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 Abstract A CUDA implementation of the existing software 
FIRST (Fast Iterative Reconstruction Software for (PET) 
Tomography) is presented. This implementation uses consumer 
graphics processing units (GPUs) to accelerate the compute intensive 
parts of the reconstruction: forward and backward projection. FIRST 
was originally developed in FORTRAN, and it has been migrated to 
C language to be used with NVIDIA C for CUDA, as well as for a 
straightforward implementation and performance comparison 
between the C versions of the code running on the CPU and on the 
GPU. We measured the execution time  of the CUDA version 
compared to the fastest available CPU. The CUDA implementation  
includes a loop re ordering and an optimized memory allocation, 
which improves even more the performance of the reconstruction on 
the GPUs.  

I. INTRODUCTION 

OMOGRAPHIC reconstruction is computationally very 
demanding, specially when iterative methods based on 

realistic models of the emission and detection of the radiation 
are used [1]. Modern multi-core processors have reduced the 
computational time required to run tomographic 
reconstruction codes thanks to parallel task execution. 
Tomographic reconstruction codes can be easily parallelized, 
as the two main time-consuming parts of the reconstruction 
task (forward and backward projection) can be recoded into 
SIMD (single instruction multiple data) tasks and distributed 
among the available processor units, assigning some parts of 
the data to each of them. This can be done as the acquisition 
data are arranged in sets that are largely independent among 
them. FIRST [1], a Fast Iterative Reconstruction Software for 
(PET) Tomography was developed in our group using this 
strategy, and it is been used on several commercial preclinical 
systems [5]. 
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Nevertheless, the increasing complexity of new scanners 
with larger number of response lines and reconstructed voxels, 
as well as more sophisticated acquisitions protocols, like 
dynamic studies or PET acquisitions with time-of-flight 
information, requires new approaches in order to maintain 
reasonable reconstruction times without the need of large 
computer clusters. 

The Graphics Processing Unit (GPU) can handle large data 
sets in parallel when working in single instruction multiple 
data (SIMD) mode. GPU development has been much faster 
than CPU one and nowadays the processing capability of GPU 
is considerably superior to the CPU one. The recent advances 
in the programmability of GPU has made it possible that 
certain general purpose computations usually done at the CPU 
can be implemented on GPU with a much faster speed. CUDA 
[2], developed by NVIDIA, offers a unified hardware and 
software solution for parallel computing on CUDA-enabled 
NVIDIA GPUs supporting the standard C programming 
language together with high performance computing 
numerical libraries aimed to ease the job of coding and 
running complex computational problems on the GPU. When 
programmed through CUDA, the GPU can be viewed as a 
computing device capable of executing a very high number of 
threads in parallel, and the power of the GPU for handling 
multiple instances of the same operation on multiple data is 
transparently accessed. 

Attempts to code tomographic reconstruction for CT and 
PET have been made in the past [3], [4] also with CUDA, but 
usually from scratch, using different algorithm and codes that 
would have been employed on the CPU. Thus, a direct 
comparison of performance as well as the resulting images 
between GPU and CPU codes is difficult. 

FIRST has proved to be a successful implementation of a 
tomographic code for high-resolution small animal PET 
scanners [1], [6]. It is based on a realistic model of the scanner 
obtained from the Monte Carlo simulation code PeneloPET 
[5]. This model improves the image quality. For example, it 
obtains a more uniform resolution along the FOV. Some of its 
key advantages are that it implements a method for handling 
the large size of the model to fit into RAM memory, 
improving the performance of the code. It is also coded to run 
in parallel in an arbitrary number of processors and further the 
number of pixels of the reconstructed image can be chosen 
freely. 

