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Abstract

Many important economic and finance hypotheses are investigated through testing
the specification of restrictions on the conditional distribution of a time series, such
as conditional goodness-of-fit (Box and Pierce (1970)), conditional quantiles (Koenker
and Machado (1999)), and distributional Granger non-causality (Taamouti, Bouezmarni,
and El Ghouch, 2014). This PhD Thesis contributes to the study of specification and
causality tests that provide a more flexible and detailed approach to evaluate economic

relationships, which are useful in many relevant empirical applications.

In the first chapter, we propose a practical and consistent specification test of con-
ditional distribution models for dependent data in a very general setting. Our approach
covers conditional distribution models possibly indexed by function-valued parameters,
which allows for a wide range of important empirical applications, such as the linear
quantile auto-regressive, the CAViaR, and the distributional regression models. Our test
statistic is based on a comparison between the estimated parametric and the empiri-
cal distribution functions. The new specification test (i) is valid for general linear and
nonlinear dynamic models under parameter estimation error, (ii) allows for dynamic mis-
specification, (iii) is consistent against fixed alternatives, and (iv) has nontrivial power
against v/T-local alternatives, with T the sample size. As the test statistic is non-pivotal,
we propose and theoretically justify a block bootstrap approach to obtain valid infer-
ence. Monte Carlo simulations illustrate that the proposed test has good finite sample
properties for different data generating processes and sample sizes. Finally, an empirical

application to models of Value-at-Risk (VaR) highlights the benefits of our approach.

The second chapter proposes a consistent parametric test of Granger-causality in
quantiles. Although the concept of Granger-causality is defined in terms of the conditional
distribution, the majority of papers have tested Granger-causality using conditional mean
regression models in which the causal relations are linear. Rather than focusing on a
single part of the conditional distribution, we develop a test that evaluates nonlinear
causalities and possible causal relations in all conditional quantiles. The proposed test
statistic has correct asymptotic size, is consistent against fixed alternatives and has power
against Pitman deviations from the null hypothesis. The proposed approach allows us

to evaluate nonlinear causalities, causal relations in conditional quantiles, and provides



a sufficient condition for Granger-causality when all quantiles are considered. As the
proposed test statistic is asymptotically non-pivotal, we tabulate critical values via a
subsampling approach. We present Monte Carlo evidence and an application considering
the causal relation between the gold price, the USD/GBP exchange rate, and the oil

price.

The last chapter of the thesis studies the co-integration relationship between industry
stock returns and excess stock market returns, and it is co-authored with Prof José
Penalva and Prof Abderrahim Taamouti. We find that the equilibrium error term from
this co-integrating relationship has strong predictive power for excess stock returns, which
is increased if combined with the previous month’s excess stock returns. Our results
suggest that short-term return reversals and liquidity measures are primary reasons for
the negative relation between the equilibrium error and expected excess stock returns.
We provide new evidence on the out-of-sample stock return predictability, in contrast
to Welch and Goyal (2008), among others, who found negligible out-of-sample predictive
power using standard variables. We also show that the out-of-sample explanatory power is
economically meaningful for investors. Simple trading strategies implied by the proposed
predictability provide portfolios with higher mean returns and Sharpe ratios than a buy-

and-hold or a benchmark strategy does.
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Chapter 1

A Specification Test of Dynamic

Conditional Distributions

1.1 Introduction

Many important economic and finance hypotheses are investigated through testing
the specification of restrictions on the conditional distribution of a time series, such as
conditional goodness-of-fit (Box and Pierce (1970)), conditional quantiles (Koenker and
Machado (1999)), and distributional Granger non-causality (Taamouti et al., 2014). After
the landmark work of Hausman (1978), numerous authors have developed specification
tests under i.i.d. observations. White (1982) proposed a comparison of different vari-
ance matrix estimators to detect misspecification of econometric models. Newey (1985)
constructed tests of conditional moment restrictions that generalized the approach of
Hausman (1978) and White (1982). Although these tests can also be applied in a time
series context, none of them is consistent against all possible sources of misspecifica-
tion. Despite Andrews (1997) developed a consistent test statistic for testing conditional
distribution specifications, his approach can be applied only for i.i.d. data.

This paper proposes a practical and consistent specification test of conditional distri-
bution models for dependent data in a very general setting. Our approach covers dynamic
conditional distribution models possibly indexed by function-valued parameters. The dif-
ference between our approach and that taken elsewhere is motivated within the framework
used by Corradi and Swanson (2006) and Rothe and Wied (2013). First, we generalize the
approach of Rothe and Wied (2013) to testing the specification of dynamic conditional
distribution models indexed by function-valued parameters in contexts with dependent
data. This allows for a wide range of models that have been shown to be very useful for
risk management and macroeconomic forecasting within a time series framework, such as
the linear quantile auto-regressive, the CAViaR, and the distributional regression models.

Second, we extend the validity of the block bootstrap for Kolmogorov-type conditional

11



Chapter 1. A Specification Test of Dynamic Conditional Distributions

distribution tests proposed by Corradi and Swanson (2006) to the context of dynamic
conditional distribution models indexed by function-valued parameters. Rather than
analysing models indexed by finite-dimensional parameters as in Corradi and Swanson
(2006), we derive a test statistic for conditional distribution models indexed by function-
valued parameters that is valid under dynamic misspecification and parameter estimation
error. To the best of our knowledge, it has not been developed yet a consistent specifica-
tion test of conditional distribution models indexed by function-valued parameters under
dependent data.

Dynamic misspecification is relevant when a dynamic specification test is developed,
as one generally has the problem of defining the relevant past information F;_; (e.g. how
many lags to include), which may involve pre-testing and imply a sequential test bias.
There exists dynamic misspecification when the conditional distribution of the variable
of interest Y; given a past information set X, is not equivalent to the conditional distribu-
tion of Y; given all the “relevant” past information set F;_; of the conditioning variable,
with X; C Fi_1, i.e. ;| X, is not equal in distribution as Y;|F;_;. Bai (2003) developed
a Kolmogorov-Smirnov type test of conditional distribution specifications for time series
based on the comparison of an estimated conditional distribution function with the dis-
tribution function of a uniform on [0, 1]. However, Bai (2003)’s test is inconsistent as it
cannot detect lag order misspecification of a linear autoregressive model with elliptically
distributed innovations (see e.g., Corradi and Swanson, 2006, Delgado and Stute, 2008).
Corradi and Swanson (2006) modified the approach of Bai (2003) allowing for dynamic
misspecification of the past information set under the null hypothesis. They proposed a
consistent test of correct specification for a given information set. In this paper, we extend
the approach of Corradi and Swanson (2006) to construct a specification test for time
series models that takes into account dynamic misspecification and parameter error esti-
mation effect, in a context of conditional distribution models indexed by function-valued
parameters.

Allowing the parameters to be function-valued is important for many empirical ap-
plications. For example, our approach covers the linear quantile autoregressive (QAR) of
Koenker and Xiao (2006), which implies a linear structure for the inverse of the dynamic
conditional distribution F~'(7(6y,Y;_,) = Y/ 6o(7), for the quantile 7 € (0,1), with
Y, , ={Yi1,...,Yi,} € Fi_y, and a functional parameter 6y(7) strictly monotone in 7.
Our procedure also considers testing the specification of nonlinear quantile autoregres-
sive models, such as the CAViaR model of Engle and Manganelli (2004), that directly
measures the market risk of financial institutions by estimating a particular quantile of
future portfolio values - the Value-at-Risk (VaR).

Our proposed test statistic checks the validity of the distributional regression model
introduced by Foresi and Peracchi (1995), where the conditional distribution is modeled

through a family of binary response models for the event that the variable of interest Y,
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Chapter 1. A Specification Test of Dynamic Conditional Distributions

exceeds some threshold y € R. The distributional regression approach uncovers higher-
order multidimensional structure that cannot be found by modeling only the first two
moments of the conditional distribution. This has important implications to forecast-
ing excess stock market returns and finding an optimal portfolio (Foresi and Peracchi,
1995). Mean-variance analysis of excess stock market returns works only under special
assumptions, like multivariate normality of asset returns or quadratic utility function of
investors. In general, a precise definition of risk and an unambiguous ranking of portfo-
lio strategies requires the entire distribution of future returns (Rothschild and Stiglitz,
1970). Besides, focusing on location - for example, on the conditional mean regression
- may lead to overlook the impact of certain predictors of excess stock market returns,
whose effect is mostly on high-order aspects of the conditional distribution. To the best
of our knowledge, we are not aware of a framework to testing for the correct specification
of distributional regression models under dependent data.

An additional benefit of our approach is that it permits us to test conditional quantile
models over a continuum of quantiles under time series. Koenker and Machado (1999)
considered tests for the specification of regression quantile location-scale models for inde-
pendent observations. Koenker and Xiao (2002) applied the “Khmaladze” transformation
to test the specification of linear quantile models under i.i.d data. However, none of these
tests are justified for dependent data, and they do not check for the validity of the quan-
tile regression model itself. Whang (2006) proposed a specification test of conditional
quantile models for a given quantile 7 for time series data, while Escanciano and Velasco
(2010) generalized this approach by providing consistent tests of dynamic quantile regres-
sion models over a continuum of quantiles under dependent data. Our new test provides
a further advantage: it also checks the validity of models for the whole conditional distri-
bution and distributional regression specifications, while the framework Escanciano and
Velasco (2010) considers only conditional quantile regression models. Koul and Stute
(1999), Neumann and Paparoditis (2008), Andrews (2012), Bierens and Wang (2014),
and Kheifets (2015), among others, have also developed consistent specification tests for
conditional distribution models for dependent data, but these methods cannot be applied
to evaluate models indexed by function-valued parameters. In sum, we believe that our
approach is a useful alternative to existing specification methods for dynamic conditional
models under dependent data because it allows for models indexed by possibly function-
valued parameters, covering the setups of Corradi and Swanson (2006), Escanciano and
Velasco (2010), and Rothe and Wied (2013) in a unified way.

