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Abstract. I analyze the admission mechanism used in Spanish universities. The
system is open to strategic manipulation. This is because students are not al-
lowed to express the whole list of available options. However, the mechanism
implements the set of stable matchings in Nash equilibrium and the student’s
optimum in strong equilibrium. The mechanism also implements the students’
optimum, in Nash equilibrium, under the class of “non-reverse” preferences. All
these properties come from the fact that colleges do not have the opportunity to
misrepresent their preferences.
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1 Introduction

The admission of students to universities is an important economic decision. It
affects students’ lives in many ways and mobilizes many public resources. These
resources admit other uses even within the global higher education budget.

The process that matches students and universities resembles a market with
some peculiar features. Demand and supply of positions are discrete variables.
Prices (fees) are not flexible and cannot play the usual role of adjusting supply and
demand. Yet, efficiency considerations make it important to take the preferences
of students into account, and to adjust the supply of positions to social demand.
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For all these reasons, I want to study a model capturing the essential fea-
tures of the process whereby a public office might intermediate among students
who seek a position in the higher educational system and the suppliers of these
positions – the universities. The appropriate model is well known: it is called
a many-to-one two-sided matching problem. This model has been extensively
studied since the seminal work of Gale and Shapley [3] (for an excellent survey,
see Roth and Sotomayor [9]). I have chosen the details of the model so that they
fit the institutional features of the system which is presently used in Spain to
decide on which students should be admitted to each available college position.
The Spanish model limits the number of options that students can declare and
gives no chance to the colleges to act strategically. This analysis can be applied
to many other cases, for instance the allocation of interns to hospitals in the same
country, and can be adapted to cover similar procedures used in other countries.

This paper is concentrated on the strategic aspect of such an allocation pro-
cess. The system used in Spain is open to manipulation because students are not
allowed to express the whole list of their desired options. In the short run these
manipulations do not necessarily disrupt the stability of the allocation. Techni-
cally speaking, I prove that stable allocations will be implemented under different
equilibrium concepts. But I also argue that strategic behavior may result in mis-
perceptions of the true preferences of the students, and eventually distort the long
run allocation of funds within the educational system.

After a few definitions Sect. 2 studies the specific features of the Spanish
system. Section 3 analyzes their strategic and allocational consequences. Section
4 contains the main results and their implications for the long-run allocation of
resources. Short conclusions follow in Sect. 5.

2 The model

In a bilateral market there are two finite disjoint sets. LetS = {s1, s2, ..., sn} be
the set of students and letC = {c1, c2, ...cm} be the set of colleges. Eachsi is
endowed with a complete, transitive preference relationP(si ) on C ∪ {si } 1.
For cj , ck ∈ C , cj P(si )ck means thatsi prefers to be matched to collegecj

rather thanck ; si P(si )cj means thatsi prefers to be unmatched rather than be
matched withcj . Similarly, each collegecj is endowed with a complete transitive
preference relationP(cj ) on S ∪ {cj }.

I denote preference profiles byP. The preferences of any agent are going
to be represented by a list,P(si ) = c1, c2, ..., si , cl , cl +1, ..., cm. In this list, c1 is
si ’s most preferred college,c2 is his second more preferred college, and so on.
si represents the position where he places the possibility of not being matched.
Any college after this position is unacceptable forsi .

Every collegecj has a maximum number of available admissionskj . This
quota is determined exogenously and reflects the physical capacity of each col-
lege.

A matching is a correspondenceG : C ∪ S ⇒ C ∪ S, such that:
1. |G(si )| = 1, for every studentsi ∈ S, andG(si ) = si if G(si ) /∈ C .
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2. |G(cj )| = kj , for every collegecj . If the cardinality ofG(cj ), sayr , is smaller
thankj , thenG(cj ) haskj − r copies ofcj representing empty allocations.
3. G(si ) = cj if and only if si ∈ G(cj ).

I denoteG(si ) by Gi andG(cj ) by Gj . Subindexesi and j refer to students
and colleges, respectively. The setM represents all possible matchings between
students and colleges.

As the students have only one college in each stable matching, their prefer-
ences over matchings correspond to their preferences over individual agents. The
same cannot be said about colleges: every college having a quota higher than
one should be able to compare groups of students.

