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reduces the multiplicity of equilibria, it may rule out the existence of symmetric 
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are ex-ante symmetric. Furthermore, as compared to the certainty equivalent 
game, demand uncertainty reduces prices and increases consumer surplus, 
but it also decreases total welfare because of the emergence of idle capacity. 
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1 Introduction

In this paper we analyze the effect of introducing demand uncertainty into a model of capacity

investments followed by price competition in the product market. In particular, we assume

that Þrms are uncertain about future demand conditions at the investment stage, but are

able to observe realized demand prior to competing in prices. We characterize the subgame

perfect equilibria of the game under two approaches regarding demand uncertainty, which

is modelled as either a discrete or as a continuous random variable. Our analysis focuses

on two main issues: �uniqueness versus multiplicity of equilibria� and �existence versus

non-existence of symmetric equilibria.�

In the absence of demand uncertainty, there exists a continuum of pure-strategy equilibria

in all of which total capacity equals total demand. The symmetric candidate equilibrium

belongs to the equilibrium set since: (a) reducing capacity would further constrain production

without increasing prices and, (b) increasing capacity would not allow the deviant to expand

its production as it would just serve residual demand.

The introduction of demand uncertainty has distinct effects depending on the way de-

mand uncertainty is modelled. Under the discrete approach, the pure-strategy symmetric

equilibrium survives the introduction of uncertainty as long as none of the demand states is

sufficiently likely, and there always exist multiple pure-strategy equilibria that involve asym-

metric capacity choices. In contrast, under the continuous approach, equilibrium multiplicity

vanishes out and the symmetric equilibrium disappears.

Accordingly, by associating the continuous approach to a more uncertain environment

(in the sense that a continuum rather than a Þnite number of demand states is potentially

likely), we Þnd that uncertainty is at the heart of the uniqueness of equilibrium and the

non-existence of symmetric equilibria. Intuitively, faced with uncertainty, Þrms Þnd it more

difficult to coordinate on certain equilibria, among which we Þnd the symmetric one.

Irrespective of how demand uncertainty is modelled, a robust conclusion of the analysis

is that capacity asymmetries arise endogenously even though Þrms are ex-ante identical.

Such asymmetric market outcomes derive from asymmetries in the returns to investment

for large and small Þrms. In particular, whereas capacity expansions by the large Þrm only

affect its proÞts when the Þrm is capacity constrained, capacity expansions by the small Þrm

affect pricing incentives, and thus proÞts, even when the small Þrm is selling below capacity.

The small Þrm is discouraged from matching its rival�s capacity since that would induce

more aggressive pricing from the large Þrm. Whenever these asymmetries imply that pay-off

functions are not differentiable at symmetric capacity pairs, Þrms� best reply functions do
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not cross the 45 degree line, and the symmetric equilibrium disappears.

Last, the analysis allows to assess other effects of demand uncertainty, besides reducing

multiplicity or ruling out symmetric equilibria. In comparison to the certainty equivalent

game, demand uncertainty drives prices down and increases consumer surplus, despite reduc-

ing total welfare. The positive effect on prices and consumer surplus is due to the emergence

of idle capacity under demand uncertainty, which in turn explains the negative effect on

overall welfare.

The analysis of investment choice models followed by product market competition dates

back to Kreps and Scheinkman�s (1983) seminal paper, which shows that price competition

and Cournot outcomes can be reconciled by assuming that Þrms choose their production

capacities prior to engaging in price competition.1 Although Kreps and Scheinkman (1983)

did not analyze the effects of introducing demand uncertainty into the model, they conjec-

tured that �noise� in the demand function will change this [equivalence result] dramatically

(p.337). Since then, several papers have formally analyzed this conjecture.

Similarly to us, Reynolds andWilson (2000) analyze a game of capacity choice followed by

price competition, and model demand as a random variable. Assuming a downward sloping

demand, they provide a sufficient and necessary condition for the existence of a symmetric

pure-strategy equilibrium in capacity choices, but do not provide a characterization of the

equilibria for general demand functions nor demand distributions.2 Assuming linear demand

and a binomial distribution function, they characterize the symmetric (if the extent of de-

mand variation is not too large) and asymmetric pure strategy equilibria of the game. We

view our formulation as a complement to Reynolds and Wilson�s (2000) in that it improves

in terms of generality and tractability at the cost of assuming inelastic demand.3

1Several papers have assessed the robustness of Kreps and Scheinkman�s result to alternative model

speciÞcations, such as the rationing rule (Deneckere and Kovenock (1996); Herk (1993)), the pricing rule

(Moreno and Úbeda (2006)), the timing of capacity choices (Allen et al. (2000); Kovenock and Roy (1998)),

the existence of Þrm cost asymmetries (Deneckere and Kovenock (1996)), or the frequency of Þrms� interaction

in the product market (Benoit and Krishna (1987); Davidson and Deneckere (1986); Staiger and Wolak

(1992)), among others.
2They note that a characterization of pure strategy equilibria for general demand functions and demand

shock distributions is a challenging problem (p.131) and conjecture that there may be restrictions on para-

meters or functional forms that would allow one to apply the submodular games approach (p. 132). Price

inelasticity, as in our paper, turns out to be one of those.
3The assumption of inelastic demand not only makes the analysis tractable. It also has the advantage

that the efficient-rationing rule (as in Kreps and Scheinkman (1983)) and the proportional-rationing rule

(as in Davidson and Deneckere (1986)) become equivalent. Hence, the lack of robustness of Kreps and

Scheinkman�s results to the choice of rationing rule does not apply in this context. Several papers that deal
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Gabszewicz and Poddar (1997) and Grimm and Zoettl (2006) also consider future demand

uncertainty at the investment stage, but assume that Þrms subsequently compete by choos-

ing quantities rather than prices. The Cournot assumption has important implications on

investment incentives and equilibrium outcomes. First, since the (unconstrained) Cournot

equilibrium is symmetric for all Þrms, capacity expansions only affect a Þrm�s proÞts for

those demand realizations at which the Þrm is selling at capacity. Second, since this implies

that the returns to Þrms� investments are symmetric for large and small Þrms, the pay-off

functions are differentiable at symmetric capacity pairs. Last, with symmetric Þrms ex-ante

and continuous marginal returns to investment, the best reply functions are both symmet-

ric and continuous. Thus, the existence of a symmetric equilibrium in capacity choices is

guaranteed.

Our model is also related to Klemperer and Meyer�s (1989) seminal paper in which

Þrms facing uncertain demand compete by choosing supply functions.4 They Þnd that the

introduction of demand uncertainty dramatically shrinks the set of Nash equilibria, and

conclude that the equilibrium is unique only if the support of the demand distribution

function is unbounded. Even though our approach substantially differs from theirs,5 it is

not surprising that our conclusions concerning the effect of demand uncertainty are similar.

In both scenarios, demand uncertainty reduces the multiplicity of equilibria since it forces

each Þrm�s strategic decision to be optimal against a range of possible demand functions.

From a methodological point of view, our paper is also related to a broad family of

analysis which make use of submodularity to prove existence of equilibria. In this respect,

ours is similar to Amir and Wooders (2000), who consider a two stage game in which Þrms

Þrst invest in R&D activities that generate spillovers, and then compete in the product

market. They show that ex-ante identical Þrms always engage in different levels of R&D,

thus giving rise to asymmetrically sized Þrms. Applying similar techniques as Amir and

Wooders (2000), we show that if the demand distribution function is convex, our game is

submodular (i.e. the returns to investment are non-increasing in the rival�s capacity choice),

allowing us to provide an additional proof of existence of the subgame perfect equilibria. The

with competition under capacity constraints have also adopted the same type of demand we use in this paper

(see for instance Compte, Jenny and Rey (2002) and Dechenaux and Kovenock (2003)).
4Grant and Quiggin (1996) endogenize capacities within the supply function approach under the as-

sumptions of Cobb-Douglas technology and constant elasticity demand. They focus only on the symmetric

equilibrium of the game, whose existence is guaranteed for similar reasons as under the Cournot assumption.
5The most important one is probably the fact that, in the supply function approach, Þrms choose a

continuum of price-quantity pairs, whereas in our set-up Þrms choose a single quantity and a single price,

and they do it in different stages.
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feature that distinguishes our analysis and theirs is that, whereas they assume submodularity

(see assumption A2 in their paper), we are able to pin down the relevant feature of the game

(i.e., convexity of the distribution function) which is sufficient to guarantee that the proÞt

function is submodular.

The structure of the paper is as follows. Section 2 describes the model, which we solve

backwards in sections 3 (price competition) and 4 (capacity choices). In order to understand

the role played by demand uncertainty, section 4 analyzes the game in which demand is

known with certainty and then explores two approaches to modelling demand uncertainty:

the discrete and the continuous approach. Section 5 explores the effects on equilibrium

pricing and investment behavior of changing the timing of demand uncertainty. The last

section concludes with a discussion and summary of the main results. The Appendix contains

the proofs of the main results of the paper.