Our test statistic is a Cramér-von-Mises (CVM) functional of the discrepancy between
the empirical distribution function and a restricted estimate imposing the structure im-
plied by the dynamic conditional distribution model, and we reject the null hypothesis of
correct specification if this discrepancy is “large”. Since its asymptotic distribution under

general time series assumptions is non-pivotal, we propose and justify a block bootstrap
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Chapter 1. A Specification Test of Dynamic Conditional Distributions

resampling scheme to estimate the critical values. This is likely to be computationally
intensive, but it delivers a test statistic that (i) allows for robust to dynamic misspecifica-
tion, (ii) does not require the estimation of smoothing parameters or nuisance functions
used in a Khmaladze transformation as in Bai (2003) or in Koenker and Xiao (2002), and
(iii) is consistent against all fixed alternatives. Besides, our test statistic has nontrivial
power against v/T-local alternatives, with 7" the sample size.

As further contributions, we investigate the finite sample performance of our method
on simulated data and we illustrate the empirical applicability of our setting by verifying
the specification of conditional distribution models for Value-at-Risk (VaR), which is the
most used measure of market risk in the financial industry. Using data on two major stock
return indexes, we show that our test statistic rejects some widely used specifications of
VaR models.

The plan of the paper is as follows. In Section 2, we propose a test statistic for the null
hypothesis of correct specification of dynamic conditional distribution models indexed by
function-valued parameters under time series and dynamic misspecification. In Section
3, we derive the asymptotic limit distribution of our test statistic under the null and the
alternative hypotheses. We also prove that our test statistic has nontrivial power against
VT-local alternatives, with 7" the sample size. In Section 4, we theoretically justify the
validity of the block bootstrap in our framework. Section 5 provides some examples of
conditional distribution and quantile models that are covered by our setting. Section 6
presents Monte Carlo simulation results. In Section 7, we present an empirical application

of our proposed test. Finally, Section 8 concludes the paper.

1.2 A General Approach to Testing Dynamic Condi-

tional Distributions

Suppose we observe a sample {(Y;, X;) € Rx R4t =1,...,T} from a stationary process
{Y;h Xt}?i

other variables. Let F;_1 := {X,}} be the information set including all relevant past

S=—00

with joint distribution Fyx, where X; may contain lags of Y; and/or of

—00?

information. Let G be a parametric family of conditional distribution models on the

support of Y given X satisfying
G = {F(.]0,.) for some 6 € B(T,0O)}, (1.1)

where 6 € B(T,0) is a function-valued parameter, a class of mappings 7 — 6(7) such
that 0(7) € © C RE | for each 7 € T C R. Focusing on the whole information set F; i,
the null hypothesis of correct specification could be written as F(y|F;—1) = F(y|6o, Fi-1),
a.s. for all y € R and for some 6, € B(T,0), against Pr[F(y|F;_1) # F(y|6, Fi—1)] > 0

14



Chapter 1. A Specification Test of Dynamic Conditional Distributions

for some y € R and for all § € B(T,0). Instead, in this paper we are interested in the
distribution of Y; given a finite dimensional vector of conditioning variables X, € R¢,
for X, C Fi_1. If Y}|F;_ is not equal in distribution to Y;|X;, then X; is dynamically
misspecified. However, in empirical applications we do not know a priori what is the
“relevant” past information set F;_;, and finding out how much information to include
may involve pre-testing (Corradi and Swanson, 2006). Moreover, the critical values for
specification tests obtained under the under correct specification given F; ; are not in
general valid in the case of correct specification given X;, for X; C F;_1. Thus, we allow
for dynamic misspecification of X; and even in the presence of it, we obtain an asymptot-
ically consistent test statistic for the correct specification of Y; given X;. Therefore, we

want to test null hypotheses of correct specification of conditional distribution models of

the form

Ho : F(y|lx) = F (y|fo,x) , for some 6y € B(T,O) and for all (y,z) € W, (1.2)
versus

Ha: F(ylz) # F (y|6,x),for some (y,z) € W and for all 6 € B(T,0), (1.3)

where W is the support of W; := (Y;, X{). Under the null hypothesis of (1.2), the
functional parameter 6y(.) is identified through a sequence of moment equalities. Let
YW x O x T — RE be a uniformly integrable function. For every 7 € T, we assume

that the function-valued parameter 6y(7) solves
Lp(9077_> = E [w(Wta 9077—)} = 07 (14)

where ¥(0,7) is a function ¥ : © x T — RX that fulfills some regularity conditions
described in Section 3. As in Rothe and Wied (2013), we assume that under the null
hypothesis, any 0 € B(T, ©) satisfying F(y|z) = F (y|0, x) for all (y,z) € W also satisfies
O(r) = Oo(7), for all 7 € T. Thus, 6y(7) is uniquely identified through the moment
conditions (1.4). In this paper, we assume that under H4 in equation (1.3), there exists
a “pseudo’true functional parameter 6;(7) solving the moment conditions (1.4), for each
7 € T. Chernozhukov, Ferndndez-Val, and Melly (2013) developed theoretical results for
Z-estimators of the moment conditions of (1.4) for i.i.d. data. Rothe and Wied (2013)
show that a large class of empirically relevant specifications fits into this framework in
a context with i.i.d. data. We provide conditions for the estimation of function-valued
parameters in a context of dependent observations in Section 3.

To test Hg defined in equation (1.2), we first restate our null hypothesis into an equal-
ity of unconditional distributions by integrating-up both sides of H, with respect to the

marginal distribution of the conditioning variable Fx; see Theorem 16.10 (iii) in Billings-
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Chapter 1. A Specification Test of Dynamic Conditional Distributions

ley (1995). We emphasize that the idea of comparing the unrestricted and restricted joint
distribution functions, under the null and the alternative, is more than twenty years old
in the specification testing literature. Stute (1997) and Andrews (1997) apply this idea
in the context of testing specifications of parametric conditional expectation functions
and conditional distribution functions, respectively, under i.i.d. data. In a time series
context, Corradi and Swanson (2006) and Neumann and Paparoditis (2008) also apply
this method to consistently check for the correct specification of dynamic conditional dis-
tributions indexed by finite-dimensional parameters. However, our null hypothesis tests
the validity of a conditional distributional model indexed by function-valued parameters.
As F(ylz) = E(1{Y; < y}|X; = x), where 1{A} is the indicator function of the event A,
the null hypothesis H, of (1.2) can be equivalently restated as

[ Fle)u{e < s}iFx(@) = [ Puibo 9)1(s < 2}dFx(a),
for some 6y € B(T,0) and for all (y,z) € W,

where Fyx(y,z) := [ F(y|z)1{Z < z}dFx(Z) is the unconditional joint distribution
function, and F(y, x, 0) := [ F(y|6o, z)1{z < x}dFx(Z) is the unconditional distribution
function implied by the parametric conditional distribution model. Let ZT(y,x) and
FT(y, x, éT) be the joint empirical distribution function and the semi-parametric estimated

distribution function of {Y;, X;}I_, respectively,

T

5 1
Zr(yx) = = > Y, <yhi{X, <}, for (y,x) € R, (1.5)
t=1
and
FT(y,a:,éT) = /F(y]éT,x)]l{x < x}dﬁx(f), for (y,x) € R, (1.6)

where Fx(z) is the empirical distribution function of {X,}7 |,

T
- 1
Fx(r) = = ; 1{X, <z}, forz € R% (1.7)
Under H, of (1.2), we assume there is a v/T-consistent estimator 67(7) of 6y(r), for
each 7 € T, that minimizes the empirical analog @T(éT, 7) of the moment conditions in

(1.4):
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Chapter 1. A Specification Test of Dynamic Conditional Distributions

A A 2 A 2
(b, 7)< ind o, 7|+ )2, (1.8)

~ 0cO

where ||i|l7 = op(T~Y?), and |-|| denotes the supremum norm. Our proposed test
statistic of Hq is the functional norm of the distance between ZT(y, x) and Fr (y, x, éT),
similar to the approach of Andrews (1997) and Rothe and Wied (2013). To this purpose

we consider

1

Dr(y,z) = T Z (]I{Yt <y} - F(y|éT,Xt)> 1{X; <z}, (1.9)

t=1
and to test the null hypothesis Hg we propose a T-scaled Cramér-von Mises functional

norm of Dy(y,x):

St = T/w (DT(y,x))2dZT(y,w). (1.10)

The test statistic Sr should be small if the null hypothesis is correct, while “large”
values of S imply the rejection of Hy in (1.2). In Section 3, we develop an asymptotic
theory that covers the case of serial dependence, extending the analysis of Rothe and
Wied (2013) for St to the specification of time series models and the approach of Corradi
and Swanson (2006) to specification testing under dynamic misspecification for function-
valued parameter models. It is possible to apply other functional norms to Dr(y,x),
such as the Kolmogorov-Smirnov functional norm: /7T SUP(, »yew | Dr(y, z)|. However,
unreported simulations suggested that the Sr test statistic outperforms in terms of size
and power other alternative functionals such as the Kolmogorov-Smirnov. Therefore, we

focus in this paper on S7.

