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This paper considers testing for normality for correlated .daltee proposed test
procedure employs the skewness-kurtosis test stathafiicstudentized by stan-

dard error estimators that are consistent under serial dependence of the observa-
tions The standard error estimators are sample versions of the asymptotic quantities
that do not incorporate any downweightjramd hence no smoothing parameter

is neededThereforethe main feature of our proposed test is its simplidigcause

it does not require the selection of any user-chosen parameter such as a smooth-
ing number or the order of an approximating model

1. INTRODUCTION

There has been recent interest in testing for normality for economic and finan-
cial data For instanceBai and Ng(2001) test for normality in a set of macro-
economic serigswhereas Bontemps and MedddBD02 emphasize financial
applicationsKilian and Demiroglu(2001) present a variety of cases where test-
ing for normality is of interest for econometriciankhese applications include
financial and economic ones wheffer instance assessing whether abnormal
financial profits or economic growth rates are normal is important for the spec-
ification of financial and economic model§hey also present methodological
applications where testing for normality is a previous step for the design of
some testssuch as tests for structural stability or tests of forecast encompassing
In econometricstesting for normality is customarily performed by means of
the skewness-kurtosis testhe main reasons for its widespread use are its
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straightforward implementation and interpretatidime skewness-kurtosis test
statistic is the sum of the square of the sample skewness and the excess kurto-
sis coefficients properly standardized by their asymptotic variances in the white
noise casgb and 24 respectivelyImplementing the skewness-kurtosis test is
very simple because it compares the skewness-kurtosis test statistic against upper
critical values of a chi-squared distribution with two degrees of freedgs).

This test is typically applied to the residual series of dynamic econometric mod-
els (see e.g., Lutkepohl| 1991 Sect 4.5).

In many empirical studies with time series dathe application of the
skewness-kurtosis test is questionalt®ugh The reason is that the previous
asymptotic variances are correct under the assumption that the model is cor-
rectly specified implying that the sequence under examination is uncorre-
lated However on many occasions either the researcher might specify the model
incorrectly or might not even be interested in modeling the serial correlation
In both caseswhen the considered data are correlatéd asymptotic vari-
ances are no longer 6 and 24 but some functions of all the autocorreldtions
this situation the skewness-kurtosis test is invalid because it does not control
asymptotically the type | error

In this paper we propose to employ the standard test statistic based on the
sample skewness and sample kurtpbigt studentized by standard error esti-
mators that are consistent under serial dependence of the observatiens
standard error estimators are sample versions of the asymptotic quantities that
do not incorporate any downweightingnd hence no smoothing parameter is
neededThese standard error estimators are consistent even though the asymp-
totic standard errors involve infinite sums of terms that depend on all autocor-
relations The reason is that in the expression of the asymptotic standard,errors
the autocorrelations enter raised to the cubic or fourth pavitgace the pow-
ers of the sample autocorrelations provide stochastic dampening fesitors
ilar to the nonstochastic dampening factors that appear in the standard
nonparametric approacBy contrast Bai and Ng(2001) and Bontemps and
Meddahi(2002 rely on smoothing with kernel methads

Our test can employ either frequency or time domain estimators of the asymp-
totic variances of the sample skewness and the sample excess kuthsiggh
the proposed test is based on a time domain estimiatohe technical part of
the paper in the Appendixes we stress a frequency domain estimator because it
is relatively easier to handle theoretically addition for conciseness of expo-
sition, we only analyze the univariate case

The plan of the paper is the followingection 2 presents the framework
Section 3 introduces the proposed test statistic and studies its asymptotic theory
Section 4 discusses the proposed variance estima&exdion 5 examines the
case where the considered series are the residuals of regression and time series
models Section 6 considers the finite sample performance of the proposed test
in a brief Monte Carlo exerciseThe technical material is included in the
Appendixes
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2. FRAMEWORK

Notation Let x, be an ergodic strictly stationary process with mgarand
centered moments denoted by, = E(x, — w)* for k natural with g, =
n" 13 ,(x, — X)X being the corresponding sample moments wheis the
sample mean andis the sample sizén addition y( j) denotes the population
autocovariance of ordgr y(j) = E[(X; — ) (X145 — w)], andy(j) is the
corresponding sample autocovariangéj) = n 2 "1l (x, — X) (X pj) — X).
Notice thatu, = y(0). Letf(A) be the spectral density function xf defined by

v(j) =fnf(/\)exp(ij/\) da i=012,..., 1)

wherelIl = [—a,7], and letl (A) denote the periodogram(A) = |w(A)|?
wherew(A) = (27n) Y2 3L, x, exp(itA). In addition kq( j1,...,jq-1) denotes
the gth-order cumulant oky, Xy4j,,..., X;4j,_,, and the marginal cumulant of
orderq is kq = kq4(0,...,0).

