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Abstract. The paper presents a sensitivity analysis of Pareto solutions
on the basis of the Karush-Kuhn-Tucker (KKT) necessary conditions
applied to nonlinear multiobjective programs (MOP) continuously
depending on a parameter. Since the KKT conditions are of the first
order, the sensitivity properties are considered in the first approxima-
tion. An analogue of the shadow prices, well known for scalar linear
programs, is obtained for nonlinear MOPs. Two types of sensitivity
are investigated: sensitivity in the state space (on the Pareto set) and
sensitivity in the cost function space (on the balance set) for a vector
cost function. The results obtained can be used in applications for
sensitivity computation under small variations of parameters. Illustra-
tive examples are presented.

Key Words. Sensitivity analysis, nonscalarized multiobjective program-
ming, Pareto set, balance set.

1. Introduction

Since the notions of multiobjectives and of ideal point (the vector
of global partial optima) were introduced in mathematical programming
and control theory (Refs. 1-4), their importance to economy and engi-
neering was recognized immediately in the research and literature that fol-
lowed. Also, it became clear that, in reality, the multiobjectives were not

IProfessor, Departamento de Economia de la Empresa, Universidad Carlos III, Madrid,
Spain. Research of this author was partially supported by Grant BEC2003-09067-C04-03.
2Professor, Département de Mathématiques, Universit¢é du Québec a Montréal, Montréal,
Québec, Canada. Research of this author was partially supported by NSERC Grant
RGPIN-3492-00.

3Professor, Departamento de Matematicas Fundamentales, Facultad de Ciencias, Univers-
idad Nacional de Educaciéon a Distancia, Madrid, Spain. Research of this author was
partially supported by Grant BEC2003-09067-C04-02.


Cita bibliográfica
Published in: Journal of Optimization Theory and Applications, agosto 2005, v. 126, nº 2, pp. 247-264. ISSN: 0022-3239


some fixed rigidly defined criteria, but rather they might contain uncer-
tainties or depend on parameters (Refs. 5, 6). This necessitated studies on
the sensitivity of multiobjective programs (Refs. 6-11), with respect to per-
turbations of objective functions, or utility functions, or the ordering cone
(Ref. 8) to analyze the stability of solutions under certain assumptions
like convexity (Ref. 10) or homogeneity (Ref. 11) or under some particular
quantitative assumptions (Ref. 6).

Recently, the concepts of balance number, balance point, and bal-
ance set were introduced in Refs. 12-13 for vector optimization problems;
several authors have analyzed their significant properties and have devel-
oped algorithms to compute them in practice (see Refs. 14-19 for further
details).

Mainly, this approach yields a very general alternative method in vec-
tor optimization because multiobjective problems can be deeply analyzed
by means of their ideal points rather than as scalarized problems. It is not
necessary to seek appropriate weights to compute a balance point. Instead,
one may choose a direction of preferential deviations from the ideal point
in order to reach an optimal point.

Consequently, an interesting economic interpretation is possible, since
the ideal point may be considered an adequate reference for the deci-
sion marker. Given an arbitrary balance point b= (b1, b, ..., b), b; is the
difference between the final level attained in the ith objective and its ideal
level, i =1,2,...,k; thus, a decision maker can choose another balance
point when these differences are not acceptable. Furthermore, each quo-
tient b; /b; provides the number of units lost in the ith objective per unit
lost in the jth one. When the problem is scalarized, the meaning of the
weights is not so clear.

This nonscalarized procedure provides new algorithms which are very
general. When we are choosing a concrete direction to detect a balance
point, we are also choosing the ratios of gains and losses among the con-
flicting objectives.

As pointed out in Ref. 14, the set of Pareto solutions and the bal-
ance set are equivalent from a theoretical viewpoint, in the sense that there
exists a simple relationship between these sets. Thus, balance set tech-
niques apply also to study the Pareto solutions.

Both advantages, new nonscalarized algorithms and their economic
interpretation, justify the interest of extending the discussion in order to
address another important issue of vector optimization. So, this paper
focuses on sensitivity, since it still presents many open questions when
dealing with vector problems.

