

GPU Acceleration of a Fully 3D Iterative
Reconstruction Software for PET using CUDA

J. L. Herraiz, S. España, S. García, R. Cabido, A. S. Montemayor,
 M. Desco, J. J. Vaquero, and J. M. Udias

 Abstract A CUDA implementation of the existing software
FIRST (Fast Iterative Reconstruction Software for (PET)
Tomography) is presented. This implementation uses consumer
graphics processing units (GPUs) to accelerate the compute intensive
parts of the reconstruction: forward and backward projection. FIRST
was originally developed in FORTRAN, and it has been migrated to
C language to be used with NVIDIA C for CUDA, as well as for a
straightforward implementation and performance comparison
between the C versions of the code running on the CPU and on the
GPU. We measured the execution time of the CUDA version
compared to the fastest available CPU. The CUDA implementation
includes a loop re ordering and an optimized memory allocation,
which improves even more the performance of the reconstruction on
the GPUs.

I. INTRODUCTION

OMOGRAPHIC reconstruction is computationally very
demanding, specially when iterative methods based on

realistic models of the emission and detection of the radiation
are used [1]. Modern multi-core processors have reduced the
computational time required to run tomographic
reconstruction codes thanks to parallel task execution.
Tomographic reconstruction codes can be easily parallelized,
as the two main time-consuming parts of the reconstruction
task (forward and backward projection) can be recoded into
SIMD (single instruction multiple data) tasks and distributed
among the available processor units, assigning some parts of
the data to each of them. This can be done as the acquisition
data are arranged in sets that are largely independent among
them. FIRST [1], a Fast Iterative Reconstruction Software for
(PET) Tomography was developed in our group using this
strategy, and it is been used on several commercial preclinical
systems [5].

Manuscript received October 27, 2009. This work was supported in part by

MEC (FPA2007 62216), CDTEAM (Programa CENIT, Ministerio de
Industria), UCM (Grupos UCM, 910059), CPAN (Consolider Ingenio 2010)
CSPD 2007 00042 and the RECAVA RETIC network.

J. L. Herraiz and J. M. Udias are with the Grupo de Física Nuclear, Dpto.
Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid,
Spain (telephone: +34 91 394 4484, email: joaquin@nuclear.fis.ucm.es).

S. España was with the Grupo de Física Nuclear,Universidad Complutense
de Madrid, Spain. He is now with the Department of Radiation Oncology,
Massachusetts General Hospital and Harvard Medical School, Boston, MA,
USA (S.España e mail: samuel@nuclear.fis.ucm.es)

S. García, R. Cabido and A.S. Montemayor are with the Departamento de
Ciencias de la Computación, Universidad Rey Juan Carlos, Madrid, Spain
(A.S. Montemayor e mail: antonio.sanz@urjc.es).

M. Desco and J. J. Vaquero are with the Unidad de Medicina y Cirugía
Experimental, Hospital General Universitario Gregorio Marañón, Madrid,
Spain (J.J. Vaquero e mail: juanjo@hggm.es).

Nevertheless, the increasing complexity of new scanners
with larger number of response lines and reconstructed voxels,
as well as more sophisticated acquisitions protocols, like
dynamic studies or PET acquisitions with time-of-flight
information, requires new approaches in order to maintain
reasonable reconstruction times without the need of large
computer clusters.

The Graphics Processing Unit (GPU) can handle large data
sets in parallel when working in single instruction multiple
data (SIMD) mode. GPU development has been much faster
than CPU one and nowadays the processing capability of GPU
is considerably superior to the CPU one. The recent advances
in the programmability of GPU has made it possible that
certain general purpose computations usually done at the CPU
can be implemented on GPU with a much faster speed. CUDA
[2], developed by NVIDIA, offers a unified hardware and
software solution for parallel computing on CUDA-enabled
NVIDIA GPUs supporting the standard C programming
language together with high performance computing
numerical libraries aimed to ease the job of coding and
running complex computational problems on the GPU. When
programmed through CUDA, the GPU can be viewed as a
computing device capable of executing a very high number of
threads in parallel, and the power of the GPU for handling
multiple instances of the same operation on multiple data is
transparently accessed.

Attempts to code tomographic reconstruction for CT and
PET have been made in the past [3], [4] also with CUDA, but
usually from scratch, using different algorithm and codes that
would have been employed on the CPU. Thus, a direct
comparison of performance as well as the resulting images
between GPU and CPU codes is difficult.