1.3 Asymptotic Theory

In this section, we derive the asymptotic distributions of our test statistic S7 under the
null and alternative hypothesis. Let {Yr, : t <T,T =1,2,...} be a triangular array with
stationary rows of random variables defined on a complete probability space (€2, A, P),
where 7' is the sample size. Let Ap(m) be the o-field generated by Yp, for t < m, and
Br(m + d) be the o-field generated by the variables Yr, for ¢t > m + d. The sequence

{Yr:} is a-mixing if there is a sequence of numbers {a(d)} converging to zero for which

| Pr(AB) — Pr(A) Pr(B)| < a(d), for all A € Ar(m), all B € Br(m+d), all m,d,T.
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Let W be the support of W; := (Y, X/)' and T C R. Our test statistic Sy in (1.10) is
based on an empirical process indexed by a class of functions ¢*° (), which is the class of
real-valued functions that are uniformly bounded on H, with H := W x T, equipped with
the supremum norm ||+||g=(5). To simplify notation, we use ||-|| to denote the supremum
norm. The class M = {¥(,7) : 6 € ©,7 € T} is a permissible class of functions
that has a finite and integrable envelope function F (6, 7) := supyca [¥ (6, 7)| and can be
covered by a finite number of elements, not necessarily in M (see the Appendix for more
details). Let Pf = [ f(0,7)dP(0,7), for f € M. Finally, the M class of functions is
assumed in this paper to form a so-called Vapnik-Chervonenkis (VC) class of functions
(see Dudley, 1978, Pollard, 1984).

Throughout the paper we use «4» and ¢ = 7 to denote convergence in distribution
of random variables and weak convergence of stochastic processes, respectively. We write
Zp = Z in (>~ (H) to denote weak convergence of a stochastic process Zr to a random
element Z in the function space ¢*° (H) (in the Hoffmann-Jgrgensen sense, according to
Alexander, 1987) for the metric induced by ||-||. Let B.(f) be a closed ball of radius ¢
centered at 6. All limits are taken as T — oo, where T is the sample size. We maintain

the following main assumptions to analyse the asymptotic behavior of our test statistic:

Assumption 1. {(Yp,, Xpy) 1 t < T,T = 1,2,...} is an a-mizing triangular array
with stationary rows, satisfying E(|Y11|**7) < 0o and Y32, j*a ()4 < oo for some
v € (0,2).

Assumption 2. The parametric space © is compact in RE and T is a compact set of

some metric space.

Assumption 3. For each 7 € T, ¥(0,7) : © — RE possess a unique zero at 0y(7), and
for some e > 0, J, oy B:(0o(7)) is a compact subset of R contained in ©. Moreover,
the class of functions M := {¥(0,7) : 0 € ©,7 € T} is a permissible and VC class of
measurable functions with a square integrable envelope function F satisfying P(F)P < oo,

for2 < p < oo.

Assumption 4. Let T be an open set containing T. The mapping W(0,7) : © x T — RE
is continuous and 0 — W(0,7) is the gradient of a convez function in 0 for each 7 € T.
Besides, %W(@,T) = Uy, e@'sts at (0o(7),7) and is continuous at (6o(7),T), for each
T €T, with inf, ¢ ianhH:l ||¥790,Th|| > co > 0.

Assumption 5. For each 7 € T, the map 6 — F(.|0,.) is Hadamard differentiable at
all 6 € B(T, ©) with derwative h — F(.|0, .)[h].
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Assumption 1 is needed to restrict the dependence of {Y7, X1¢} and holds for many
relevant econometric models in practice, including ARMA and GARCH processes under
mild additional assumptions; see e.g. Carrasco and Chen (2002). It enables us to establish
weak convergence of the empirical process Zr(y,z) under a variety of situations, see
Theorem 7.2 in Rio (2000). Assumptions 2-4 provide conditions to guarantee that a
functional central limit theorem holds to the Z-estimator process 7 — VT(07(7) — 0y (7))
for strong mixing processes. Assumption 5 is a smoothness condition required to establish
a functional delta-method for the bootstrap of our test statistic (see Theorem 3.9.11 in
Van der Vaart and Wellner, 2000).

In comparison with the framework of Rothe and Wied (2013), we need to impose
Assumption 1 to establish the asymptotic theory of our test statistic under dependence,
while this assumption is not needed in contexts with independent data. In addition,
Assumption 4 requires that the class of functions M := {¥(0,7) : 0 € O,7 € T} is a
permissible and VC class of measurable functions, while Rothe and Wied (2013) work
with Donsker class of functions in an i.i.d. setting. Assumptions 1-5 imply the following
theorem, which describes the limit distribution of the proposed test statistic Sp under

the null and the alternative.

Theorem 1. Under Assumptions 1-5, the following hold:

(i) Under the null hypothesis Hq in (1.2),

Sr % /(Hl(y;l’) — Ha(y,2))* dFyx(y, ),

where (Hy, Hy) follow a tight mean zero Gaussian process.

(it) Under the alternative hypothesis Ha in (1.3), there exists an € > 0 such that

lim Pr(Sr >¢) =1.
T—o0

Theorem 1 shows that the asymptotic null distribution of St is a functional of the
zero-mean Gaussian processes (Hy, Hs). By Theorem 1, we expect that St is significantly
positive whenever the null hypothesis H, is violated. However, the asymptotic distribu-
tion of Sy varies with the conditional distribution model, the parameter y(.), and with
the serial dependence in the data. As a result, S is not asymptotically pivotal and we
cannot tabulate critical values. Since ZT(y, x) is an integrating measure on YV depending
on T and on data, ZT(y,m) — Fyx(y,x) in (*(W), as T goes to infinity (see Lemma
A.1 in the Appendix). In Section 4, we justify a block bootstrap approach that provides

critical values for S; and does not require the estimation of nuisance functions.
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1.3.1 Local Power of the Test Statistic

Now we analyze the asymptotic power of St against a sequence of Pitman’s local alterna-
tives converging to the null hypothesis at rate v/T', where T denotes the sample size. Let
J(+]+) be an alternative conditional distribution function such that J(.|.) & G of (1.1).
For any 0 < 0 < VT , we consider that under a sequence of local alternatives H 4 the

data are distributed accordingly to the following conditional distribution

) )
Har: F r)=|1—-—— | F(ylbp,x)+ | —= | J(y|x), 1.11
i o) = (1- ) Folto + (92) Jolo, )
for all (y,z) € W and for some 6y € B(7T,0). To ensure nontrivial local power of our

test statistic, we make the following assumption:

Assumption 6. Under the local alternative in (1.11), the conditional distribution under
the local alternative in (1.11) implies a sequence of distribution functions (y,x) =
[ Fr(y|lz)1{z < 2}dFx(z) that is contiguous to the distribution function F(y,x,0) =
[ F(yl6o, 2)1{z < x}dFx(z) based on F(y|f, Xt).

Assumption 6 is standard in the study of the asymptotic power under a sequence of
Pitman’s local alternatives. Andrews (1997) shows that when F' (.|, -) and J(.|.) have
density functions f (|, ) and j(.|-) with respect to the same o-finite measure, then a
sufficient condition for Assumption 6 is

sup J(ylz) o

(.2):f(wlto.2)>0 J (Y]0o, )

Let ¥;(0,7) :=E ;[v(Wy,0,7)] and ¥ (0, 7) := Ep[p(W;, 0, 7)], where E;[.] and Ep[.]
denote expectation w.r.t. J = J(y|X;) and F' = F(y|0y, X:), respectively in (1.11). We

consider y(+) and 6, (-) as solutions to

U (6o, 7) =0, (1.12)
and

W, (6,,7) =0, (1.13)

for all 7 € T respectively. Let %EPF(GO, 7) satisfy Assumption 4 for the functional pa-
rameter 6y solving the moment conditions in (1.12). The following theorem sheds light
on the asymptotic power of the test statistic S under a sequence of local alternatives
satisfying (1.11).
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Theorem 2. Under the local alternative Har in (1.11) and Assumptions 1-6

R / (HL (y, %) — Ha(y, ©) + Ay, 2))* dFyx (3, ),

with Ay, z § [(J(y|z) — F(ylbo, ) + F(yl|6o,2)[h])1{z < 2}dFx(z), and h is the
function h(t ) [di (00, 7)]” I\IIJ(GO,T).

Theorem 2 implies that the test statistic S has non-trivial local power when A(y, x) #
0. Note that the choice of 6y affects the asymptotic power, since A(y, ) is a function
of 6y. This follows because we cannot choose 6, under the local alternatives, and 6,
corresponds to the value that makes J(.|.) as “close” as possible to F(.|0p,.) in the
sense of the Kullback-Leibler information distance (Andrews, 1997). For a functional
parameter 6 solving (1.13), we may choose F' (-|6y,+) as the probability limit under J to
which the sequence of local alternatives Fr(.|.) shrinks as the sample size grows. Then
[ (0o, 7)] W (6p, 7) = 0, and we have a simpler drift term

Aly,z) = § / (JWIT) = F(ylfo, 2)1(z < 2)dFx ().

1.4 Bootstrap Tests

As the test statistic Sy has an asymptotic distribution under H, that depends on the
data-generating process, we propose a block bootstrap approach to obtain critical values.
We also derive its asymptotic properties under the null and alternative hypothesis. If
there were no dynamic misspecification under H, of (1.2), we could apply a parametric
bootstrap resampling method on Fr (y,a:, o )) to get asymptotic critical values under
the null. However, in the presence of dynamic misspecification, Fr (y,x,@o(-)) is not
independent and the covariance structure of the bootstrap statistic is not asymptotically
valid. Thus, to solve this problem, we extend the block bootstrap approach proposed by
Corradi and Swanson (2006) to test the specification of conditional distribution models
indexed by function-valued parameters. We compare the empirical distribution of the
resampled series, evaluated at the bootstrap estimator, with the empirical distribution of
the actual series, evaluated at the estimator based on the actual data. This resampling
method that takes into account the parameter estimation error effect and allows for
dynamic misspecification.