Null and alternative hypothese$he null hypothesis of interest is that the
marginal distribution of; is normal For the independent casemnibus tests
for this null hypothesis such as the Shapiro—Wilk {&tapiro and Wilk1965),
which is based on order statistias tests based on the distance between the
empirical distribution function and the normal cumulative distribution function
such as the Kolmogorov—Smirnothe Cramér—von Misgesr the Anderson—
Darling test have been proposddtest based o, distance between Gaussian
and empirical characteristic functions has been introduced by Epps and Pulley
(1983 and developed by Henze and othdfer more details see Mard{a980,
Henze(1997), Epps(1999, and references thereifor the independent case
the omnibus tests are consistemtit it has been shown that their finite sample
performance can be very poeeg e.g., Shapirg Wilk, and Chen1968. For
the weak dependent cas® such analysis exists because inference with these
omnibus test statistics is problematic as a result of the fact that their asymptotic
distributions are nonstandard and case depenttarice the standard applica-
tion of these tests to weak dependent time series sequences is iiseaiGleser
and Moore 1983. The only developed test of which we are aware is the one
by Epps(1987) that is based on the characteristic functibtowever Epps’s
procedure is hard to implement because sensing functorsv) have to be
selecteda joint spectral density of sensing functions has to be foanaatrix
has to be invertedand a quadratic form has to be minimized to estimate the
marginal mean and variance addition there is the disadvantage of having to
choose the parameterghat enterg(-,v).

In practice instead of the previous omnibus testise common procedure
just tests whether the third and fourth marginal moments coincide with those
of the normal distributionEquivalently in terms of the cumulanjst is tested
that the third and fourth marginal cumulants are zero instead of testing that all
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higher order marginal cumulants are ze¥ée follow this practiceand in this
paper we test that the marginal distribution is normal by testing ghat O
and u, = 3u3. Of course the derived tests are not consistent because they
cannot detect deviations from normality that are not reflected in the third or
fourth moments

The skewness-kurtosis tegthis test compares the skewness-kurtosis test
statistic

A3 n(fs— 34,)°

SK=
643 2445

against upper critical values of g2 distribution (see Bowman and Shenton
1975. Apart from the fact that Jarque and BeE987) have shown the opti-
mality of this test within the Pearson family of distributionise popularity of
this approach resides in its simplicity as we mentioned previolrskact, now-
adays most econometrics packages customarily repo8Kliest which is called
the Jarque—Bera test

The SKtest procedure is justified on the following ground¢hen the con-
sidered serie; is an uncorrelated Gaussian procete following limiting
result holds

2 6u3 O
NG IR N : )
fg— 3M5 0 24,“3

where—4 denotes convergence in distributiddowever whenx, is a Gauss-
ian process satisfying the weak dependent condition

2 vl <o, (3)
i=0
the result(2) is replaced by
i3 6F ©® 0

n N , 4
\/—<ﬂ4—3ﬂ%) e ( 0 24F@ @
where
FO= 3 () (5)

I=—0o0

for k= 3,4 (see Lomnicki 1961 Gasserl975. Notice that conditior(3) guar-
antees that alF ¥ are well defined because it entails tfaty(j)|" < oo, for
all naturalr.
Hence when the series exhibits serial correlatitme SKtest is invalid because
the denominators of its components do not estimate consistently the true asymp-
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totic variances in(4), implying that asymptotically its rejection probabilities do
not coincide with the desired nominal levels under the null hypothesis

3. THE GENERALIZED SKEWNESS-KURTOSIS TEST

In the previous section we have seen that 8tietest is invalid when the con-
sidered process exhibits serial correlatiarOne strategy to overcome this prob-
lem is to carry out a two-step test where i€ procedure is applied after testing
that the considered series is uncorrelatédwever this solution is not simple
because there is an obvious pretest problem in such a sequential procedure and
furthermoretesting for uncorrelatedness for non-Gaussian series is rather chal-
lenging (see LobatpNankervis and Savin2002.

Looking at(4) two natural solutions appearhe first one consists of modi-
fying the SK test statistic by including consistent estimatorg=6? andF @ in
the denominators of its componentéis solution is proposed by Gas$&075
Sect 6), who suggested truncating the infinite sums that appear in the asymp-
totic variancesHowever he did not provide any formal analysis or any recom-
mendation about the selection of the truncation numlsrwe will see our
proposed procedure overcomes these difficulties because it does not require the
selection of any truncation numbdihe second solution estimates the unknown
asymptotic variances with the bootstrdbpat is it employs theSKtest statistic
with bootstrap-based critical valudmplementing the bootstrap in a time series
context is problematic because generally valid bootstrap procedures require the
introduction of an arbitrary user-chosen numhgpically a block length(see
e.g., Davison and Hinkley1997 Ch. 8). Therefore in this paper we follow the
first approachFurthermorein our case the bootstrap does not present a clear
theoretical advantage because 8t€statistic is not asymptotically pivotal

Before introducing our test statistitet us consider the following estimator
of F® which is the sample analog 05):

n—1
FOO= 3 3« (6)
j=1-n
In the next section we consider alternative versions of this estimator and study
their large sample propertie particulay Lemma 1 establishes the consis-
tency of F® for F¥ for Gaussian processes that satisfy conditi®n Then
our proposed test statistithe generalize®K statistig is

o M3 (g3,
T6FO T 4@

The G statistic does not require the introduction of any user chosen nyumber
and in view of (4) and Lemma 1 in the next sectiothe proposed test con-
sists of comparing th& test statistic against upper critical values fronyza
distribution
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In the next assumption we introduce the class of processes under the alter-
native hypothesis for which bot® andF ' converge to bounded positive
constantsand hence whenevers # 0 or u, # 3u3, the G test rejects with
probability tending to 1 a® tends to infinity Notice that the conditions of
Gassen1975 that involve summability conditions of cumulants of all orders
are relaxed to cumulants up to order 16 using an extension of Theorem 3 in
Rosenblat{1985 p. 58).