2 The Model

We consider a two-stage non-cooperative game between two symmetric Þrms, i = 1, 2. In

the Þrst stage of the game, Þrms simultaneously choose their capacities ki, i = 1, 2, at a

constant per-unit cost c ∈ (0, 1). We let k− = min (k1, k2) ≤ k+ = max (k1, k2) , and refer

to the Þrm with capacity k− or k+ as �the small Þrm� or the �the large Þrm�, respectively.

Once investment decisions have been made, information about capacities becomes public

knowledge. In the second stage of the game, Þrms compete in prices to sell an homogenous

good, subject to the constraint that each Þrm�s production cannot exceed its capacity limit.

We assume that production entails constant marginal costs, and w.l.o.g. normalize them to

zero.

There is a mass θ of inÞnitesimal buyers, each willing to buy one unit as long as the

price does not exceed the reservation price, normalized to one. Consumers buy Þrst from the

Þrm with the low price until its capacity has been exhausted. The residual demand faced

by the high-priced Þrm equals total demand minus the capacity of its rival. If Þrms� prices

are equal, consumers split equally between the two Þrms.6 Each Þrm sells its production at

its own price.

Demand uncertainty is introduced between the Þrst and second stages of the game. More

speciÞcally, Þrms face uncertain demand at the investment stage, knowing that the number

6Since in our setting all consumers have the same value, rationing is not an issue, and the results are

independent of the rationing rules used. They are also independent of the tie-breaking rule.
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of consumers, θ, will be drawn (before prices are set) from a cumulative distribution function

G (θ). Finally, Þrms are assumed to be risk neutral and to maximize expected proÞts.

We proceed by backwards induction in order to Þnd the subgame perfect Nash equilibria

of the overall game. Each Þrm�s strategy is a pair specifying its capacity choice and, contin-

gent on realized demand θ, a distribution function over prices given both Þrms� capacities.

3 Price Competition

In this section, we characterize the equilibrium in the price competition stage. Recall that

Þrms know both the realized value of demand, as well as the capacities chosen in the Þrst stage

of the game. The nature of the equilibrium is similar as in the standard capacity-constrained

price competition framework (e.g. Osborne and Pitchik (1986)), with the difference being

that we assume price-inelastic demand.

Proposition 1 For given θ and given capacities k− ≤ k+, equilibrium pricing is character-

ized as follows:

(i) (Region I) If θ ≤ k−, there exists a unique pure-strategy equilibrium in which both

Þrms set prices equal to (zero) marginal cost and make zero proÞts.

(ii) (Region II) If k− < θ < k− + k+, a pure strategy equilibrium fails to exist. In the

unique mixed strategy equilibrium, the large Þrm makes expected proÞts [θ − k−], whereas the
small Þrm makes a fraction k−

min{θ,k+} of the large Þrm�s proÞts.

(iii) (Region III) If θ ≥ k− + k+, both Þrms set prices equal to consumers� valuation

(which equals 1), and they both sell at capacity.

Proof. See Fabra, von der Fehr and Harbord (2006)�s proof of Proposition 2.

Equilibrium pricing behavior depends on the relationship between demand and capacities.

For demand realizations in Region I, since both Þrms have enough capacity to serve total

demand, competition drives prices down to marginal cost, and Þrms make zero proÞts. For

demand realizations in Region III, since there is not enough aggregate capacity to cover

demand, the equilibrium price equals consumers� valuation and both Þrms sell at capacity.

For the remaining demand realizations, pure-strategy equilibria fail to exist given that either

(i) Þrms want to price slightly below the rival to sell at capacity at a high price or (ii) want

to serve the residual demand at consumers� reservation price. For a given demand realization

in Region II, there exists a unique mixed strategy equilibrium such that the two Þrms mix

over a common support, with a lower bound strictly above zero and an upper bound equal
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to consumers� reservation price. Since the large Þrm plays a mass point at the upper bound,

and since the small Þrm is pricing below that level with probability one, the large Þrm�s

expected proÞts are the same as if it maximized its proÞts over its residual demand.

To sum up, the Þrst stage capacity choices, together with realized demand, will determine

whether competition in the second stage of the game will be à la Bertrand (with Þrms pricing

at marginal cost in Region I), à la Bertrand-Edgeworth (with Þrms mixing in Region II) or

à la Cournot (with Þrms producing at capacity in Region III).7

4 Capacity Choices

In this section we endogenize capacities. As a benchmark, we Þrst consider the case in which

demand is known with certainty, and then proceed to introducing demand uncertainty into

the model.

4.1 Demand Certainty

We Þrst assume that demand is known at the investment stage. The following Proposition

characterizes equilibrium capacity choices.

Proposition 2 Assume that demand is known to be equal to θ. There is a continuum of pure-

strategy subgame perfect equilibria. SpeciÞcally, every proÞle of Þrms� capacities with k+ ∈¡
θ
2
, θ
2−c
¤
and k− = θ − k+ can be sustained by a pure-strategy subgame perfect equilibrium.

Hence, there are asymmetric equilibria as well as a symmetric one. Furthermore, in every

pure-strategy subgame perfect equilibrium aggregate capacity equals θ.

Proof. It is a particular case of the proof of Proposition 3 below.

Under demand certainty, there exists a continuum of pure-strategy equilibria, in all of

which aggregate capacity is equal to total demand, as illustrated by Figure 1. Hence, in

any equilibrium capacity is fully utilized and prices are set equal to consumers� reservation

value. The only restriction imposed on the set of equilibria is that the large Þrm need not be

too large, since otherwise the small Þrm would be better off increasing its capacity even at

the expense of driving prices below the reservation price. Since the symmetric capacity pair

satisÞes this condition, it constitutes an equilibrium. Intuitively, the symmetric equilibrium

7As shown by Dechenaux and Kovenock (2003), the equilibria in the pricing game induce equivalent

outcomes as those that would arise if we allowed Þrms to costlessly choose the maximum quantity that each

is willing to sell at the quoted price, subject to their capacity limits.
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Figure 1: Firms� Reaction Functions at the Investment Stage: certain demand

is sustained by two forces: (a) a Þrm is discouraged from reducing its capacity since this would

constrain its production without increasing prices (already set at the reservation level); and

(b) a Þrm is also discouraged from increasing its capacity since, while it is costly, it would

not lead to an increase in its production (the deviant would become the large Þrm, so it

would be selling the residual demand without exhausting its capacity).

4.2 Discrete Demand Uncertainty

Let us now assume that demand is uncertain at the investment stage. We Þrst model demand

uncertainty as deriving from a binomial distribution function.

Proposition 3 Suppose that demand takes the value θL > 0 with probability ρ ∈ [0, 1] and
θH with probability 1− ρ. Let ∆ = θH

θL
≥ 1. There exists ρ ∈ ¡1−c

2
, 1− c¢ such that:

(i) Symmetric equilibria in capacity choices exist if and only if ρ ∈ [0, ρ)∪ (1− c, 1] . For
all ρ, there exists a continuum of asymmetric equilibria in capacity choices.

(ii) In any pure-strategy equilibrium, aggregate capacity is θL if ρ ∈ (1− c, 1] , and is θH
otherwise.

Proof. See the Appendix.

Similarly to the certain demand case, the investment game under discrete demand un-

certainty generates a continuum of pure-strategy equilibria. These equilibria induce two

distinct types of outcomes.
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On the one hand, if the probability of the low demand state is sufficiently large (i.e.,

ρ ∈ (1− c, 1]), Þrms behave as if demand was known to be low with certainty. In particular,
equilibrium aggregate capacity equals low demand, capacity is fully utilized, and prices are

equal to consumers� reservation value independently of which demand state is Þnally realized.

Furthermore, for all values of ρ in this range, there exists a symmetric equilibrium in capacity

choices. This is so for similar reasons as under demand certainty: (a) capacity reductions

would further constrain production without increasing prices, and (b) capacity expansions

would not allow the deviant to increase its production in the low demand state (since it

would just serve the residual demand), and the marginal gain associated with the increase

in production in the high demand state, 1− ρ, would not cover the extra investment costs,
c.

On the other hand, if the probability of the low demand state is sufficiently small (i.e.,

ρ ∈ (0, 1− c]), Þrms behave in a similar fashion as when demand is high with certainty. Since
aggregate equilibrium capacity is equal to high demand, capacity is fully utilized and prices

are at its maximum only when demand turns out to be high. Otherwise, if realized demand

is low, there is excess capacity and prices are below their reservation level. This fact implies

that a symmetric equilibrium may not exist for some ρ values over this range. In particular,

point (a) above may no longer hold: since for low demand Þrms operate below capacity, a

capacity reduction would not constrain the deviant�s production but it would lead to higher

prices. Clearly, the associated marginal gain has to be balanced against the marginal loss

that the deviant suffers from having to reduce its production under high demand, and this

ultimately depends on the relative incidence of low and high demand. When low demand is

sufficiently probable (i.e. ρ ∈ £ρ, 1− c¤), the marginal gain from reducing capacity exceeds

its marginal cost, and therefore destroys the candidate symmetric equilibrium. Comparative

statics of the asymmetric equilibria show that they approach the symmetric equilibrium as

ρ approaches ρ.