We could consider a subsampling approach, for which similar asymptotic results can
be shown to hold as well, see e.g. Chernozhukov and Fernandez-Val (2005). However,
we choose a block bootstrap because we expect it to have more power asymptotically
and in finite samples. The block bootstrap is a resampling method with replacement

extended to time series observations. It consists of splitting the data into consecutive
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blocks of observations with length ¢ - (X, Xy11,..., Xi11—¢) - and resampling the blocks
with replacement from all blocks and joining them to create a bootstrap sample; for a
review of block bootstrap and other resampling methods for dependent data, see Kreiss
and Paparoditis (2011). Although the block bootstrap is computationally demanding, the
estimated asymptotic critical values are consistent against fixed alternatives and allow
for dynamic misspecification.

Block bootstrap approaches differ on whether the blocks are overlapping or non-
overlapping and on whether the length of the blocks is deterministic or random. We
apply a block bootstrap with an overlapping block length - since it is more efficient than
the non-overlapping one - and with non-random block length, which has a smaller first
order variance (Lahiri, 1999). In what follows, P*, E*, F"* ... denote probability laws,
expectations, distribution functions, etc. in the block bootstrap, i.e., conditionally on the
observed data. The algorithm for computing a fixed block bootstrap realization of our

test statistic Sp has the following steps.

1. Let ¢ be the length of the block, ¢ € N, ¢ << T, where T is the sample size. At
each replication, we draw b blocks of length ¢ from the sample W, = (Y}, X;), with
b = [T'/¢]. For example, for some ¢ with probability 1/(7T" — ¢ — 1), the i-th block
is Wii1, Wisa,...,W;rp. Thus, the set of starting indexes of the selected blocks is
described by I, I5, ..., I discrete i.i.d. uniform random variables taking values in the
set {1,2,...T — (}.

2. Conditional on the sample, we join together the uniform i.i.d. random b blocks to

form a resampled series Wy, Wy, ... , W/ W/ ..., Wy, that can also be written as

Wh’ Wity .. ,W11+g_1,1/V12, Wiyt .. ,W12+g_11, o ’Wfb’ Wit1s- -, W[b+g_1j.
1st block ond block bth block

3. We denote é} as the estimator obtained using the block bootstrap resampled se-
ries {W; = (Y, X7)}. Let Zi(y,z) and Fi(y,z,0%) be the bootstrap equivalents
of ZT(y,x) and FT(y, x, éT), respectively. Then we obtain the following re-centered
bootstrap statistic S7:

T
~ ~ ~ N N 2
Z |:<ZT }/tJXt F’lt(YlHXt?@})) - (ZT(Y;,Xt) - FT(}/tJXtJQT))] .

Given a significance level o € (0,1), our test rejects Ho if St > ¢h(a), where the
bootstrap critical value ¢f(«) is the lowest value that satisfies Pr* [S}. < ¢h(a)] > 1 — «,
and this is estimated through Monte Carlo simulations. In contrast to the block bootstrap

statistic of Corradi and Swanson (2006), we deal with the convergence of empirical process
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indexed by function-valued parameters. Thus, to justify theoretically the block bootstrap
resampling in our setting, we need an additional assumption on the serial dependence on
the data. We define the k-th beta mixing coefficient 5(k) as

B(k) = lsup > |Pr(4; N By) — Pr(4,) Pr(B;)|,

2 -
(4,5)eIxJ

where the supremum is taken over all finite measurable partitions {A,;},cr and {B;};cs
with A; € o(Y,, :m < 1) and B; € 0(Y,,, : m > 1+ k). We say that a sequence {Y;} is

beta mixing if limg_,, B — 0. Then we impose the following assumption.

Assumption 7. {Yr, X, t <T,T > 1} is a f-mizing triangular array with stationary

rows and [B-mixing coefficients satisfying
IF'({Brtrsr) — 0, as T — oo,

where I' : R* +— R is a monotone mapping such that a; < b; fori > 0 implies I'({a; }i>0) <

L({bi}izo0)-

Assumption 7 generalizes most of the commonly used mixing conditions in time series
processes. Let P*(.) be the probability law in the block bootstrap, i.e., conditionally
on the observed data. We follow the approach of Radulovi¢ (1996), which delivers a
Block Bootstrap Central Limit Theorem for the class of M-estimators (see Theorem 2
in Radulovié¢ (1996)), and justify the block bootstrap approach for our proposed test

statistic in the following theorem.

Theorem 3. Under Assumptions 2-7, let W, ..., W5 be generated according to the block
bootstrap with block size ¢ := ((T), with {(T) — 0o as T — oo, conditional on the data
Wi,...,Wrp. Let M :={¥(0,7):0 € ©,7 € T} be a permissible VC class of measurable

functions with a square integrable envelope function IF. If we also assume:

(1) limsup,,_, .. k?B(k) < oo, for some ¢ > p/(p—2), for 2 < p < 0o such that P*(F)P <

o0, and
(i1) €(T) = O(T?) for some 0 < p < (p—2)/[2(p—1)],
then:

(1) Under the null hypothesis Ho of (1.2),

Pr (Sp > dp(@)) — o
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(i) Under the fized alternative hypothesis Ha of (1.3),

Pr (St > ¢j(a)) — 1.

(111) Under the local alternative Har of (1.11),

lim Pr (S > ¢j(a)) > a,

T—o0

where equality holds when Ay, z) =0 a.e., with Ay, x) the non-trivial shift func-
tion defined in Theorem 2.

Theorem 3 is an application of the functional delta method for bootstrap. It shows
that our test based on the block bootstrap critical value has asymptotically correct size,
is consistent, and is able to detect alternatives tending to the null at the parametric rate
VT. Bradley (1985) showed that P*(F)? < oo and > 5o, B(k)?/?P) for some p > 2
is close to the weakest sufficient conditions for an original (non-bootstrap) central limit
theorem for empirical processes for VC-subgraph classes of functions. As the optimal
length, in terms of bias squared and variance of the block bootstrap approximation, is
¢ = CT"3, for a constant C' > 0 (see Kiinsch, 1989, Remark 3.3), the condition on the

block length is not too restrictive.

1.5 Examples

In this section, we consider certain dynamic conditional distribution models whose spec-
ification can be analysed using our approach. We choose those models since they can be

used in many relevant empirical applications.

1.5.1 Linear Quantile Autoregressive Processes

Under our approach, it is possible to test conditional quantile models over a continuum
of quantiles under time series. Koenker and Machado (1999) and Koenker and Xiao
(2002) considered tests for the specification of regression quantile location-scale models
and linear quantile models under i.i.d data. However, none of these tests are justified for
dependent data, and they do not check for the validity of the quantile regression model
itself.

Whang (2006) proposed a specification test of conditional quantile models for a given
quantile 7 for time series data, while Escanciano and Velasco (2010) generalized this
approach by providing consistent tests of dynamic quantile regression models over a con-
tinuum of quantiles under dependent data. Our method is complementary to Escanciano

and Velasco (2010), since we provide a consistent test statistic for dynamic conditional
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quantile models, over a continuum of quantiles. Rather than assuming a martingale dif-
ference hypothesis and applying a subsampling resampling scheme, our method allows
for testing non-markovian quantile models and uses the information of the whole sample
under the block bootstrap method. Moreover, our test is consistent under dynamic mis-
specification. We present some comparisons with the approach of Escanciano and Velasco
(2010) on Section 6.

Many papers in the literature deal with the linear quantile autoregression model, see
for example Weiss (1991), Koul and Mukherjee (1994), and Hallin and Jureckova (1999).
In the linear quantile autoregression model, the 7-quantile of Y;|X; is a linear function of
Xy, where X; can take the lagged values of Y; as arguments. Koenker and Xiao (2006)
investigated quantile autoregressive models in which all of the autoregressive coefficients
are 7-dependent and able to change the location, scale, and shape of the conditional
densities, provided that the 7-conditional quantile of Y; is monotone in 7. For example,
the quantile autoregression (QAR) of order p of Koenker and Xiao (2006) can be written

as

Qr(Ye|Yior, .., Yip) = 00(7) + 01(T) Y1 + . + 0p(7) Yy
= X,0(7), for some 6 € B(T,0), (1.14)

where F_1(7—|1/1-5—17 s a}/;f—;m 9(7—)> = QT(ED@—D s 7}/;5—;0)7 and Xt = (1a }/;5—17 s 7}/;5—1))/-
If the 7-conditional quantile of Y; is correctly specified by a QAR model, then there exists
a F(y|0,z) C G such that the null hypothesis of (1.2) is not rejected, with G satisfying

G={F(-6,.)] F~'(-|0,X;) = X6 for some 6 € B(T,O)} .