Assumption A The proces; satisfiesEx!® < oo, and for q = 2,3,...,16,

2 E |Kq(jl’---’jqfl)|<00, (7)
J1=7%  Jg-1T7®

and for k = 3,4,

2 LENE( — ¥ ) — w12 < e, (8)
j=1

whereJ_; denotes ther-field generated by, t = —j, and for k = 3,4,

El(xo— w)* — mi]? + 2_21E([(Xo - wk - ][ — w* = mi]) > 0. )
i=

Assumption A is a weak dependent assumption that implies that the higher
order spectral densities up to the sixteenth order are bounded and continuous
For the case = 2, expression(7) implies that conditior(3) holds We require
finite moments up to the sixteenth order because we need to evaluate the vari-
ance of the fourth power of the sample autocovariansiesice that condition
(9) assures that the asymptotic variances of estimates are positive

The following theorem establishes the asymptotic properties oGthest

THEOREM 1

(i) Under the null hypothesis and for Gaussian processes that satisfy con-
dition (3), G—q4 x2.

(i) Under Assumption A, the test statistic G diverges to infinity whenever
s # 00r wy # 3ud.

The asymptotic null distribution is straightforward to derive given the con-
sistency ofF ¥ for F® that is proved in Lemma 1 in the next sectidrhe
proof of (ii) is omitted because it follows easily using that under the alternative
hypothesisF ® converges to a bounded positive constémy (7) and (9)),
whereas the numerator & diverges
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4. CONSISTENT VARIANCE ESTIMATORS

Following the literature on nonparametric estimation of asymptotic covariance
matricesthe standard approach to estimit& consistently employs a smoothed
estimator such as

n—1

> WPk (10)
j=1-n

In (10) the weights{w;} are usually obtained through a lag winddw; =
w(j/M)} such that the weight functiow(-) verifies some regularity proper-
ties andM is a smoothing number that grows slowly with Note that the
introduction of the smoothing number leads to estimators whose rate of con-
vergence is usually slower than the parametric.rée stress that in this
approach the weightfw;} provide a nonstochastic dampening on e )«
for largej. Because of this dampeninthe estimator in(10) is consistent for
(5) as it happens in the case= 1, wheref(0) is consistently estimated by
autocorrelation robust estimatofsee e.g., Robinson and Velas¢cd 997).

As mentioned in the introductiorthe main problem with the smoothing
approach is that statistical inference can be very sensitive to the selection of
the user-chosen weights our context the discussion in Section | in Robin-
son (1999 is especially relevanin the absence of a clear and rigorously jus-
tified procedure to select the smoothing number in our testing framewark
prefer to analyze estimators that do not require any smoathing

Our first estimato~ ¥, introduced in equatiol6), also admits a frequency
domain versior(see Appendix A For technical reason this paper we con-
sider a second estimator that can be motivated by wrififlg) in terms of the
spectral density function of the process usingl):

F = 2 y(j)k= 2 H{f f(Uh)eXp(ijvh)dUh}

j=— j=—oo h=1

k-1
= 27Tf . f(Ul + .o+ vk—l) H {f(vh) dUh}. (11)
<t h=1

The sample analog of the previous equation renders the following alternative
estimator forF *:

o @mknl
( al 2 2 I()\jl) I()ljk 1)| (/\j1+ et /\kal)’ (12)

171 jk1=1

where\; = 27j/n. The estimatoiF ' can also be written in the time domain
by plugging
n—-1

1 .
L(A) = z— > exp(itA))§(t),  j#0, modn, (13)

T t=1-n
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into equation(12). After some algebran Appendix A it is shown that
B n—1
FO= 3 9OF0O +9(n—tht (14)
t=1-n

Notice that both expressions f6¥¢ are numerically identicabut in the Appen-
dixes for technical reasonsve stress the frequency domain vers(&g). Expres-
sion (12) guarantees thét * is positive in finite samples

The next lemma states the consistencyd? andF ® for F®. This lemma
is the substantive technical contribution of the pafierproof is in Appendix B

LEMMA 1. Under the null hypothesis, for Gaussian time series that satisfy
condition (3),

(i) F® =F® + 0,(1) and
(i) F® — F® = 0,(1) for k = 3,4.

