
Learning Sequences of Rules using Classifier Systems with Tags

A. Sanchis", J. M. Molina", P.Isasi* and J. Segovia**

* Departamento de Informiitica, Universidad Carlos I n de Madrid
Cmutarque 15,2891 1- LeganCs (Madrid)

** Departamento de Lenguajes y Sistemas, Facultad de Informiitica, UPM
Campus de Montegancedo, Boadilla del Monte (Madrid)

ABSTRACT The objective of this paper was to obtain an
encoding structure that would allow the genetic evolution of
rules in such a manner that the number of rules and relationship
in a Classifier System (CS) would be learnt in the evolution
process. For this purpose, an area that allows the definition of
rule groups has been entered into the condition and message part
of the encoded rules. This area will be named Internal Tags.
This term was coined as the system has some similarities with
natural processes that take place in certain animal species, where
the existence of tags allows them to communicate and recognize
each other. Such CS has been named Tags Classifier System,
TCS. The TCS has been tested in the game of draughts and
compared with the classical CS. The results show an improving
of the CS performance.

1. INTRODUCTION

A Classifier System [1, 2, 3 ,4 , 5. 6, 7, 81 is composed of three
main components, which can be considered as activity levels.
The first level (Classifier System) is responsible for giving
responses (satisfactory or otherwise) to solve the problem
proposed. At this level, there are system rules, encoded by
means of restricted alphabet character strings. When this level is
executed, a response is given to a particular situation. The
fitness of the response to the problem that is to be solved is
measured by means of the reward received by the above rule
from the environment. The second level (Credit Assignment)
evaluates the results obtained at the lower level, distributing the
rewards received by the rules that provide the output among all
those that contributed to activating each of the latter rules. As
this is a reinforced learning method, this evaluation can be
adjusted by applying a reward or payment by the environment,
whose value will be high if the solution is satisfactory and low if
it is not. Reassignment can be carried out by means of different
algorithms [4, 91, of which the Bucket Brigade [3] is the most
commonly used and the one employed in this paper. At this
level, it is not possible to modify system behaviour by changing
its rules; however, it is possible to adjust their values and
establish some sort of hierarchy of good and bad rules. The
mission of the third level (Discovery) is to find new means for
the system to discover new solutions, for which purpose a
Genetic Algorithm (CA) is used.

Rules can be activated in parallel at the CS action level, whereas
they are activated in series in traditional production systems.
During each recognition cycle, a traditional system activates a
single rule. This rule-by-rule procedure is a bottleneck for
productivity growth; moreover, many of the differences between
production systems architectures are related to the selection of

the best strategy for activating the rule in question. CS's
overcome this boaleneck by allowing the parallel activation of
rules during a particular recognition cycle, or internal cycle. So,
different activities can be coordinated in parallel in a CS. When
a choice has to be made between mutually exclusive
environmental actions or when the size of a rule has to be
pruned to adapt its length to that of the listed messages, these
decisions are left until the last possible moment when they are
selected competitively, for example. So, the sequence of
operations of a traditional CS can be outlined as shown in Table
1.

Table 1: Sequence of operations at the action level of a
traditional CS.

message will be activated. One message can activate

Therefore, traditional CS operation is based on three
fundamental concepts:
1. The solution of the global problem is a set of rules (a subset

of rules is a solution to a particular situation, and a single
rule may even be a solution for a very specific situation,
although this is unusual).
Each rule's payment is distributed' among the rules that
activated it in the internal cycles.
The Genetic Algorithm allows rules to be generated from
the best rules, which leads, theoretically, to an
improvement in overall system operation.

2.

3.

The manner in which Classifier Systems operate has some
drawbacks, of which the following deserve a special mention:

1. With regard to the system's ability to learn chains of rules
which, moreover, do not break from one learning instant to
another; the loss of a rule from the chain can lead to a loss
of all the knowledge due to the interrelations between rules.

0-7803-5731-0/99/$10.00 01999 IEEE V -624

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:27 from IEEE Xplore. Restrictions apply.

The rules make sense not individually but only as groups
which are unknown a priori.
With regard to the need to apply the discovery algorithm to
generate increasingly better classifiers and, finally,
With regard to the sequencing of the cases put to the
system in order to guide learning towards an improvement
in overall system behaviour.

