤ n partitions. We
split the sample in the same way as the SAR algorithm (Peña et al., 2004),
where xl is defined as the discriminator of xi if the latter observation appears
as most discrepant (using the heterogeneity measures) with respect to the
rest of the data set when the discriminator is deleted from the sample. The
underlying idea is the following: If two observations are identical, they must
have the same discriminator, thus, if they are close enough to each other,
they should still have the same discriminator.

Formally, xl in the multivariate case, assuming normality, is equivalent
to:

xl = arg max
j

(xi − x̄(ij ))′V̂ −1(ij )(xi − x̄(ij )) (2)
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which is the Mahalanobis distance between the element xj and the rest
of the sample, when the ith and jth elements are removed.

In the univariate case, Peña et al. (2004) shows that the discriminator
are always the extreme points, while in the multivariate case, Rodriguez
(2002) generalize this result demostrating that the discriminators belong to
the convex hull of the sample. Therefore, Rodriguez (2002) proofs that dis-
criminators are invariant to scale and positions transformation, because they
are a monotonic function of the Mahalanobis Distance. Using these two
properties, the observation xl will be the discriminator of xi if and only if:

xl(xi) = arg max
xj ∈ Convex Hull

(
1

n
+ x′ixj

)2

(
n

n− 1
− x′jxj

) (3)

Which is an efficient definition in terms of computational time, so it will
be used in the algorithms included in this research.

To illustrate the discriminator function in the multivariate case, we present
the widely known Old Faithful data set from Azzalini and Bowman (1990),
considering the waiting time between eruptions and the duration of them
from the geyser “Old Faithful” in Yellowstone Park, Wyoming, USA. This
data set form two groups as shown in the Figure 1.

Applying the discriminator function, each data point is assigned to one
discriminator following Equation (3) as showed in Figure 2, where is possible
to see that the use of the discriminator function split the data into groups,
assigning each point to one of the discriminators (observations 19, 58, 76,
149, 158, 161, 197, and 265) and this measure will be used in the SAR to
perform the cluster analysis as we will see in the next section.

This splitting process is iteratively repeated until the resultant groups are
all of sizes smaller than a minimum size. Following the guidelines of Peña
et al. (2004), the minimum size is set as n0 = p+ log(n− p) where as usual
p is the number of variables and n is the sample size. As a result of the
splitting process, we get a set of basic groups, all of them of relatively small
size and internally homogeneous.

Given the structure of the basic groups, it is usual that the number of
groups is bigger than the actual number of clusters in the data, so a recom-
bination process is needed. We propose the use of the dip test to contrast if
two basic groups conform an unimodal sample or not. The idea behind it is
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that if two basic groups are part of the same original clusters, they should
share the same mode.

One of the limitations of the original implementation of the dip test is
that is only applicable to univariate samples, so when the dimension of the
problem is greater than one, we need to project the data into one dimension
before performing the test. For each pair of basic groups, the procedure
tests if they are unimodal (and they should be merged), or not. To do so,
the natural election for the projection is the Fisher’s linear discriminator
direction, since it maximize the separation of the groups to be tested. In this
case two groups should be merged if even in the projection which separate

Figure 1: The Old Faithful data set
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Figure 2: Discriminator function relationships, the number of the discriminator point is
plotted
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them the most, they still show one mode (See Section 4 for a discussion about
the choose of a good direction for the projection).

The output of the test is the value of the dip statistic and the associated
p-value calculated with the simulation performed by Maechler (2013), who
corrected the original code proposed by Hartigan (1985). The quantiles were
obtained using 1000001 samples for each sample size n, and a summary of
they are shown in Table 1.

Given that all possible combinations of basic groups have been tested via
the dip statistic, we propose the use of a graphical tool to identify if the
groups should be merged or not. To do so, we plot all groups as nodes in a
network, and when for a pair of groups the null hypothesis of unimodality is
not rejected (i.e. the groups can be merged) the two nodes will be connected
by a line. Varying the minimum level of significance α over the set [0; 1]
is possible to see the evolution of the grouping process, although the usual
α = 0.1, 0.05 and 0.01 should unveil the structure of the data set.