FIRST has proved to be a successful implementation of a
tomographic code for high-resolution small animal PET
scanners [1], [6]. It is based on a realistic model of the scanner
obtained from the Monte Carlo simulation code PeneloPET
[5]. This model improves the image quality. For example, it
obtains a more uniform resolution along the FOV. Some of its
key advantages are that it implements a method for handling
the large size of the model to fit into RAM memory,
improving the performance of the code. It is also coded to run
in parallel in an arbitrary number of processors and further the
number of pixels of the reconstructed image can be chosen
freely.

In this work we aimed to obtain a straightforward
implementation of the same code, targeted for CPU optimized
execution, into the GPU. Our main goal was to obtain a
significant acceleration of the code without compromising the

T

1

Cita bibliográfica
Published in: 2009 IEEE Nuclear Science Symposium Conference Record, oct. 2009, p. 4064-4067

quality of the reconstructed images. Addition
obtain a simple and flexible code,
optimizations, which would allow for
modifications without much additional effort.
The program was written to a large extent
the NVIDIA GPU model that will execute th
attention was paid to considerations about
and access, in order to achieve optimal perfor

II. MATERIALS AND METHOD

A. Description of the CPU Implementation
For a more detailed description of the re

FIRST, the reader is referred to [1]. We wil
main components and characteristics fo
completeness. The code implements a f
reconstruction of PET data based on a reali
radiation emission and detection.

 This model was generated using the
PeneloPET [5] based on PENELOPE [7]. In
probability distributions called system respo
into RAM memory, all symmetries present i
exploited. This imply that only some probab
along the LOR (commonly called Tubes-of
have to be computed and stored, as symmet
LORs will have the same probability distrib
Fig. 1. Even with this approach, the size
coefficients exceeded the available RAM mem
computers. This was solved using what
symmetries [1]: LORs with very similar an
scintillator crystals will have a very si
distribution, as shown in fig. 1. There
distributions along chosen LORs, called S
simulated and stored, reducing the initial stor
by more than a factor 20 without compromis
the reconstructed images.

 (a) (b

 (c)

Fig. 1 Symmetries: (a) Rotational (b) Translationa
(c) Quasi symmetries, used to reduce the number of L
stored in memory. All these LORs have a similar probab

ally we wanted to
without specific

possible future

independently on
e code. However,

memory allocation
rmance on GPUs.

DS

construction code
l describe here its
or the sake of
fully-3D iterative
stic model of the

Monte Carlo code
order to fit these

nse matrix (SRM)
n our system were
bility distributions
-Response, TOR)
rically-equivalent

ution, as shown in
of the probability
mory of common
we called quasi-
gle respect to the
milar probability
fore, probability
uper-LORs, were
rage requirements
ing the quality of

b)

l and Reflections, and
ORs that needs to be
ility distribution.

In the reconstruction algorithm us
EM [8], the reconstructed image Xj
a weighted average of a subset S o
These factors are obtained as the ra
and the data estimated Pi, from the
factors Cij comes from the SRM.

 ��
�����

	
�
���

� ���
�

��
��

���

� ������
���� �� ��

 For this comparison, a version of
resolution small animal PET scan
detectors in coincidence. The n
reconstructed images was 175x175
in the sinogrammed data were 175
x 900 (oblique sinograms). The dat
from a PeneloPET simulation of a
rods of different diameters filled
code, written in FORTRAN, was t
both cases the Intel compiler [9
optimization options available we
speed of both the FORTRAN and C

In this work the time required for
was studied for one single CPU. N
parallelization as reported in pr
reconstruction time required in a
easily estimated.

B. Description of the GPU implem
With the large number of thre

parallel computation in GPUs, the
kind of implementations is me
describes the different types of me
and exposed by CUDA. It can be se
and textures is much faster than ac
recent versions of CUDA, 3D textur
makes the implementation of our co

TABLE I. GPU TYPES OF MEMORY AND REQ

GPU Memory Type
Register
Shared Memory
Constant Memory (in cache)
Constant Memory (not in cache)
Texture Memory (in cache)
Texture Memory (not in cache)
Global Memory

We have defined three 3

reconstructed image, another one
Matrix and a third one corresp
obtained after comparing the data w

The system response 3D-texture
symmetries present in the sinogra
scanner, making the total number o
be quite small.

ed in this work, called OS-
is iteratively multiplied by

f corrective factors (Eq. 1).
tio of the measured data Yi
e image and the weighting

	�� ������

�
��� (1)

the code suited for a high-
ner with a pair of rotating
umber of voxels in the
x59 and the number of bins
(radial bins) x 130 (angles)
ta used in this study came

Derenzo-like phantom, with
with activity. The original
ranslated into ANSI C. In
] was used and the best
re chosen. The execution
version was similar.

r reconstructing one image
evertheless we expect good
evious works [1], so the
cluster of computer can be

entation with CUDA
ads that can be used for
usual bottleneck in these

mory accession. Table I
mory available for the GPU
een that access to registers
cess to global memory.. In
res became available which
de straightforward.