2.

3.

The problem addressed in this paper is in particular how to
combat the problem of the loss of rules and the need to
"maintain acquired knowledge". Both problems are due to CS
discovery level action, which leads the mechanisms of the CS to
fail when forming and maintaining associations between rules.

The discovery level acts on the set of classifiers that have just
been executed in such a manner that the new rules are generated
from the best rules prior to discovery level action. This
operation can lead to the loss of rules that are necessary for
solving certain points of the problem and which appeared at the
start of the learning period but failed to do so later on. This
means that rules which were very good at the start of the
execution can be considered by the GA as less valuable, because
other rules are stronger.

"Internal Tags" (IT), proposed by Holland 161 and others for
application to Genetic Algorithms, were introduced for this
purpose, giving rise to a new class of CS, Classifier Systems
with Tags (TCS). Apart from preventing the loss of rules,
different rules must be made to coexist at all times, thus
stopping the rules becoming uniform, leading to a loss of variety
in the rule population.

2. CLASSIFIER HIERARCHIES

Ad-hoc internal CS hierarchies
The problems of rule loss have been addressed from various
viewpoints in the literature with a view, in all cases, to
improving CS's. Shu et al. [IO] c Consider introducing
hierarchies into CS's, that is, groups of tules that have to be
maintained throughout the learning process. The rule groups are
formed a priori and are given by the expert problemsolver. This
is an attempt to solve the problem which DeJong [111 solved by
means of crowding in the field of Genetic Algorithms. So, on
the one hand, they establish rule groups (families) and, on the
other, they propose genetic operators that act intrafamily and
interfamily. The payment system is also modified, and when a
rule from one group wins, all the other rules in its group also
partake of that prize.

Basically, the problem with discovery level action is that all the
rules are considered to be 'equal. This idea, which is logical in
other Evolutionary Computing techniques, where each
individual is a solution to the problem, and they, therefore, all
have to compete with each other, is not directly extendible to
CS. This is because no one rule is capable of solving the
problem on its own in many cases, which means that not all the
rules are equal. A rule that is fired in a particular situation and
whose action solves the problem is not the same as a set of rules
that must be fired in order so as to address a different situation.
Here, the strength of the first rule is likely to grow much more
than the strength of all the rules chained in the second case. In
order to solve this problem, Shu proposes dividing the CS rule
set into subsets, each of which has rules specialized in a
particular point of the problem, in such a manner as to make the
members of the same family of rules compete.

Furthermore, the distribution of the payment among members of
one f a ~ ~ d y means that the knowledge acquired earlier is not so
quick)! forgotten, as a rule that attains a given strength value
continues to receive strength as a result of the execution of rules
belonging to its family. The loss of rules is especially critical
when the problem that is to be solved requires complex rule
chainings. as the loss of a rule in the chain at the discovery level
can mean that all the chaining is overlooked and the chain is
entirel! forgotten, which will mean that it will have to be learnt
again later.

Hierarchically organized independent CS
In 1995. Dorigo [I21 presented the results of solutions designed
to make Classifier Systems learn faster. The tools he used are:
parallelism, a distributed architecture and training. With respect
to parallelism and the parallel architecture, he proposes a
parallel version of ICs [13], and designed a parallel Classifier
System. called Alecsys, applied to what is termed the "animal
problem" [141. This problem is addressed from the viewpoint of
dividing the problem into smaller parts, based on a hierarchical
architecture in which a series of ICs's learn to cooperate in
solving the leaming problem. The different ICs levels are
executed in parallel on different machines, and, moreover,
different ICs's, responsible for different tasks, are also executed
in parallel. The author [12] takes up Brooks's idea of "reactivity"
[15], that is, the existence of a set of behaviours, each of which
is implemented by means of an ICs and which are independent
of each other and produce an output for each input. The whole
system is composed of three systems: an ICs to overcome
obstacles, another to attain a goal and, finally, a system that
decides which of the two possible outputs is the output of the
combined system.

