1. INTRODUCCIÓN

Hoy en día, una de las principales preocupaciones que tenemos es la calidad de vida, lo que se traduce en un aumento del consumo de energía en la historia. Por lo tanto, el verdadero desafío al que nos enfrentamos es ser capaces de cubrir las necesidades de energía y de confort en todo el mundo, por lo que debemos utilizar eficaz y eficientemente las fuentes de energía que tenemos.

En este caso vamos a estudiar y diseñar el sistema de calefacción y refrigeración de un edificio de oficinas, y haremos una comparación energética de este edificio entre Vilna (Lituania) y Madrid (España). Vamos a ver las diferentes condiciones climáticas en cada una de las ciudades y cómo estas condiciones hacen diferentes los parámetros normativos utilizados en los cálculos de los sistemas de calefacción y refrigeración.

El objetivo principal de este trabajo es el estudio y comparación de la cantidad de energía necesaria para alcanzar una temperatura de confort dentro de un edificio de oficinas en Madrid y Vilna, a fin de observar cuáles son las diferencias entre ellos y lo que podría suceder si construimos el edificio de oficinas en Vilna con los parámetros normativos de Madrid.

Para ello, vamos a tener en cuenta principalmente la transmitancia térmica de los elementos utilizados en la construcción del edificio, las pérdidas de calor debido a la ventilación, las ganancias de calor debidas a fuentes internas como las personas, la luz, los equipos y, por supuesto las condiciones climáticas de cada país.

Todo se hará con los valores normativos obtenidos del CTE ("Código Técnico de la Edificación") y del RITE ("Reglamento de Instalaciones Térmicas en los Edificios"), en el caso de Madrid. En el caso de Vilna tomaremos los parámetros normativos generalmente aceptados y utilizados para el diseño de sistemas de calefacción y refrigeración.

2. DATOS CLIMÁTICOS Y DE OPERACIÓN

2.1 Madrid

		TEMPERATURA OPERATIVA (°C)	HUMEDAD RELATIVA(%)
~	VERANO	24	55
INTERIOR	INVIERNO	22	45
œ	VERANO	36	43
EXTERIOR	INVIERNO	0	70

- Estación de invierno (días): 120 días, desde mediados de Noviembre hasta mediados de Marzo.
- Temperatura media de la estación de invierno necesaria de calefacción: 8,28 °C
- \bullet Temperatura media anual: 14 °C

2.2Vilna

		TEMPERATURA OPERATIVA (°C)	HUMEDAD RELATIVA(%)
œ	VERANO	24	50
INTERIOR	INVIERNO	22	50
X	VERANO	28	-
EXTERIOR	INVIERNO	-25	-

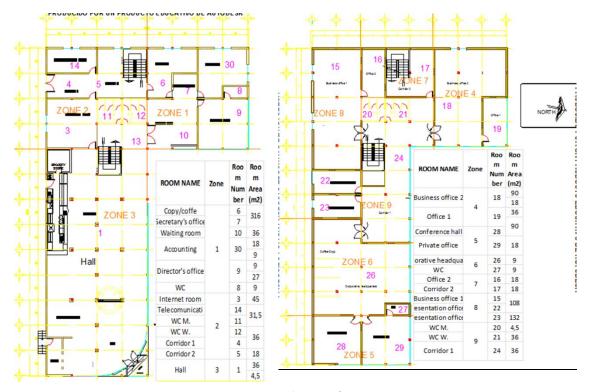
Estación de invierno (días): 210

Temperatura media de la estación de invierno necesaria de calefacción: -0,5 °C

Temperatura media anual: 6,7 $^{\circ}$ C

3. DATOS TÉCNICOS

3.1Características del edificio.


El edificio tendrá forma de "L" con su fachada principal orientada al norte. La parte más ancha de nuestro edificio medirá 24 metros y la parte más estrecha 12 metros, la parte más larga de lam "L" medirá 39 metros. El edificio tendrá tres plantas con una altura total, desde el nivel del suelo, de 7,7 metros, con un garaje en el sótano destinado a estacionamiento los vehículos.

El garaje estará destinado al estacionamiento de vehículos, no habrá ventanas. Esta planta tendrá dos puertas exteriores, uno para la entrada de vehículos y otra para la salida de los mismos. Como podemos imaginar, no vamos a climatizar el garaje por lo tanto no será objeto de estudio.

La planta baja será la planta de acceso del edificio. Que tendrá la entrada principal en la esquina orientada al nordeste, y una segunda entrada, que será una pequeña puerta de cristal, situada en la fachada orientada al sur. La fachada principal estará orientada al norte y se construirá totalmente con cristal. La superficie total de la planta será de aproximadamente 604,26 metros cuadrados.

La primera planta piso será construida igual que la planta baja, pero su altura será medio metro menos, es decir 3,60 metros, y su superficie será 612 metros cuadrados.