At first look, consistency of® and F®¥ could be surprising because no
smoothing parameter has been introdudedbinson(1998 analyzes a special
regression model where smoothing is not necessary for establishing consis-
tency of asymptotic covariance matrix estimatoree reason is that the spe-
cific form of the covariance matrix that he considésee his equatiol.2))
allows for a stochastic dampening of some sample autocovariances by other
sample autocovarianceBhe time domain version&®) and(14) provide a sim-
ilar intuition where the powers of the sample autocovariances provide the sto-
chastic dampening factars

In the frequency domajri11) provides a complementary explanatiétecall
that in time series the standard problem is that the relevant asymptotic variance
depends on the spectral density function evaluated at a unique pairdally
the zero frequency (0). However in our casg11) shows that the asymptotic
variance F®, is a convolution of the spectral density functjdnstead of a
single value Intuitively, in the first case a user-chosen smoothing number is
required to estimate the local quantity0), whereas in our case no such num-
ber is needed because we are estimating a global quantity

5. RESIDUAL TESTING

The previous sections analyze the case where raw data are under examination
However in practice the test is commonly applied to the residuals of regres-
sion or time series modelagain, two approaches can be usdidst, the G test

that we propose andgecond employing theSK statistic with bootstrap-based
critical values The bootstrap has been employed by Kilian and Demiroglu
(2000. However as mentioned in Section application of the bootstrap is not

an obvious task in a time series contekilian and Demiroglu perform a para-
metric bootstrap that could be justified if the model were correctly specified
although in this case thg&Ktest would also be asymptotically validowever
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in the absence of the knowledge of the true data generating pr@cpasamet-

ric bootstrap is invalidthat is there is no guarantee that the type | error is

controlled properly asymptoticallAs mentioned previous)yoootstrap proce-

dures valid for time series require the introduction of a user-chosen number

typically a block numbercomplicating statistical inference in finite samples
Next, we introduce a general assumption that validates the use @ #ta-

tistic applied to the residuals of many dynamic econometric models where the

correlation structure is not correctly specified or it is not specified atrathis

section X, denotes the residuals of the regression or time series mawlek;

denotes the true disturbances

s

Assumption B Let the Gaussian process satisfy (3) and lete, = x; — %X
satisfy

tzzletz =0,(1) and ;le{‘ = 0,(n"Y4). (15)

The first condition in(15) guarantees the consistency of the estimatds'6f
based on residualsvhereas the second guarantees that the resgkitdst has
the same asymptotic distribution as the origiB#ltest Assumption B is very
general and covers many interesting cases such as linear regressions with pos-
sible trending stochastic and deterministic regressors that satisfy Grenander’s
conditions and weakly dependent erralrs this cases, = (8 — B)'Z;, where
Z, is a p-dimensional sequence of regressas (15) implies that> ;e? =
(B — B)'Z'Z(B — B) = Oy(1), allowing for the components g8 to have
different convergence rateA leading example with stochastit; is a regres-
sion between cointegrated variahld%or stationaryZ,, another interesting
application is wherg, are the residuals obtained through possibly misspecified
AR(p) regressionsthat is % =y, — B'Z, with Z, = (Yet15--5 Yi=p)'s
andVn(B — B) = Op(1) for some vectop such that the polynomig(w) =
1- J-pzl,ijj has no roots on or inside the unit circlEor this casgif
Assumption B holds foy,, the limit process, = y; — B'Z; = B(L)y, inherits
the weak dependence propertieg/gfbut notice thak, is autocorrelated unless
y; follows an AR(q) process withg = p.

In Appendix C we prove the following lemmavhich shows that the use of
residuals does not affect the consistent studentization that we propose in this
paper

LEMMA 2. Under the null hypothesis and Assumption B, for 18,4,
n—1 n—1
2 (D= 2 7D+ 0(D).
1-n 1-n
Finally, using the previous lemma and Holder’s inequalityis straight-

forward to prove the next theoremhich establishes that the asymptotic null
distribution of theG test statistic applied to the residuals of many dynamic
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econometric models whose correlation structure is ignored or misspecified is
still x2 and that whenever; # 0 or u, # 3u3 the G test rejects with prob-
ability tending to 1 a1 tends to infinity

THEOREM 2 Let G be the test statistic G calculated from residugls

(i) Under the null hypothesis and Assumption®—4 x3.
(i) If ws # Oor ps# 3u3 and Assumptions A and B holthen the test
statisticG diverges to infinity.

6. FINITE SAMPLE PERFORMANCE

This section compares briefly the finite sample behavior of the previous tests
with the Epps(1987) test Under the null hypothesis we generate data from an
AR(1) process; = ¢x;_1 + &, Whereg, is independent and identically distrib-
utedN(0,1) and the autoregressive paramepeiakes eight values-0.9,—0.5,
0, 0.5, 0.6, 0.7, 0.8, and Q9. We report the results for a detailed grid of positive
values of¢ because positive autocorrelation is particularly relevant for many
empirical applications

Along with the null hypothesiswe consider also testing the null that the
skewness is zero by using the first components of $ikeand G statistics
Namely we compute the skewness test statiSie ni3/643 and the gener-
alized skewness test statist®S = ni%/6F @ and compare them with upper
critical values from ayZ We have not reported the results of a kurtosis test
because of the well-known slow convergence of the sample kurtosis to the
normal asymptotic distribution even in the white noise cess® e.g., Bow-
man and Shentgri975 p. 243). In Tables 1A and 1B we report the empirical
rejection probabilities for the tests for three sample sires 100 500 and
1,000 and three nominal levelsx = 0.10, 0.05, and Q01. In these experi-
ments 5000 replications are carried out

The main conclusions derived from Table 1A are the followiRgr the case
of testing symmetrythe Stest is not reliable since it severely underrejects for
the cases whegh < 0 and substantially overrejects for the cases wien 0.
This result could be expected because widn negativeEfilyf is negative
leading to overestimation of the asymptotic variance and then to underrejection
of the Stest whereas whe is positive the opposite effect occuiEhe most
interesting evidence is the magnitude of these distorfishich are very large
for negative values o$ and all sample sizesvhereas for positiveb the dis-
tortions are increasing steadily with the sample st2a the contraryfor the
GStest the empirical rejection probabilities are very close to the nominal lev-
els for all the parameter values and all sample s{#®s only exception is when
n =100 and¢ = 0.9).