Definition 1 A preference relation P♦j for cj ∈ C over the set of students is

responsivewith respect to the preferences Pj over S∪ {cj } if for every G’
j =

Gj ∪ {sk} \ {σ} , with σ ∈ Gj and sk /∈ Gj , cj prefers G′
j (under P♦

j ) over Gj if
an only if cj prefers sk to σ (under Pj ).

I will assume that preferences of colleges over groups of students are respon-
sive to their preferences over individual students.

A market is described by a triplet (C ,S,P), whereC is a set of colleges,S
is a set of students andP stands for the preferences of both sides. I will use this
notation to provide a brief description of basic concepts.

Definition 2 Let G be a matching in the market(C ,S,P). G is individually
rational if it satisfies:
i) for all si ∈ S , [Gi ∈ C ] → [Gi Pi si ], and
ii) for all c j ∈ C , and for all si ∈ S ,

[
si ∈ Gj

] → [
si Pj cj

]
.

Definition 3 Let G be a matching in the market(C ,S,P). The pair(cj , si ) blocks
G if:
i) [Gj ∪ {si } \ {σ}]Pj Gj , and
ii) cj Pi Gi .

Definition 4 A matching G isstable for (C ,S,P) if it is individually rational
and it is not blocked by any pair(cj , si ).

I will denote the set of stable matchings of a market (C ,S,P) as E. Given
a market (C,S,P), E (si ) stands for the set of elements inC assigned tosi in
some stable matching;e(si ) is an element ofE (si ). The existence of at least one
stable matching for each market was originally established by Gale and Shapley
[3].

2.1 The Spanish system

In Spain colleges admit students by using a ranking based on the students’ pre-
vious studies, their grades in high school, and grades from an admittance ex-
amination. This priority criterion leaves no room for colleges to influence their
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admission choices. Students who have already finished high school and want to
go to college must pass an exam. After that they submit an ordered list con-
taining a limited number,t , of possible declarations. This number is common
to all students. Each university offers positions for different types of training,
for example, physics, mathematics, history, economics, etc. Students can simul-
taneously apply for one position in each one of the different schools of each
university. To keep with the traditional terminology in the matching literature, I
refer to each one of these schools as a separate college.

Once the central allocation office has received all the lists, the Deferred
Acceptance Procedure (D.A.P.) is used to allocate students to colleges. First,
students are arbitrarily ordered. The first student is assigned to the most preferred
college for which this student is acceptable. At each stage the corresponding
student is assigned tentatively to his most preferred college. However, if the
college has already completed its quota with other more preferred students, he
is refused, and tentatively matched with the following college in the student’s
ranking. The algorithm continues until each student is assigned to a college or
there is no college left in their list. It is only then that the tentative match becomes
final. This algorithm leads to the stable matching that all students unanimously
consider best for them.

Formally the problem is described by four elements (C, S, P, t), already
defined, where the number of possible declarations of the students, and the col-
leges preferences are fixed exogenously. Therefore, the declarations of the agents
and the results of the mechanism will only be determined by the students’ pref-
erences. I need to distinguish between the statements that agents would make
about their preferred colleges if unrestricted, and those that they will make when
constrained to declare only a fixed numbert of college positions.

I denote byqi the lists of colleges declared by agentsi from better to worse,
regardless of whether they correspond tosi ’s sincere preferences or not;qt

i rep-
resents a student’s list whensi is limited to declare at mostt options. Letq
denote the set ofqi lists declared by then students and them colleges;qt is
the same set when the students declare a maximum oft elements. I denote by
Q the set of all the possible lists, withq being a generic element ofQ. Finally
Qt ⊆ Q is the set of lists inQ where each student declares a maximum oft
colleges andpt

i represents the list declared by a studentsi and composed by the
t first colleges inPi in that same order. Similarly,pt ∈ Pt .