Todas las habitaciones estarán condicionadas salvo los cuartos de baño. Los pisos se dividen en zonas que utilizaremos para calcular las tasas de flujo de aire necesarias para la ventilación del edificio.

Planta baja

Primera planta

3.2Áreas

	ÁREA TOTAL(m2)
PAREDES	507.8
VENTANAS	444.15
PUERTAS	8

3.3 Valores de transmitancia térmica

TRANSMITANCIA TÉRMICA MADRID

	U(w/m2K)
VENTANAS	3,5
PAREDES	0,66
TEJADOS	0,49
SUELOS INTERIORES	0,64
PUERTAS	3,5

TRANSMITANCIA TÉRMICA VILNIUS

	U(w/m2K)
VENTANAS	1,6
PAREDES	0,25
TEJADOS	0,2
SUELOS INTERIORES	0,2
PUERTAS	1,6

4. CARACTERÍSTICAS DE LA VENTILACIÓN

Nuestro sistema de ventilación va a ser mecánico. El suministro de aire lo haremos con un AHU con recuperador. La eficiencia del recuperador rondará un 0,7.

Para diseñar los caudales de aire extraído y suministrado hemos dividido nuestro edificio en zonas como está indicado en los planos. Estimaremos el número de personas que podría haber en cada zona.

Obtendremos dos valores para el caudal de aire suministrado, el primer valor debido al número de personas estimado y el segundo de acuerdo al área de la habitación/zona.

Elegiremos el mayor caudal en cada zona para cubrir la total demanda.

Para ver procedimiento de cálculo mirar original.

4.1 Caudales de aire

NOMBRE HABIT.	Número habitación	Zona	Caudal suministrado (m3/h)	Caudal extraído(m3/h)
Copias/Café	6	1		
Of. secretaria	7	1	•	
Sala de espera	10	1		
Contabilidad	30	1	1755	1827
Oficina del director	9	1		
WC	8	1		
Sala de internet	3	2		
Oficina de telecomunicaciones	14	2		
WC H.	11	2	1449	1377
WC M.	12	2		
Pasillo 1	4	2		
Pasillo 2	5	2		
Hall	1	3	2970	2970
Oficina empresarial 2	18	4	945	945
Oficina 1	19	4		
Sala de juntas	28	5		
Oficina privada	29	5	990	990
Oficina corporativa	26	6	1125	1197
WC	27	6	1123	1137
Oficina 2	16	7	135	135
Pasillo 2	17	7	100	133
Oficina empresarial 1	15	8		
Oficina de presentación 1	22	8	1125	1125
Oficina de presentación 2	23	8		
WC H.	20	9		
WC M.	21	9	504	432
Pasillo 1	24	9	304	732

Caudal aire suministrado (m3/h)	Caudal aire extraído (m3/h)
10998	10998

4.2 Carga térmica

	POTENCIA DEL CALENTADOR DE AIRE(W)
Madrid	24679,51
Vilna	52724,41

4.3 Demanda de energía y precio

	DEMANDA DE ENERGÍA TÉRMICA(Kwh)	COSTE(€/year)
Madrid	18469,25	923,46
Vilna	53004,86	4240,39

5. CARACTERÍSTICAS PARA CALEFACCIÓN

Vamos a calcular los aspectos necesarios para el diseño del sistema de calefacción en.

Calcularemos las pérdidas de calor a través de los elementos que componen la cubierta de nuestro edificio, las pérdidas debido a ventilación y las ganancias de calor en el interior del edificio debido a las personas y los equipos. Con estos datos seremos capaces de calcular la carga térmica de nuestro edificio, la demanda de energía y el precio de la misma.

5.1 Pérdidas de calor

Calcularemos las pérdidas de calor de cada habitación. Éstas pérdidas se componen de el coeficiente de pérdidas de calor por conducción a través de las paredes $H_{\rm en}$ y el coeficiente de perdidas de calor debido a ventilación $H_{\rm v}$.

Pérdidas de calor totales:

$$H = H_{en} + H_{v} (W/K)$$

5.1.1Pérdidas de calor a través de los elementos que componen la envoltura del edificio

Procedimiento de cálculo en archivo original.

Ecuación principal:

$$H_{en} = \Sigma H_{el} + \Sigma H_{\Psi} + \Sigma H_{g} \left(\frac{W}{K} \right)$$

	Hel(W/K)	Hg(W/K)	HΨ(W/K)	Hen(W/K)
TOTAL	2233,013	190,496	558,25325	2981,76225

Estos coeficientes serían los mismos tanto para el caso de Madrid como el de Vilna, ya que no estamos teniendo en cuenta las temperaturas.