UIRED CYCLES TO ACCESS THEM

Number of Cycles
1
1
1 10
10 100
1 10
10 100
400 600

D-textures, one for the
for the System Response

onding to the corrections
ith the projections.
uses the large number of

ms acquired from a rotating
f necessary Super-LORs to

2

Forward and backward projections are by
consuming parts of the code. More th
reconstruction time is spent in these two s
these parts can be easily distributed in sev
many forward or backward projections can
parallel. These two subroutines were imple
kernels, and called from the C code. The i
schematically described in Fig. 2:

Fig. 2. Diagram of the code implemented.

In order to reach the best performance

code implementation should reduce
wherever possible. Therefore, the code was
goal in mind, and some efforts were devot
data to improve memory access and to rearr
iterative algorithm.

In this work we have used the 2.3 versio
the 191.07 version of the NVIDIA drivers.

C. Forward Projection
In the implemented CUDA kernel, each t

LOR, adding the contribution from all the
connected with it. Several angles (with all
bins) can be projected at the same time. In th
175(radial) x 59(axial) x 10(angles) LO
simultaneously. The possibility of changing
of LORs that can be projected simultane
maintaining a good scalability in future more

For each LOR {
 Find its corresponding Super-LOR
 (0,yc,zc) = Center of the LOR (Before rotat
 [θ,δ] = Polar and Axial Angle of the LOR
 For each POINT (i,j,k) in the LOR {
 (Super-LOR, i,j,k) � (XP,YP,ZP) [Probab
 VALUE PROB = tex3D(texProb,XP,YP,Z
 (x0,y0,z0)=(0,yc,zc)+(i,j,k)
 (x,y,z) =Rotation[θ,δ] (x0,y0,z0)
 VALUE IMAGE = tex3D(texImg,x,y,z);
 SUM PROJ+=VALUE PROB*VALUE
 }
 PROJECTION[LOR]=SUM PROJ;
}

Fig. 3. Pseudo code of the Forward Projection.

Fig. 3 shows the pseudo-code of the Fo

algorithm.

far, the most time-
an 90% of the
steps. Fortunately
eral processors as
 be computed in

mented as CUDA
mplementation is

with the GPU, the
memory accesses
designed with this
ed to reorder the
ange loops in the

n of CUDA with

hread projects one
175x5x3 voxels
radial and axial

is work, a total of
Rs are projected

the total number
ously, will allow
powerful GPUs.

ion)

.Index]
ZP);

IMAGE;

orward Projection

D. Backward Projection
The ratio between the measured

stored in a 3D texture of correcti
angular indexes. This way of storing
more efficient than keeping the
Memory. Not only the values which
are more easily accessed, but also li
and axial directions is obtained
requiring additional code.

In the backward projection k
projects one voxel, adding the c
5x3x10 previously projected LORs
the overlap between LORs cause
probability distribution, for each a
with 5x3 LORs. All the corrections
stored into an image of corrections
both necessary for the OS-EM algo

Fig. 4. Backprojection in a voxel from se

Figure 4 shows schematically th

voxel, where the corrections from
up and stored. Figure 5, describe
kernel.

For each LOR {
 Find its corresponding Super-LO
 For each Voxel {
 (xc,yc,zc) = Voxel Coordinates
 For each projected [θ,δ] angle
 (x0,y0,z0) =Rotation[-θ,-δ] (xc,
 (y0,z0) Represents Detector Co
 For each (j,k) transversal point i
 (x,y,z) = (x0,y0,z0) + (0,j,k)
 VALUE CORR = tex3D(texCo
 From [θ,δ] and [y,z] � Super-L
 (Super-LOR, x,-j,-k)�(XP,YP,
 VALUE PROB = tex3D(texPro
 valor imagen corr+= valor cor
 valor imagen prob+= valor pr
 }
 }
 IMG CORR[Voxel]+=valor im
 IMG SENS[Voxel]+=valor ima
}

Fig. 4. Pseudo code of the Backward Proj

data and the projections are
ons with radial, axial and
g these corrections is much
m in a vector in Global
h should be back-projected
near-interpolation in radial

d from textures without

ernel, each thread back-
contribution from all the
connected with it. Due to

d by the thickness of the
ngle a voxel is connected
 obtained are summed and

and an image of sensitivity,
rithm.

veral LORs.

e backprojection step for a
several LORs are summed
s the pseudo-code for this

R

 {
yc,zc)
ordinates
n the LOR {

rr,y,z, [θ,δ]);
OR

ZP)
b,XP,YP,ZP);
r*valor prob;
ob;

agen corr;
gen prob;

ection.

