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Abstract—A computer can keep track of computer users
to improve the security in the system. However, this does not
prevent a user from impersonating another user. Only the user
behavior recognition can help to detect masqueraders. Under
the UNIX operating system, users type several commands which
can be analyzed in order to create user profiles. These profiles
identify a specific user or a specific computer user behavior.

In addition, a computer user behavior changes over time. If
the behavior recognition is done automatically, these changes
need to be taken into account. For this reason, we propose in
this paper a simple evolving method that is able to keep up to
date the computer user behavior profiles. This method is based
on Evolving Fuzzy Systems. The approach is evaluated using
real data streams.

I. INTRODUCTION

Observations of human-computer interaction can give us

insight into the behavior of the computer users. One of

the simplest environments from which we can obtain these

observations is UNIX operating systems.

As Greenberg described more than 10 years ago [1],

studying UNIX is attractive for many reasons: First, UNIX is

widely used, very powerful and potentially complex, and has

a broad range of users. Second, if UNIX findings could not

be generalized, they would still be valuable in their own right.

Also, UNIX has already been studied extensively. Finally,

as large groups of diverse people use it at many different

sites, studying UNIX is relatively easy to do. Although these

reasons were proposed in 1998, nowadays UNIX is still

an interesting environment for many different researchers,

specially in user behavior modeling.

On the other hand, taking into account the study of Webb

et al [2], user models may seek to describe:

1) the cognitive processes that underlie the users actions;

2) the differences between the users skills and expert skills;

3) the users behavioral patterns or preferences; or

4) the users characteristics.

In this research, the user modeling refers to the description

of the users behavior patterns. Thus, if we can obtain

these patterns, we can create computer user models. Then,

observing a new user, we can conclude which is his/her model

and to detect if it is similar to any other already seen. In this

sense, we can classify users taking into account the created

models. In this paper, a user model is acquired implicitly by

making inferences about the users from their interaction with

the computer.

The goal of this research is to present and to evaluate an

easy method for classifying the behavior of a user based on

the commands that s/he types. However, as a user behavior

changes over time, we propose a method based on Evolving

Fuzzy Systems (EFS) which keep up to date the computer

user behavior profiles. The approach is evaluated using real

UNIX data streams. This mehod can be very useful, for

example, in computer intrusion detection.

The evolving classifiers used in this research (eClass) were

proposed by Angelov et al [3] and it has been applied to

a wide range of problems, both benchmarks and real. The

use of these classifiers allows us to cope with huge amounts

of data, process streaming data on-line in real time, and

evolve the structure of a computer user model based on the

observed changes. Thus, the created user models are designed

and treated as changing models which constantly reflect the

changes in the way a user interacts with a command-line

interface.

eClass is a fuzzy rule-based (FRB) classifier which uses

(fuzzy) rules that evolve from streaming data. An eClass
(which can start learning ”from scratch”) learns new rules

from new data gradually preserving/inheriting the rules

learned already. In addition, eClass can be defined as a

self-developing classifier which has both their parameters but

also (more importantly) their structure self-adapting on-line.

This paper is organized as follows: Section 2 provides a

brief overview of the background and related work of behavior

recognition and EFS. Section 3 explains the structure of our

proposal. Section 4 describes the experimental setting and

results obtained. Finally, Section 5 contains future work and

concluding remarks.
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II. BACKGROUND AND RELATED WORK

There is much varied research which models and classifies

the behavior of other humans, robots or agents. In some

works, a team of a competitive domain is modeled and

classified using different methods, such as Hidden Markov
Models [4], Deterministic Finite Automatons [5] or decision

trees [6].

In addition, to find out relevant information under the

human behavior, many methods have been used: Macedo

et al. [7] propose a system (WebMemex) that provides

recommended information based on the captured history of

navigation from a list of known users. Gody and Amandi [8]

present a technique to generate readable user profiles that

accurately capture interests by observing their behavior on

the Web. Pepyne et al. [9] propose a method using queuing

theory and logistic regression modeling methods for profiling

computer users based on simple temporal aspects of their

behavior.

In the computer intrusion detection problem, Coull et

al. [10] propose an algorithm that uses pairwise sequence

alignment to characterize similarity between sequences of

commands. The algorithm produces an effective metric for

distinguishing a legitimate user from a masquerader. Schonlau

et al. [11] investigate a number of statistical approaches for

detecting masqueraders.