Regarding sensitivity, scalar problems have many deep properties
whose extension to vector problems is not straightforward. This fact is



pointed out clearly in Refs. 20-21. In order to overcome these difficulties,
the recent literature (see for instance Refs. 3—11, 22-26) has developed new
ideas and methods; we try to show here that the balance space approach
may be a useful alternative and can broaden possible techniques. Since
the adjoint Pareto set equals the ideal point J plus the balance set [P* =
f(P)=J+ B (see Refs. 14-15)], the sensitivity of the balance set allows us
to obtain the P* sensitivity by adding two terms. Moreover, this opens a
way to study sensitivity of Pareto solutions x € P in the state space.

2. Statement of the Problem, Basic Concepts, and Hypotheses

Consider a global multiobjective program,

inf f(x,p), xeXCR", f=f1,.... [ o), (D
X:{xeR”, glx,p)<q, x>0, qeRm}, 2

where p is a vector of technological parameters and ¢ is a resource vector
that may contain financial resources of different kinds, including deficits.
We make the following assumption:

(A1) Each scalar problem
inf{ fi (x, p) : x € X} (3)

attains its global optimal value at a single point x(i, p) € X,i =
1,2,..., k; therefore, the ideal point or the set of global partial
minima

J(p) =111, p), )y &2, PP, frlxlk, p), p)leRE

does exist.

To simplify notations, we denote

Jl(p)zﬁ(-x(lvp)ap)a l=1,2,,k

Following the approach of Ref. 15 or Ref. 16, an element b e R¥, >0, is
said to be a balance point of (1) if

{f():xeXIN[J(p), J(p)+b]#V
and

{f):xeXIN[J(p). J(p)+b*]=9,



for every b* € R* such that
0< b* <b, b*"#b.

As pointed out in Ref. 15, b RF is a balance point of (1) if and only
if J(p)+b is the value f(x,, p) at a Pareto point x,.

Consider a direction vector [ = (y,...,Ix) e R¥, [; >0, i=1,... k,
1#0. With this I, which is supposed to sweep the whole RK, the origi-
nal problem (1)—(2) can be represented by the following equivalent prob-
lem whose decision variables are t € Ry and x € X CR":

min T, (4a)
st. xeX={xeR" glx,p)<q, x>0, geR"}, (4b)
f&x,p)—=J(p)<tl, 1>0. (40)

Indeed, if x( is a solution of (1)—(2) in some sense, then fixing {° >0,
we can find mint >0 for which at least one of the relations in (4¢) is an
equality. Alternatively, fixing 7o >0, we can find [ € Rﬁ for which at least
one of relationsin (4¢)is an equality; thus, mint=t; is attained. Viceversa,
for sufficiently large v and any fixed [° > 0, the feasible set (4b)—(4c) is
nonempty, so that decreasing T to some tp=mint will yield the solution
(10, x9) with one or many points xq if, for T <1, the feasible set (4b)—(4c)
is empty. In this equivalence, the possible nonuniqueness of corresponding
solutions is a positive phenomenon inherent to multiobjective programs.

Suppose that T =0 is a solution of (4). Since

Ji(p)=inf fi(x,p), xe€X,
due to (Al), so

fitx, p) < Ji(p)

is impossible; thus, with t =0, instead of (4c), we have the equality

fx, p)y=J(p).

It means that one and the same x(p) € X renders the global minimum
value J;(p) for every i =1,...,k; thus, problem (1)-(2) is in fact a scalar
program with different f;(x, p) attaining inf f;(x, p) at the same point
x(p) € X. Such MOP is called balanced (Refs. 12, 13).

For unbalanced problems, the set (4b)—(4c) is empty for 7 =0. To
obtain a solution of (4), hence the corresponding solution of (1)-(2) in

f u,ve Rk, with u <v, then [u, v] denotes the set {xeRk:ufxgv} coordinatewise.



the direction /, we have to increase gradually r until first time when the
set (4b)—(4c) becomes nonempty. Clearly, for different directions /, the first
nonempty set will contain different points. For some of those directions,
this set will contain Pareto points [note that Pareto solutions always exist
for any MOP; for example, the points x(i, p) in (A1) are Pareto solutions].
We make the following assumption.

(A2) Ifthe first nonempty set of (4b)—(4c) produced with increasing 7 in
the direction / contains a Pareto point, then this set is a singleton.

This is the hypothesis of general position for nonlinear MOPs; see
Hypothesis 3.1 in Ref. 17, p. 120.