Table 1B reports the results for testing normality for the three t&8(sG,
and Epps tesfThe SKtest which is the sum of the skewness test and the kur-
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TaBLE 1. Empirical rejection probabilities for 3 sample sizes and 3 nominal
levels

n 100 500 1000

¢ 0.10 Q05 Q01 Q10 005 001 Q010 005 001

A. SandGStests
-09 S 0.001 Q000 QOO0 QOO0 QOO0 QOO0 QOO0 QOO0 Q000
GS 0.083 Q038 Q008 Q097 Q047 Q012 Q091 Q045 Q010
-05 S 0.056 Q025 Q005 Q063 Q027 Q005 Q064 Q026 QO05
GS 0.093 Q047 Q011 Q103 Q052 Q010 Q101 Q051 Q009
0 S 0.092 Q047 Q011 Q105 Q056 Q009 Q104 Q053 (QO12
GS 0.097 Q051 Q012 Q105 Q056 Q010 Q104 Q054 Q013
05 S 0.117 Q064 Q019 Q146 Q080 Q023 Q152 Q090 Q025
GS 0095 Q048 Q012 Q100 Q052 Q011 Q105 Q054 Q012
06 S 0.140 Q081 Q026 Q175 Q107 Q037 Q181 Q109 Q039
GS 0.094 Q046 Q011 Q097 Q050 Q009 Q098 Q052 Q009
07 S 0.176 Q109 Q039 Q233 Q158 Q061 Q231 Q157 Q069
GS 0.091 Q046 Q010 Q099 Q049 Q011 Q097 Q049 Q009
08 S 0228 Q153 Q065 Q315 Q0231 Q116 Q321 0238 Q123
GS 0.089 Q045 Q009 Q098 Q049 Q011 Q092 Q049 Q012
0.9 S 0.278 Q196 Q090 Q442 Q361 Q238 Q467 Q389 Q261
GS 0.067 Q029 Q005 Q090 Qo047 Q013 Q096 Q049 Q010

B. SK G, and Epps tests
—-09 SK 0078 Q034 Q009 Q229 Q157 Q072 Q261 Q195 Q106
G 0.031 Q014 Q004 Q062 Q038 Q013 Q067 Q038 Q012
E 0.172 Q109 Q046 Q121 Q072 Q018 Q126 Q068 Q015
—-05 SK 0051 Q032 Q015 Q079 Q043 Q016 Q082 Q044 Qo010
G 0.065 Q039 Q014 Q090 Q047 Q014 Q095 Q047 Q011
E 0.118 Q063 Q020 Q109 Q059 Q013 Q104 Q055 Q011
0 SK 0.069 Q045 Q021 Q094 Q048 Q014 Q095 Q047 Q014
G 0.070 Q045 Q021 Q094 Q048 Q014 Q095 Q048 Q014
E 0.123 Q067 Q020 Q099 Q055 Q013 Q106 QO55 QO10
05 SK 0080 Q050 Q023 Q120 Q071 Q025 Q138 Q082 Q026
G 0.063 Q040 Q015 Q084 Q045 Q014 Q094 Q053 Q014
E 0.130 Q069 Q021 Q113 Q061 Q017 Q101 Q054 Q014
0.6 SK 0.093 Q058 Q025 Q157 Q09 Q036 Q170 Q104 Q039
G 0.056 Q035 Q015 Q079 Q045 Q017 Q088 Q047 Q013
E 0.139 Q079 Q022 Q128 Q070 Q017 Q110 Q060 Q014
0.7 SK 0114 Q075 Q036 Q221 Q142 Q063 Q238 Q158 Q067
G 0.054 Q033 Q012 Q076 Q043 Q017 Q081 Q046 Q015
E 0.158 Q087 Q026 Q134 Q078 Q019 Q121 Q064 Q011
0.8 SK 0168 Q103 Q047 Q329 Q236 Q114 Q356 Q266 Q132
G 0.045 Q026 Q009 Q064 Q042 Q018 Q075 Q041 Q016
E 0.185 Q115 Q036 Q141 Q081 Q024 Q120 Q060 Q016
09 SK 0267 Q154 Q062 Q549 Q440 (0265 0585 Q489 0323
G 0.027 Q015 Q006 Q056 Q036 Q013 Q067 Q043 Q013
E 0.236 Q155 Q064 Q180 Q110 Q033 Q149 Q084 Q026