The author proposes that internal conditions be included to
achieve rule chaining (which is equivalent to behaviour chaining
in this case). This allows messages from the environment to be
distinguished from messages from earlier cycles. Dorigo's study
centres on the usefulness of the internal conditions without
clearly explaining how they are used internally by the CS. The
results of this part of the paper show that the size of these
internal conditions, as applied in this case, is not very relevant
for learning.

In short. Dorigo's paper [I21 proposes a sort of hierarchy, since
the final CS is composed of three CS's: two basic CS's and
another that decides which CS is appropriate for each situation.
In each case, rules are evolved independently, in such a manner
that each behaviour evolves separately. The problem with this
hierarchical approach as compared with Shu's proposal is that it
is impossible to perform genetic operations that allow holistic
evolution. as each Classifier System is evolved independently
and is unrelated to the others. That is, no relationships can
evolve between each behaviour such that a rule from one
classifier can activate a rule from another. The question is
whether the separation of the Classifier System into several
Classifier Systems raises system effectiveness in particular
situations. In any case, it prevents the generalization of learning.

Automatic category generation within a CS has not been
addressed in any paper to date. The idea can perhaps be
borrowed from nature: some species use "tags" to limit a "call or
warning" to a set of individuals, discriminating a subset among
the total set. In the same manner, parts can be included in rules
that allow some to be discriminated from others. What we will
call Internal Tags (IT) can be defined in an ad hoc manner by
creating a given string of calls [lo] or can be defined in such a

V -625

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:27 from IEEE Xplore. Restrictions apply.

manner that the ITS themselves evolve, determining what groups
are necessary. In short, each rule can be provided with a field
which will evolve genetically and which identifies that the rule
in question is a member of a group, similarly to the tags
proposed by Holland [6].

3. EVOLUTION OF TAGS IN A CS: THE TCS

As discussed in the preceding section, any solution that seeks to
prevent the loss of rules necessarily involves creating subsets
within the set of classifiers of which the CS is composed. The
two solutions studied are: creation of a hierarchy in the a priori
population and composition of several independent Classifier
Systems. These solutions limit the generality of the CS learning
process, as the hierarchies are considered to have been learnt in
one case or because of the decomposition into several CS in the
other, in such a manner that the learning context is subject to
these constraints.

The proposed solution must, therefore, combine the ability to
learn without a priori knowledge and the capability of
generating some kind of internal subdivision within the CS to
allow categories of rules to exist. A CS, called TCS, has been
designed that allows groups to evolve automatically. For this
solution to be implemented, the encoding of the classifiers will
have to be modified to include a field that represents the type or
group to which each classifier belongs. So, for example, given a
CS, such as:

A 1-bit field can be reserved to establish the classes making up
the CS, and the resulting CS would be as follows:

This field can be used to subdivide the CS into several groups of
classifiers, each of which contains the classifiers that have the
same value in the new field. This field can be said to establish
the classifier type or group. So, for example, the specimen CS
could contain the following classifiers:

According to the definition of the value of the field that

establishes the classes, there are 2 classes: one defined by
classifiers whose value is 1 (Classifiers I , 2 and 3) and the other
by those whose value is 0 (classifiers, 4, 5 and 6). Note that the
definition of a class is determined by the value of the above field
in the condition part of the rule, that is, rules that must have the
same value in the field for activation are members of the same
group.

This field, which appears in the encoding, evolves in the same
manner as the other fields, which means that the number and
size of each class in the CS hierarchy is variable and must be
learnt. Wide ranging groups can be established, and all the
classifiers could actually have the same value, in which case the
system would operate like a classical CS.

Apart from establishing the classifier type according to the value
of the condition part, as it is included in the message part which
evolves similarly, not only are the rule groups evolving, so is the
form of intergroup activation. So, in the preceding example, a
set of classifiers could evolve as follows:

I I Rule Message Classifier

I 1 I 01101 OOOOO
2 I OOO11 11 100 I

I
~~ ~

3 I 11011 loo00
4 I OOOOO 0001 1

I 5 I 11100 1101 I
6 I 00010 01 101 1

In this case, the group 1 classifiers activate group 0 classifiers
and vice versa. Obviously, this type of activation must be learnt
by the CS and there are range of possible configurations.

