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Abstract. The level of generalization of neural networks is heavily dependent 
on the quality of the training data. That is, some of the training patterns can be 
redundant or irrelevant. It has been shown that with careful dynamic selection 
of training patterns, better generalization performance may be obtained. Never-
theless, generalization is carried out independently of the novel patterns to be 
approximated. In this paper, we present a learning method that automatically 
selects the most appropriate training patterns to the new sample to be predicted. 
The proposed method has been applied to Radial Basis Neural Networks, 
whose generalization capability is usually very poor. The learning strategy 
slows down the response of the network in the generalisation phase. However, 
this does not introduces a significance limitation in the application of the 
method because of the fast training of Radial Basis Neural Networks. 

1   Introduction 

The radial basis neural networks (RBNN) [1,2] are originated from the use of radial 
basis functions, as the Gaussian functions, in the solution of the real multivariate 
interpolation problem. RBNNs can be used for a wide range of application primarily 
because they can approximate any regular function [3]. Generally, the generalisation 
capability of the RBNN is  poor because they are too specialised in the data training.  

Some authors have paid attention to the nature and size of the training set in order 
to improve the generalization ability of the networks. There is no guarantee that the 
generalization performance is improved by increasing the training set size [4]. It has 
been shown that with careful dynamic selection of training patterns, better generalisa-
tion performance may be obtained [5,6].  

The idea of selecting the patterns to train the network from the available data 
about the domain is close of our approach. However, the aim in this work is to de-
velop learning mechanisms such that the selection of patterns used in the training 
phase is based on novel samples, instead of based on other training patterns. Thus, 
the network will use its current knowledge of the new sample to have some determi-
nistic control about what patterns should be used for training. 

In this work a selective training strategy has been developed to improve the gen-
eralisation capabilities of RBNN inspired on lazy strategies [7,8]. The learning 
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method proposed involve finding relevant data to answer a particular novel pattern 
and defer the decision of how to generalise beyond the training data until each new 
sample is encountered. Thus, the decision about how to generalise is carried out when 
a test pattern needs to be answered constructing local approximations. The main idea 
is to recognise from the whole training data set, the most similar patterns for each 
new pattern to be processed. 

2   Automatic Selection of Training Data 

The method proposed in this work to train RBNN consists of selecting, from the 
whole training data, an appropriate subset of patterns in order to improve the answer 
of the network for a novel test pattern. The general idea for the selection of patterns is 
to include only and several times those patterns close to the novel sample. To develop 
this idea, let us consider q an arbitrary test pattern described by a n-dimensional vec-
tor, q=(q1,..., qn), where qi represents the attributes of the instance q. Let 

{ }N1,...,)/iy,(xX ii ==  be the whole available training data set, where xi are the input 

patterns and yi their respective target outputs. The steps to select the training set asso-
ciated to the pattern q, which is named Xq, are the following: 
Step 1. A real value, dk, is associated to each training pattern (xk, yk). That value is 
defined in terms of the standard Euclidean distance. 
Step 2. A measure of frequency, fk=1/dk, where k=1,...N ,is associated to each training 
pattern (xk,yk). In order to obtain a relative frequency, the values fk are normalised in 
such way that the sum of the frequencies is equal to the number of training patterns in 
X. The relative frequencies, named as fnk, are obtained by: 
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Step 3. The values fnk's previously calculated will be used to indicate how many 
times the training pattern (xk, yk) is repeated into the new training subset. Hence, they 
are transformed to natural numbers as: nk=int(fnk). 

At this point, each training pattern in X has associated a natural number, nk, which 
indicates how many times the pattern (xk, yk) has been used to train the RBNN when 
the new instance q is reached. 
Step 4. A new training pattern subset associated to the test pattern q, Xq, is built up. 
Once the training patterns are selected, the RBNN is trained with the new subset of 
patterns, Xq. Training a RBNN involves to determine the centers, the dilations or 
widths, and the weights. The centers are calculated in an unsupervised way using the 
K-means algorithm to classify the input space. After that, the dilations coefficients are 
calculated as the square root of the product of the distances from the respective center 
to its two nearest neighbours. Finally, the weights of the RBNN are estimated in a 
supervised way to minimise the mean square error measured in the training subset Xq.  

2



                 

Let's  Wq⊂ Xq the set resulting of removing the repeated patterns. In this work, the 
K-means algorithm has been modified in order to avoid the situation where many 
classes have no patterns at all. Thus, the initial values of the centers are set as: 

• Mq, the centroid of  the set Wq, is evaluated. 
• k centers are randomly generated   (c1q, c2q, ....ckq),  

such as  ε<− qjq Mc , j=1,...k, and ε is a very small real number. 

3   Experimental Results 

The deferred learning method proposed in this work has been applied to two different 
approximation problems. In order to validate the proposed method, RBNNs have also 
been trained as usual, this is, the network is trained using the whole training data set. 

3.1   Hermite Polynomial Approximation 

The Hermite polynomial is given by the equation:  
F(x)=1.1(1-x+2x2)exp(-1/2x2) 
A random sampling of the interval [-4 , 4] is used in obtaining 160 input-output 

points for the training set and 65 input-output data for the test set. 
RBNNs with different number of neurones have been trained using the whole 

training data. The training process is stopped either when 150 cycles are performed or 
when the derivative of the train error equals zero. The generalization capability of the 
trained networks has been measured using the test set and the mean square errors 
achieved by the networks. In figure 1 (a), the mean errors obtained for different archi-
tectures are shown. The best results have been achieved using a RBNN with 25 neu-
rones, although no significant differences have been found for networks between 10 
and 25 neurones. It is observed that the test error can not be improved even if more 
learning cycles are performed using the whole training data set. 
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0

0.001

0.002

0.003

0.004

0.005

0 20 40 60Number of neurones

M
ea

n
E

rr
or

    

(b) Mean Error - Selective Learning
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Fig. 1. Mean error on the test set for the Hermite function achieved by different architectures. 