Note: Data follow a Gaussian AR) process with parametef. Sample size is denoted oy
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tosis testinherits their characteristicdotice that for the cases whege < 0,
there is a fair amount of compensation between the skewness and kurtakis
ing the distortions of theSK test much smaller than those of its components
The G test inherits the slow convergence from the kurtosig using the white
noise case as benchmarkappears to be robust to the presence of moderate
serial correlationWhen|¢| = 0.9, the G test is severely affected by its kurto-
sis componentln fact, even forn = 1,000 theG test appears to be very con-
servative For the cases = 0.7 and¢ = 0.8, a similar pattern can be observed
Similar to theG test the Epps test is also insensitive to moderate serial corre-
lation. However for the casep = —0.9, and also for the most interesting cases
where¢ = 0.7, the Epps test appears to be too liberal

We also conducted power experiments for data generated by the previous
AR(1) model for six different distributionsstandard log-normalstudent’st
with 10 degrees of freedany?, x2,, beta with parameterd,1), and beta with
parameters$2,1). Although distributions with bounded support are not that pop-
ular in econometricsit is well known that in the independent and identically
distributed(i.i.d) setting theSKtest performs very poorly against such alterna-
tives Hence it is of interest to examine the performance of théest in these
difficult cases Table 2 reports the power results for t@eand the Epps tests
for three sample sizes = 100, 500, and 1000 respectively and for a 5%
nominal level In these experiments@)0 replications are carried oldthe main
conclusions from these tables are the followiRgr both tests it appears that
the sign of the autocorrelation has little relevance in terms of pdalérough
generally the empirical power is slightly greater for positive Using the white
noise as the reference cab@her values fof¢| lead to a decrease in the empir-
ical power that in some cases is very exacerhafbeé empirical rejection prob-
abilities for theG test are particularly high for heavily skewed distributions
such as the lognormal or the. For these cases ti@test is clearly preferable
to the Epps testWhen the distribution is symmetric or slightly skewdabth
tests are comparabl&or thet,, and they?, distributions the G test presents
higher empirical powerespecially for a moderate degree of serial correlation
For these cases and whib| = 0.9, the tests present very low empirical power
even forn = 1,000 Notice that whem = 1,000 and¢ = 0.7 or 0.8, for the y?,
case the empirical powers of both the Epps test aasbeciallythe G test are
moderately highbut the power deteriorates suddenly &= 0.9. For the beta
distributions both testgand especially th& tesh appear to be very sensitive
to a high degree of serial correlatiom fact when|®| = 0.9, the power of
both tests is very low even whem = 1,000 Here againthere is a sudden
decrease in the empirical power wheérincreases from.6 to 07 for n = 500
and wheng increases from .@ to 0.8 for n = 1,000,

We end with a suggestion on further researchthis section we have seen
that for small sample sizebecause of the slow convergence of the sample
kurtosis coefficientthe G test presents significant size distortions even in the
white noise caseOne potential way of improving the finite sample perfor-
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mance is by using the bootstrapecause thé& test statistic is asymptotically
pivotal, it can be expected that application of the bootstrap will deliver an asymp-
totic refinementHence it would be interesting to study the implementation of
the G statistic with bootstrap-based critical values

TABLE 2. Empirical rejection probabilities at the@b nominal levels for th&
and EppgqE) tests for 3 sample sizes

[0) LogN to X2 X% Beta(1,1) Beta(2,1)
n =100
-0.9 G 0.291 Q045 Q175 Q048 Q006 Q035
E 0.041 Q115 Q052 Q115 Q120 Q128
—-0.5 G 0.999 Q187 Q998 Q437 Q002 Q121
E 0.673 Q043 Q843 Q200 Q557 Q484
0 G 1 0.299 1 Q798 Q511 Q740
E 0.971 Q079 Q996 Q537 Q993 Q978
0.5 G 1 0.177 1 0435 Q001 Q114
E 0.865 Q059 Q953 Q215 Q0532 Q544
0.6 G 0.992 Q122 Q985 Q312 Q001 Q064
E 0.612 Q057 Q782 Q121 Q257 Q270
0.7 G 0.936 Q080 Q899 Q188 Q004 Q040
E 0.318 Q062 Q392 Q060 Q099 Q080
0.8 G 0.742 Q045 0591 Q104 Q007 Q034
E 0.146 Q083 Q120 Qo017 Q025 Q008
0.9 G 0.371 Q042 Q187 Q055 Q013 Q028
E 0.111 Q144 Q054 Q006 Q010 Q003
n = 500
-0.9 G 0.959 Q080 Q734 Q126 Q023 Q078
E 0.400 Q064 Q0226 Q075 Q101 Q097
—-0.5 G 1 0.484 1 Q995 Q971 Q995
E 1 0.132 1 Q756 Q992 Q987
0 G 1 0.773 1 1 1 1
E 1 0.320 1 Q996 1 1
0.5 G 1 0471 1 0998 Q964 1
E 1 0.139 1 0857 Q992 Q998
0.6 G 1 0.323 1 0960 Q465 Q914
E 0.999 Q113 1 Q701 Q785 Q901
0.7 G 1 0.194 1 Q773 Q059 Q430
E 0.999 Q085 1 0473 Q0326 Q551
0.8 G 1 0.105 1 0403 Q037 Q116
E 0.980 Qo077 Q950 Q249 Q105 Q217
0.9 G 0.947 Q075 Q737 Q133 Q030 Q062
E 0.572 Q090 Q0382 Q059 Q032 Q027

continued
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TABLE 2. Continued