After combined, the remaining observations which were not previously
assigned to the basic sets, can be incorporated to the resulting sets by using
the criteria of smaller Mahalanobis distance.
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3. Results

To illustrate the behaviour of the procedure, remember the Old Faithful
geyser data set from Figure 1, where we can clearly observe two well differ-
entiated groups. If we apply the splitting step we obtain 12 sets and some
isolated observations. These basic groups are shown in the Figure 3

Figure 3: Basic groups from the Old Faithful data set

The following step is to calculate the dip statistic and the correspondent

p-value for each of the
12× (12− 1)

2
= 66 possible pair of groups. These

results are given in Table 2
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Table 2: Pairwise dip testing of the 12 basic groups obtained from the Old Faithful data
set

Group1 Group2 dip p-value Group1 Group2 dip p-value
1 2 0.0413 0.9239 4 8 0.1335 0.0002
1 3 0.0518 0.8153 4 9 0.1214 0.0040
1 4 0.0912 0.0169 4 10 0.1403 0.0000
1 5 0.1091 0.0055 4 11 0.1735 0.0000
1 6 0.1631 0.0000 4 12 0.1192 0.0050
1 7 0.1332 0.0001 5 6 0.0763 0.4316
1 8 0.1002 0.0098 5 7 0.0817 0.4889
1 9 0.0980 0.0231 5 8 0.1461 0.0005
1 10 0.1434 0.0000 5 9 0.1683 0.0001
1 11 0.1522 0.0000 5 10 0.0627 0.6105
1 12 0.1032 0.0121 5 11 0.0825 0.3744
2 3 0.0722 0.2995 5 12 0.1887 0.0000
2 4 0.0541 0.6550 6 7 0.0754 0.4519
2 5 0.1133 0.0049 6 8 0.1916 0.0000
2 6 0.1682 0.0000 6 9 0.1545 0.0001
2 7 0.1328 0.0003 6 10 0.0856 0.0787
2 8 0.0774 0.1687 6 11 0.0808 0.2675
2 9 0.1078 0.0099 6 12 0.1617 0.0000
2 10 0.1299 0.0000 7 8 0.1900 0.0000
2 11 0.1602 0.0000 7 9 0.1954 0.0000
2 12 0.1017 0.0212 7 10 0.0907 0.0822
3 4 0.0647 0.5864 7 11 0.1383 0.0024
3 5 0.1847 0.0000 7 12 0.2023 0.0000
3 6 0.1931 0.0000 8 9 0.1009 0.0906
3 7 0.2207 0.0000 8 10 0.1331 0.0001
3 8 0.1585 0.0000 8 11 0.2121 0.0000
3 9 0.1742 0.0000 8 12 0.0987 0.1077
3 10 0.1399 0.0001 9 10 0.1082 0.0123
3 11 0.2140 0.0000 9 11 0.1692 0.0000
3 12 0.1717 0.0000 9 12 0.1526 0.0009
4 5 0.1249 0.0024 10 11 0.0627 0.5464
4 6 0.1775 0.0000 10 12 0.1249 0.0013
4 7 0.1397 0.0003 11 12 0.1801 0.0000
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Figure 4: Density function of univariate projection of basic sets 1 and 2

Figure 5: Density function of univariate projection of basic sets 2 and 10
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If we take a look into two basic sets which belongs to the same cluster,
for example, sets 1 and 2, the density plot of their projection into the Fisher
direction does not show a bimodal evidence (See Figure 4 ), and the p-value
from Table 2 is 0.9239. In the case of basic groups 2 and 10, the associated
p-value is equal to 0, and the corresponding density plot clearly shows two
modes. (See Figure 5)

Graphically, the interaction between all basic sets is shown in the Figure
6, where we observed two clearly differentiated groups, one formed by groups
5,6,7,10 and 11; and other by the remaining basic sets, corresponding with
the original configuration of the data.

Figure 6: Dip test network for the Old Faithful data set, α = 0.05
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This graphical tool as an exploratory approach, allows also to see different
strengths within the groups. For example, the group formed by sets 5-6-7-
10-11 seems to be more internally connected than the group composed by
basic sets 1-2-3-4-8-9-10, which can be separated into a “strong group” of
sets “1-2-3-4” and other formed by 8-9-12.

As a second example, we consider a case when the data set is not linearly
separable. In Figure 7 we show the simulation of two half-moons, each of
them consisting of 250 data points in two dimensions. After the splitting
procedure, we find 19 basic groups (See Figure 8), while the graphical results
of the dip test are shown in the Figure 9.

Figure 7: The two half moons data set

When α = 0.1, the procedure detects 5 combination of groups and other
4 single groups, not detecting yet the structure of two groups in the data. A
similar situation occurs when α is decreased to 0.05, but when we consider
α = 0.01 the two clusters appears, one in the upper half of the network formed
by groups 1-3-4-8-9-13-16-17-19 and other in the lower half composed of
groups 2-5-6-7-10-11-12-14-15, plus an isolated group (18) unveiling the more
complex structure of the data. Notice that these two clusters are connected
by the group 19, reflecting a problem in the partition process, because that

13



group incorrectly includes observations from the two half moons (See Figure
8).