The selective learning method proposed in this work has also been used to train 
RBNNs with different architectures during 150 learning cycles, and their generaliza-
tion capability has been tested. Mean square errors on the test set achieved by these 
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networks are shown in figure 1 (b). In this case, only 3 neurones are necessary to 
obtain the best results, and using more than 8 increases the error to the level of the 
RBNN trained with the classical method.  

The value of the mean square test error achieved by the best  network, the one with 
25 neurones, trained with the whole training set, is shown in Table 1. Using the spe-
cific learning method proposed in this work, the best network, the one with 3 neu-
rones, has also been evaluated. In that case, the mean square error over the test set is 
2.5 times lower. 

Table 1. Performance of different training methods for the Hermite function 

 Mean square error Number of Neurones 
Training with the whole data set 2.49x10-4 25 
Training with a selection of data 0.649x10-4 3 

 
To show the difference between both learning methods, the errors for each test 

pattern are represented in figure 2. In this figure it can be observed that the generali-
zation error corresponds initially to some difficult regions of the function. It is spe-
cially in these regions where our approach is able to drastically reduce the error and 
to find a good approximation.  
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Fig. 2. Hermite function: Square errors for each test patterns. 

3.2 Piecewise-Defined Function Approximation 

This function has been chosen because of the poor generalisation performance that 
RBNN presents when approximating it. The function is given by the equation: 
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The original training set is composed by 120 input-output points randomly gener-
ated by an uniform distribution in the interval [-10,10]. The test set is composed by 
80 input-output points generated in the same way as the points in the training set.  

As in the previous experiment, RBNNs with different number of neurones have 
been trained, using the whole training data until the convergence of the network has 
been reached, that is, either when 150 cycles are performed or when the derivative of 
the train error equals zero. In figure 3 (a), the mean square errors obtained for differ-
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ent architectures are shown. The best results have been achieved using a RBNN with 
20 neurones, although no significant differences have been found for networks be-
tween 2 and 30 neurones.  

The selective learning method proposed in this work has also been used to train 
RBNNs with different architectures during 150 learning cycles, and their generaliza-
tion capability has been tested. Mean square errors on the test set achieved by these 
networks are shown in figure 3 (b). In this case, only 4 neurones are necessary to 
obtain the best results, and using more than 8 increases the error to the level of the 
RBNN trained with the clasical method.  

The mean square errors obtained in both cases over the test set, and the learning 
cycles involved are shown in table 2. As it is possible to observe in table 2, the mean 
square error over the test set is significantly reduced when an appropriate selection of 
patterns is made. 
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(b) Mean Error - Selective Learning
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Fig. 3. Mean error on the test set for the Piecewise function achieved by different architectures. 

Table 2. Performance of different training methods for the piecewise function. 

 Mean square error Number of Neurones 
Training with the whole data set 7.8x10-4   20  
Training with a selection of data 2.07x10-4 4 

 
As in the previous experiments, the computational cost is higher when the de-

ferred training method is used, although, on the other hand, the number of neurones is 
smaller, and the RBNN is trained in a shorter time. In that case, as in the previous 
approximation problem, the RBNNs has been trained until they reach the conver-
gence. Thus, the generalisation capability of the network using the whole training 
data can not be improved if it is trained for more learning cycles. 

It has been observed how the network trained with the whole training data has 
some difficulties to approximate the points in which the function changes their ten-
dency. This can be described as a deficiency in the generalisation capabilities of the 
network. However, the generalisation is improved when an appropriate selection of 
patterns is made. The proposed method is able to provide better approximations of 
points even when the tendency of the function is changed. Figure 4 shows the errors 
committed by the different learning strategy for each test pattern. Most of the test 
patterns are better approximated when the specific learning method is used to train 
RBNN. 
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Fig. 4. Piecewise-defined function: Square errors for each set patterns. 

4   Conclusions 

The results presented in the previous section show that if RBNNs are trained with a 
selection of training patterns, the generalisation performance of the network is im-
proved. The selection of the most relevant training patterns, helps to obtain RBNN‘s 
able to better approximate complex functions. The selective method seems to be more 
sensitive to the number of hidden neurones than the traditional one. However, when 
the selective method is used less experiments must be realized because it gets better 
generalization results with less hidden neurones. 

Due to the reduced input space, the election of the initial centeres for the K-means 
algorithm is extremely important. Previous experiments have shown that if the k-
means algorithm is used as usual, a lot of clusters remain empty and many hidden 
neurones in the RBNN are useless prejudicing the network behaviour. The proposed 
method to determine the initial centroid of the cluster avoids this problem. 

The specific learning methods proposed in this work involves storing the training 
data in memory, and finding relevant data to answer a particular test pattern. Thus, 
the decision about how to generalise is carried out when a test pattern needs to be 
answered constructing local approximations. That implies a large computational cost 
because the network has to been trained when a new sample test is presented. How-
ever, that is not a disadvantage of the method because in many cases that computa-
tional effort can be broached and to achieve lower approximation errors is an impor-
tant advantage. Moreover, the number of neurones of the network trained with the 
selective method is much lower, thus, the computational effort is not as high as it 
appears to be.  

The proposed method uses the Euclidean distance as similarity measure. However, 
the method is flexible to incorporate other similarity measures, which will be studied 
in the future. 
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