Similar to this research, Iglesias et al. proposed an approach

for modeling and classifying behaviors from observations

(called ABCD)[12]. In order to use that approach, the observed

behavior needs to be transformed into a sequence of ordered

atomic behaviors. Then, the sequence is segmented and stored

in a trie and the relevant subsequences are evaluated by

using frequency.-based methods. ABCD was experimentally

evaluated in the same UNIX domain proposed in this paper.

However, there are two important differences between ABCD

and the proposed method in this paper:

1) ABCD is based on temporal dependences, and the order

of the different commands is essential for the result.

2) In ABCD the created user models are fixed and it is not

considered that a user computer behavior changes over

time.

In order to solve the second of these aspects, the method

proposed in [12] is modified by Iglesias et al. [13]. In that

research, as a user behavior is not fixed but rather it changes

and evolves, the proposed classifier is able to keep up to date

the created profiles by using an Evolving Classifier. Thus,

the idea proposed in [13] is the same that is proposed in this

paper; however, the method for obtaining the user models

and how they are keep up to date (although both methods

are based on evolving systems), is different. The method

proposed in [13] is extended to other different domains in [14].

eClass (evolving Classifier) family was introduced in [15]

and further developed in [16]. eClass is a set of evolving

neuro-fuzzy classifiers which take its roots in evolving

Takagi-Sugeno (eTS). A set of fuzzy rules that describes the

most important features of each class is formed during the

training process. Then, these rules are constantly adjusted

to the available training data. It is important to highlight

that eClass does not require parameter optimization as its

only parameter ’scale’ can be directly inferred from the

training data. This technique [17] is based on partitioning

the data space into overlapping local regions through

Recursive Density Estimation (RDE) and associating clusters

(respectively fuzzy sets) to them.

As it is explained in [3], the main differences between

eClass family and a conventional Fuzzy Rule-Based (FRB)

classifier are:

• the open structure of the rule-base: eClass self-develops

on-line starting from scratch, while in a conventional FRB

classifier it is determined offline and then fixed.

• the online learning mechanism which takes into account

this flexible rule-base structure.

eClass family includes two different architectures and on-

line learning methods:

• eClass0 with the classifier consequents representing class

label.

• eClass1 for regression over the features using first order

eTS fuzzy classifier.

Both classifiers (eClass0 and eClass1) are recursive,

non-iterative incremental and thus computationally light

and suitable for real-time applications. Thus, they been

applied in many different areas such as autonomous landmark

recognition [18], self-localization and mapping [19], object

detection and tracking [20][21], collision avoidance [22], IR

spectral data of exfoliative cervical cytology [23], activity

recognition from sensor streams [24][25] and, as we already

have mentioned, user modeling [26][13].

III. COMPUTER USER BEHAVIOR CLASSIFICATION BASED

ON EFS

This section introduces the proposed method based on

evolving classifiers. The architecture of the proposed method

is shown in Figure 1. The following subsections details the

different parts of this architecture:

A. Obtaining the UNIX User Models

In order to classify a UNIX user, her/his profile must be

created in advance. To apply the proposed classifier, a profile

based on Term Frequency (TF) is created for each UNIX user.

Thus, the frequency of each command (the number of times

that a user has typed that command) will be used to describe
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Fig. 1: Architecture of the proposed method

and identify an specific user. Although this is a very simple

measure, we will prove that the results are good. Also, and

it is more important, we want to create a model as easy and

fast as possible. Thus, TF is a really simple measure which

will be the base of the created models. We can observe that

this measure is a common method often used in Information

Retrieval (IR). However, the commands that a user types

during an specific shell session, could be considered as the

words that appear in a specific document (equivalent to the

’vocabulary’ present in that document).

Although it was not the purpose of this research, we could

apply other more complex measures. For example, in [27]

the TF-IDF (Term Frequency Inverse Document Frequency)

measure is used in the same domain. However, for applying

that measure, we need to know the number of users we are

treating, and the number of users who have typed an specific

command at least once.