In this research, we consider only those directions / € R’_i that produce
with increasing 7 a single Pareto point as the first nonempty set appears in
(4b)—(4c). All such points form the Pareto set for (1)—(2) or (4), which (by
definition) is deemed to be the optimal solution for (1)—(2) or (4); see Defi-
nition 3.1 in Ref. 17, p. 121, which is wider and admits also non-Pareto
optimal solutions. Of course, different Pareto solutions may be of differ-
ent quality with respect to other criteria, but this is another problem.

When the direction vector [ € Rﬁ sweeps the whole space RX , the pro-
gram (4) renders all feasible solutions of the initial program (1)-(2), By
construction, the optimal solutions of (4) are the closest possible to the
ideal vector J(p). Therefore, it is reasonable to take the globally optimal
solutions of (4) as optimal, by definition, for the initial problem (1)—(2).

Since problem (4) is a scalar program for each fixed / € R%, we can
apply to it the KKT necessary conditions for a local minimum. In this
way, the k-parameter family of the KKT necessary conditions is obtained
for the k-parameter family of programs (4), hence also for the single orig-
inal MOP (1)-(2). Without loss of generality, the leading k-vector param-
eter [ € Rﬁcan be normalized conveniently; e.g. ||/||=1.

Among all the minima of (4), there is the global one inf . We make
the following assumption.

(A3) For each fixed triplet (p, g, 1), the Karush-Kuhn-Tucker (KKT)
necessary conditions are applicable to problem (4). The global
solution (t°, x%) of (4) is unique and is contained among the
stationary points (t*, x*) defined by the KKT conditions.

This assumption holds in many practical problems. The exact condi-
tions (e.g., convexity) under which it is valid will be investigated elsewhere.

For nonlinear programs, the sensitivity investigations are based on
partial derivatives (see e.g. Refs. 7 and 9-11); so, we make the following
blanket assumption.



(A4) The functions in (1)—(4), including the stationary points
™(p,q,l), are continuous and have continuous partial
derivatives.

In the sequel, the following basic lemma will be useful.

Lemma 2.1. If a global optimal solution (z°, x%) is Pareto, then the
relations (4c) are all equalities at this point.

Proof. By a theorem in Ref. 14, we have

f(P(p).p)=J(p)+B(p), Vp, )

or in coordinate form,

fiGxp, p)=Ji(p)+bi(p), xpeP, i=1,...k, (6)
where P(p) is the Pareto set corresponding to a fixed vector-parameter
p, B(p) is the balance set, and J(p) is the ideal point [vector of global
partial minima in (3)].

By construction, with increasing 7, the first nonempty set (4b)—(4c)
will have equality in at least one of relations (4c). Let it be the first one,

fiGp, )= NP =P, xp=x". (7)
Since x, € P, we have by (6)

fiGxp, p)=J1(p) +b1(p); ®)
thus,

0 —

T (phi=bi(p),
where b is the first coordinate of the balance point b= (by, ..., b;) € B.

By construction and since we consider only the rays t/ intersecting

the balance set B, we have t%(p)l = b(p); thus, the relations (4c) at the
Pareto points can be written as

fGp, p)—=J(p) <t (p)l=b(p). )

Comparing (6) and (9) proves the lemma. |



3. Lagrangian Formulation and KKT Conditions

For the k-parameter family of problems (4), we can write the corre-
sponding k-parameter family of Lagrangian functions with [;, (i=1,...,k),
as independent parameters,

m n
L(z, %, p, g p 20, D=7+ wjlg;(x, p)—qj1— Y hexs
j=1 s=1

k
+ Y vilfite, p) =l = Ji(p)]. (10)

i=1

Note that, if x, € P is a Pareto solution (thus, globally optimal), then due
to the complementarity conditions (see below) and the equalities in (4c)
(Lemma 2.1), we have

L°)=7%p,q,l)=minr, (11)
b=1"p,q,Dl=f(xp,p)—J,, bEB, (12)

where B is the balance set for (1)-(2).