Finally, it is important to take into account that the inclusion of a
field in the classifiers means that a value must also be entered in
the input message in the above position. This value is not
determined by the environment; it is defined a priori by means
of a value encoding the fact that the message in question is the
environmental message. In this manner, the CS will have to
learn which rule group having the same group definition field
value is to be activated in response to the environmental
message.

The appearance of hierarchies in the CS is subject to the
information about the category to which the rule belongs being
maintained in each rule. This information must evolve
genetically; obviously, if the information about the category in
each rule is capable of representing “n” different categories, the
solution to the problem could be composed of m (m a)
categories and the remaining categories would be irrelevant. If
this information is represented in each rule and it is allowed to
evolve, the number of rules associated with a particular category
is also variable; in this respect, the genetic evolution of the
categories will not only allow the categories required to evolve
but also for each one to have the size required to solve the
problem.

TCS Operational Schema
The sequence of operations at the action level is the same as for
traditional CS (Table 1). However, there are fields in the
conditions and messages whose sole mission is to define the
category to which the rules which sent their messages to the
message list in the preceding cycle belong. The first activation
takes place using the environmental message, as shown in Table
1. The environmental message should contain default values that

V -626

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:27 from IEEE Xplore. Restrictions apply.

indicate that it is an environmental message. As of this first
message, the activated classifiers will send their messages to the
message list, and we will then have a generation of messages of
different categories which will have specialized in responding to
the environmental message. This information in the messages
will have an impact on the next classifiers activated, that is, i t
will be involved in chaining the rules that are fired. In this
manner, rules of the following type will evolve:

Starting instant:

IF The external-signal is d y p e I >
THEN message <001 ... > and group <X>

Subsequent instants:

IF the message is 4 0 1 ... > and the group is <x>
THEN message 4 0 1 ... > and group <Y>

In short, the mechanism of including Internal Tags (IT) in rules
is beneficial for evolving complex solutions within a CS. As the
TCS is executed in parallel and all the rules are activated at the
same time, a range of complex strategies are generated in the
messages list by chaining rules from different groups. These
strategies are maintained during the internal CS execution cycles
and the best are learnt by means of credit reassignment and
discovery processes.

Apart from having to differentiate the encoding for different
groups, another two levels of the CS will have to be adjusted:
the credit reassignment algorithm (BBA) and the discovery
algorithm (GA). This is due to the need for each rule group or
hierarchy to gradually evolve in parallel. On the one hand, the
credit eamed by one rule needs to be distributed among all the
rules of its group in order for these rules to beat other groups, in
such a manner that the strength of each group can be considered
as a factor to be taken into account when performing intergroup
genetic operations. In this case, it is not only an individual that
evolves; evolution ' is focused on the generation of compact
groups, which are widely used and should, therefore, have a
better rule set, without overlooking the need for groups whose
elements, though perhaps fewer, are essential for developing the
final strategy. Note that if the strength of all the rules of a group
increases when one of the rules of the group is assessed as
positive by the BBA, the strength of those groups of rules that
are chained with this group will also be increased, as the
percentage strength awarded for activation will be calculated on
larger sums.

4. TSC EVALUATION IN THE GAME OF DRAUGHTS

In this paper, we seek to get a measure of the contribution of
Internal Tags (IT) to the learning process in a Classifier System.
A clear evaluation of the contribution of ITS in the encoding
calls for a problem that is solved in a perfectly defined
environment. The environment chosen in this case was the
learning of draughts end games, that is, draughts matches where
only a few pieces remain on the board at an advanced stage of
the game.

The objective of applying the TCS to learning the game of
draughts is not to obtain a CS that plays draughts; i t is to apply
Classifier Systems in a clear and defined environment that
allows traditional Classifier Systems to be compared with the
modification proposed in this paper, including IT. Obviously,
there are a lot of systems that play draughts, some very

successfully [16]. However, for the purposes of this study and
comparison, a player following a random strategy will be used,
and measurements will be taken of the games each type of CS
(classical/with IT) wins against the random player using
different configurations.