In complex data sets, the partition process need to be adapted, for ex-
ample including a cleaning process, therefore, smaller values of α are needed
in order to properly reflect the original clusters of the data. This procedure
should be intended as exploratory, where is possible to observe the evolution
of the combining process while varying the confidence levels.

Figure 8: Basic groups of the two half moons data set
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Figure 9: Dip network for the two half moons data set for α = 0.1, 0.05 and 0.01

4. Discussion

In order to recombine multivariate subpartitions based on unimodality
tests there are two main approaches: First, to keep the dimension of the
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problem and to look for an appropriate multivariate modality detection, or
second, to use a simpler univariate modality test but to choose a good projec-
tion direction reducing the dimensionality of the data. We will briefly discuss
this two alternatives and justify the election we made for this research.

4.1. Multivariate modality tests

Besides the dip test, Hartigan tried to extend its work to a multivariate
framework. On his publications we can find three proposals in that direction,
the tests “span” (Hartigan, 1988), “RUNT” (Hartigan and Mohanty, 1992),
and “MAP” (Rozál and Hartigan, 1994). All of them are based on a hierarchy
of similarities: starting from the n classes corresponding to the n initial
points of the sample, and finishing with all data points in one class, the
distance between two classes A,B is defined as the smallest distance between
an observation from the class A and another observation from the class B.

The RUNT test is based on the fact that for a bimodal distribution is
expected that the two modes of the distribution are merged in the last step
of the hierarchy, while the span test is a generalization of the dip test where
the empirical function Fn(x) is the proportion of points xi such that xi � x.
Starting from a random root point r = xk, x � y if x is further away from r
in the hierarchy. Finally, the MAP test is based on the Minimal Ascending
Path, calculated from a MAP Spanning Tree which is a tree such that the
length of the links are non-increasing from any link to a root node.

Departing from hierarchy trees, another more recent researches have been
focused in the mode detection problem:

Burman and Polonik (2009) assume the data is coming from an unknown
distribution with isolated modes. The idea of the method is first, to find
potential mode candidates and second, determine if they represent different
modal regions via pairwise statistical tests. A modal region is defined as a
set Ry with y ∈ Ry , and f(y + αx), with α ∈ [0, 1], decreasing ∀x ∈ Ry,
being y a mode of f .

The first candidate W1 to be a mode is selected as the observation which
have its k1 neighbour closer. Formally, if d̂n(xj) is the distance between an
observation xj, j = 1, ..n and its k1 nearest neighbour, then:

W1 = arg min
xj

d̂n(xj) (4)

The second candidate is obtained in a similar way but deleting from the
sample the previous candidate and its k2 neighbours, and the procedure is
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continued until no more candidates are found.
As a second step, the list of candidates is purged, keeping only those obser-

vations which does not significantly differ from the mean of its k2 neighbours,
using a Hotelling’s test and assuming multivariate normality.

Finally, the candidates are pairwise tested to belong to the same modal
region, by considering the existence of “antimodes” between them. One of
the possible tests the authors propose to compare two candidates x and y is
the following statistic:

ŜB(α) = p
[
log ˆdn(xα)−max

{
log ˆdn(x), log ˆdn(y)

}]
(5)

where xα = αx + (1 − α)y, 0 6 α 6 1. The authors propose to reject

the null hypothesis when ŜB(α) >

√
2

k1
Φ−1(0.95), being Φ the c.d.f. of the

multivariate normal distribution
Einbeck (2011) develops a technique for multivariate mode detection, al-

though the main objective of their research is focus on a cluster analysis
algorithm. The base of the mode detection is the work of Cheng (1995),
who defined the “mean shift” as the shift necessary to move a point x ∈ Rp

towards the local mean around this point.
LetK be a p-variate kernel function (usually Gaussian), andH = diag(h21, h

2
2, ..., h

2
p),

with hj > 0 a bandwidth matrix, then:

KH(x) = |H|−1/2K(H−1/2x) (6)

the local mean and the mean shift are then defined as:

µH(x) =

∑n
i=1KH(xi − x)xi∑n
i=1KH(xi − x)

(7)

SH(X) = µH(x)− x =

∑n
i=1KH(xi − x)(xi − x)∑n

i=1KH(xi − x)
(8)

For a given distribution function f, and bandwidth H, at a mode mH of
f, SH(mH) = 0, then µH(mH) = mH . The authors recall all points satisfying
that condition as “Local principal points”

In order to find those local modes, Cheng (1995) proved that the sequence
ml, l ≥ 0 will converge to a local principal point mH , with m0 = x, and
ml+1 = µH(ml)., and this mean shift sequence is iterated the for all data
observation.
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The application to our original problem is now clear, given two partitions
we will recombine them if we found only one mode on its merged set, and
keep them separate in other case.