Comparison with the certain demand case allows to derive interesting conclusions re-

garding the role of demand uncertainty as an equilibrium selection device. If we perturb

the certain demand case by introducing demand uncertainty, we obtain distinct conclusions

depending on whether we decrease ρ below 1 or raise it above 0. In the Þrst case, demand

uncertainty reduces the multiplicity of equilibria, whereas in the second case, it widens it.8

The intuition runs as follows. When we decrease ρ below 1, we are adding a state with higher

8This is true independently of whether we move ρ alone, or on whether we keep expected demand constant

by either reducing θL as we decrease ρ, or by increasing θH as we increase ρ.
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demand. Since the small Þrm would then like to increase her capacity in order to produce

more when demand is high, she has to be given a bigger share of aggregate capacity (Þxed

at θL). This shrinks the equilibrium set. In the opposite case, when we increase ρ above 0,

we are adding a state with lower demand. Now, since the problem is to discourage the large

Þrm from reducing her capacity, the large Þrm has to be compensated with a bigger share

of aggregate capacity (Þxed at θH). This expands the equilibrium set.

Last, note that independently of the value of ρ, equilibrium capacity choices are never

unique, and that, as long as the change in ρ with respect to the certain demand case is not

large enough, the symmetric equilibrium survives the introduction of uncertainty.

However, as we will show in the following section, these two issues - �uniqueness versus

multiplicity of equilibria� and �existence versus non-existence of symmetric equilibria� -

depend not only on the �amount� of uncertainty (however measured) but also on the way

demand uncertainty is modelled. In particular, taking a discrete or a continuous approach

to modelling demand uncertainty is not innocuous. In contrast to the discrete approach

analyzed so far, the continuous approach shows that the multiplicity of equilibria disappears,

and the symmetric equilibrium disappears with it, as we spread probability over a compact

set of demand values.

4.3 Continuous Demand Uncertainty

To conclude this section, we assume that demand is distributed according to a continuous

distribution function, G (θ) , with full support on [0, 1]. Based on Proposition 1, we can con-

struct Þrms� expected proÞt function at the investment stage as a function of their capacity

choices,

πi (ki, kj) =

 π− (k−, k+) if ki ≤ kj
π+ (k+, k−) if ki ≥ kj

(1)

where,9

π−
¡
k−, k+

¢
=

k−+k+Z
k−

k−

min {θ, k+}
£
θ − k−¤ dG (θ) + 1Z

k−+k+

k−dG(θ)− ck− (2)

π+
¡
k+, k−

¢
=

k−+k+Z
k−

£
θ − k−¤ dG (θ) + 1Z

k−+k+

k+dG (θ)− ck+ (3)

9Note that we are implicitly assuming that k− + k+ ≤ 1. It can easily be shown that k− + k+ > 1

would never constitute a subgame perfect equilibrium. The reason is that the large Þrm would never sell at

capacity, so that it would be better off by reducing its capacity to the point at which aggregate capacity no

longer exceeds the maximum demand realization.
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Capacity choices affect the value of Þrms� proÞts for a given demand realization.10 For

demand realizations in Region I (i.e., below k−), proÞts are zero independently of the value of

Þrms� capacities, whereas for demand realizations in Region III (i.e., above k− + k+), Þrms�

proÞts are fully determined by their capacity choices. The link between capacity choices

and proÞts becomes more complex for demand realizations in Region II (i.e., in the interval

(k−, k−+k+)). Over this range, the large Þrm�s proÞts do not depend on its own capacity, as

these are the same as if it served the residual demand with probability one. In contrast, the

small Þrm�s proÞts depend on its own capacity choice, for two reasons: Þrst, it constrains

its sales when it prices below the rival; and second, it affects its rival�s pricing behavior,

ultimately determining its chances of selling at capacity.

The expected proÞt function πi (ki, kj) is everywhere continuous in ki. Nevertheless, it is

not differentiable at symmetric capacity pairs. In particular, along the diagonal, the right-

hand derivative is larger than the left-hand derivative. This non-differentiability stems from

the asymmetric effects of marginal increases in capacities across Þrms in Region II: whereas

the large Þrm gains nothing by expanding its capacity, an increase in the small Þrm�s capacity

may lead to either a proÞt gain or a proÞt loss depending on the strength of the two effects

involved: an increase in its capacity allows it to expand its production when it prices below

the rival; however, as this also makes the large Þrm more aggressive,11 the probability that

this occurs is reduced.

The next lemma summarizes some properties of the expected proÞt function, (1).

Lemma 1 Suppose that demand is distributed according to a continuous distribution func-

tion G (θ) with full support on [0, 1] .

(i) The following are sufficient conditions for the expected proÞt function to be piece-wise

concave: either G (θ) is convex, or G (θ) is concave and G0 (θ) is convex.

(ii) The second-order cross derivative of the large Þrm is negative for all G (θ) .

(iii) The following are sufficient conditions for the second-order cross derivative of the

small Þrm to be negative: either if G (θ) is convex, or G (θ) is concave and k+ > 2k−.

Proof. See the Appendix.
10Capacity choices also affect the distribution of equilibrium proÞts. However, the effect of marginal

increases in capacity on proÞts is null since the proÞt function in continuous in θ.
11In more detail, the large Þrm plays a mass point at the reservation price with probability 1− k−

min(θ,k+) .

Hence, the higher k−, the less likely it is that the large Þrm prices at the upper bound of the support of

Þrms� mixed strategies.
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The Þrst part of the Lemma guarantees that under certain weak conditions on the shape

of the demand distribution function,12 the problem is well-behaved in the sense that both

the large and the small Þrm�s expected proÞt functions are concave. The second part allows

to conclude that investments are strategic substitutes for the large Þrm, whereas the third

part identiÞes the properties of the demand distribution function that make this also true

for the small Þrm. The intuition for these results runs as follows.

An increase in the large Þrm�s capacity allows to expand its production for demand re-

alizations in Region III (i.e. when demand exceeds aggregate capacity). Since the relative

incidence of demand realizations in Region III is lower the bigger the small Þrm, the large

Þrm�s marginal returns to investment are decreasing in the small Þrm�s capacity. Hence,

conditionally on being the large Þrm, capacity investments are strategic substitutes irrespec-

tively of how demand is distributed.

Similarly, an increase in the small Þrm�s capacity allows to expand its production in

Region III. This effect alone would imply that the small Þrm�s proÞts exhibit decreasing

marginal returns to investment as the large Þrm�s capacity is increased. However, since an

increase in the small Þrm�s capacity also affects pricing behavior for demand realizations in

Region II (i.e. above the small Þrm�s capacity but below aggregate capacity), it has two

additional effects. On the one hand, as the small Þrm expands its capacity, it increases

the probability of being undercut, and the loss in production (i.e., from selling at capacity

to serving the residual demand) is greater the bigger the large Þrm. On the other hand,

the probability that the small Þrm sells at capacity, and therefore beneÞts from capacity

expansions, is increasing in the large Þrm�s capacity, given that the large Þrm prices less ag-

gressively the bigger its own capacity. Hence, the small Þrm�s marginal returns to investment

may increase or decrease depending on the strength of these three effects, an issue which in

turn depends on the shape of the demand distribution function as well as on Þrms� relative

sizes. With convex distribution functions, which put more weight on larger demand values,

the Þrst two effects dominate, so that capacity investments are strategic substitutes from the

small Þrm�s perspective. This is also true with concave distribution functions as long as Þrms

are sufficiently asymmetric. Otherwise, investments may become strategic complements for

the small Þrm.

These properties have implications for the shape of Þrms� reaction functions. When

the demand distribution is convex, both the large and the small Þrm�s best reply functions

12These properties are satisÞed by a large family of distribution functions. For instance, to name just a

few, G (θ) = θx, or G (θ) = 1−e−xθ
1−e−x , independently of the value of x.
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are continuous decreasing functions except at one point. Furthermore, around the point of

discontinuity, expected proÞts exhibit non-increasing differences in capacities. Hence, since

marginal returns to increasing capacities do not increase with the rival�s choice, we can apply

the theory of submodular games to the capacity investment game in order to ensure existence

of equilibria (Topkins 1979).

Proposition 4 If demand is distributed according to a convex cdf with full support on [0, 1] ,

the capacity game is submodular, and hence has a pure strategy Nash equilibrium.

Proof. See the Appendix.