I now define a class of mechanisms associated to the D.A.P. Each mechanism
in this class, to be denotedJ (h,Q), results from applying the D.A.P. to the
students’ declaration and the preferences of the colleges. Lethi

(
qi /q−i

) ∈ C ∪
{si } be the outcome of the mechanismJ , wherehi (qi /q−i ) is the element that
corresponds to the agentsi through the D.A.P. when he declares the listqi and
the others agents declare the listsq−i . This results in an allocationh(q) ∈ M for
eachq ∈ Q. If the applicants declared a maximum oft colleges, fort between
1 andm, I denote the mechanism asJ (h,Qt ).
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3 The mechanism

In the mechanism without limits in the number of possible declarations, it is a
dominant strategy for the students to declare their preferences sincerely when
S-optimal algorithm is applied (Roth [7]). The limit on the number of colleges
available can affect the best strategy for students, and, with it, the allocational
properties of the D.A.P. Through a simple example it can be verified that the
Spanish mechanism may generate matchings that are not stable according toP
when the students declare sincerely their preferences.

Example 5ConsiderC = {c1, c2} , with a maximum capacity of one position per
college, andS = {s1, s2}, with the following preferences:

P(cj ) : s1, s2, cj ; j = 1,2. P(si ) : c1, c2, si ; i = 1,2.

The S-optimum stable matching isG∗ = {(c1, s1) (c2, s2)}. If the number
of possible declarations is restricted toti = 1, students declare their preferred
colleges sincerely, and the previously described allocation rule is applied, the
resulting new matching will be{(c1,s1) , (c2, c2) , (s2, s2)}. Given thatc2 strictly
prefers to accept any of the applicants to leaving a vacant position, ands2 prefers
to be assigned toc2 rather than remain unmatched, the pair (c2, s2) blocks the
matching, andG∗ is unstable.

None of the matchings reached through these limited mechanisms will violate
the individual rationality condition. This is true because the agents’ preferences
allow them to individually discriminate among the elements of the other side of
the market.

Hence, the matching generated by the mechanism with limits might be un-
stable, according to the true preferences of the agents, but it will always be
individually rational. There is a limit to the distortions caused to the procedure’s
outcome. We can be confident that we will not meet, in equilibrium, with match-
ings that are not individually rational.

If a stable S-optimum mechanism without limits is applied, it is a dominant
strategy for the students to declare their preferences sincerely. When a limit
on the number of options exists, the mechanism can no longer guarantee this
property.

Proposition 6 Given a stable S-optimum mechanism there is always a number of
admissible declarations such that straightforward behavior is no longer the best
strategy for any student si for whom more than one college is acceptable.

Proof. Let’s suppose that this statement is not true. In this case, a strategy exists
that is dominant for any applicantsi , who considers that more than one college is
acceptable, irrespective of the number of colleges that he could declare (1≤ t <
m). Let q−i be the lists that are presented by the rest of the agents (C ∪S/ {si }).
If q∗

i is a dominant strategy forsi then Gi (q∗t
i /qt

−i )Ri Gi (qt
i /qt

−i ) for every qt
i

and every possible declaration of the other agents (qt
−i ) and there exists oneq∗t

i
for all possiblet . In order to prove that this is not possible, it will be sufficient to

5



find, for each agentsi onet for which no strategy exists that is a better response
for any qt

−i .
Let’s suppose that there is asi such that it hasm elements in his preference

list. It is easy to check that if the firstm− 1 colleges insi ’s do not declaresi as
admissible, andt = 1, then the best strategy forsi is to declare his last element as
the unique option. Therefore, there are as many best strategies asm colleges. ut

The mechanism used in the Spanish college admission systemcannot guar-
anteethat all the agents will declare their preferences sincerely. There may be
limits that define games without dominant strategies for all the agents.

4 Implementation through the J mechanism

In this section I analyze two exercises of implementation in order to enlighten
the previous results. First, I define implementation.

Let (C,S,P, t) be a market andψ a concept of solution for this market.
That is to say,ψ(C ,S,P, t) ⊆ M and ψ(C ,S,P, t) /= ∅, for every market
(C ,S,P, t). Let (d,Q) be a game whered is the outcome function andQ the
set of possible agents’ declarations, and letφ be a concept of equilibrium. I say
that (d,Q) implementsψ in a φ-equilibrium if and only if, for every market
d [φ(d,Q)] = ψ(C ,S,P, t).