Denote by x*(p), *(p) =min t an optimal solution of (4) correspond-
ing to a fixed value of the parameter p. Then, by the Karush-Kuhn-Tucker
theorem, the following conditions must hold at the point (x*, t*):

k

AL/dT=1-> v}l =0, (13)
i=1

m k
OL/dxs =y piog;/dxs+ Y vidfi/dx,—2i=0, s=1.....n, (14)
j=1 i=1

OL/opuj=g;(x*, p)—q; <0, j=1,....,m, (15)
AL/Irs=—x <0, s=1,...,n, (16)
AL/ovi= fi(x*, p)—t*(Pi = Ji(p) <0, i=1,...k, (17)
wilgj(x*, p)—q;1=0, j=1,....,m, (18)
Mxi=0, s=1,...,n, (19)
vl*[fl(X*vp)_r*(p)ll_Jl(p)]:()v l:177k9 (20)

;sz(), Ap=0, vi>0, j=1,....m, s=1,....,n, i=1,...;k. (21)

The existence of Lagrange multipliers w7, A}, v is included in

Assumption (A3). The relations (13), (14), (18), (19), (20) include 1+ 2n+

m +k equations for the same number of unknowns t*, x}, ,uj,)»j, v’. By



Assumption (A3), these equations have one or more solutions satisfying
(15)—-(17), (21) and called stationary points. Some of these deliver local
minima for problem (4); by Assumption (A3), one and only one of them
yields the unique global mint = t%(p). This solution (x°,7%) defines a
Pareto point x’(p), the balance point b=1"(p)!l in the direction I € R,
and the actual values of the cost functions [cf. (12)]

LGP, =P+ Ji(p), i=1,...k, (22)

globally optimal in the direction /= (I1,[5,...,1;). To this solution, there
correspond certain values ,u(j)., 29, v? of the Lagrange multipliers.

Taking the differential of the Lagrangian in (10), we have

m n
dL=dt +dZ/Lj[gj(x, P)—q;l —desxs
j=1 s=1

k
+d Y uilfilx, p)—tli = Ji(p)]. (23)

i=1
Theorem 3.1. If x"e P is a Pareto solution, then

dL=d%p,q,1)=1"db, beB, (24)
db=1dL’, Vp, Vq. (25)

Proof. On a Pareto set, the entries in (23) become composite func-
tions, since x =x%(p, ¢, 1) € P and also t=1(p, ¢, 1) for a stationary point
produced by the KKT conditions. By the theorem of invariance of the
form of the first differential, the formula (23) remains valid if a stationary
point (e.g., global optimal solution) travels on a subset of the feasible set
(on Pareto set). Now, using the complementarity conditions (18)—(20) for
the global optimal solutions x’(p, ¢, 1), we get the first equality in (24).

The second equality of (24) is obtained as follows. Moving along the
subset (18)—(19), cancel out the second and third terms on the right in (23)
by the complementarity conditions (18)—(19). Then, taking the differential
from the last term in (23) yields

dL? =d7 + dv'[ £ (0, p) — 01 — T (p)]+0°[df* — d<°1 —aJ). (26)

The first bracket in (26) vanishes by Lemma 2.1. Opening the second
bracket, we have

ALY =dt® +'[df° —dJ]—d<° ). (27)



Since v’/ =1 by (13), cancelling dz° from (27), and noting that df°—dJ =
db, due to (12), we get dL?=v"db in (24). Now, multiplying this by / on
the left and again using (13), we get ldL°=db of (25). |

Here and in the sequel, the star marks stationary points and multi-
pliers satisfying the KKT conditions. The superscript © denotes the global
optimal solution (Pareto) and the corresponding multipliers, which all nec-
essarily satisfy the KKT conditions. For clarity, we indicate only those
parameters which are of interest; e.g. x%, x%(p), x°(¢), x%(p, g, 1) represent
one and the same Pareto solution.

4. Optimal Lagrangian and Sensitivity of the Balance Set

The Lagrangian (10) can be considered as a (2+42n+ N, 4 2m + 2k)-
dimensional surface, where N, is the number of different technological
parameters (py, ..., pn,) = p. The resource parameters g; are singled out
because of their different economical sense; however, in some problems,
g; can be conveniently included in the vector p as some of its coordi-
nates. Clearly, equality constraints are also included in (10), (15)—(17) as
e.g. pairs of opposite inequality constraints.