Game Rules
There are a lot of variations on the game of draughts. In this
paper, a @-square board is used with black and white squares.
The game is played by two players one with white pieces and
the other with black pieces, which are either pieces or kings.
Initially, the white pieces are placed at the bottom of the board
and the black pieces at the top, and there no kings. In this paper,
the opening boards are not used, as we work only with end
games, where the maximum number of pieces is 5. These can be
pieces of any kind and be situated in any valid position on the
board. The kings are crowned when a piece reaches opposite end
of the board. The edges of the board are the limits of the moves.
The edges of the board are not continuous. In this paper, the
directions of the moves are considered as absolute. When an
opponent's piece is positioned in any of the directions in which a
player's piece can be moved, the latter will take the piece that is
in its path, by jumping over it onto the next vacant square in that
direction. The piece captured will be removed from the board.
This process will be repeated as many times as possible before
the opponent player can take its turn. When either player has
made a move or taken a piece (and cannot capture another
piece), it will be the opponent's turn. The game will end when
only one player's pieces remain on the board or there is a draw.
There is a draw when the player whose turn it is cannot make
any move.

Information encoding
This involves analysing how and what information about the
board, the pieces, players, turns, moves, etc., can be supplied to
the CS as an input message. The encoding chosen for the game
of draughts is such that an output from the CS is always
interpreted as a move. This means that the CS decisions are
interpreted depending on the system status. Obviously, the
system must be able to play with both black and white pieces, so
an encoding was chosen that does not take into account "the
colour" of the piece. Additionally, the directions of the moves
have been taken to be absolute as explained above.

Input Message: The information available on the board and that
can be entered into the system is: the number pieces on the
board, the colour of each piece, coordinates (x,y) of each piece,
piece type (piece or king), directions in which it can move or
take and how far it can move or take in each direction. The input
messages include the status of the board at any one time: total
number of pieces, number of pieces belonging to the CS player,
colour, who's turn i t is, how many kings there are, etc. This
information will be encoded in a 57-bit length input message for
the traditional CS. The number of bits will be 61 for a classifier
with IT, as 4 bits are entered to represent the ITS. The first
position of the input message encodes the information about the
possibility of taking (with a 1) or only moving (with a 0). The
next 4 positions contain information about the total number of
pieces there are on the board, and the next 12 on the pieces that
belong to the player whose turn i t is, how many of these are
kings and the number of the opponent's kings, all encoded using
4 bits in each case, considering the percentage represented.
Then, the information regarding the position of these pieces is
recorded, by transforming this decimal number into a binary
number of up to 8 bits. Finally, if the total number of pieces is
under 5 , the remainder of the message is filled in v i t h "#"

V -627

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:27 from IEEE Xplore. Restrictions apply.

symbols.

Output message : The output message has the same length as
the input message, 61 or 57 bits, depending on whether or not
the ITS are taken into account. Only the last 16 bits of the entire
message sent through the output interface of the CS after having
performed the chaining process for several internal cycles are
used as an output. With regard to the output messages, the
respective positions will be taken and the decoding process will
be performed.

5. COMPARISON BETWEEN CS AND TCS

The objective of this section is to compare the traditional CS
with the TSC. For this purpose, the above systems will be
played against a player who makes random moves, having a
variable degree of randomness and starting from different
situations. The two systems commence without any previous
knowledge, that is, their entire population is randomly
generated, which means that their rules and messages are not
adapted to any particular case and their moves Will, in principle,
also be random. The three types of experiments conducted under
this point were performed by gradually increasing their
difficulty level in order to examine the behaviour of the two
systems in face of the above changes. In the first type of
experiments, the randomness of the random player is gradually
raised. This means that there are different levels of randomness
within a random player. This level of randomness is entered in
the output message produced by the random player. The output
message of the random player has the same make-up as that of
the CS; however, it possesses only the sixteen characters
required by the decoding process for transformation into a
particular move. The output message of the random player for
all the games that have been executed in this section is based on
a fixed message. Randomness is entered in the output message
of the random player depending on the number of characters in
the above message that are generated randomly. This generation
is regulated proportionally, that is, there are random players
whose output message is composed, for example, of 4%
random characters. This percentage of randomness in the output
message is applied to each move to be made by the random
player in each game, which means that a different output
message from that created in the previous move is generated in
each move.