4.1 Implementation of the stable matching set

I will prove that the set of stable matchings when there is a limit in the number
of declarations is implementable is in Nash equilibrium.

Theorem 7 The mechanism J(h,Qt ) implements in Nash equilibrium the setE

of stable matchings.

Proof. First I will show that every Nash equilibrium in the mechanismJ (h,Qt )
is a stable matching. Suppose it is not. I have established that the structure
of agents’ preferences and the mechanism guarantee that the final allocation is
individually rational. So, if there is an unstable matching then a pair (cj , si )
blocks it.

In the mechanismJ (h,Qt ) the preferences of the colleges cannot be strate-
gically manipulated. Then, ifsi Pj σ, it exists a declaration forsi , q∗

i , where
hi (q∗

i ,q−i ) is cj . In particular, the listsq∗
i could declarecj as a single acceptable

choice. If there is a pair that blocks a stable matching, the allocation is not a
Nash equilibrium.

Any Nash equilibrium can be obtained when each agent declares only the
element that leads him to a particular stable matching. The result is the equilib-
rium and given this strategy of the remaining agents, no other agent will profit
from a deviation. ut
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The proof of Theorem 7 only requires that the agents declare a single position.
This result allows to establish the following corollary:

Corollary 8 The mechanism J(h,Q) implements in Nash equilibrium the setE

of stable matchings.

The results of Theorem 7 and Corollary 8 answer the first question: agents
will not generate unstable matchings if they play Nash equilibrium.

A second question is whether or not the strategic behavior of the agents will
lead them to guarantee the S-optimum stable matching.

4.2 Implementation of the S-optimum stable matching

In this section it will be shown how the mechanismJ (h,Qt ) implements the
S-optimum matching by using Aumann’s [1] definition of a strong equilibrium.
This equilibrium concept assumes a high degree of collusion between the agents.
A Nash equilibrium is a strong equilibrium if no coalition of players can make
all its members better off by jointly deviating from the equilibrium, while taking
the strategies of all other players as given.

Definition 9 A strategy qt is a strong equilibrium of the mechanism J(h,Qt ) if
it is a Nash equilibrium and it has the property that there is no coalition T⊂ C∪S
and q′ t such that:

(i) hk(qt
−T ,q

′ t
T )Pkhk(qt ) for all k ∈ T ∩ S, and

(ii) hk(qt
−T ,q

′ t
T )Pkhk(qt ) for all k ∈ T ∩ C .

Proposition 10 The mechanism J(h,Qt ) implements the S-optimum stable match-
ing in the market(C ,S,P) in strong equilibrium.

Proof. The fact that every strong equilibrium gives us the S-optimum matching
is a direct consequence of the Theorem 4.17 in Roth and Sotomayor [9]. Their
result is for the marriage model but can be directly translated to our context
because the colleges has not strategic possibilities. On the other hand S-optimum
stable matching can be obtained through the strategy of declaring just one element
which is a strong equilibrium of the game. ut

4.2.1 The non-reverse strategies

The implementation of S-optimum stable matching in the mechanism J implies
that, if players behave strategically according to the prescribed equilibrium, the
allocative properties missed by imposing a limit on the admissible list of colleges
that students can submit would be recovered. Even if straightforward behavior
would lead to unstable allocations, sophisticated agents would restore stability
and end up choosing the same allocation that they would have chosen when non
limited. Whether this is possible or not, depends on the type of Nash equilibrium
selection that is being played, and also on other possible restrictions on the set of
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admissible strategies. The same result may be achieved assuming a weaker equi-
librium concept but then restricting the class of strategies that agents are assumed
to be using. I identify a reasonable class, those that I call non-reverse strategies.
Non-reverse strategies constitute a class of strategies closely related with the
class of truncated strategies where the agents declare just the first elements of
their preference list.

I require agents to restrict their declarations to those that are compatible with
the information they have. In particular, their declarations must be consistent
with the fact that any stable matching is necessarily a Nash equilibrium. I also
demand that students do not reverse the order in which they declare colleges that
may eventually correspond to them at a stable matching.

Definition 11 A strategyreversesthe order of its elements when some elements
of E (si ) appear in an order different than that established in Pi , or no element
of E (si ) appears.