By Assumption (A4), the surface (10) is continuous and admits con-
tinuous partial derivatives of all orders that we may need, with respect
to any entries considered as independent variables. When this surface
passes through stationary points satisfying the KKT conditions (13)—(21),
it shrinks continuously into a less-dimensional surface, due to the com-
plementarity relations (18)—(20). For the Parecto points, the surface (10)
becomes a (14 N, +m +k)-dimensional surface given by (11), with direc-
tions [ restricted to intersect the balance set. We call this surface (11) the
optimal Lagrangian L°(-). Following classical traditions, we consider first
the sensitivity with respect to the resource vector ¢g. For the nonoptimal
surface (10), we have the partial differential (V denotes a gradient)

m
dyL=VyLdg=—pudg=~Y  p;dq;, (28)
j=1
with sensitivities

OL/dq;=—p;. (29)

that represent the shadow prices for the resources ¢;.



Due to the complementarity conditions (18)—(20), all sums in (10)
tend to zero as x(p,q,l) tends to x*(p,q,!). Therefore, (10) reduces to
(11) with the differential

dyL*=V,t*dg = (9t*/3q;)dq;. (30)
j=1

By the continuity of the partial derivatives, we have

lim d,L=d,L* (3D

x—>x*
lim 0L/9q;=0L"/3q;=0t"/dq; =—u’; (32)
x—x* ’ ’

3
Since instead of ¢;,q we can consider any parameter or group of param-
eters in (10), this continuity argument proves the following fact.

Theorem 4.1. Sensitivity of Stationary Values. For a stationary value
™(p,q,1), we have

at*/aﬂzaL/aﬂ|x:x*, dﬂf*zdﬂL|x:x*a (33)

where B is a parameter or a group of parameters [for the differential in
(33)] from the (N, +m +k)-vector [p,q,1].

Note that t*(p, g,1) does not have to be the global optimal value. It
can be a local optimal value or a nonoptimal value associated with a sta-
tionary point x* of the KKT conditons.

Theorem 4.1 can be used as follows. The computation of dt*/98 may
be difficult if t*=1t*(p,q,l)=T*(B) is not representable as a formula, so
that dt*/08 must be approximated by neighboring solutions of problem
(4). Instead of such tedious computations, one can calculate dL /98 using
the nonoptimal Lagrangian (10), then solve (4) just once and put approx-
imate values of x*, u*, v* (as needed) into dL/38. For example,

AT*/0q; =—pnj, dytt=—p'dq.

Application to Scalar Nonlinear Programming. In this case, k=1; thus,
l1=1 and by (13) we have v =1. Dropping the subscript, we get from
(20)

f&* p)—t*(p.q9)—J(p,q)=0, (34)

10



and since the global minimum value J(p) is attained by Assumption (Al),
so =0 and the problem (1)-(2) is in fact scalar with the Lagrangian

L(x,p.q, i, 2)=f(x, p)+ulg(x, p) —q]—Ax. (35)
The first relation in (33) takes the form

3J(p,q)/9B=0f (x*(p.q), P)/dB=0L/0Blx=x*(p.g)- (36)
In particular,

8J/0q;=—1}.

Formula (36) coincides with the so-called envelope theorem in scalar
programming; see e.g. Ref. 26.

Example 4.1. Consider the problem

min f:xz—x{’, p>0, (37
st. x1+x<¢q, x>0, x>0, ¢>0. (38)

The optimal solution is obvious; x; =0,x;=¢ if p>0 and x; €[0, ¢] if
p =0, which is the bifurcation point with respect to the solution set.

The solution by the KKT theorem is as follows. The Lagrangian is
L:xz—xf+u(x1+x2—q)—k1x1—)sz. (39)

The KKT conditions are, for p >0,

OL/dx1=—px! " +p—r=0, u=0, A1=0, (40)
AL/dxy=1+pu—2=0, Ar>0, 41)
AL/dpu=x1+x0—q=<0, x>0, x>0, (42)

while the complementarity conditions are

wxr+x2—q)=0, Ax;=0, tx;=0. (43)
From (40)-(41), we have

p=h+p =2 -1 (44)

Case 1. u=0,2=1>0,x=0, 1 =—pr_1,)»1x1:—pr=0,x1 =0.
Thus,

x*=(0,0), fG&*, p)=r(0,0)=0.