Three groups of experiments with a different starting situation
were performed for the comparison. The experiments were
defined in increasing order of complexity, depending on the
opening board with which each game that was to be played
commenced: first, the opening board will be fixed for all the
games, then the positions of the pieces that appear on the board
in each game will be altered and, finally, the opening board will
be generated at random for each game. In the first experiment,
differing degrees of randomness will be applied to the opponent
player, starting with 0% randomness and increasing this
percentage up to 100% randomness. In the last two experiments,
the opponent will 100% random throughout, and the opening
boards will be modified incrementally, either by changing the
position of the pieces or by generating a new board.The result
will show the evolution of the games won and lost by the two
types of Classifier Systems. These results correspond to the
average of five groups of games. In order to analyse the results
obtained in more detail, the percentages of games won at the end
of learning for each CS and' for each experiment, and the
percentage improvement of the TCS as compared with the CS
are set out in Figures 1, 2 and 3. Analysing the results, we find

that the contribution of ITS to the cs is not relevant in all
situations. In problems where the CS has to learn a very simple
sequence of operations, because the problem to be solved is less
complex, the ITS can turn out to be more of a handicap, as their
inclusion means that the system is forced to "learn" how to chain
rules, when such chaining may be unnecessary. As the problem
becomes more complex, the need for rule chaining increases,
and the contribution of the ITS becomes evident, since their
existence encourages rule chaining. So, we find that the results
of the TCS in the first experiments (Figure 1) only improve on
the CS in the last case. On the other hand, an improvement is
seen in the results obtained with the TSC as compared with the
CS in the subsequent experiments performed (Figure 2 and
Figure 3).

Fixed Opening Board

0.6

0.4

Figure 1: Percentage of games won by the TCS and the classical CS,
averaged out over 5 different situations on the same opening
board, against an opponent player whose randomness
increases from 0% to 100%.

Modified Opening Board

1 , I

0.4 { A I k

":
lG% 20% 30% 40% 50% 60% 7G% 80% 9 0 1 C 1 m

Figure 2: Percentage of games won by the TCS and the classical CS,
averaged out over 5 different situations on the an opening
board modified by between 10% and 100%. against a 100%
random opponent player.

I Randomly Generated Opening Board

I 1 , , I

Figure 3: Percentage of games won by the TCS and the classical CS,
averaged out over 5 different situations on an opening board
of which between 10% and 100% was randomly generated,
against a 100% random opponent player.

V -6628

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:27 from IEEE Xplore. Restrictions apply.

Figure 1 shows the results of the experiments in which the
opening board was unchanged. In this case, the problem appears
not to require rule chaining to develop strategies that can be
used in unexpected situations, since the opening board is fixed
and there are, therefore, only limited possibilities of different
moves. So, the CS is faced with a player who, for all intents and
purposes, makes a well-defined series of moves whose
variability is very restricted. This is why the TCS results are
14% worse on average than those obtained by the CS.
Considering that this is the simplest possible case, it appears that
is counterproductive to force the CS to employ ITS, as it makes
the TCS play worse than the CS. In the last case, where the
systems face maximum variability, the results are very similar,
and those obtained by the TCS are slightly better, mainly
because the need for chained strategies starts to become evident.
Figure 2 shows the results obtained when the opening board is
modified using an incremental degree of randomness. In this
case, the TCS performs 10% better on average than the CS; this
is because the system has to start to generate more complex
actions to be able to respond to more diverse situations. It is
noteworthy in this case that the two systems obtain poor results
at the maximum level of randomness, compared to the results
that they obtained at lower levels of variability. This is perhaps
due to the fact that these are very indeterminate situations where
it is difficult for the system to be able to extract knowledge. In
Figure 3, the results obtained show that as the degree of
uncertainty in opponent player performance is increased, a
higher percentage of the results of the TCS are better than those
of the CS, in this case 15% on average. Again neither of the two
CS are able to obtain results of over 60% of games won with the
effect of maximum randomness.