Theorem 12 The mechanism J(h,Qt ) implements the S-optimum stable matching
in the market(C ,S,P) in Nash equilibrium when the agents play non-reverse
strategies.

Before proving Theorem 12, I will show two interesting results contained in
Lemmas 13 and 14. These results will be useful not only to prove Theorem 12,
but also to understand the strategic context where students operate.

Lemma 13 A list qt
i whose acceptable elements are not ordered like in Pi , is dom-

inated by another list,g t
i , that contains the same elements in the order determined

by Pi .

Proof. I claim thathi (gt
i /qt

−i )Ri hi (qt
i /qt

−i ) for any qt
−i . Let us suppose that the

previous statement is not true. Then, there exists a set of listsqt
−i for which

hi (qt
i /qt

−i )Pi hi (gt
i /qt

−i ). I know thatqt
i and gt

i contain the same elements. The
mechanism provides the student with the first college in his list that is willing to
accept him once the rest of students have been placed. Ifhi (qt

i /qt
−i ) is strictly

preferred tohi (gt
i /qt

−i ) then hi (qt
i /qt

−i ) /= hi (gt
i /qt

−i ), collegehi (qt
i /qt

−i ) has to
be better thanhi (gt

i /qt
−i ) for si , and it should precede it inqt

i . Then,hi (gt
i /qt

−i )
is ranked abovehi (qt

i /qt
−i ) in gt

i . This situation contradicts our hypothesis that
gt

i orders its elements according toPi . ut
Taking into account Lemma 13 and the fact that it is better to declare the

maximum number of acceptable colleges, it can be inferred that, when a limit in
the number of colleges no longer exists, declaring the truth is a dominant strategy
for the students. Lemma 13 also guarantees that for any unrestricted student, to
declare his preferences sincerely is a dominant strategy even if the others are
restricted.

Lemma 14 When the other agents play a non-reverse strategyq̂−i , no declara-
tion exists where qi leads to a better match for agent si than the one he would get
in the S-optimum stable matching.
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Proof. If agentss−i play a strategŷq−i , the declarations of each one of them will
satisfy two conditions. First, each agents’ list include at least one college that he
can achieve in stable matching on the market (C ,S,P). Second, the condition
of non-reversion guarantees that the list declared by the agents does not change
the order of the elementse(si ) declared. Therefore, no option exists such that an
agentsi gets an element that is better for him than the one that he would achieve
in the S-optimum stable matching. ut

Proof of the Theorem 12: Lemma 14 shows that playing a non-reverse strategy is
a Nash equilibrium. The S-optimum stable matching may be provided in equilib-
rium with the mechanismJ (h,Qt ) by using non-reverse strategies. In particular,
if every student plays a list where a feasible amount oft stable allocations are
present in order of preference from more to less then this strategy generates the
required matching. ut

The non-reverse preference class may appear as a strong restriction over the
agents’ behavior. However, it does not refrain the agents for misrepresenting
their preferences over the elements declared. For example, let’s assume that
E (si ) = {m1,m2} with m1P(si )m2 and si is allowed to declare three possible
options. In the non-reverse classsi may declare any possible group of three
colleges that includesm1 but notm2 or any group of three colleges that includes
m1 andm2 ordering them in any way withm1 preferred tom2.

A necessary condition for a strategyqt that achieves the students’ optimal
matching inJ (h,Qt ) is that the colleges that correspond tosi in this matching
belong toqt

i for all i . An additional restriction imposed in the non-reverse class
concerns only the colleges onE (si ). The reader may check how any possible
strategy resulting in the students’ optimal matching throughJ (h,Qt ) in Nash
equilibrium belongs to the non-reverse class or, as Lemma 13 shows, there exists
a non-reverse strategy that dominates it.

The “natural” behavior forsi in J (h,Qt ) is described by Lemma 13. Any set
of colleges declared is weakly dominated by the same set declared in the order
established byP(si ). Each non-reverse strategy has at least one element ofE (si )
and their relative order cannot be misrepresented. Besides this fact, for all the
colleges inqt

i not belonging toE (si ), the non-reverse class describes a strategic
behavior weaker that the “natural” one in the mechanismJ (h,Qt ).