Once the TF of each command is calculated, the model

of a UNIX user is represented by the distribution of these

values. This model is represented by a vector of values

indicating how many times a command has been typed by the

users. This vector will be called Vector of Commands (VoC).

We need to take into account that this representation needs

to create and update the different commands typed by the

users (it could be defined as vocabulary - number of unique

commands). However, the vocabulary is easily obtained and

it can be updated removing those commands which are not

relevant (or are becoming “out of date”). Note that this VoC
could also be created when the user has finished the shell

session on the computer. But in that case, the TF should be

normalized taking into account the total number of commands

that s/he has typed during that session.

B. Creating the Fuzzy Rules using eClassO

eClass0 possesses a zero-order Takagi-Sugeno consequent,

so a fuzzy rule in the eClass0 model has the following

structure:

Rulei = IF (X1 is P1) AND . . . AND (Xn is Pn)

THEN UnixUser = UnixUseri (1)

where i represents the number of rule; n is the number of

input variables (number of different commands); the VoC X
stores the TF (Term Frequency) of the input commands, and

the VoC P stores the TF of the commands of one of the

prototypes (cluster centre) of the corresponding class (user).

UnixUser ∈ {set of different Users}.

The eClass0 model is composed of several fuzzy rules per

class (the number of rules depends on the heterogeneity of

the input data of the same class). In this case, each class

represents an specific user. Although it is not considered in

this work, a class could also represent a set of users with

similar characteristics.

During the training process, a set of rules is formed “from

scratch” using an evolving clustering approach to decide when

to create new rules. The inference in eClass0 is produced using

the “winner takes all” rule and the membership functions that
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describe the degree of association with a specific prototype

are of Gaussian form. The potential (Cauchy function of the

sum of distances between a certain data sample and all other

data samples in the feature space) is used in the partitioning

algorithm. However, in these classifiers, the potential (P) is

calculated recursively (which makes the algorithm faster and

more efficient). The potential of the kth data sample (xk) is

calculated [3] by the equation 2. The result of this function

represents the density of the data that surrounds a certain data

sample.

P (xk) =
1

1 +
∑k−1

i=1 distance(xk,xi)

k−1

(2)

where distance represents the distance between two samples

in the data space. Also, as it is described in equation 3, the

distance (similarity) between two samples is measured by the

cosine distance(cosDist).

cosDist(xk, xp) = 1−
∑n

j=1 xkjxpj√∑n
j=1 x

2
kj

∑n
j=1 x

2
pj

(3)

where xk and xp represent the two samples to measure its

distance and n represents the number of different attributes in

both samples.

Note that the expression in the equation 2 requires all the

accumulated data sample available to be calculated, which

contradicts to the requirement for real-time and on-line

application needed in the proposed problem. For this reason,

in [3] it is developed a recursive expression cosine distance.

All details about the eClass0 model and the learning

algorithm can be found in [17].

The procedure of this classifier for creating and updating

the Fuzzy Rules are:

1) Calculate the potential of the new VoC to be a prototype.

This calculation is done by using a function of the

accumulated distance between a sample and all the other

VoC in the data space [3]. The result represents the

density of the data that surrounds a certain data sample

(VoC).

2) Update all the prototypes considering the new VoC.

The density of the data space surrounding certain VoC
changes with the insertion of each new VoC and the

existing prototypes need to be updated.

3) Insert the new VoC as a new prototype if needed. The

potential of the new VoC is calculated recursively and

the potential of the other prototypes is updated.

4) Remove existing prototypes if needed. After adding a

new prototype, we check whether any of the already

existing prototypes are described well by the newly

added prototype.

More details about this procedure and the learning

algorithm can be found in [17].

As it is shown in Figure 1, this procedures update the Fuzzy

Rules that define the different users.

C. Classification of a new user

The first step in the process of classification a new user is

the creation of the corresponding VoC as it has been previously

explained. Then, it is classified in a specific Unix user (class)

represented by a prototype. For this task, we compare this

new VoC with all the prototypes stored as Fuzzy Rules. This

comparison is done in this case using cosine distance and the

smallest distance determines the closest similarity (equation

4).

Class(xz) = Class(Prot∗);

Prot∗ = MINNumProt
i=1 (cosDist(Prototypei, xz))

(4)

where xz represents the zth VoC to classify, NumProt
determines the number of existing prototypes, Prototypei
represents the ith prototype, and cosDist represents the cosine

distance between two vectors (VoC) in the data space.