6. CONCLUSIONS

One of the major problems related to Classifier Systems is the
loss of rules, when the learning process presents individual cases
and allows the system to learn gradually from these cases. Each
learning interval with a set of individual cases can lead the
strength to be distributed in favour of a given type of rules that
would in turn be favoured by the Genetic Algorithm. If this
reasoning is extended to the entire learning process, genetic
diversity, which is so necessary for learning, can disappear due
to the growth of a given type of rules in the population.
Furthermore, when different rule sets are needed to solve part of
the problem, these may disappear if part of the problem
(corresponding to the rules that can be lost) is not presented in
the examples found up to a certain point. However, the above
rules can be very necessary.

The objective of this paper was to obtain an encoding structure
that would allow the genetic evolution of these groups in such a
manner that their number and relationship would also be learnt
in the evolution process. For this purpose, an area that allows the
definition of rule groups has been entered into the condition and
message part of the encoded rules. This area will be named
Internal Tags. This term was coined as the system has some
similarities with natural processes that take place in certain
animal species, where the existence of tags allows them to
communicate and recognize each other.

the same objective, is of special interest, and a study has,
therefore, been conducted to analyse what effect they have and
what results are obtained in each of the proposed Classifier
Systems. In short, we can infer from the results obtained that
Classifier Systems are able to learn in games environments and
that when the game is complicated, it requires a complcx
solution which is not satisfactorily provided by classical CS‘s
and thus requires the inclusion of tags.

7. REFERENCES

J. Holland, “Adaptation in Natural and Arlificial
Systems”. University of Michigan Press, Ann Arbor,
(1975).
J. Holland, “Adaptive Algorithms for Discovering and
Using General Patterns in Growing Knowledge Bases”,
International Journal of Policy Analysis and Information
Systems, vol. 4,245-268, (1980).
J. Holland, “Properties of the Bucket Brigade”. In Proc.
of International Conference on Genetic Algorithms and
their Applications, vol. I , 1-7, (1985).
J. Holland, “A Mathematical Framework for Studying
Learning in Cks i j ier Systems”, Physica D, 22, 307-317,
(1986).
J.H. Holland, “Escaping Brittleness, The Possibilities of
General Purpose Learning Algorithms Applied to Rule-
Based Systems” in [MCM86], 593-623, (1986).
J.H. Holland, “Hidden order: how adaptation builds
complexity”. Reading Massachusetts, Addison-Wesley,

D.E. Goldberg, “Genetic Algorithms in Search,
Optimization, and Machine Learning ”. Addison Wesley,
Reading Massachusetts, (1989).
M. Mitchell, “An Introduction to Genetic Algorithms”,
MIT Press, Massachusetts, (1996).
G.E. Liepins, M.R. Hilliard, M. Palmer and G. Ranjaran,
“Credit Assignment and Discovery in Classifier
Systems”, International Journal of Intelligent Systems,

L. Shu and J.Schaeffer, “HCS: Adding Hierarchies to
Classifier Systems”, Proceedings of the 4th International
Conference on Genetic Algorithms, 339-345, (1991).
L. Booker, D.E. Goldberg and J.H. Holland, “Classi’jier
Systems and Genetic Algorithms”, Artificial Intelligence,

M. Dorigo, “ALECSYS and the AutonoMouse: Learning
to Control a Real Robot by Distributed Classifier
Systems”, Machine Learning, 19, 209-240, (1995).
M. Dorigo and U. Schnepf, “Genetics-Based Machine
Learning and Behavior Based Robotics: A New
Synthesis”, IEEE Trans. on Systems, Man and
Cybernetics, 23:1, 141-154, (1993).
S . Wilson, “Knowledge Growth in an Artificial Aiiimal”,
Proc. of the First International Conference on Genetic
Algorithms and their Applications, 16-23, (1985).
R.A. Brooks, “Intelligence Without Representation ”,
Artificial Intelligence, 47, 139-159, (1991).
J. Schaeffer, “One Jump Ahead“, Springer-Verlag,
(1 997).

(1995)

vol. 6,55-69, (1991).

235-282, (1989).

The results presented show how the proposed Classifier Systems
are capable of improving on the classical approach of Classifier
Systems in cases in which rule chaining is relevant. The
importance of this contribution. is the discovery of a learning
method that allows similar or related knowledge to be grouped.
This property of ITS, the automatic grouping of rules that share

V -629

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:27 from IEEE Xplore. Restrictions apply.