In contrast, if the demand distribution is concave, the large Þrm�s reaction function is

negatively sloped, but the slope of the small Þrm�s reaction function may become positively

sloped for some capacity values. Since this implies that the small Þrm�s marginal returns

to expanding capacity may increase with the rival�s choice, we cannot apply submodularity

to ensure existence of pure strategy equilibria. Nevertheless, independently of the shape of

the demand distribution function, we can guarantee existence of pure-strategy equilibria, as

stated in the following proposition.

Proposition 5 Suppose that demand is distributed according to a cdf, G (θ) , with full sup-

port on [0, 1] . The following statements hold for the capacity game:

(i) Every pure-strategy Nash equilibrium in capacity choices is asymmetric.13

(ii) If the second order condition (6) is satisÞed, then it holds that: a) best reply functions

are continuous everywhere except at one point, �k ∈ (0, 1) , where R+i (�k) > �k > R−i (�k), and b)
there exists a unique subgame perfect equilibrium outcome that involves asymmetric capacity

choices. SpeciÞcally, in equilibrium one Þrm invests k+ and the other invests k−, with

k+ > k−, and k− + k+ = G−1 (1− c) ⊂ (0, 1) .

Proof. See the Appendix.

The proof of Proposition 5 relies on the analysis of Þrms� best reaction functions. In-

dependently of the shape of the demand distribution function, the best reaction functions,

13There also exists a symmetric mixed strategy equilibrium, in which Þrms randomly choose capacities.

The lower bound in the support of Þrms� strategies is given by the pure-strategy capacity choice of the small

Þrm, whereas the upper bound is strictly below the pure-strategy capacity choice of the large Þrm. Note that

even if the equilibrium is symmetric, Þrms would still end up asymmetric with positive probability, despite

being fully symmetric ex-ante. The symmetric mixed strategy equilibrium is Pareto dominated by any of

the two pure-strategy asymmetric equilibria from the point of view of Þrms� proÞts.

12
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Figure 2: Firms� Reaction Functions at the Investment Stage: continuous uncertainty

which are discontinuous at �k, never cross the 45 degree line given that the marginal returns

to investment are asymmetric along the diagonal. This rules out the existence of symmetric

equilibria in capacity choices and implies that every pure-strategy equilibrium has to involve

asymmetric capacity choices. Indeed, since Þrms� reaction functions cross twice outside the

discontinuity region, k− < �k < k+, there exists a unique subgame perfect equilibrium out-

come in which the large Þrm invests k+ and the small Þrm invests k−.14 Intuitively, the

asymmetric endogenous market structure is sustained by the fact that the small Þrm is dis-

couraged from becoming larger since, if demand falls in Region II, it would make the large

Þrm price more aggressively, thereby reducing its chances of selling at capacity. Figure 2

illustrates Þrms� reaction functions under continuous demand uncertainty.

Proposition 5 above further shows that, independently of which equilibrium is played,

aggregate capacity equals G−1(1 − c). Hence, aggregate investment crucially depends on
investment costs, as well as on the shape of the distribution of demand uncertainty. In

particular, as the degree of convexity of G increases, aggregate equilibrium capacity, k− +

k+, goes up. Firms react by expanding aggregate capacity as the degree of convexity in

the distribution function goes up since it implies that larger (smaller) demand realizations

become more (less) likely.

We conclude this section by comparing equilibrium outcomes in the game with continuous

14Strictly speaking, there exist exactly two asymmetric equilibria, (k−, k+) and (k+, k−) , which only differ

in the identity of the large and the small Þrm. Therefore, these two equilibria are outcome equivalent.
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demand uncertainty with those that arise in the certainty equivalent game, i.e. the game

in which demand is known to be equal to expected demand in the uncertain game, E [θ] =R 1
0
θdG (θ) .

Proposition 6 Comparison of subgame perfect equilibrium outcomes in the game with con-

tinuous demand uncertainty versus its certainty equivalent shows that,

(i) Aggregate capacity is larger under demand uncertainty if and only if c ∈ (0,bc), wherebc is implicitly deÞned by G−1 (1− bc) = E [θ] .
(ii) Prices are lower and consumer surplus is higher under demand uncertainty.

(iii) Total welfare is lower under demand uncertainty.

Proof. See the Appendix.

Under demand uncertainty, a marginal increase in the large Þrm�s capacity allows it to

sell more output at the reservation price whenever demand exceeds aggregate capacity, but

it implies an additional investment cost, c. Hence, an increase in c reduces investment, and

may ultimately lead to very low investment levels as c approaches consumers� reservation

price. In contrast, under demand certainty, Þrms invest just enough so as to cover demand

irrespectively of the unit cost of capacity (as long as it does not exceed consumers� reserva-

tion value). Therefore, demand uncertainty generates more investment as compared to the

certainty equivalent game if and only if c is sufficiently low with respect to expected demand.

Furthermore, under demand uncertainty, the emergence of idle capacity for some demand

realizations drives prices below the reservation price, allowing consumers to retain a positive

share of total surplus. However, the emergence of unused capacity also implies that total

welfare is reduced since Þrms could have saved on investment costs ex-post. This contrasts

with the certainty equivalent game, which provides more efficient outcomes at the cost of

driving consumer surplus to zero.

5 Prices are set before demand uncertainty is resolved

In this section we explore a variation on the main model. In particular, we change the timing

of demand uncertainty and assume that demand is realized after (rather than before) prices

are set. This formulation has three alternative interpretations which yield mathematical

equivalent results. First, demand could simply be uncertain at the pricing stage. Alterna-

tively, demand could be known but it is not possible to change prices as frequently as demand

conditions vary (for instance, due to the existence of menu costs, seasonal brochures, etc.).

Last, there could exist a fringe of price-taking Þrms whose supply is stochastic; hence, even

14



if total demand is Þxed and known with certainty, the residual demand faced by the strategic

players is uncertain at the pricing stage.

Since demand is random at the pricing stage, we need to provide a new characterization

of the equilibrium. Consider Þrst the pricing stage. Trivially, if the small Þrm chooses to be

large enough so that its capacity always exceeds the largest possible demand realization, Þrms

would always set prices equal to marginal costs. However, and precisely for this reason, this

case would never arise as a subgame perfect equilibrium. If the small Þrm is always capacity

constrained to serve the market alone, the equilibrium differs substantially from the case

in which demand is known with certainty before prices are set. In particular, two forces

destroy any candidate pure-strategy equilibrium: on the one hand, a higher price translates

into higher proÞts if demand exceeds aggregate capacity; on the other hand, pricing high

reduces a Þrm�s expected sales. Hence, one needs to consider equilibria in mixed strategies

(see Fabra, von der Fehr and Harbord, 2006).

We Þnd that the large Þrm�s expected proÞts do not depend on whether demand is

realized before or after prices are set. The small Þrm�s proÞts do however depend on the

timing of demand uncertainty, but they still preserve the main feature that accounts for

the non-existence of a symmetric equilibrium in capacity choices under continuous demand

uncertainty. Namely, around a symmetric capacity pair, the small Þrm�s marginal returns

to investment are lower than those of the large Þrm, since the small Þrm takes into account

that an increase in its capacity would induce a more aggressive pricing behavior by its rival.

Since a full characterization of equilibrium capacity choices when demand is realized

after prices are set is out of the scope of the paper, we limit ourselves here to providing the

equilibrium characterization under the assumption of uniformly distributed demand.

Lemma 2 Assume that demand is uniformly distributed on the unit interval and that it is

realized after prices are set. Then, there exist a unique subgame perfect equilibrium outcome

in which one Þrm invests k+ and the other invests k+, with k+ > k− and k− + k+ = 1− c.
SpeciÞcally,

k+ =
1

2

h√
3c2 + 4c+ 2− 3c

i
and k− = [1− c]− k+.

Proof. See the Appendix.

A straightforward comparison of equilibrium outcomes when prices are set either before

or after uncertainty is resolved shows that, under the assumption of uniformly distributed

demand, aggregate capacity is the same, but prices and proÞts are higher when Þrms compete

in prices without knowing demand.
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6 Conclusions

We have analyzed a game in which Þrms take investment decisions under demand uncertainty,

and then compete in prices subject to capacity constraints. In order to understand the role

played by demand uncertainty, we have Þrst characterized equilibrium capacity choices under

demand certainty. Demand certainty guarantees the existence of a symmetric equilibrium in

capacity choices at which each Þrm invests just enough so as to serve one half of the market.

Nevertheless, there also exist a continuum of asymmetric equilibria in all of which Þrms�

capacities sum up to total market demand.

In contrast, the introduction of demand uncertainty has important implications on equi-

librium investment choices, as it may rule out the existence of symmetric equilibria and

reduce the multiplicity of equilibria. Intuitively, demand uncertainty strengthens Þrms� in-

centives to deviate from a candidate equilibrium, as it gives rise to demand states at which

Þrms� aggregate capacity does not coincide with market demand. If there is excess capacity,

Þrms may have unilateral incentives to cut down on investments, whereas is there is excess

demand, Þrms may have gains from expanding investments. However, while deviating by

expanding (contracting) capacity may increase a Þrm�s proÞt whenever there is excess de-

mand (supply), it also depresses proÞts in all remaining states. Therefore, for deviations

to be proÞtable, they have to be Þned tuned so that the marginal losses do not offset the

marginal gains from deviating. Since discreteness in the grid of demand states may stop a

large number of deviations from being proÞtable, the discrete approach to modelling demand

uncertainty delivers multiple equilibria. This contrasts with the continuous approach, which

predicts a unique equilibrium outcome.