D. Characteristics of the Classification Method

It is important to highlight that the proposed classification

process keeps up to date the user behavior models. The Fuzzy

Rules that represent these models change/evolve according

to the changes in the behavior of the user (represented by

her/his VoC). This is one of the most important characteristics

in this approach.

In addition, the proposed method is really fast and

computationally very simple as the VoC is created

instantaneously and no complex operations are needed.

Also, the proposed classifier can cope with huge amounts of

data and it does not need to store all the commands typed

by the user in memory. In addition, it is very efficient as it

recursive and one pass.

IV. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate the proposed method, we conducted the

following experiments with real-data of UNIX users.

A. UNIX Users Data

In this research, we have used the Data1 drawn from the

command histories of 9 UNIX computer users at Purdue

University over 2 years [28]. This history files were parsed

and sanitized to remove filesnames, user names, directory

structures, web addresses, host names, and other possibly iden-

tifying items. Command names, flags, and shell metacharacters

were preserved. Additionally, **SOF** and **EOF** tokens

were inserted at the start and end of shell sessions, respectively.

1Available from:http://archive.ics.uci.edu/ml/datasets/UNIX+User+Data
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Sessions are concatenated by date order and tokens appear in

the order issued within the shell session, but no timestamps

are included in this data.

B. Experiment Design

Although the proposed method has been designed to be used

in real-time, we have used the above datasets in order to have

comparable results with the established off-line techniques.

For this reason, we have modified these data as follows:

• The training set contains 72 instances (9 users * 8

instances/user). Each instance consists of 100 commands

and the user who typed that commands.

• The test set contains 27 instances (9 users * 3

instances/user).

However, in order to obtain the relevance of the size of the

training set in the results, its size has been modified from 9

instances to 72. Then, we can have an idea about how many

commands are necessary to classify a Unix user in this case.

We should also take into account that in this case, we have

obtain 100 commands per user; but this value could change

according the environment.

After obtaining the VoC per instance (in this case the

amount of different commands is 333), we can evaluate the

performance of the proposed classifiers. We compare the

proposed method with different classifiers which are detailed

as follows:

• C4.5 [29] is a well-known decision tree classifier.

• PART [30] is a rule based classifier which produces a set

of it-then rules.

• Nearest Neighbor (1-NN) [31] classifies objects based on

closest training examples in the feature space.

• Naive Bayes (NB) classifier [32], in which it is used a

default precision of 0.1 for numeric attributes when it is

created with zero training instances.

• Support Vector Machine Classifier (SVM) relies on the

statistical learning theory [33].

C. Results

Figure 2 shows the percentage of instances correctly

classified into its corresponding user using different number

of instances as training set.

According to these data, we can see that even when the

number of instances in the training set is very reduced, eClass
works quite well. However, C4.5 and PART need much more

instances for obtaining similar results. In general, eClass
obtains comparable results to the obtained by the Naive Bayes.

Taking into account these results, we can concluded

that the proposed classifier (eClass0) is comparable in this

environments with other well established as Naive Bayes or

SVM. However, due to the characteristics of the domain,

eClass0 is very suitable since it does not need to store the

entire data streams in the memory and disregards any sample

after being used.

V. CONCLUSIONS AND FUTURE WORK

We have presented in this paper an evolving method to

create Unix users models and to keep these models up to

date. The proposed method is very simple as it has to be work

very fast. The model only takes into account the frequency

of the different commands a user types. The most important

characteristic of the proposed user classifier is that it is able

to change/evolve the models according to the changes in the

behavior of the users. This classifier is one pass, non-iterative,

recursive and it can be used in an interactive mode.

In addition, this method can cope with huge amounts

of data and process streaming data quickly. Although the

amount of commands that a user types in a command-line

interface is huge, the proposed method is able to extract the

most important characteristic with no need to store all the

commands in memory. The approach has been evaluated

using real data streams and the results are comparable to well

established classifiers.

The domain used in this paper is UNIX; however, there

are other areas in which a user can also be represented by

a set of words. For example, this method could be used for

modeling and classifying Twitter users taking into account

the TF of the words of the tweets they post.
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