The implementation result is, however, rather negative. It is necessary to
impose restrictions on the set of preferences that the agents may declare. It also
confirms our suspicion of strategic distortion on the declarations of the agents.
This distortion forces the students not to declare the colleges they prefer, and
instead declare the available ones.

4.3 An assessment of allocational inefficiencies

I now consider the fact that students are acting strategically by declaring prefer-
ences which do not coincide with the truth. It may happen that the announcement
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of an increase in the number of available positions in certain disciplines, gener-
ates an increase in their demand. We may be facing a process where the supply
creates its own demand. In this case, if the lists of the students are considered
as a social demand of higher education the problem becomes critical.

Example 15Let market (C ,S,P) be composed of two sets of agents:
(s1, s2, s3) and (c1, c2), where the colleges have two vacancies inc2 and one
in c1. The agent’s preferences are the following:

P(si ) : c1, c2, si ; for all i = 1,2,3; P(c1) : s1, s2, s3, c1; P(c2) : s1, s2, s3, c2.

It is easy to check that there is only one stable matching,{(c1, s1) , (c2, s2, s3)} .
Additional limitations could be established by allowing the students to declare
one option only. The process can be made dynamic by establishing a rule for
the creation of new colleges. The procedure will be the following: at each new
period, a new student appears with the same preferences as the existing ones.
He will be able to declare one college. Alongside the supply we create, every
period, a new position in the college most demanded in the previous one.

It is easy to verify that the declarations of the students in period 1 compatible
with the stable matching are:P(s1) = c1, P(s2) = c2, andP(s3) = c2. Therefore in
period 2 collegec2 will have a quota of three and the only stable matching of the
market will be{(c1, s1) , (c2, s2, s3, s4)} . Wheres4 is our new student who will
have declaredc2,since this is his only option compatible with a stable matching
whent = 1. This situation forces the growth of collegec2 even when the students
unanimously prefer collegec1.

The distortion generated worsens its allocational effects as time goes by.
However, in Spain, every year, most of the students end up in colleges declared
as their first option. This situation is interpreted by the administration as evidence
that the process works properly. Given the previous results, further study needs
to be done.

To verify the real amount of the distortion, two simple tests may be run. Both
tests are based on making a portion of the student population reveal their pref-
erences sincerely. For that, it is enough to apply the D.A.P. without restrictions.
Lemma 13 proves that any student able to declare his preferences without limita-
tions should do it sincerely. We may select a group of students and allow them to
declare their preferences. The statistical comparison of the frequencies in which
the students apply for the different colleges in the restricted and unrestricted sam-
ples should give a clear idea of the distortion induced by the strategic behavior
of the agents. Another possibility is to compare the frequencies of the students’
first options. In that case the test will reveal possible allocative problems.

If the test does not show any significant differences between the two samples
we do not need to worry; otherwise, the possibility of eliminating the limitations
in the students’ declarations should be seriously considered. If for any reason
the administration prefers to maintain a limitation, a group of students can be
profitably maintained as an unrestricted sample for control purpose. This group
would allow us to establish what is the generated distortion and would provide

10



us with trustworthy information about the preferences of the agents. This infor-
mation may also be used to set down a policy for further supply of new positions
in higher education.

5 Conclusions

I have pointed out how an apparently innocuous alteration of the D.A.P. implies
some meaningful consequences. Limiting the number of options that students can
declare leads to a perverse action that hinders stable matching. It also strengthens
the strategic behavior of the agents. The mechanism finally fulfills its allocative
goals. Unfortunately these properties are recovered at the expense of a pattern of
behavior which is not straightforward. For this reason, the quality of the infor-
mation provided by the mechanism and the level of satisfaction of the students
involved needs to be verified.

To eliminate the limitation imposed over the students’ declarations appears
as a fundamental conclusion of the paper. Otherwise, the intention to satisfy the
students’ demand could lead us to an extreme case: the creation of new positions
in the most solicited colleges instead of those socially more desired.

Endnote

1 We assume that no agent is indifferent between any two potential mates, or between any possible
mate and the unmatched option.
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