¢ LogN tio x? X2 Beta(1,1) Beta(2,1)
n = 1,000
-0.9 G 1 0.091 Q978 Q245 Q058 Q116
E 0.881 Q064 Q484 Q086 Q097 Q101
-0.5 G 1 0.700 1 1 1 1
E 1 0.243 1 Q971 1 1
0 G 1 0.953 1 1 1 1
E 1 0.583 1 1 1 1
0.5 G 1 0.710 1 1 1 1
E 1 0.250 1 0991 1 1
0.6 G 1 0.489 1 1 0959 1
E 1 0.176 1 Q946 Q974 Q997
0.7 G 1 0.298 1 Q980 Q352 Q907
E 1 0.113 1 Q766 Q570 Q845
0.8 G 1 0.148 1 0688 Q068 Q331
E 1 0.076 1 0439 Q164 Q403
0.9 G 1 0.094 Q980 Q219 Q061 Q111
E 0.962 Q086 Q724 Q168 Q075 Q118

Note: Data follow an AR1) process with paramete.
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APPENDIX A

This Appendix provides the alternative versionsdF andF®. First, the F ) estima-
tor can be written in the frequency domain as follows

. n—1 n-1 k
Flo— S 5(j)k= H{fl(uh)exp(ijuh)dvh}
j=1-n j=1-nh=1(Y11
k n—1
= H{j I(Uh)dvh} 2 explij(vy + - + v}
h=1(Jn0 j=1-n

:f Iy g(01) ... (V) Doy + -+ +v,) dog...dyy,
Hk

whereD,(v) = Ej"gllmexp(iju) satisfies[; D,(v) dv = 27 andD,,(v) — 276(v = 0) as
n — oo, whereé represents the Dirac’s delta functiddence for largen we obtain the
following approximate expression f&r® in the frequency domain

Fo ~ 27rf ) 1IX,X()\I)...IX,X()\k,l)IX,X(/\l+ s Al dAg L dA . (A1)
e

Equation(12) is the natural discrete approximation @f.1).
Secongdto obtain the time domain expressionff¥ we just plug(13) into equation
(12) to get

_ 1 n—1 n—1 n—1
FO=—= 3 Jt)... X Ft) > ()
n t,=1—n t_1=1—n te=1-n

n n
X > expli(tyA), + e g Ay (A e A, )

1=l k1=l

n—1 n—1 n-1
=ocr 2 V) X en) X 7da(h Ay da(Ay, + A,

t;=1-—n t_1=1—n t=1-n
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wheregn(A) = 2L, exp(itA). Finally, using thatp,(A;) = 0 if A; = 27j/n, j # 0 modn,
and¢,(0) = n, and denoting the indicator function by We obtain forj = 1,...,k — 1,

1

Sl
>
|

4

Y Pn(Ay + Ay) = 7(=t) + ¥(N = t) Lm0y + Y(—N = t) Loy

=yt +y(n = [t]),

where we have used thétis even Then(14) follows immediately

APPENDIX B

Proof of Lemma 1(i). We just report the analysis fd&f ® because the analysis for
F@ is similar but notationally more involvedVe prove consistency by checking the
sufficient conditions thaf @ is asymptotically unbiased and that its variance goes to
zero asn — oo.

First, we consider the expectation Bf®,

3 n-1n-1

> BT )TH(A, + A1

j1=1j=1

E[F®]=

Using the definition ofl (1),
ELTA DA, + A4,)]

= E[W(A )W )W, )W(=A,)W(A;, + A )W(—A), — Ap,)] (B.1)
= > cum(v,)---cum(v,),

where the summation in runs for all possible partitions = »,U---Urq, g = 1,2,3 of
the 6-tuple

U E O R PR PR P i PR PRl P (B.2)

such thaty; = {»;(1),...,7i(p)} and X ,p, = 6 and where curfy;) stands for
cum(w(A,, q)),...,W(A,, ) (See Brillingey 1981, pp. 20-21.

To evaluate the expectatidiB.1), by Gaussianity the only cumulants different from
zero are second-order cumulants, with q = 3. Hence

1 N 1n-1
E[F(S)] = n_ 2 2 {2 H [f(M|)¢n(M| + Au,(l))‘bn(/\u,(z) /-Li)d:u“i]}y

j1=1j=1 3 m®i=12,3
(B:3)

where the sum ink3 is for all the different 3-tuplesy;Ur,Ur; of pairs v; =
(»i(2),7;(2)) formed with all the permutations of the coefficients(i.2). In fact, fol-
lowing Brillinger (1981, Theorem 43.1), the only relevant combinations in the sum in
k5 are those for whichy;(1) + »;(2) = Omodn, i = 1,2,3. Therefore using that
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|pn( )] = 2min{| |~ n} (see Zygmund1977 pp. 49-51), and the continuity of (A)
implied by (3), we obtain thatB.3) is

(277_)3 n—1n-1

E 2{23 - 71_[ [f(ll’l)q)(Z)(Ml_)\V,)dlu’l]}+0(1)

j1=1j,=1

E[|f(3)] _

2 3 n—-1n-1
= BTSS f)f (A (A, + o)

1=1j=1

= Zﬂfzf()\)f()t)f(/\ + w) dAdu + 0o(1)

=F® +0(1), asn— oo, (B.4)

where®? (u) = (27n) | pn(w)|* and f; &P () duw = 1.
Secondwe study the variance df @,

Var[F@] = cum(F®,F®) = > cum(vy)---cum(z,,).