Recalling the Old Faithful example, where the basic groups are plotted in
Figure 3, we will apply the procedure of Einbeck (2011), since its method is
already implemented in an R package (Einbeck and Evers, 2012). However,
for further research to build our own implementation of Burman and Polonik
(2009) seems to be feasible in order to compare multivariate mode detection
methods.

Several parameters need to be fixed in the procedure, including taumin,
taumax and gridsize, all of them related with the grid of bandwidths where
the search for modes is focused. Default options are taumax = 0.02, taumin =
0.5, and gridsize = 25, although its application to the Old Faithful basic
groups does not properly recognise the two clusters under this parameters
(Figure 10). Two other parameter combination are shown in Figures 11 and
12, being the last one which correctly identify the clusters.

As is shown in the figures, the procedure is highly sensitive to the pa-
rameters, and its interpretation is not as clear as the dip test proposed in
the previous sections. At the same time the parameters cannot be dynami-
cally adjusted from an “all connected” to a “none connected” framework in
a simple way, hindering its visualization. Nevertheless, for higher dimensions
this procedure take advantage since the projection can produce high loss of
information.

4.2. Directions to project the data

Given two multivariate candidate groups for recombining, the choice of
the Fisher’s direction to project the data in the proposed procedure is natural,
since it maximizes the separability of the groups, and has been long used in
classical methods as discriminant analysis. For our problem, that choice
implies the most conservative scenario, because it tests unimodality even in
the case where the separation between groups is maximum.

In the context of cluster analysis, the search for interesting directions to
project the data and keep the structure of it has been widely used as a way to
avoid the dimensionality curse (Friedman and Tukey, 1974; Friedman, 1987).
The choice of Fisher’s direction is also supported by the literature: Peña and
Prieto (2001) proposed the direction that minimize the kurtosis as appropri-
ate for cluster analysis, and later, Peña et al. (2010) proved that given the
kurtosis matrix, the subspace orthogonal to the eigenspace associated to an
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eigenvalue with multiplicity p−k+1 is Fishers linear discriminant subspace.
Similar results can be found in Caussinus and Ruiz-Gazen (1994) and Causs-
inus and Ruiz-Gazen (1995), where the Fishers subspace is obtained from
the k largest eigenvectors of a Generalized Principal Components matrix, or
Tyler et al. (2009) who proved that it can be generated from eigenvectors of
affine equivariant scatter matrices.

The choice of Fisher’s direction is optimal when we actually know the
two partitions we want to test for recombine. Only under the assumption
of no knowledge about the basic groups, one of the alternative directions
presented here can be considered, for example in the case of a splitting step,

Figure 10: Einbeck mode detection test with default parameters
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Figure 11: Einbeck mode detection test, gridsize decreased

where we can project the data and split into groups until no bimodality can
be detected.

5. Conclusions

We have developed a method to split a data set using the discriminator
function and recombine the obtained groups to find the final configuration
incorporating the dip-statistic to test for unimodality. Also, we presented a
graphical tool which allows to see the evolution of the merging procedure,
and unveil which groups are more internally connected. The results show
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Figure 12: Einbeck mode detection test, gridsize decreased and taumin augmented

that the proposed technique can be a useful tool for exploratory research,
since it allows to dynamically vary the level of significance to visualise the
merging behaviour of the procedure.

The method have two issues which must be taken into account when ap-
plying it, which are also present in other dip-statistic based approaches: the
validity and interpretation of p-value, and the chosen projection technique
for multivariate data.

The obtained p-values does not hold the assumption of independence of a
standard hypothesis test, because the partitions we test for unimodality are
obtained from a previous methodology, and they are dependent in the sense
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they are disjoint by construction. Therefore, we test the same data several
times, because we compare each basic group against all the rest.

Nevertheless, even without the traditional interpretation of p-values, they
can be used to show the behaviour of the merging when we modify the
minimum level α from 1, where no groups are connected, to 0, where there
is a connection between all groups. The most similar groups will merge in
values close to 1, and clearly disjoint groups will not merge until values below
0.01.

In the other hand, it is important to notice that some useful information
of the structure of the real data can be lost in the reduction of dimensionality.
This is specially relevant in complex data sets or high dimension problems,
and in this context, multivariate mode detection techniques, as those we
reviewed in the discussion section, should be preferred.
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