5.1.2 Perdidas de calor debido a la ventilación.

Calcularemos estas pérdidas con la siguiente ecuación:

$$H_{v} = \Sigma H_{ev} + \Sigma H_{nv} + \Sigma H_{in} + \Sigma H_{de}, W/K$$

El único coeficiente que nos dará pérdidas debido a ventilación será H_{in}, correspondiente a las pérdidas debido a las infiltraciones de aire.

	Hin(W/K)	Hv(W/K)
TOTAL	325,514583	325,514583

5.2. Ganancias de calor

Las ganancias de calor Q_{hg} , son aquellas debidas a las ganancias internas producidas por luces y equipos y a las ganancias producidas por la radiación solar.

La fórmula principal que emplearemos será la siguiente:

$$Q_{hg} = Q_{ig} + Q_{sg}, kWh$$

$$Q_{ig} = \Phi_{ig} \cdot t \cdot 24 \cdot 10^{-3}, kWh$$

$$Q_{sa} = \Phi_{sa} \cdot t \cdot 24 \cdot 10^{-3}, kWh$$

El proceso de cálculo de cada uno de los términos se encuentra detallado en el archivo original.

En la siguiente tabla se muestran los valores de la energía calorífica ganada por las fuentes internas y la radiación solar:

	Φig(W)	Φs,g(W)	Фhg(W)
TOTAL	7425,53	1574,825	9000,355

5.3. Cargas térmicas

La potencia de calefacción Ph, es la energía necesaria que debemos tener en cuenta para el diseño. El diseño le hacemos para una situación extrema, es decir, cuando la temperatura exterior alcanza su valor de diseño.

La potencia la calculamos como la suma de todas las pérdidas de calor, y la calculamos con la siguiente expresión:

$$P_h = (H - H_g) \cdot (\theta_i - \theta_e) + H_g \cdot (\theta_i - \theta_{eav})$$

	Ph(W)
Madrid	64301,4
Vilna	137030,034

5.4. Demanda de energía

La demanda anual para este edificio es la suma de todas las contribuciones que requiere la calefacción para operar. La demanda anual será la diferencia ente el consumo de energía calorífica y las ganancias de calor obtenidas durante el año. La demanda Q_h será calculada de acuerdo a la siguiente expresión:

$$Q_h = Q_{en.v} - \eta_o \cdot Q_{ha}$$

	Qh(KWh)
Madrid	99543,22
Vilna	308902

5.5. Precio de la energía para calefacción

	Coste (€/año)		
Madrid	4977,2		
Vilna	24712,2		

6. CARACTERÍSTICAS PARA EL AIRE ACONDICIONADO

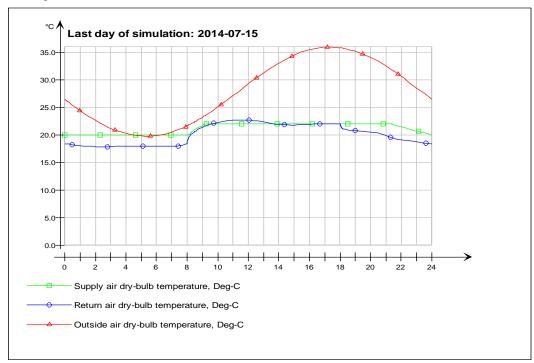
Para calcular la energía necesaria para diseñar el aire acondicionado hemos dividido el edificio en 9 zonas. Calcularemos zona por zona con la ayuda del software ProClim de Swegon, en el cual debemos diseñar la habitación (zona), la orientación, las paredes, ventanas, suelos, techos, aparatos de aire acondicionado, carga térmica aportada por equipos e iluminación, así como por las personas estimadas.

También debemos determinar el número de horas al día que estarán trabajando nuestros ventiladores, nuestro chiller, cuál será nuestra temperatura de operación y de suministro.

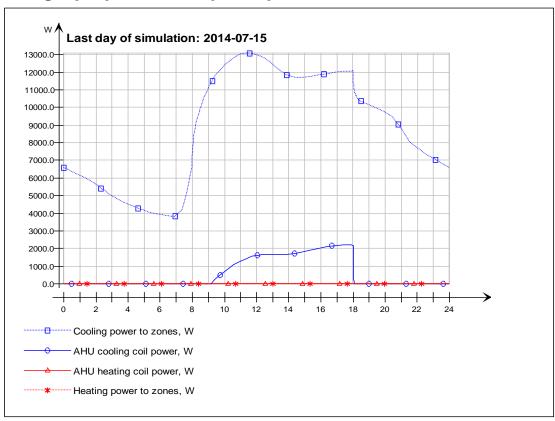
A continuación podemos ver el resumen de la zona 1 de la planta baja de nuestro edificio. Mostraremos sólo el caso de Madrid. Para más detalle ver informe original.