A robust conclusion of the analysis is that the investment incentives induced by price

competition give rise to asymmetric marginal returns to investment, which ultimately lead

to asymmetric equilibria in capacity choices. Unlike the large Þrm�s capacity, changes in

the small Þrm�s capacity have crucial effects on Þrms� pricing incentives. In particular, a

marginal increase in the small Þrm�s capacity would induce more aggressive pricing by the

large Þrm, thereby reducing the small Þrm�s chances of selling at capacity. This result does

not depend on how demand uncertainty is modelled and it is also robust to changing the

timing of demand uncertainty.

Our formulation contributes to the existing literature on capacity choices and imperfect

competition under demand uncertainty in several respects. First, in contrast to the papers

that assume Cournot competition, our approach conforms the widely accepted view that
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Þrms compete in prices subject to capacity constraints. Second, as compared to the papers

that analyze investment decisions followed by Bertrand competition, our approach is appeal-

ing in terms of generality and tractability, as it provides a characterization of pure-strategy

equilibria for general demand distributions and allows to make use of powerful results within

the theory of submodular games. Last, our model is able to generate relevant predictions

regarding market structure and the sensitivity of investment decisions and pricing behavior

to measurable variables, such as the shape of the demand distribution function, or to market

characteristics, such as the timing of demand uncertainty.

Our analysis may shed light on investment incentives and endogenous market structure

in a large set of industries characterized by long-lived assets that involve large sunk cost

investments, imperfect competition and demand ßuctuations. These features are common

to most important industries producing commodities, such as steel, chemicals, cement, or

electricity, to name just a few. The main implication of this analysis for the empirical work

is that the distribution of past or future demand could be used as an additional determinant

of the long-run market structure, and thus market power, in this type of industries.
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7 Appendix

Proof of Proposition 3 Let k2 = y and consider the best reply by Þrm one to its rival

capacity choices. If y ≤ min(θL, θH
2
) then Þrm one expected proÞt is a continuous piecewise

function with two regions. In particular,

π(k, y) =

 ρmin
n
k
y

¡
θL − k¢ , ko+ ([1− ρ] k − ck 0 ≤ k ≤ y

ρ
£
θL − y¤+ ([1− ρ] min(©θH − y, kª− ck y ≤ k ≤ θH

Assume Þrst ρ ≤ ρ < [1− c] so that the high demand realization is most likely. In region 2
proÞts are strictly decreasing for any k > θH − y, whereas for k < θH − y proÞts are strictly
increasing as ρ < 1− c. Thus local maximum is θH−y. In region 1, proÞts are maximized at
k∗(y) = 1

2

h
θL + y 1−c−ρ

ρ

i
· Since k∗(y) > y for any ρ ≤ 1−c

2
, the global maximum and hence

the best reply is θH − y. If ρ ∈ ¡1−c
2
, 1− c¢ there is �y ∈ ³θL

2
, θL
´
, �y = ρ θL

3ρ−1+c , such that

k∗ (�y) = �y. Thus, for all y ≤ �y the local maxima is y, and the global maximum is θH − y.
In contrast, for y ≥ �y the local maxima is k∗. To determine the global maxima we need

to compare proÞts at local maxima in (1) and (2). The difference in proÞts, π(θH − y, y)−
π(k∗(y), y), is a concave function with a maximum below θL

2
,15 so that over the relevant

range y ≤ min
n
θL, θ

H

2

o
it is strictly decreasing in y. We need to distinguish two cases: 1).

min
n
θL, θ

H

2

o
= θL, i.e., ∆ > 2. In this case the difference in proÞts evaluated at y = θL

attains a value of zero iff ρ = ρ0, so that the global maximum is θH − y for all ρ ≤ ρ0, where

ρ0 =
1− c
2

"
1 +

r
∆− 2
∆− 1

#
.

15Note that

∂
h
Dπ = π(θH − y, y)− π(k∗(y), y)

i
∂y

=
h
ρθL

i2
− y2 ([1− c+ ρ])2 , with

∂2 [Dπ]

∂y∂ρ
> 0.
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As Þrm two increases further her capacity so that θL ≤ y ≤ θH

2
, the maximum in region 1

becomes 1−c
2ρ
θL· The global maximum remains θH − y if ρ ≤ �ρ < ρ0, where

�ρ (∆) =
1− c
2

"
1 +

r
∆− 2
∆

#
∈
µ
1− c
2
, 1− c

¶
with �ρ (2) =

1− c
2

As θH

2
belongs to the best reply, a symmetric equilibria exists for any ρ ≤ �ρ. Furthermore,

as θH − y remains the global maximum for any y ≤ y∗ = θH − θL[1−c]2
4ρ[1−ρ−c] with y

∗ ≥ θH

2
,

there is also a continuum of asymmetric equilibria. In particular, if ρ ≤ 1−c
2
equilibria are

pairs (θH − k+, k+) with k+ ∈
h
θH

2
, θH − y0(ρ)

i
. If ρ ∈ ¡1−c

2
, �ρ
¤
there are two disjoint sets

of equilibria, one made of pairs (θH − k+, k+) with k+ ∈
h
θH − 1−c

2ρ
θL, y0(ρ)

i
, and the other

one consisting of pairs (θH − k+, k+) with k+ ∈
h
θH

2
, θH − θL(1−c)2

4ρ(1−ρ−c)
i
. Note that as �ρ→ 1−c

2

we have limρ→ 1−c
2

h
θH −

³
θH − θL(1−c)2

4ρ(1−ρ−c)
´
− 1−c

2ρ
θL
i
= 0 so that the two sets of equilibria

become connected and hence we get as equilibria exactly those as when ρ ≤ 1−c
2
. Consider

now case 2). min
n
θL, θ

H

2

o
= θH

2
so that ∆ ≤ 2. The difference in proÞts evaluated at y = θH

2

is zero iff ρ = �ρ where

�ρ (∆) = (1− c)
µ

∆

3∆− 2
¶
∈
µ
1− c
2
, 1− c

¶
with �ρ (2) =

1− c
2

Thus for any ρ ≤ �ρ the global maximum is θH−y, which ensures the existence of a symmetric
equilibrium at θ

H

2
. As Þrm two increases its capacity up to θL the global maximum remains

θH − y for any y ≤ (1+ρ)θH−ρθL
2−c , which ensures the existence of a continuum of asymmetric

equilibria. Letting ρ be equal to �ρ for ∆ > 2 and equal to �ρ for ∆ ≤ 2, we have part i) of
proposition follows.

Let now ρ > 1−c so that the low demand realization is most likely. In region 2 proÞts are
strictly decreasing for any k as ρ > 1− c. Thus local maximum is y. In region 1, proÞts are

maximized at k∗(y) if it is larger than θL− y and at θL− y otherwise. Since k∗(y) < θL− y
for any y ≤ θL ρ

1+ρ−c , the best reply is θ
L − y for 0 ≤ y ≤ θL ρ

1+ρ−c and it is k
∗(y) for

y ∈
h
θL ρ

1+ρ−c , θ
L
i
. As θL ρ

1+ρ−c >
θL

2
, a symmetric equilibrium always exist together with a

continuum of asymmetric equilibria (θL − k+, k+) with k+ ∈
³
θL

2
, θLρ
1+ρ−c

i
, which shows ii).

Consider Þnally ρ ∈ ¡ρ, 1− c¢ . Local maximum in region 2 is θH − y as ρ < 1 − c. In
region 1, proÞts are maximized at k∗(y) which is now larger than θL − y for any y > θL

2
·

Furthermore, there is �y ∈
³
θL

2
, θL
´
, �y = ρ θL

3ρ−1+c , such that k
∗ (�y) = �y. Thus, for all 0 < y ≤ �y

the local maxima is y, and the global maximum is θH − y. To determine the global maxima
when y > �y we must again distinguish two cases.

1). Let∆ > 2. For ρ ∈ (�ρ, ρ0) the global maximum is θH−y for all y ∈ £�y, θL¤ as shown above.
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As Þrm two increases further its capacity so that θL ≤ y ≤ θH

2
, the maximum in region 1

becomes [1−c]
2ρ
θL· Comparing proÞts at the two local maxima, it is straightforward to see that

the global maximum is θH − y for any y ≤ θH − θL(1−c)2
4ρ(1−ρ−c) whereas it is

(1−c)
2ρ
θL otherwise.