We consider estimators of the QAR model in (1.14) as any solution 67(7) of the

problem

T
arg lgélél ; w(WtJ 67 T)v

where (W, 0, 7) := (7 — 1{Y; — X0(7) < 0}) is the check function. Given the solutions
07 (1), the T-quantile of Y;|X, can be estimated by Q. (Y;|X;) = X/07(7). In our setup,
01 belong to the class of Z-estimators with ¢ (W, 07, 7) = (r—1{Y; - X0r(1) < 0}). If
the conditional distribution of Y; is monotone in 7, the QAR model in (1.14) implies a
conditional distribution function that can be estimated by F(y|07(+), z) = = 1{z'0,(7) <
y}dr. Now we establish the conditions that allows us to apply our test statistic St to
check the specification of a QAR model.
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Proposition 1. Let:

(i) For everyt € T, E(t—1{Y;—X,0(7) < 0}) possesses a unique zero at 0(1) = 6y(T),
for some 6y € B(T,0);

(1)) {(Yre, Xpy) : t < T, T =1,2,...} is an a-mizing triangular array with stationary
rows satisfying E([Y11]*77) < 0o and 3 72, 72a(5)Y4) < oo for some v € (0,2);

(i1i) The conditional distribution function of Y; given X, F(-|-), and its density func-
tion f(-|-) have continuous derivatives up to the 2"-order denoted respectively by
FO(.).) and f9(.].), s =1,2;

(iv) f(-|-) is Lipschitz continuous and bounded away from zero on X[0y(T) a.s., uni-
formly over T € T, and F®(.|.) and f*(.|.) are bounded and uniformly continuous

on R a.s.;
(v) The matriz (X, X]) is finite and has full rank.
Then Assumptions 1-5 hold for the linear quantile autoregression model.

Proposition 1 provides conditions for identifiability of the moment conditions in (1.4)
and the validity of a functional central limit for a dependent stochastic process v'T (éT(T) —
0(7)) (Andrews and Pollard, 1994, Chernozhukov et al., 2013). The Lipschitz condition
in (iv) gives a sufficient condition for the class of functions {/(W;,0,7) = (7 — 1{Y; —
X/0(t) <0}) :0 € ©,7 € T} to be a VC class.

1.5.2 Nonlinear Quantile Autoregressive Models

We can apply our test to check the correct specification of a nonlinear quantile regression
model such as the Conditional Autoregressive Value at Risk (CAViaR) model proposed
by Engle and Manganelli (2004). Value at Risk (VaR) is the standard measure of market
risk used by financial institutions and market regulators. Let Y; be a return on a portfolio
series. Given a significance level 7, the VaR of a portfolio is the level of return Y, over
the period [t,T) that is exceeded with probability 7: VaR] (|z) := inf {L : Pr(Y,l <
L|x) > 1 —7}. Analogously, we can also write the VaR as VaR] (t|z) = Q.(Y;|z). Since
the VaR is a quantile of the conditional distribution of returns, the quantile regression
model is a powerful tool to model VaR, using only information pertaining to the quantiles
of the distribution.

Rather than imposing a linear quantile regression model, we may assume a nonlinear

functional dependence on the quantiles of Y;|X;:

Q-(Yi| Xy = ) = m(x,0(7)), (1.15)

26



Chapter 1. A Specification Test of Dynamic Conditional Distributions

where m : R? x © x T +— R is a known function. Under our setup, we have

G ={F(-6,-)| F7'(-|6(-),z) = m(x,6(.)) for some 6 € B(T,0)}.

Similarly to the linear QAR process, we can estimate the parameters éT() of a non-

linear quantile regression model in (1.15) by solving

argmin > pr (Vi — m(X0, 0(7))) (1.16)

with p,;(u) = u(r — 1{u < 0}). For sufficient conditions on m(.,.) for the existence
of a solution of (1.16), see Koenker and Park (1996). Given the solutions f7(.), the
conditional distribution function can be obtained as F(y|0r(.), z) = J7 1{m(x, O (7)) <
y}dr, assuming that F'(y|6r(-), z) is monotone in y. Nonlinear dynamic models allow the
inclusion of past values of the quantiles of Y;| X;. A general CAViaR specification for the

quantile regression can be the following

p q

Q-(Yil6(7), Q1) = 6o(r) + Y 6i(N)Qr(Yieil ;1) + D 05(7)brj(xey),  (L.17)

i=1 j=1

where Q| :={Y,_1,Y,_o,...,Y:_,} is the lagged-value vector of Y; from ¢ — p up to time
t — 1, the parameter vector § has a dimension of r = p+ ¢+ 1, and ¢(.) is a function of
a vector of lagged values of observables x;_; € X;_;, which could be the lagged returns
Y, for instance. Let X; = (1,Y;_4,...,Y;_,)’, then the associated estimator 07 is in the
class of Z-estimators with ¢(W;,0,7) = &(7) (7 — 1{¥; — Q-(Y2|6(7), X;) < 0} ), where
e(1) =Y — Q- (Yy]0(7), Xy). The following proposition provides conditions for applying
our proposed test to the CAViaR model described in (1.17).

Proposition 2. Let Assumptions C0-C7 and AN1-ANS3 of Engle and Manganelli (2004)
hold. Then Assumptions 2-5 hold for the CAViaR model.

1.5.3 Distributional Regression Models

Our proposed test statistic checks the validity of the distributional regression model in-
troduced by Foresi and Peracchi (1995), where the conditional distribution is modeled
through a family of binary response models for the event that the variable of interest
Y, exceeds some threshold y € R. In contrast to the quantile regression model, the dis-

tributional regression model does not require the dependent variable to be continuously
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distributed. This can be useful in many empirical applications. Besides, the distribu-
tional regression approach uncovers higher-order multidimensional structure that cannot
be found by modeling only the first two moments of the conditional distribution. This has
important implications to forecasting excess stock market returns and finding an optimal
portfolio (Foresi and Peracchi, 1995).

Chernozhukov et al. (2013) derive the limit theory for the continuum of binary regres-
sions and Rothe and Wied (2013) provide specification tests for distributional regressions
under i.i.d data. Our setting allows us to evaluate the specification of distributional
regressions under time series data. To the best of our knowledge, we are not aware of
a framework to testing for the correct specification of distributional regression models
under dependent data.

In distributional regression models (DR models), the conditional distribution function
of Y; is model through a family of binary response models for the event that Y; exceeds

some threshold y € R, as follows:
F (ylz) = A (2'0(y)) , for some O(y) € B(R,0) C R* and all y € R, (1.18)

where A(.) is a known strictly increasing link function (e.g., the logistic or standard normal
distribution), and 6(.) is a functional parameter taking values in B(R,©). The DR ap-
proach was introduced by Foresi and Peracchi (1995), and it has been analysed by Fortin,
Lemieux, and Firpo (2011), Rothe (2012), Rothe and Wied (2013), and Chernozhukov
et al. (2013). One can also run a distributional regression model of Y; conditional on its

lagged values:
F (y[Yi1) = A (Y{_,0(y)) , for some 6(y) € B(R,0) C R* and all y € R, (1.19)

For a given cut-off y € R, the estimator éT(y) is given by

T

1
Or(y) := argmax — Z []l{Y} <y}n [A (Y, ,0(y))]
0eBR.0) 1
+ (1= 1{Y, <yhHin [1- A (,0w)] |- (1.20)
Then, the conditional distribution of Y; given Y;_; is estimated as follows:

Fr(ylfr(y), Yie1) = A(Y;_,07(y)), for all y € R. (1.21)

The following proposition provides the conditions for the distributional autoregressive
model in (1.19) to satisfy the Assumptions 1-5, and hence the application of our test

statistic Srt.
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Proposition 3. Let:

(1) {(Yry, Xpy) : t < T, T =1,2,...} is an a-mixing triangular array with stationary
rows satisfying E(|Y11|*™) < oo and Z‘;’;lﬁa(j)”/(‘lﬂ) < oo for some v € (0,2).
The support of Y, Supp(Y'), is a finite set or a bounded open subset of R;

(ii) For every y € Supp(Y'), the parameter 0y(.) solves
E1{Y; <y}In (A (YVL1600(y)) + (1 - 1{Y: <y})In (1 - A (21190(31)))} =0,

such that 0y(y) € O;

(11i) The conditional distribution function of Yy given X, F(-|.), has a density function
f(-]+) that is continuous, bounded, and bounded away from zero at all y € Supp(Y)

a.s.;
() A (Y, ,0(-)) is bounded away from zero and one uniformly over § € © a.s.;
(v) The matriz E(X;X}) is finite and has full rank.

Then Assumptions 1-5 hold for the distributional autoregressive model in (1.19).

Under Assumptions 1-5, we can apply our test statistic St to distributional regression

models in dependent data settings, such as in (1.19).

1.6 Finite-Sample Performance

To examine the finite-sample performance of our proposed test statistic and its bootstrap
procedure, we perform simulation experiments with data generating processes (DGPs)
under the null and the alternative hypothesis. The data are generated from the processes

below.
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Size DGPs :
DGP.1 (AR(1)) : Y; =0.3Y;1 + uy,

DGP.2 (AR(2)) : Y, = 0.3Y;,_; — 0.3Y,_y + u,

Power DGPs :

Y, =1+06Y,1 +u, if Vi <1,
Y, =1-05Y,_; +u, if Y, > 1,

DGP.3 (TAR) :

DGP.4 (Bilinear) : Y; = 0.8Y;_jus_q + uy,
DGP.5 (Nonlinear MA) : Y; = 0.8u? | + u,
DGP.6 (Logistic Map) : Y; =4Y,_1(1 — Y1),

DGP.7 (GARCH(1,1)) : Y; = hyuy, h? =0.02 4 0.06Y,2, + 0.93h%_,,

where u; follows an i.i.d process with distribution N (0,1). We want to test the null
hypothesis that the quantiles of Y; follow a AR(1) process:

Ho : Fi;tl(T’Qo(T),Yt—l) =a+ Y1+ 0, (7), as.,

where ®,!(7) is the 7-quantile of the standard Normal error distribution. We use DGP.1
and DGP.2, described in Corradi and Swanson (2006), to check the size performance
of our test statistic. While a QAR(1) model correctly specifies the conditional distri-
bution in DGP.1, we allow for dynamic misspecification in DGP.2, as F(y|0y,Y;_1) #
F(y|6°,Y;_1,Y; ) with 6y # 0°. The DGPs 3-7 allows us to see the empirical power
performance and have been considered by Hong and Lee (2003) and Escanciano and Ve-
lasco (2010). In these experiments, rejection arises because of misspecification of the
conditional distribution model. DGP.4 and DGP.5 are second-order stationary, though
they are not invertible (Granger and Andersen, 1978). DGP.6 follows a process similar
to a white noise, but it has autocorrelations in squares similar to ARCH(1) (Granger and
Terdsvirta, 2010). DGP.7 examine the power of our test against misspecifications in the
conditional variance.