In this work we aimed to obtain a straightforward 
implementation of the same code, targeted for CPU optimized 
execution, into the GPU. Our main goal was to obtain a 
significant acceleration of the code without compromising the 
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quality of the reconstructed images. Addition
obtain a simple and flexible code, 
optimizations, which would allow for 
modifications without much additional effort.
The program was written to a large extent 
the NVIDIA GPU model that will execute th
attention was paid to considerations about 
and access, in order to achieve optimal perfor

II. MATERIALS AND METHOD

A. Description of the CPU Implementation 
For a more detailed description of the re

FIRST, the reader is referred to [1]. We wil
main components and characteristics fo
completeness. The code implements a f
reconstruction of PET data based on a reali
radiation emission and detection. 

 This model was generated using the 
PeneloPET [5] based on PENELOPE [7]. In 
probability distributions called system respo
into RAM memory, all symmetries present i
exploited. This imply that only some probab
along the LOR (commonly called Tubes-of
have to be computed and stored, as symmet
LORs will have the same probability distrib
Fig. 1. Even with this approach, the size 
coefficients exceeded the available RAM mem
computers. This was solved using what 
symmetries [1]: LORs with very similar an
scintillator crystals will have a very si
distribution, as shown in fig. 1. There
distributions along chosen LORs, called S
simulated and stored, reducing the initial stor
by more than a factor 20 without compromis
the reconstructed images. 

                  (a)                               (b

          
       (c)       

Fig. 1  Symmetries: (a) Rotational  (b) Translationa
(c) Quasi symmetries, used to reduce the number of L
stored in memory. All these LORs have a similar probab
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   For this comparison, a version of 
resolution small animal PET scan
detectors in coincidence. The n
reconstructed images was 175x175
in the sinogrammed data were 175 
x 900 (oblique sinograms). The dat
from a PeneloPET simulation of a 
rods of different diameters filled 
code, written in FORTRAN, was t
both cases the Intel compiler [9
optimization options available we
speed of both the FORTRAN and C 

In this work the time required for
was studied for one single CPU. N
parallelization as reported in pr
reconstruction time required in a 
easily estimated. 

B. Description of the GPU implem
With the large number of thre

parallel computation in GPUs, the 
kind of implementations is me
describes the different types of me
and exposed by CUDA. It can be se
and textures is much faster than ac
recent versions of CUDA, 3D textur
makes the implementation of our co

 
TABLE I.  GPU TYPES OF MEMORY AND REQ

 
GPU Memory Type 
Register 
Shared Memory 
Constant Memory (in cache) 
Constant Memory (not in cache) 
Texture Memory (in cache) 
Texture Memory (not in cache) 
Global Memory 

 
We have defined three 3

reconstructed image, another one 
Matrix and a third one corresp
obtained after comparing the data w

The system response 3D-texture 
symmetries present in the sinogra
scanner, making the total number o
be quite small.  
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Forward and backward projections are by 
consuming parts of the code. More th
reconstruction time is spent in these two s
these parts can be easily distributed in sev
many forward or backward projections can 
parallel. These two subroutines were imple
kernels, and called from the C code. The i
schematically described in Fig. 2: 

 

Fig. 2. Diagram of the code implemented. 
 
In order to reach the best performance 

code implementation should reduce 
wherever possible. Therefore, the code was 
goal in mind, and some efforts were devot
data to improve memory access and to rearr
iterative algorithm. 

In this work we have used the 2.3 versio
the 191.07 version of the NVIDIA drivers. 

C. Forward Projection 
In the implemented CUDA kernel, each t

LOR, adding the contribution from all the 
connected with it. Several angles (with all 
bins) can be projected at the same time. In th
175(radial) x 59(axial) x 10(angles) LO
simultaneously. The possibility of changing 
of LORs that can be projected simultane
maintaining a good scalability in future more 

 
For each LOR  { 
 Find its corresponding Super-LOR 
 (0,yc,zc) = Center of the LOR (Before rotat
 [θ,δ] = Polar and Axial Angle of the LOR  
 For each POINT (i,j,k) in the LOR  { 
  (Super-LOR, i,j,k) � (XP,YP,ZP) [Probab
  VALUE PROB = tex3D(texProb,XP,YP,Z
  (x0,y0,z0)=(0,yc,zc)+(i,j,k) 
  (x,y,z) =Rotation[θ,δ] (x0,y0,z0)  
  VALUE IMAGE = tex3D(texImg,x,y,z); 
  SUM PROJ+=VALUE PROB*VALUE
  } 
 PROJECTION[LOR]=SUM PROJ; 
} 

Fig. 3. Pseudo code of the Forward Projection. 
 