3

III. RESULTS

Table II shows the time required for re
acquisition in different architectures. The c
were compiled with the Intel C compiler
code. Times for the CPU are given for a
processors where these codes were run are
in the market. The CUDA code was run
obtaining significant performance differenc
The reconstructed images can be viewed in F

TABLE II RECONSTRUCTION TIME FOR ONE BED, ONE
ARCHITECTURES. THE SPEED UP FACTOR IS COMPARED

CPU.

Architecture Time

CPU–Intel® Xeon™ (3.00GHz) 204
CPU–Intel® Core™ i7 (2.93GHz) 156

GPU - GT 120
1.0 GB – 32 stream processors 271

GPU - 8800 GTS
 640MB – 96 stream processors 95

GPU - FX5600
1.5GB – 128 stream processors 65

GPU - GTX260
896MB – 216 stream processors 45

Fig. 3. Image reconstructed from CPU and GPU.
both images is also shown.

IV. CONCLUSIONS
The iterative fully-3D reconstruction sof

been successfully implemented in CUDA
improvement in the reconstruction time ha
This is remarkable as FIRST has been sho
highly optimized reconstruction code.

constructing one
odes for the CPU
producing 64 bit
single core. The

among the fastest
in several GPUs,
es between them.
ig. 3.

FRAME IN DIFFERENT
AGAINST THE FASTEST

(s) Speed-up
factor

8 -
1 1x

6x

16x

23x

35x

A line profile through

tware FIRST has
and a significant
s been achieved.

wn to be already a

In can be noticed from Table II
on different GPUs can obtain signi
is one of the main advantages of C
scalability to different GPU famil
coding.

The following generation o
outperform by an order of magni
reconstruction software implemen
benefit from these improvements
strategies to optimize the reconst
advantages of GPU capabilit
investigation.

REFERENC

[1] J. L. Herraiz et al., "FIRST: Fast Itera
(PET) Tomography," Phys. Med. Biol.,

[2] CUDA Nvidia Corp.: Nvidia CUDA
 http://www.nvidia.com/object/cuda_h

[3] G. Pratx, G. Chinn, P.D. Olcott, and
shift varying line projections for it
GPU," IEEE Trans. Med. Imag., vol 28

[4] Venkatesh Bantwal Bhat, "High Spee
using Iterative Techniques for Imag
2008

[5] E. España et al., "PeneloPET, a Mo
based on PENELOPE," Phys. Med. Bi

[6] E. Lage et al., "Design and perfor
multimodality scanner for rodents im
pp. 5427 5441, 2009.

[7] J Baró et al., " PENELOPE: an algorit
the penetration and energy loss of el
Nucl Inst Meth In Phy Res B, vol. 100,

[8] H. M. Hudson, and R. S. Larkin, "
using ordered subsets of projection dat
13, pp. 601 609, 1994

[9] http://software.intel.com/en us/intel c

that the same code running
ficant time reductions. This

CUDA implementations, its
lies with no needs of re-

f GPUs will probably
tude the current ones, so

ted on CUDA will surely
without effort. Some further

ruction code to take full
ies are current under

ES
ative Reconstruction Software for
 vol. 51, pp. 4547 4565, 2007.
Programming Guide v 2 3 (2009)
ome.html
C.S. Levin, "Fast, accurate and

erative reconstruction using the
(3), pp. 435 445, Mar 2009.

d Reconstruction of Lowdose CT
e Guided Interventions", Thesis,

nte Carlo PET simulation toolkit
ol. vol. 54, pp. 1723 1742, 2009
mance evaluation of a coplanar
aging," Phys. Med. Biol, vol. 54,

hm for Monte Carlo simulation of
ectrons and positrons in matter,"
pp. 31 46, 1996

Accelerated image reconstruction
a," IEEE Trans. Med. Imag., vol.

ompilers

4