Since θH − θL(1−c)2
4ρ(1−ρ−c) <

θH

2
the best reply does not cross the 45o line so that a symmetric

equilibrium fails to exists.16 However there is a continuum of asymmetric equilibria. To

show this claim we need to characterize the best reply for y > θH

2
· We Þrst note that the

proÞt function of Þrm 1 when θ ≥ y ≥ max
n
θL, θ

H

2

o
is a piecewise concave function with

three regions given by

π(k, y) =


ρ k
θL

¡
θL − k¢+ (1− ρ) k − ck 0 ≤ k < θH − y

ρmin
©
k
θL

£
θL − k¤ , 0ª+ ((1− ρ) k

y

¡
θH − k¢− ck θH − y ≤ k ≤ y

(1− ρ) ¡θH − y¢− ck y ≤ k ≤ θL.

For capacities in region (1) local maximum is 1−c
2ρ
θL which equals θH−y at y = θH− 1−c

2ρ
θL. For

capacities in (2) the local maximum is �k(y) = θL

2

³
θH(1−ρ)+(ρ−c)y
θL(1−ρ)+yρ

´
which is decreasing in y.17

Since �k(y)−¡θH − y¢ is increasing in y, and �k(θH−θL)−θL = θL

2

³
θH(1−c−2ρ)−θL(2−c−3ρ)

θL(1−2ρ)+θHρ

´
< 0

whereas �k(θH) = θL

2
(1−c)θH

θL(1−ρ)+θHρ > 0, there is y
0(ρ) such that the local maximum is

£
θH − y¤

if y ≤ y0 and it is �k(y) otherwise. Moreover,

y0(ρ) =
2ρθH − θL (2− ρ− c) +

q¡
(2− c− ρ) θL¢2 + 4ρθH ¡ρ ¡θH − θL¢¢+ cθL

4ρ
·

Consequently, for any ρ ∈ ¡1−c
2
, 1
¤
, global maximum is 1−c

2ρ
θL if y ≤ θH− 1−c

2ρ
θL, it is

£
θH − y¤

for θH − 1−c
2ρ
θL < y < y0(ρ) and it is �k(y) for y > y0(ρ). Discussion above shows that if Þrm 1

is the large Þrm, it is an equilibrium to play
¡
k+, θH − k+¢ for any k+ ∈ hθH − 1−c

2ρ
θL, y0(ρ)

i
.

2). Assume now ∆ < 2. The best reply is a continuous function everywhere except at

one point, y = ȳ ∈
³
θL

2
, θ

H

2

´
. Recall that for ρ ∈ [�ρ, 1− c) there is ȳ(ρ) ∈

³
�y, θ

H

2

´
such that

the global maximum is θH − y if �y ≤ y ≤ ȳ and it is k∗ for ȳ ≤ y ≤ θH

2
, where denoting by

r to 1− c− ρ, we have

ȳ(ρ) = ρ
r
¡
2θH − θL¢+ 2ρθL + 2qr ¡θH − θL¢ ¡θHr − (r − ρ) θL¢

(1− c+ ρ)2

Since it never crosses the 45o line, a symmetric equilibrium fails to exists. Nevertheless there

is a continuum of asymmetric equilibria each of them involving total capacity equal to θH .

16The same is true for ρ > ρ0 but now the best reply jumps down at a smaller y. In particular the best

reply becomes θH − y for 0 ≤ y ≤ ȳ and k∗(y) for ȳ ≤ y ≤ θL.
17Note that k̂(y) < θL as k̂(y) < k̂

³
θH

2

´
< θL for all ρ > ∆(2−c)−4

3∆−4 · Since ρ̂ > ∆(2−c)−4
3∆−4 the statement

follows.
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The set of asymmetric equilibria depends on the value of ∆. In particular if 1 < ∆ < 5−3c
3−c

then it is an equilibrium to play
¡
k+, θH − k+¢ for any k+ ∈

·
ρ2θ

H−θL
1−c+ρ ,

ρ(θH−θL)+θH
2−c

¸
; if

5−3c
3−c ≤ ∆ ≤ 3/2 it is an equilibrium to play any k+ ∈

h
ρ2θ

H−θL
1−c+ρ ,max(θ

L, y0(ρ))
i
, and if

∆ > 3/2, the asymmetric equilibria are given by k+ ∈
h
ρ2θ

H−θL
1−c+ρ , y

0(ρ)
i
if ρ ∈ ¡�ρ, 1−c

2
1

∆−1
¢
,

and by k+ ∈
h
θH − 1−c

2ρ
θL, y0(ρ)

i
if ρ ∈ ¡1−c

2
1

∆−1 , 1− c
¢
. Q.E.D.

Proof of Lemma 1

The Þrst order derivatives of (2) and (3) are given by,

∂π−

∂k−
=

k−+k+Z
k−

θ − 2k−
min {θ, k+}dG (θ) + 1−G

¡
k− + k+

¢− c (4)

∂π+

∂k+
= 1−G ¡k− + k+¢− c (5)

(i) The second order derivatives of (2) and (3) are given by,

∂2π−

∂ [k−]2
= −

"
2

Z k−+k+

k−

dG(θ)

min {θ, k+} +G
0 ¡k− + k+¢ k−

k+
−G0 ¡k−¢# (6)

∂2π+

∂ [k+]2
= −G0 ¡k− + k+¢ < 0 for all cdf G.

The second-order derivative of the small Þrm is negative for any convex cdf. Note that if G

is convex then
R k−+k+

k+ dG(θ) > G0 (k−) which suffices for (6) to be negative. If G is concave

but its pdf G0 is convex then the result does also hold. To see this note that a sufficient

condition for the SOC to be negative is

2

Z k−+k+

k−

dG(θ)

k+
+G0

¡
k− + k+

¢ k−
k+
−G0 ¡k−¢ > 0.

In what follows we show that this inequality holds for a convex pdf. To do so we use an

auxiliary result whose statement and proof follows. If G0 is convex then

2

Z k−+k+

k−

dG(θ)

k+
−G0 ¡k−¢ ≥ G0 ¡k−¢+ £k+ − k−¤G00 ¡k−¢ . (7)

Let g be a convex function. Since a convex function is locally Lipschitzian, integration by

parts implies Z b

x

[b− t] g0(t)dt−
Z x

a

[t− a] g0(t)dt =
Z b

a

g(t)dt− [b− a] g(x)

Since g0(t) ≥ g0+(x) for all t ∈ [x, b], if we multiply by [b− t] ≥ 0, t ∈ [x, b] and we integrate
on [x, b] we get, Z b

x

[b− t] g0(t)dt ≥ 1

2
[b− x]2 g0+(x). (8)
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Similarly, since g0(t) ≤ g0−(x) for all t ∈ [a, x], multiplying both sides by [t− a] ≥ 0, t ∈ [a, x]
and integrating on [a, x] we get,Z x

a

[t− a] g0(t)dt ≤ 1

2
[x− a]2 g0−(x). (9)

Extracting (9) from (8), we deduceZ b

a

g(t)dt− [b− a] g(x) ≥ 1

2

£
[b− x]2 g0+(x)− [x− a]2 g0−(x)

¤
If x is a point of differentiability for g, then g0+(x) = g

0
−(x) = g

0(x) and the inequality above

simpliÞes to
1

b− a
Z b

a

g(t)dt− g(x) ≥
·
a+ b

2
− x

¸
g0(x)

Taking a = k−, b = k− + k+, x = k−, and g = G0, we haveZ k−+k+

k−

dG(θ)

k+
−G0 ¡k−¢ ≥

·
k+ − k−

2

¸
G00
¡
k−
¢
andZ k−+k+

k−

dG(θ)

k+
≥ G0

¡
k−
¢
+

·
k+ − k−
2

¸
G00
¡
k−
¢

Adding up the two inequalities above, the result (7) is derived. Using the derived inequality,

the SOC is negative if

G0
¡
k−
¢
+
£
k+ − k−¤G00 ¡k−¢+G0 ¡k− + k+¢ k−

k+
> 0,

which holds trivially as G0 (k−)+ [k+ − k−]G00 (k−) is the linear approximation (the tangent
line y(x) = G0 (k−)+(x−k−)G00(k−)) to G00 at argument k− passing by x = k+, and it hence
satisÞes

G0
¡
k−
¢
+
£
k+ − k−¤G00 ¡k−¢ > G0 ¡k− + k+¢ > 0

as G0 is convex.