Fig. 3 shows the pseudo-code of the Fo
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.Index] 
ZP); 

IMAGE;  

orward Projection 

D. Backward Projection 
The ratio between the measured 

stored in a 3D texture of correcti
angular indexes. This way of storing
more efficient than keeping the
Memory. Not only the values which
are more easily accessed, but also li
and axial directions is obtained
requiring additional code.  

In the backward projection k
projects one voxel, adding the c
5x3x10 previously projected LORs 
the overlap between LORs cause
probability distribution, for each a
with 5x3 LORs. All the corrections
stored into an image of corrections 
both necessary for the OS-EM algo

 

Fig. 4. Backprojection in a voxel from se
 
Figure 4 shows schematically th

voxel, where the corrections from 
up and stored. Figure 5, describe
kernel. 

For each LOR  { 
 Find its corresponding Super-LO
 For each Voxel  { 
    (xc,yc,zc) = Voxel Coordinates 
   For each projected  [θ,δ] angle 
    (x0,y0,z0) =Rotation[-θ,-δ] (xc,
    (y0,z0)  Represents Detector Co
   For each  (j,k) transversal point i
   (x,y,z) = (x0,y0,z0) + (0,j,k) 
   VALUE CORR = tex3D(texCo
   From [θ,δ] and [y,z] � Super-L
   (Super-LOR, x,-j,-k)�(XP,YP,
   VALUE PROB = tex3D(texPro
   valor imagen corr+= valor cor
    valor imagen prob+= valor pr
    }   
  } 
  IMG CORR[Voxel]+=valor im
  IMG SENS[Voxel]+=valor ima
}

Fig. 4. Pseudo code of the Backward Proj
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III. RESULTS 
 
Table II shows the time required for re
acquisition in different architectures. The c
were compiled with the Intel C compiler 
code. Times for the CPU are given for a 
processors where these codes were run are 
in the market. The CUDA code was run 
obtaining significant performance differenc
The reconstructed images can be viewed in F
 
TABLE II  RECONSTRUCTION TIME FOR ONE BED, ONE
ARCHITECTURES. THE SPEED UP FACTOR IS COMPARED 

CPU. 
 

Architecture Time 

CPU–Intel® Xeon™ (3.00GHz) 204
CPU–Intel® Core™ i7 (2.93GHz) 156

GPU - GT 120 
1.0 GB – 32 stream processors 271 

GPU - 8800 GTS  
 640MB – 96 stream processors 95 

GPU - FX5600  
1.5GB – 128 stream processors 65 

GPU - GTX260  
896MB – 216 stream processors 45 

 

Fig. 3. Image reconstructed from CPU and GPU. 
both images is also shown.   

IV. CONCLUSIONS 
The iterative fully-3D reconstruction sof

been successfully implemented in CUDA 
improvement in the reconstruction time ha
This is remarkable as FIRST has been sho
highly optimized reconstruction code. 

constructing one 
odes for the CPU 
producing 64 bit 
single core. The 

among the fastest 
in several GPUs, 
es between them. 
ig. 3.  

FRAME IN DIFFERENT 
AGAINST THE FASTEST 

(s) Speed-up 
factor 

8 - 
1 1x 
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16x 

23x 

35x 

  

 
A line profile through 

tware FIRST has 
and a significant 
s been achieved. 

wn to be already a 

In can be noticed from Table II 
on different GPUs can obtain signi
is one of the main advantages of C
scalability to different GPU famil
coding. 

The following generation o
outperform by an order of magni
reconstruction software implemen
benefit from these improvements 
strategies to optimize the reconst
advantages of GPU capabilit
investigation. 
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