We also design a DGP for testing the specification of a Distributional Regression model
in the form of (1.19). The data are generated as in DGP.5, a Nonlinear MA(1) model,

and we are interested in testing the null hypothesis that the Distributional Regression
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model is correctly specified conditioning Y; only on Y;_;:
MG F(ylYi) = A (Y10(y)) s as., (1.22)

where A(.) is specified as a logistic distribution function. For all the experiments, we
consider the empirical rejection frequencies for 5% and 10% nominal level tests with
different sample sizes (7" = 100 and 300), and choose a grid 7 = [0.01,0.99]. In calcu-
lating the test statistics, we use an equally spaced grid of 100 quantiles 7, C 7. We
perform 1,000 Monte Carlo repetitions in each of the simulations, and apply B = 399
block bootstrap replications in each of the simulations to calculate the critical values.
Then the maximal simulation standard error for the tests empirical sizes and powers is
maxg<p<1 /p(1 — p)/1000 = 0.016. For each bootstrap replicate, we use three different
block lengths ¢ = {2, 4,6}, which are close to the block length of CT"/3, for a constant
C > 0, suggested by Kiinsch (1989). In all the replications, we generated and discarded
200 pre-sample data values. Except for the Distributional Regression specification test,
we compare our results with the test proposed by Escanciano and Velasco (2010) (EV

henceforth), based on

EV = // ‘ (]l(Yt — m(X,, 0r(7)) < 0) — q) exp(iz' X)| AW (2)d®(a),  (1.23)

where W and @ are some integrating measures on R and 7, and m(X,,0p(7)) is the
estimated parametric QAR(1) model for each 7-quantile, for 7 € 7. The critical values
of the test (1.23) are obtained by subsampling. In each Monte Carlo replication, T'—b—1
subsamples of size b were generated. We apply the EV test for two different subsample
sizes b = [kT(?/%)], for k = 3 and 4, following the suggestion of Sakov and Bickel (2000).

Tables 1.1 and 1.2 report the rejection frequencies of the St test associated with the
DGPs 1-7, for sample sizes T = 100 and T" = 300 respectively. The empirical level of
the St test is generally close to the nominal level under the null hypothesis, disregarding
whether there is dynamic misspecification (DGP.2) or not (DGP.1). On the other hand,
the EV test of Escanciano and Velasco (2010) presents size distortions for both sample
sizes, increasing in the presence of dynamic misspecification (DGP.2). Those results are
robust for different subsample sizes b. Thus, our test has the correct asymptotic size even
in the presence of dynamic misspecification.

In terms of power, the S test exhibits good power and reliable inference even when
using a small sample size T' = 100. Comparing with the EV test, the St test performs
well: it is the most powerful test for DPG.3, DGP.4, DGP.6, and DGP.7; it has less
power than the EV test only against DGP.5, when the subsample size is b = 18, but

it still has more power than the EV test for a subsample size of b = 25. In addition,
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the power of both tests converge to 1 for T' = 300. Our test statistic is also powerful
against misspecifications in the distributional regression, as the power for testing HJ* in
(1.22) is 1 for a small sample size of "= 100 (Table 1.1). To the best of our knowledge,
no specification test for Distributional Regression models has been developed for a time

series setting. In sum, our proposed test seems to perform quite well in finite samples.
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Table 1.1. Monte Carlo empirical rejection frequencies of specification tests: 7" = 100

Sr(l = 2) Sr(l = 4) Sr(l = 6) EV (b= 18) EV (b= 25)

5%  10% 5%  10% 5%  10% 5%  10% 5%  10%

DGP.1 0.030 0.110  0.060 0.110  0.036 0.066  0.075 0.129  0.077 0.120
DGP.2 0.030 0.080  0.040 0.100  0.052 0.102  0.091 0.160  0.084 0.143
DGP.3 0.960 0.990  0.990 0.990  0.920 0.960  0.888 0.931  0.847 0.913
DGP.4 0962 0.990  1.000 1.000  1.000 1.000  0.997 0.999  0.984 0.993
DGP.5 0912 0.952  0.864 0.916  0.900 0.954  0.944 0.969  0.913 0.944
DGP.6 1.000 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000
DGP.7 0216 0.304 0260 0.360  0.200 0.380  0.095 0.149  0.101 0.150
HPE  1.000 1.000 1.000 1.000 1.000 1.000 - - - -

Note: St denotes our proposed test statistic with B = 399 bootstrap replications with block lengths ¢ = {2,4,6}. EV
denotes the subsampling specification test of Escanciano and Velasco (2010). The null hypothesis ’Hg’ R test the specifica-
tion of a Distributional Regression model specified in (1.22), under DGP.5. We use 1,000 Monte Carlo repetitions based
on the DGPs 1-7 described above.

Table 1.2. Monte Carlo empirical rejection frequencies of specification tests: 7' = 300

Sr(l = 2) Sr(l = 4) Sr(f = 6) EV (b = 29) EV (b= 39)

5%  10% 5%  10% 5%  10% 5%  10% 5%  10%

DGP.1 0.043 0.087  0.020 0.080  0.031 0.070  0.061 0.107  0.057 0.108
DGP.2 0.053 0.107  0.067 0.107  0.049 0.122  0.092 0.147  0.074 0.134
DGP.3 1.000 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000
DGP.4 1.000 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000
DGP.5 1.000 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000
DGP.6 1.000 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000 1.000
DGP.7 0970 0.980  0.960 0.980  0.980 1.000  0.186 0.272  0.189 0.260
HPE  1.000 1.000 1.000 1.000 1.000 1.000 - - - -

Note: St denotes our proposed test statistic with B = 399 bootstrap replications with block lengths £ = {2,4,6}. EV
denotes the subsampling specification test of Escanciano and Velasco (2010). The null hypothesis HODR test the specifica-
tion of a Distributional Regression model specified in (1.22), under DGP.5. We use 1,000 Monte Carlo repetitions based
on the DGPs 1-7 described above.
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1.7 An Empirical Application

Many empirical papers have proposed methods to precisely check the specification of
models for Value-at-Risk (VaR). Since VaR determines the regulatory risk capital of all
regulated financial institutions (see Basel Committee on Banking Supervision 1996), the
outcome of a VaR model determines the multiplication factors for market risk capital
requirements of financial institutions. Thus, an inaccurate VaR model leads to an un-
derestimated multiplicative factor, that delivers an insufficient reserve of capital risk for
financial institutions. Therefore, the specification of VaR models is crucial for risk man-
agers, regulators, and financial institutions.

Since the VaR is a quantile of the portfolio returns, conditional on past informa-
tion, and as the distribution of portfolio returns evolves over time, it is challenging to
model time-varying conditional quantiles. An accurate VaR model satisfies Pr(Y; <
—VaR;|Fi_1) = 7, for a portfolio return series Y;, a past information set F; 1, and a
quantile 7 € (0,1). The dynamic conditional quantile regression approach specifies a
conditional VaR model using only the relevant past information that influence the quan-
tiles of interest, and many applications support this methodology (Chernozhukov and
Umantsev, 2001, Engle and Manganelli, 2004, Escanciano and Olmo, 2010).

To illustrate the performance of our proposed test statistic, we test different specifi-
cations of conditional quantile regression models for estimating the VaR of stock returns.
We estimate the VaR of the returns of two major stock indexes, the Frankfurt Dax Index
(DAX) and the London FTSE-100 Index (FTSE-100). The DAX and the FTSE-100 daily
stock indexes are two representatives of the data for which linear and non-linear quantile
regression models have been widely used, see e.g. Escanciano and Velasco (2010), Igbal
and Mukherjee (2012), and Jeon and Taylor (2013). The dataset consists of 2,981 daily
observations - from January 2003 to June 2014 - on Y}, the one-day returns, and X;, the
lagged returns (Y;_1,...,Y;—p).

Figure 1.1 displays the daily log-return series of the two series. It shows that both
log-return series display calm as well as volatile periods and also single outlying log-return
observations. Table 1.3 presents the summary statistics of the series. Both log-returns

series are highly leptokurtic and present autocorrelation.
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Table 1.3. Summary statistics: DAX and FTSE-100 daily log-returns

DAX FTSE-100
Mean 0.02 0.01
Std. Dev. 0.61 0.51
Median 0.03 0.01
Skewness 0.01 -0.12
Kurtosis 9.14 11.71
Minimum -3.23 -4.02
Maximum 4.69 4.08
Autocorrelation -0.01 -0.06
LB(10) 21.34 62.35

Note: The Autocorrelation is the first-order autocorrelation coeffi-
cient, and LB(10) denotes the Ljung-Box Q-statistic of order 10.