11



Case 2. u>0,2=14u>0,x=0,x; =q; thus, x* =(q,0); 11x] =
(w—pg"Hg=0,u=pqg"7", f(g,0)=—q” < £(0,0); thus, x®= (g, 0), the
global minimizer.

Let us verify (36). For x=(q,0), we have

af/dg=—pgP~',  8L/dqlo=—n=—pg"" ", (45)
0
df/dp=—pq”logq. 9L/dp|.o=—px,"logx] =—pq’logq.  (46)

For Case 1, where x*=(0, 0) is a stationary point, we have f(x*)=0,
and

af/dq=0af/op=0, 9L/dq)xx=—pn=0,
AL/Op|xsxr=—p limoxflogxl =0.
X]1—>

For p=0, we have min f=x,—1 in (37), the Lagrangian of (39) does
not contain the term —xlp , and the solution of (40)—(43) with ¢ >0 is as
follows:

u=xr1=0, Aa=1, x3=0, x{€[0,¢], min f=—1.
We have
df/dqg=0, O0L/dqy+=—u=0.

Note that this result follows from (45) as p — 0, since the cost function in
(37) is continuous at p=0.

In order to show how the theory applies for multiobjective problems,
let us add the second objective

min f*=x
to Problem (37)-(38). Then, the ideal point is (—¢”,0) and (4a)-(4c)
become
min T,
s.t. x1+x2<gq,
x1 >0,
x2>0,
xg—xf—rg—qp,
x1—1<0.

The Lagrangian (10) becomes

L=t+4pu(x;+x2—q) —Mxi —ixa+vi (2 —xf =7 +¢”) +va(x; — 7).

12



The KKT conditions (13)-(21) become

vi+un=1,
m—Aq —V1Pxf_1+v2=0,
w—Ar+v; =0,

ulxr+x2—¢q)=0,
Aixp=A2x2 =0,
vi(xy—x] —t+4¢”)=0,
v (x; —1)=0,

with the solution
vi=1, =0, u=0, A1 =0, Ap=1, x;=0, x,=0, T=4".
Clearly,

dt/dp=0q”/dp=q”loggq,

that coincides with dL/dp if one bears in mind the expression above of
L and the values x; =x,=0. In a similar way, one can check that Theo-
rem 4.1 also holds when considering the objective f* =x1; consequently,
(6) shows that Theorem. 4.1 holds for the multiobjective problem too.

Remark 4.1. It is worth noticing that Theorem 4.1 follows from the
continuity of the Lagrangian and its derivatives and from the comple-
mentarity conditions. It does not require even the stationarity implied by
the KKT conditions, from which it is usually derived in the literature. It
means that Theorem 4.1 applies to a much larger class of problems than
the Karush-Kuhn-Tucker theorem.

Combining Theorems 3.1 and 4.1, we obtain the sensitivity of the bal-
ance set and an estimate for finite variations of the global optimal value
7% with respect to variations of parameters and to displacements of x°
within Pareto set.

Theorem 4.2. If x* e P, a Pareto solution, then to the first order,

db=I lim dL, beB (47
x—x0
d7®=1% lim dL, (48)
x~>x0

13



where v/ is the scalar product and the variations db, dz° can be consid-
ered with respect to small perturbations of any collection of parameters.

Proof. It follows from Theorem 3.1 by continuity when moving
within the Pareto set O

Suppose that all the parameters are fixed and only one (say p;) varies.

Theorem 4.3. If xO(p)) is a Pareto solution and %> 0, then the total
derivative is

df «°(p1), p)/dpr=dJ/dpi+1 lim dL/3p;. (49)

x—=x0(pr)

Proof. By Lemma 2.1, all the relations (4c) are equalities for a
Pareto point. Differentiating these equalities with respect to p; [total
derivative for f(x%(p1), p1)], we get

df°/dpy=dJ/dp; +1d<°/dpy), t°>0. (50)

Setting 8= p; in (33), and noting that t is not a composite function of
p1, we get

ot /op1=dz’ /dpi
and (49) follows from (50) and (33). |

5. Sensitivity of the Global Minimizers (Pareto Solutions)

For simplicity, we assume that all the parameters are fixed and only
one (say pi) in (49) varies. Dropping the index, denote the coordinates of
the vector on the right-hand side of (49) as follows:

wl=dJ;/dp+1; lim  dL/op, i=1,... k. (51)

x—>x0(p)