Now, we need to consider all the indecomposable partitiosgsy U ---Urg, q=1,...,6
of the following array with 12 elements

jl _jl jz _jz j1+j2 _jl_jZa

H i i g i i Y (B5)
Ji J2 —J2 itz Tl e

1

By Gaussianitythe relevant partitions only involve six second-order cumulaht is

_ 1 n—1n-1 n-1 n—-1
Var[F@] = 55 E 2 > > {2 H{f(u.)tﬁn(uﬁ)\y,m)
1=li=1ji=1j4=1

«§ Jnfi=1

X bn(A,, 2 — ,Uvi)d,U«i}} (B.6)

where the sum inc$ is for all the different 6-tupless = v,U---Uwg oOf pairsv; =
(v;(1),7;(2)) constructed in such a way that at least @né v has elements in each of
the rows of the arrayB.5) to guarantee an indecomposable partitiBollowing the
same argumentshe only terms that contribute to the leading term of the variance of
F©® are those inB.6) characterized by a restriction(1) + »;(2) = 0 modn, for just
onei € {1,...,6} (eg., j1 = —j1). Then taking into account all the possible partitions
(6 X 3) and using the continuity df the variance of @ is

() n—1n—-1n-1

Var[F®] =

Jz) ()‘11 + )\1'3) + O(nil)

i i2 is i

j1=1j2=1j3=1

=0(n"t) =0(1) (B.7)

asn — oo. Hence from (B.4) and(B.7) we conclude thaE® = F® + o,(1). |
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Proof of Lemma 1(ii). Notice that

n—1 n-1
FO—FO= 3 3O - th+ -+ X §OF—[th?
t=1-n t=1-n
n—1 n-1
=2 21 yO (= [th+ - +2 El YOF(n—[th Y (B.8)
t= t=

because(n) = 0. Then settingM = n/2, the first element in(B.8) is equal to

n—1

FOHI-t)+2 > O -1). (B.9)

t=M+1

2

IMs

Now, Ey(n —t)2 = O(M?n~2) for 0 < t = M, and using the same methods of the proof
of Lemma Xi), it is easy to see that fqy = 2,4,6,

E¥ ()P = O(y ()P +n~P'2).

Hence we obtain that fok = 3,4,

M
E gy(t)k*ﬂn —1)

M M 1/2
= <Z Ey ()2 Y > Ey(n— t>2>
t=1 t=1

— o((i {,y(t)z(kfl) + nlfz(kfl)}M 3n2>1/2>

=0O(M¥2n~1) = 0(2).

Next,
n—1 n—1 n—1 1/2
E| X 709 (h—t) s( > Byt X E?(n—t)2> ,
t=M+1 t=M+1 t=M+1

whereS{_g 1 E9 ()¢ 0 = O(ZL g, 1{y(1)2* P + n*™%}) = 0(1) asn — oo for k=
34 and>y. 1 Ey(n — )2 = O(SL{{y ()% + n 1)) = O(1 + SZ|y(1)]) = O(1).

Hence both terms on the right-hand side @.9) areo,(1). Similar reasoning can be
used to show that the remaining terms(B1.8) are also asymptotically negligible and
conclude thaF ® — F® = o,(1).

APPENDIX C

Proof of Lemma 2. Write

. ] 1 n=lil 1 n-lil 1 n=lil
P2 = 9(i) == 2 &g+ = 2 @Xeyjt = X &pjXe
n {1 n =1 n =

= A(]) +B(j) + C(}),
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say Thus

n—1
P>

j=1-n

Hence using from Appendix B thaB}] 9, (j)* = Op(1) and the Cauchy—Schwartz
inequality we only need to show that

n—1

P = 2 AR D + 49 ()3A)) + - + A*(j) + B*(j) + C*())}

j=1-n

n—1 n—1 n—1
> A+ X BU+ X CHI) = 0,(D).

j=1-n j=1-n j=1-n
First,
n—1 1 n—1 n—|j 4
> A== (2 etetj|>
j=1-n N i=1-n\ t=1

4

=0,(n"%) = 0,(1),

N—————

= 2n‘3<2 e
t=1

where we have used Assumption B
Second

n—1 . 1 n-1 [n-ljl 4 1 n=1 [n=lil n-ljl 2
S e = & [z etxt_.j} S [2 'S xe_j]
1-n N"j=1-n| t=1 n"j=1-n t=1
n 2
- znl[w » es] —0,(n %) = 0,1,
t=1
“aCA())
||

where we have employed the Cauchy—Schwartz inequality analysis of;_
is omitted because it is similar to that Bf;_ 5 B*(j).