For each series, we estimate a Gaussian AR(1)-GARCH(1,1) of the VaR, VaR,(7), as

follows:

AR(l)—GARCH(l,l) F;tl(’/"e[)(’/'), Y;,l, O't) = ﬁo + 51}/;,1 + F‘;l(T)Ut,

Ut2 = Y+ ’YlY;tz—l + 7203—17

where F!(7) is the T-quantile of the standard Gaussian error distribution. Thus, we test
the hypothesis Hy: the VaR of the log-return Y; follows an AR(1)-GARCH(1,1) Gaussian
process. We choose this specification as GARCH models have provided appropriate spec-
ifications of the VaR of stock returns in the literature (Escanciano and Olmo, 2010). We
also entertain other models: GARCH(1,1), AR(2)-GARCH(2,2), E-GARCH(1,1), AR(1)-
GARCH(1,1) with Student-t5 distribution, and GARCH(1,1) with Student-t5 distribu-
tion. We apply GARCH(1,1) and AR(1)-GARCH(1,1) with a Student-t5 distribution
because they are valid models for the distribution of monthly stock returns in Bai (2003)
and Kheifets (2015). To present results with a different GARCH specification, we estimate
an E-GARCH(1,1) model for the VaR as:

E-GARCH(1,1): Fy. ' (7|60(7), Yo, ) = FZ'(7)hy, (1.24)
A = ag+ o ki, +ag ([¥2,] = (2/m)F) = ag¥2,.

As we want to compare our methodology with standard specification tests for condi-
tional quantile regression models in the literature, we perform the EV test described in
(1.23), with two different subsample sizes b = [kT?%/°] for k = 3 and k = 4.

Table 1.4 shows the p-values of the specification tests for all the VaR models for the
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Figure 1.1. Daily log-returns of DAX and FTSE-100 indexes in the period January 6", 2003 to June 9**, 2014

full sample from January 2003 to June 2014. For the DAX index series, our test Sy
rejects the specifications of all proposed models to fitting a VaR for the log-returns at 1%
significance level. These results are robust to three different block lengths. On the other
hand, the EV test of Escanciano and Velasco (2010) do not reject an AR(1)-GARCH(1,1)
specification with Student-t5 distribution at 1% significance level. Regarding the FTSE-
100 series, the St test does not reject a AR(1)-GARCH(1,1) model at 1% significance
level, while the EV test does not reject a AR(1)-GARCH(1,1) model with Student-t5
distribution at the 1% significance level. We note that the AR(1)-GARCH(1, 1) family
of models is the only class of models that is not rejected for these returns series, but this
result is not robust to different block lengths.

For robustness, we perform the same tests to these models using only one year of
data, from June 26, 2013 to June 9*", 2014. Table 1.5 displays the results for this
period. While the EV test of Escanciano and Velasco (2010) rejects all models, our test
St does not reject most of the models at the 1% significance level for the DAX daily
returns series. Moreover, the AR(1)-GARCH(1,1) model with Student-t5 distribution
has obtained the highest p-value and is the only model that is not rejected at the 10%
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significance level. For the FTSE-100 returns, our test does not reject the GARCH(1,1),
GARCH(1,1) with Student-t5 distribution and the AR(1)-GARCH(1,1) model at the 1%
significance level, while the the EV test of Escanciano and Velasco (2010) does not reject
only the ARCH(1,1) with Student-t5 distribution at the 1% significance level.

Thus, the empirical application shows the ability of our test to detect possibly mis-
specified conditional distribution models when we have a small sample size. This is useful
for risk managers and financial institutions to apply a valid VaR model and obtain the

correct multiplicative factors for their market risk capital requirements.
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Table 1.4. Specification tests p-values of VaR models of DAX and FTSE-100 returns: January 6", 2003-June 9", 2014

DAX

Srs  Srs St EV(b=98) EV(b=122)
GARCH(1,1) - CAViaR 0.001  0.001 0.001 0.000 0.000
GARCH(1,1)-t5 - CAViaR 0.001  0.001 0.001 0.001 0.000
AR(1)-GARCH(L,1) - CAViaR ~ 0.002 0.001  0.001 0.000 0.000
AR(1)-GARCH(1,1)-t5 - CAViaR ~ 0.001  0.001  0.002 0.010 0.007
AR(2)-GARCH(2,2) - CAViaR ~ 0.001  0.001  0.001 0.000 0.000
E-GARCH(1,1) - CAViaR 0.001  0.001 0.001 0.001 0.001
FTSE-100

Srs  Srs St EV(b=98) EV(b=122)
GARCH(1,1) - CAViaR 0.001  0.001 0.001 0.000 0.000
GARCH(1,1)-t5 - CAViaR 0.001  0.001 0.001 0.010 0.002
AR(1)-GARCH(1,1) - CAViaR ~ 0.002 0.011  0.003 0.009 0.004
AR(1)-GARCH(1,1)-t5 - CAViaR  0.004  0.005  0.004 0.010 0.007
AR(2)-GARCH(2,2) - CAViaR  0.009 0.004 0.003 0.000 0.000
E-GARCH(L,1) - CAViaR 0.001  0.001 0.001 0.001 0.001

Note: Sty is the St test with block length £ = {6,8,16}. We denote EV as the specification test of Escanciano and Velasco
(2010), with sub-sample size b. The E-GARCH(1,1) is estimated as in (1.24).
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Table 1.5. Specification tests p-values of VaR models of DAX and FTSE-100 returns: June 26", 2013-June 9%, 2014

DAX

Srs  Sra  Sre EV(b=27) EV(b=36)
GARCH(1,1) - CAViaR 0.028 0.031 0.035 0.000 0.000
GARCH(1,1) - t5 - CAViaR 0.040 0.030 0.033 0.000 0.000
AR(1)-GARCH(1,1) - CAViaR 0.018  0.029  0.001 0.000 0.000
AR(1)-GARCH(L,1) - t5 - CAViaR  0.175 0.167  0.159 0.000 0.000
AR(2)-GARCH(2,2) - CAViaR 0.059  0.050 0.044 0.000 0.000
E-GARCH(1,1) - CAViaR 0.034 0.033 0.044 0.001 0.001
FTSE-100

Srs  Sra  Srg EV(b=27) EV(b=36)
GARCH(1,1) - CAViaR 0.634 0.608 0.614 0.000 0.000
GARCH(1,1) - t5 - CAViaR 0.622 0582 0.602 0.010 0.002
AR(1)-GARCH(1,1) - CAViaR 0451 0.443  0.465 0.009 0.004
AR(1)-GARCH(1,1) - t5 - CAViaR  0.288  0.001  0.001 0.010 0.007
AR(2)-GARCH(2,2) - CAViaR 0.001  0.001  0.001 0.000 0.000
E-GARCH(L,1) - CAViaR 0.001  0.001 0.001 0.001 0.001

Note: St is the St test with block length £ = {3,4,6}. We denote EV as the specification test of Escanciano and Velasco
(2010), with sub-sample size b. The E-GARCH(1,1) is estimated as in (1.24).
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1.8 Conclusion

In this paper, we present a practical and consistent specification test of conditional dis-
tribution and quantile models in a very general setting for dependent observations. Our
setting covers conditional distribution models possibly indexed by function-valued param-
eters, which allows for a wide range of important empirical applications in economics and
finance, such as the linear quantile auto-regressive, the CAViaR, and the distributional
regression models. Based on a comparison between an estimated parametric distribu-
tion and the empirical distribution function, our proposed bootstrap test has the correct
asymptotic size and is consistent against fixed alternatives. In addition, our test has
non-trivial power against v/7T-local alternatives, with 7 the sample size.

Finite sample experiments suggest that our proposed test has good size and power
properties, and is more powerful than other comparable specification tests in the litera-
ture against almost all alternatives. In addition, our approach has the correct asymptotic
size under dynamic misspecification. An empirical application illustrates the practical
importance of our setting in risk management. The use of misspecified VaR models may
lead to the acceptance of a sub-optimal model for VaR, underestimating the multiplicative
factors of the reserve of capital risk of financial institutions. Therefore, checking the va-
lidity of a VaR model is of crucial importance for monitoring risk of financial institutions.
We observe that the AR(1)-GARCH(1, 1) family of models provided valid specifications
for the VaR of two major stock returns indexes.

A possible direction for future work is to extend this study to test Granger-causality
in distribution. Although the concept of Granger-causality is defined in terms of the
conditional distribution, the majority of papers have tested Granger-causality using con-
ditional mean regression models in which the causal relations are linear. As a result, a
conditional mean regression model cannot assess a tail causal relation or nonlinear causal-
ities. Our proposed approach allows us to evaluate nonlinear causalities, causal relations
in conditional quantiles, and Granger-causality in distribution through an application of
distributional regression in a time series context. One could also extend our approach to
the class of multivariate models, providing specification tests for vector autoregressions
and multivariate linear and non-linear models, see e.g. Francq and Raissi (2007) and
Escanciano, Lobato, and Zhu (2013).