(ii) The second order cross derivatives of (2) and (3) are given by

∂2π−

∂k−∂k+
= − 1

k+

"Z k−+k+

k+

[θ − 2k−]
k+

dG (θ) +G0
¡
k− + k+

¢
k−
#

∂2π+

∂k+∂k−
= −G0 ¡k− + k+¢ < 0

Independently of the shape of the distribution function, the second-order cross derivative

of the small Þrm is negative for all k+ > 2k−. If G is convex the result also holds for

k+ ∈ [k−, 2k−]. Note that integration by parts allows to rewrite ∂2π−
∂k−∂k+ as − 1

k+H(k
−, k+),

where

H(k−, k+) =
k+ − k−
k+

£
G
¡
k− + k+

¢−G ¡k+¢¤+ k−
k+
G
¡
k+
¢

−
Z k−+k+

k+

G (θ)

k+
dθ +G0

¡
k− + k+

¢
k−
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Thus, H(k−, k+) > 0 if G0 (k− + k+) k− >
R k−+k+

k+

G(θ)
k+ dθ, which holds for a convex G asZ k−+k+

k+

G (θ)

k+
dθ ≤ k−G(k

− + k+)
k+

≤ k−G0 ¡k− + k+¢ ,
where the Þrst inequality follows from the Hermite-Hadamard inequality for convex func-

tions,18 and the second inequality follows from the properties of convex functions (G0(y +

a)y ≥ G(y + a)). Q.E.D.

Proof of Proposition 4

Let ∆+ =
©
(x, y) ∈ [0, 1]2 : x ≥ yª , and ∆− =

©
(x, y) ∈ [0, 1]2 : x ≤ yª . Fix x1, x2, y1, y2

in [0, 1] with x1 > x2 and y1 > y2. If all four points (x1, y1), (x1, y2), (x2, y1) and (x2, y2) lie

either in ∆+ or in ∆− then strict submodularity of the proÞt function follows from part ii)

of Lemma 1. If some of the four points lie in ∆+ and the rest in ∆−, then there are three

different cases to consider depending on the number of points in each region:

1.- (x1, y1), (x1, y2), (x2, y2) in ∆+ and (x2, y1) in ∆−, i.e., x1 > y1 > x2 > y2. Decreasing

differences requires

π+(x1, y1)− π+(x1, y2) < π−(x2, y1)− π+(x2, y2),

where π− and π+ have been deÞned in (2) and (3).

2.- (x1, y1), (x1, y2) in ∆+ and (x2, y1), (x2, y2) in ∆−, so that x1 > y1 > y2 > x2. Decreasing

differences requires

π+(x1, y1)− π+(x1, y2) < π−(x2, y1)− π−(x2, y2)

3.- (x1, y2) in ∆+ and (x1, y2), (x2, y1) and (x2, y2) in ∆−, so that y1 > x1 > y2 > x2. Now,

we have to show that

π−(x1, y1)− π+(x1, y2) < π−(x2, y1)− π−(x2, y2)

The proofs for the three cases are similar, thus we only provide here the one corresponding to

case 3, which is the most elaborated one.19 Let C stand for the right-hand side of inequality

above (π−(x2, y1)− π−(x2, y2)). It is easy to show that C exceeds the following expression,

C > −x2 [y1 − x2]
y1

G (y1)− x2
y1

x2Z
0

G (θ + y1) dθ +
x2 [y2 − x2]

y2
G (y2) +

x2
y2

x2Z
0

G (θ + y2) dθ.

18If f is convex then f
¡
a+b
2

¢ ≤ 1
b−a

R b
a f(t) dt ≤ f(a)+f(b)

2 ·
19The proofs for the remaining cases are available from the authors upon request.
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Let D denote the left-hand side of inequality above which is given by

D = −x1 [y1 − x1]
y1

G(y1) +

y1Z
x1

x1 [θ − x1]
θ

dG (θ) +

x1Z
0

·
G(θ + y2)− x1

y1
G (θ + y1)

¸
dθ

For C −D > 0, the following is sufficient

0 <
1

y1
[x1 [y1 − x1]− x2 [y1 − x2]]G(y1) +

x2Z
0

·
x1 − x2
y1

G (θ + y1)− y2 − x2
y2

G(θ + y2)

¸
dθ

+

x1Z
x2

x1

·
G (θ + y1)

y1
− G(θ + y2)

x1

¸
dθ +

x2 [y2 − x2]
y2

G (y2)−
y1Z
x1

x1 [θ − x1]
θ

dG (θ)

The convexity of the cdf yields G(θ+y1)
y1

≥ G(θ+y2)
y2

, which implies

x2Z
0

·
x1 − y2 + y2 − x2

y1
G (θ + y1)− y2 − x2

y2
G(θ + y2)

¸
dθ >

x2Z
0

x1 − y2
y1

G (θ + y1) dθ, and

x1

·
G (θ + y1)

y1
− G(θ + y2)

y2

¸
> x1

·
G (θ + y2)

y2
− G(θ + y2)

x1

¸
> G(θ + y2)

·
x1 − y2
y1

¸
Note also that integration by parts gives

x1 [y1 − x1]
y1

G(y1)−
y1Z
x1

x1 [θ − x1]
θ

dG (θ) =

y1Z
x1

x21
θ2
G (θ) dθ > 0

Thus, if it holds that

x2Z
0

x1 − y2
y1

G (θ + y1) dθ >
x2 [y1 − x2]

y1
G(y1),

then it will suffice to ensure C−D > 0. The convexity ofG and the fact thatG(0) = 0 implies
that the average function F (x) ≡

! x
0 G(t)dt

x
is starshaped (F (αx) ≤ αF (x) for 0 ≤ α ≤ 1),

consequently,

x2

h
x1−y2

y1

i x2R
0

G (θ + y1) dθ

x2
≥
x2

x2

"
x1−y2
y1

#R
0

G (θ + y1) dθh
x1−y2

y1

i
x2

=
y1

x1 − y2

x2

"
x1−y2
y1

#Z
0

G (θ + y1) dθ

Since y1

x1−y2
≥ x2[y1−x2]

y1
, and G is increasing, the desired result follows.

Since the game is submodular, existence of a pure strategy equilibrium is guaranteed (see

Vives 1990). Q.E.D.
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Proof of Proposition 5

(i) . Along the diagonal, the right-hand derivative is always larger than the left-hand deriv-

ative as
∂+π(k, k)

∂k+
− ∂

−π(k, k)
∂k−

=

Z 2k

k

2k − θ
k

dG (θ) > 0 (10)

for anyG.This implies that k is never a best reply to k and hence no pure strategy equilibrium

can be symmetric.

(ii) . a). Assuming that the second order derivative (6) is negative, the proÞt function (1) is

piecewise concave and continuous everywhere, in particular at k− = k+. Choose an arbitrary

but Þxed value for kj . Then, the payoff functions π−i (·, kj), π+i (·, kj) are single-peaked on the
interval [0, 1], with unconstrained maxima at R−i (kj) and R

+
i (kj) ,which solve (4) and (5).

Since the marginal revenue function jumps up at symmetric capacity pairs (see equation

(10)), to determine the global maxima we must distinguish three regions:

Region A. If ∂π
+(k,k)
∂k+ ≥ ∂π−(k,k)

∂k− ≥ 0, R+i (kj) is interior and R−i (kj) is constrained. Thus,
the global maximum is R+i (kj) .

Region B. If ∂π
−(k,k)
∂k− ≤ ∂π+(k,k)

∂k+ < 0, then R−i (kj) is interior and R
+
i (kj) is constrained.

Thus, the global maximum is R−i (kj) < kj.

Region C. If ∂π
+(k,k)
∂k+ ≥ 0 and ∂π−(k,k)

∂k− ≤ 0, both R+i (kj) and R−i (kj) are interior, we need
hence to compare proÞts at the two candidate. For this purpose, let us Þrst implicitly deÞne

k∗ and k∗∗ as,
∂π−(k∗, k∗)

∂k−
= 0 and

∂π+ (k∗∗, k∗∗)
∂k+

= 0.

Given that (10) implies ∂π+(k∗,k∗)
∂k+ > 0, it follows from the concavity of π+ that k∗∗ > k∗.

Using these deÞnitions, in region C the following equations are satisÞed,

π−i
¡
R−i (k

∗) , k∗
¢− π+i ¡R+i (k∗) , k∗¢ < 0

π−i
¡
R−i (k

∗∗) , k∗∗
¢− π+i ¡R+i (k∗∗) , k∗∗¢ > 0.

Furthermore, the difference in proÞts is a strictly increasing function of kj ∈ [k∗, k∗∗] ,

dπ−i
¡
R−i (kj) , kj

¢
dkj

− dπ
+
i

¡
R+i (kj) , kj

¢
dkj

=

Z R−i +kj

kj

1

k2j

h
k2j +

£
R−i
¤2 −R−i θi dG (θ)

+
£
G
¡
R+i + kj

¢−G ¡R−i + kj¢¤ > 0
as R+i > R

−
i and k

2
j +
£
R−i
¤2−R−i θ > k2j +£R−i ¤2−R−i £R−i + kj¤ > 0. Therefore, there exists

a unique �k ∈ (k∗, k∗∗) such that

π−i
³
R−i
³
�k
´
, �k
´
− π+i

³
R+i

³
�k
´
, �k
´
= 0.
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At kj = �k both R−i and R
+
i are a best reply. For values kj < �k the best reply is R

+
i , whereas

for kj > �k the best reply is R−i . In summary, the reaction functions for Þrm i = 1, 2, i 6= j,
are as follows:

Ri(kj) =

 R−i (kj) if kj ≥ �k
R+i (kj) if kj ≤ �k

Notice that Ri(kj) is a continuous function everywhere except at one point, kj = �k.