Taking the total derivative at the left of (49), we have, due to (51):

n

> ofi/ox,

s=1

x=xo(p)dxs/dp=w?—8fi/8px: L oi=1 k(52

x0(p)

Consider the set W e {l,...,m} of indices {j} for which the constraint
gj(x, p) <gq; is saturated at x%(p), that is,

g °(p), p)=gq;, for jew, (53)

14



and suppose that a variation of p of size dp does not disturb the equality
(53). Then, we can differentiate (53) to obtain

n
> 98;/9xs

s=1

. jew. (54)

x=x0(p)dxs/dp =—0gi/0p 2=x0(p)

If the number of equations in (52), (54) with linearly independent left-
hand sides is less than n, then the equalities (14) in the KKT conditions
explicitly containing x; can be differentiated to obtain additional linearly
independent equations for dx;/dp. Let us denote by S the obtained linear
system.

By Assumptions (A2), (A3), the Pareto point x’(p), a global mini-
mizer, is unique, and this uniqueness is conserved with the variations of
p. Since

x(p+dp)—x"(p)=(dx/dp)dp, (55

where x*(p), dp, and x°(p +dp) are unique, we have that dx = (dxi, ..., dx,)
is also unique. Since the partial derivatives in S and also w; of (51) are con-
tinuous, by Assumption (A4), this means that the system S [Containing (52),
(54), and additional equations from the KKT conditions, if any] must have
a unique solution for dx,;/dp, s=1,...,n. Hence, the following result is
obtained.

Theorem 5.1. Assume that x’e P is a Pareto solution such that, with
small variation dp of the parameter p,

(a) x%(p) remains Pareto;

(b) the constraints g; «%(p), p)=g ; remain saturated with that vari-
ation of p. Then, under Assumptions (Al)-(A4), the sensitivities
dxs/dp, s=1,...,n, are obtained as the unique solution of the
linear system S.

Remark 5.1. There are MOPs for which the Pareto set coincides with
the feasible set (see e.g. Refs. 12, 13, 15) and x°(p) may be in the interior
of the feasible set. In this case, W is empty, so there are no equations of
type (54). However, this situation may happen only if the number of inde-
pendent cost functions k >n (see Corollary 5.2 in Ref. 19, p. 328) and in
this case the Jacobian df;/dx, at x=x%(p) has rank n, so that the system
(52) alone may provide the solution mentioned in Theorem 5.1.

Example 5.1. A good illustration to Theorem 5.1 is provided by
Example 4.1, since a scalar problem is the special case of a MOP with
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k=1, t=0. Thus, the second terms on the right of (49)-(51) vanish. We
have the optimal point at x”= (g, 0). Thus,

dx®/dg=(1,0), dx°/dp=(0,0). (56)
With respect to ¢, by (50), (52), (54), we have for (37)—(38)

(0f/9x1)(dx1/dq) + (3f/9x2)(dx2/dq)

= (—px{""")(dx1/dg) +dx2/dg

=—pg",
dxi/dq+dxy/dg=1,

whence

—pq?~ " (dx1/dg) +1—dx) /dg =—pgP",
and the solution is

dx1/dq=1, dxy/dg=0,

as in (56).
With respect to p, we have.

(dx2/dp) —[x1(p)]” logx1(p) (dx1/dp)
=w’—3f/dp=—q"logq +q" logq
=0,

whence

dxa/dp —q” logq(dxy/dp) =0,
dx1/dp+dx;/dp=0;

thus, dx°/dp=(0,0) as in (56).
6. Conclusions

This paper shows how the theory of global optimization and the bal-
ance space approach may apply in order to develop a general theory of
sensitivity for vector optimization problems. This general theory points out
that the balance space approach is an interesting alternative and comple-
ments the classical Pareto analysis. For instance, it yields a general enve-
lope theorem (Theorem 4.1) that applies easily in practical situations and
measures the sensitivity with respect to any parameter of the problem.
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Two kinds of sensitivity are considered: sensitivity of optimal values (on
the balance set) and that of a global minimizer (sensitivity of the Pareto
set). The results can be applied to nonlinear multiobjective problems as is
illustrated by examples.
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