ROOM NAME	Room Number	Zone	Pc Madrid (W)	Pc Vilnius (W)
Copy/coffe	6	1	13080	12510
Secretary's office	7			
Waiting room	10			
Accounting	30			
Director's office	9			
WC	8			

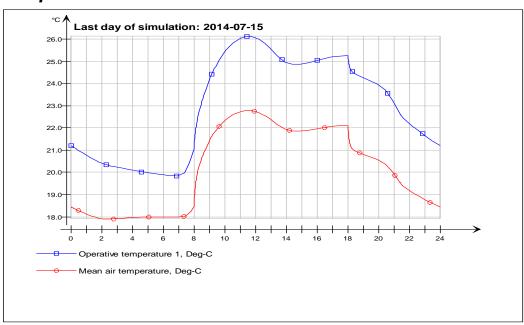
La zona

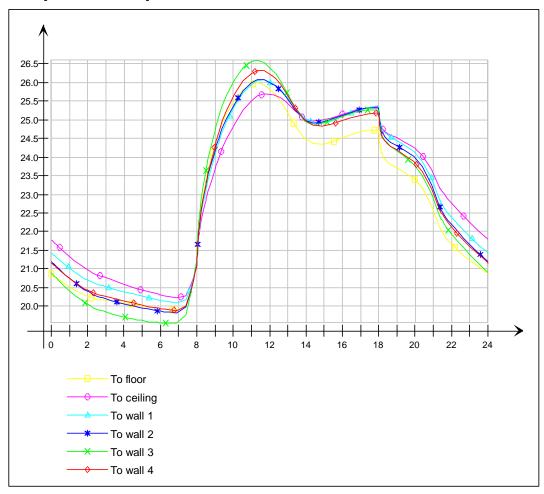

		Value	Occurs at
Temperatura operativa durante la ocupación [°C]	min	21.1	8:00
	max	26.1	11:43
Max pot. para aire acondicionado [W]	Waterborne	13080.0	11:22
	Airborne [*]	1544.0	11:22
Max pot. para calefacción [W]	Waterborne		
	Airborne [*]	434.2	8:02

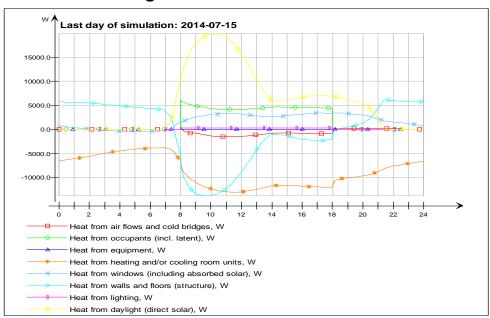
*inkl. Infiltration

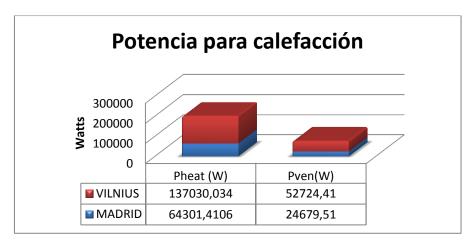

Air handling unit

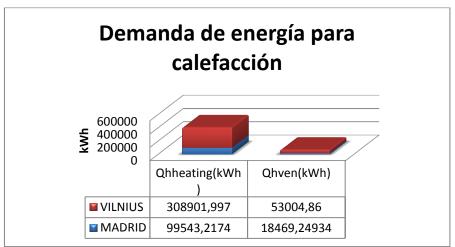
	Value	Occurs at
Max. pot para aire acondicionado [W]	2192.0	17:24
Max. pot para calefacción [W]	8.4	4:32

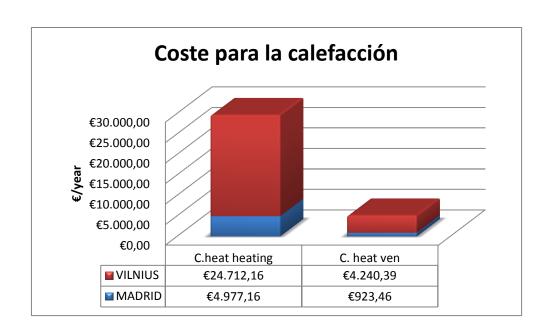

Temperaturas del AHU

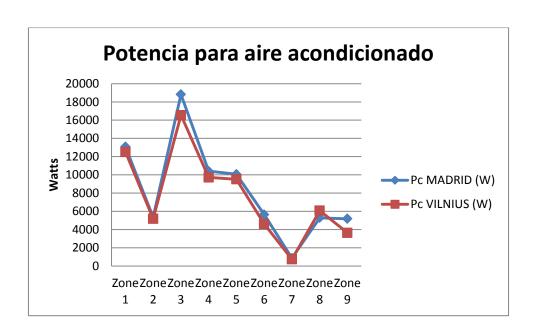

Energía proporcionada por la planta


Temperaturas


Temperaturas operativas directas




Balance de energía



7. CONCLUSIONES