(ii). b). If G is convex both R−i (kj) and R
+
i (kj) are decreasing functions. Since R

−
i (
�k) <

R+i (
�k) and R+i (0) = G−1 (1− c) < 1 and R−i (1) > 0, then they must cross outside the

discontinuity region, i.e., k− < �k < k+, which guarantees the existence of a Nash equilibrium

((k−, k+)). Finally, since the best replies are identical for both players then (k1 = k+, k2 =

k−) is also an equilibrium as claimed.

If G is concave then R+i (kj) is a decreasing function, and R
−
i (kj) is also decreasing for all

kj > 2k
−
i .We Þrst note that a candidate to equilibrium always exists. Note that substracting

equation (5) from (4), a candidate to equilibrium is a pair
¡
k−i , k

+
j

¢
such that

k−i +k
+
jZ

k−i

θ − 2k−i
min(θ, k+j )

dG (θ) = 0 and k−i + k
+
j = G

−1 (1− c)

Let G−1 (1− c) = A and consider the function H(kj) : [A/2, A]→ R deÞned by

H(kj) =

AZ
A−kj

θ − 2 (A− kj)
min(θ, kj)

G0 (θ) dθ

Since H (A) > 0 and H
¡
A
2

¢
< 0, by appealing to Bolzano intermediate value theorem, there

exists k∗j ∈
¡
A
2
, A
¢
at which H(k∗j ) = 0. Taking k

−
1 = A − k∗2, then the pair (k−1 , k+2 = k∗2)

is a solution to system made of equations (5) and (4). Now this solution constitutes an

equilibrium if it lies outside the discontinuity region in the best reply functions. A sufficient

condition for the pair (k−1 , k
+
2 = k

∗
2) to be an equilibrium is that R−1 (2k

−
1 ) = k̄1 ≤ �k1 where

k+2 (�k1) = �k2 = 2�k1. To see this note that R−1 (2k
−
1 ) determines the crossing point between

the best reply R−1 (k2) and the line k2 = 2k1. For k2 > 2k
−
1 the best reply decreases as

∂2π−1
∂k1∂k2

becomes negative. Similarly, R+2 (�k1) determines the crossing between the best reply R
+
2 (k1)

and the line k2 = 2k1. Thus if k̄1 ≤ �k1 then (k−1 , k
+
2 = k∗2) lies outside the discontinuity

region.

Now for k̄1 ≤ �k1 it must be the case that
2k̄1R̄
k1

³
2k̄1−θ
θ

´
dG (θ) +

3k̄1R
2k̄1

³
2k̄1−θ
2k̄1

´
dG (θ) ≥ 0, as,
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by deÞnition,

1− c = G(3�k1) and

1− c = G(3k̄1) +

2k̄1Z
k̄1

2k̄1 − θ
θ

dG (θ) +

3k̄1Z
2k̄1

2k̄1 − θ
2k̄1

dG (θ) ,

and the right hand side of equalities above determines two strictly increasing functions

provided that the SOC holds. Thus if

2k̄1Z
k̄1

2k̄1 − θ
2k̄1

dG (θ) ≥
3k̄1Z
2k̄1

θ − 2k̄1
2k̄1

dG (θ)

then the result will follow as

2k̄1Z
k̄1

µ
2k̄1 − θ
θ

¶
G0 (θ) dθ ≥

2k̄1Z
k̄1

µ
2k̄1 − θ
2k̄1

¶
G0 (θ) dθ.

We next show that this is the case by using Steffensen�s Inequality.20 Since G0 (θ) is a

non-negative and monotone decreasing function and 0 ≤ θ−2k̄1

2k̄1
≤ 1 for all θ ∈ £2k̄1, 3k̄1¤ then

Z 3k̄1

3k̄1−d
dG (θ) ≤

3k̄1Z
2k̄1

θ − 2k̄1
2k̄1

dG (θ) ≤
2k̄1+dZ
2k̄1

dG (θ) , for d =

3k̄1Z
2k̄1

θ − 2k̄1
2k̄1

dθ =
k̄1
4
.

Consequently,

3k̄1Z
2k̄1

θ − 2k̄1
2k̄1

G0 (θ) dθ ∈
·
G(3k̄1)−G

µ
11

4
k̄1

¶
, G

µ
11

4
k̄1

¶
−G(2k̄1)

¸
, and similarly,

2k̄1Z
k̄1

2k̄1 − θ
2k̄1

G0 (θ) dθ ∈
·
G
¡
k̄1
¢−Gµ3

4
k̄1

¶
, G(2k̄1)−G

µ
7

4
k̄1

¶¸
.

Since concavity of G implies

G(k̄1)−G
µ
3

4
k̄1

¶
> G

µ
11

4
k̄1

¶
−G(2k̄1)

20Let f(x) be a nonnegative and monotonic decreasing function in [a, b] and h(x) such that 0 ≤ h(x) ≤ 1

in [a, b], then Z b

b−d
f (x) dx ≤

bZ
a

f(x)h(x)dx ≤
a+dZ
a

f (x) dx

where d =
bR
a

h(x)dx. See Gradshteyn and Ryzhik (2000), page 1099.
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the result follows. Finally, using the same reasoning as above it is straightforward to see

that k∗1 < k̄1, so that the two best replies cross outside the discontinuity region.

Finally, an equilibrium satisÞes 1−G ¡k−i + k+j ¢−c = 0. Consequently aggregate capacity
k−i + k

+
j equals G

−1(1− c). Q.E.D.

Proof of Proposition 6

(i) Subgame perfect equilibrium aggregate capacity is given byKu = G−1 (1− c) in the game
with continuous demand uncertainty, and it is given byKc = E [θ] in the certainty equivalent

game. The difference Ku−Kc is strictly decreasing in c. Furthermore, limc→0 [Ku −Kc] > 0

and limc→1 [Ku −Kc] < 0. Hence, it follows that there must exist some bc such thatKu > Kc

if and only if c ∈ (0,bc) .
(ii) In the certainty equivalent game, subgame perfect equilibrium prices are equal to

consumers� reservation price, so that consumer surplus is zero. In the game with continuous

demand uncertainty, prices are strictly below the reservation price for θ ∈ (0, G−1 (1− c)) ⊂
[0, 1] , so that consumer surplus is strictly positive. It follows that expected prices must be

lower and consumer surplus higher under demand uncertainty.

(iii) Let W u and W c denote subgame perfect equilibrium Welfare in the game with de-

mand uncertainty and in the certainty equivalent game, respectively. These can be expressed

as,

W u =

Z 1

0

min
£
θ,G−1 (1− c)¤ dG (θ)− cG−1 (1− c) ,

W c = [1− c]
Z 1

0

θdG (θ) .

With the difference being,

W u −W c = c
£
E [θ]−G−1 (1− c)¤− Z 1

G−1(1−c)

£
θ −G−1 (1− c)¤ dG (θ) .

The above expression is clearly negative if c ∈ (0,bc) , as the second term is negative and, by
point (i) above, the Þrst term is negative as well. Furthermore, since ∂[Wu−W c]

∂c
= E [θ] −

G−1 (1− c) > 0 for c ∈ (bc, 1) and limc→1 [W u −W c] = 0, it follows that W u < W c for all c.

Proof of Lemma 2

When demand is uniformly distributed, expected proÞts become,

π− =
k+

2

£
2− 2k− − k+¤ 2− k−

2− k+
k−

k+
− ck−, and

π+ =
k+

2

£
2− 2k− − k+¤− ck+.
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The Þrst order derivatives are

∂π−

∂k−
=

k−k+ − k+ − 6k− + 3 [k−]2 + 2
2− k+ − c,

∂π+

∂k+
=

£
1− k− − k+¤− c.

Along the diagonal,
∂+π(k, k)

∂k+
− ∂

−π(k, k)
∂k−

> 0 (11)

which rules out the existence of a symmetric equilibrium.

Clearly, the second order conditions are satisÞed. Furthermore, the second-order cross

derivatives are negative, which guarantees that Þrms� reaction functions R−i (kj) and R
+
i (kj)

are downward sloping. Furthermore, sinceR−i (�k) < R
+
i (
�k), R+i (0) = 1−c < 1 andR−i (1) > 0,

then they must cross outside the discontinuity region, i.e., k− < �k < k+, which guarantees

that a Nash equilibrium exists and that it is the solution to the system of Þrst order conditions

above,

k+ =
1

2

h√
3c2 + 4c+ 2− 3c

i
and k− = [1− c]− 1

2

h√
3c2 + 4c+ 2− 3c

i
Q.E.D.
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