1.9 Appendix

1.9.1 Tools

In this section, we introduce some auxiliary results. Let M be a permissible class of
functions such that it can be indexed by some set T, i.e., M ={W¥(.,7):7 € T}, in such
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a way that the following holds: (i) 7 is a Suslin metric space (a Hausdorff topological
space that is the continuous image of a Polish space) with Borel o-field B(7T), and (ii)
W(.,.)is xB(T)-measurable function from R x T to R (see Kosorok, 2007, Section 11.6).
Let Pf = [ f(0,7)dP(0,7), for f € M. Given £ > 0, we define the covering number
N(eg, M,||+]]) as the minimal number of Ls(P)-balls of radius € needed to cover M, where
a Lo(P)-ball of radius € around a function g € Lo(P) is the set {h € Lo(P) : ||h—gl|| < €}.
We define the uniform covering numbers as supp N (¢||F||, M, Ly(P)), with [ the square-
integrable envelope of M. We assume that the M class of functions forms a so-called
Vapnik-Chervonenkis (VC) class of functions (see Dudley, 1978, Pollard, 1984). The VC
class is an extension of the class of indicator functions and has the interesting property

that for 1 < p < oo, there are constants C'; and C) satisfying

1/p C2
N(g, M, ||-]]) £ Cy (M) :

for all € > 0 and all probability measures P (see Lemmas I1.25 and I1.32 in Pollard, 1984).
In the following Lemma, we derive a Central Limit Theorem for strong mixing processes

for the empirical distribution, ZT(y, x), under the null and the alternative hypothesis.

Lemma 1.9.1. Given Assumption 1, under Hy of (1.2) or Ha of (1.3),
UT(ywx) = ﬁ(ZT(yVI) - FYX(yax)) — Hl(yvx)a in goo(W)v

where Hy is a tight mean zero Gaussian process in (>°(W) with covariance function
Cov(Hy (y, z),Hy (v, 2")) = Z Cov (1{Yy < y}1{X, <z}, 1{V}, < ¢/ }1{X), < 2'}).
k=—oc0

Proof. Assumption 1 implies strong mixing coefficients a(j) = O(j7*%), for some k > 1.
Then the result follows from a direct application of Theorem 7.2 in Rio (2000). O

In the paper, we have a functional parameter 7 — 6(7), where 7 € T and 0(7) €
B(T,0), and the true value 0y(7) solves the moment equations ¥(6,7) = 0. The following
lemma establishes a functional delta method for the empirical analog \TJT(Q,T) of the

previous moment equations and for the estimator of the functional parameter, f7(.).

Lemma 1.9.2. Given Assumptions 1-5, under Ho of (1.2) or Ha of (1.8), we have
rr(0,7) == VT(Ur(0,7) — U(0,7)) = Ha(0,7), in (>(T x ©),

VT (0r(-) = 0o(-)) = —‘119_01,.[]1:]12@0(')’ )] in € (T),
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where Hy is a tight mean zero Gaussian process in (>°(T x ©) with covariance function

Cov(Hy(6,7), Ha(6/, 7)) = > Cov((Wo,0,7), (Wi, 0, 7).

k=—o00

Proof. First, by Lemma E.1 in Chernozhukov et al. (2013), Assumptions 2-5 imply that
(i) the inverse of U(.,7) defined as ¥~ (z,7) := {6 € © : ¥(A,7) = z} is continuous at
2 = 0 uniformly in 7 € 7 with respect to the Hausdorff distance, (i) there exists W, .
such that limy_,osup,cr et £ W (00(T) + th,7) — U(0o(7),7)] — Vg, -h| = 0, where
inf e inf)p =1 |[Yo,,-1|| > 0, (iii) the maps 7 — 0y(7) and 7 = Wy, ; are continuous, and
(iv) the mapping 7 + 6y(7) is continuously differentiable. Under the previous conditions,
Lemma E.2 in Chernozhukov et al. (2013) holds, and the process r¢(6, 7) weakly converges
to Hy (6, 7) in £°(T x ©) and the map 6 — U(4, .) is Hadamard differentiable at 6, with
continuously invertible derivative \11907.. By Hadamard differentiability of the map 6 —
U (0, .), it follows the weak convergence of the process VT (O7(+) — 0y(+)) in ¢ (T). O

Lemma 1.9.3. Given Assumptions 1-5, under Ho of (1.2) or Ha of (1.3), we have
Ug“o (ya [IZ’) = ﬁ<FT<y7 x, éT) - FT(y7 x, 60)) - HZ(ya 1}) n goo (W) )

where Hy is a tight mean zero Gaussian process in (>°(W).

Proof. From Lemma A.2, VT(07(:) — 6y(.)) = —\119_()17.[1?]12(490(-), .)] in £2°(T), where
H, is a Gaussian process in £>°(7 x ©). By the functional delta method, we can rewrite

v (y, ) as

VT(Fr(y. @, 0r) = Fr(y,z,60)) = /(F(y|éT7f) — F(yl#)1{z < 2}VTdFx(z)

+ [ Pl t{e < sV TdiFx(o) - F(@)) + 0,(1)

By the Hadamard differentiability of the map 6 — F(.|6(.),.) in Assumption 5, we

can apply the functional delta method, for fixed y and z, as follows:

VI(F(yl0r,x) = F(yle)) = —F " (ylbo, ) | =¥ [Ha(6o(-), )]| := Hi(y, z) in £ (V).

Similarly to Lemma A.1, under #H, of (1.2) or H4 of (1.3), given the strong mixing
condition of Assumption 1, VT(Fx(z) — Fx(&)) weakly converges to a tight mean zero
Gaussian process. Now, let the measurable functions I' : W — [0, 1] be defined by
(y,z) — T'(y,z) and the bounded maps II : H — R be defined by f ~ [ fdII. Then
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it follows from Lemma D.1 in Chernozhukov et al. (2013) that the mapping (I',II)
JT(e,2)dll(z) - with T'(+,2) = 1{. < 2} F(.]z) and II = Fx(.) - is well defined and
Hadamard differentiable at (I, IT). Given the Hadamard differentiability of the mapping
(D, II) + [T(.,z)dII(z), the result follows from an application of the functional delta

method, where the Gaussian process Hj is given by

Hy(y, x) :== /H;(y,:z)]l{i; < z}dFx(7) +/F(y\f)]1{y‘c < x}dH; (00, Z),

where Hl; is the same tight mean zero Gaussian process described in Lemma A.1. O]

Lemma 1.9.4. Under the sequence of local alternatives Har of (1.11) and Assumptions
1-6,

A

\/T(ZT(Q,I)—F;‘(:U,CL’)) — Hl(yax)7 in goo(W),
VT(Urp(0,7) — Up, (6,7)) = Hy(0,7), in (T x O),

where Fi(y,z) = [ Fr(y|z)1{z < 2}dFx(z), Yp,(0,7) = Ep, [v(W;,0,7)], and (H,, H,)

are the tight mean zero Gaussian processes derived in Lemmas A.1-A.2.

Proof. First, under Assumption 6, Fii(y,z) is contiguous to F(y,x,eg), then the con-
vergence of the process v (y, z) := VT (Fr(y, x,07) — Fr(y, x,60,)) on Lemma A.3 imply
that vVT(Zr(y, x) — Fi(y, x)) = Hi(y,z) in £°(W). Under the sequence of local alter-
natives H 4 r of (1.11) and Assumptions 1-6, Frr(y|X;) of (1.11) is a linear combination of
two measures that are VC class with a square integrable envelope. From the convergence
of the process VT (¥r(6,7) — (6, 7)) in Lemma A.2 and an application of Lemma 2.8.7
in Van der Vaart and Wellner (2000), we have that v/T(Ur(0,7) — Up (0, 7)) weakly
converges to Hy (6, 7) in £2°(T x ©). O

We define weak convergence conditional on the data in probability ( % -convergence)
in the Hoffmann-Jgrgensen sense, i.e., X, %\}} X in a metric space D denotes conditional

bootstrap convergence in probability under P, that is, sup ¢ oo (3 |Ex f(X,)—Ef(X,)) £
0. The subscript M denotes taking the expectation conditional on the data. The following
lemma derives the convergence of the block bootstrap of empirical process for dependent

observations.

Lemma 1.9.5. Let Wy, = {Y7y, Xv} be a (1 + d)-dimensional triangular array with
stationary rows satisfying Assumption 7 with marginal distribution P, and let M =
{U(0,7):0€O,7 €T} be apermissible VC class of measurable functions with a square
integrable envelope function ' satisfying P(IF)P < oo, for 2 < p < co. Conditional on the
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data Wy, ..., Wy, let W, ..., W7 be generated according to the block bootstrap with block
length € := ((T), with ((T) — oo as T — co. Let vi(y, x) == VT(Z:(y,z) — Zr(y,z)) be
the block bootstrap version of the empirical process vr(y, z) = VT (Zr(y, x) — Fyx(y, z)).
Suppose that

lim sup k8(k) < oo for some q > p/(p — 2) and that P*(IF)? < oo for some p > 2.

k—o0

Assume that the block length ((T') also satisfies
U(T) = O(T*) for some 0 < p < (p—2)/[2(p — 1)].
Then
vi(y.x) = Hu(y,2), in (W),

where Hy is a tight mean zero Gaussian process as defined in Lemma A.1.

Proof. The result follows directly from an application of Theorem 1 in Radulovié¢ (1996)
or Theorem 11.26 in Kosorok (2007), slightly modified to address measurability. O

Lemma 1.9.6. Under Assumptions 2-7, under Ho of (1.2), or Ha of (1.3), or under the
local alternative Har of (1.11),

VI(Fiy,x,07) = Frly,z.6r) = Ha(y,x) in £ (W),

where Hy is the tight mean zero Gaussian process defined in Lemma A.3.

Proof. Since F(.|0,.) is Hadamard differentiable, by the chain rule for the Hadamard
derivative and bootstrap convergence result of Lemma A.5 we can apply a functional
delta-method for bootstrap in probability defined in Theorem 3.9.11 of Van der Vaart
and Wellner (2000) that yields the result. O

1.9.2 Proofs

Proof of Theorem 1. To prove part (i), we consider the empirical processes vr(y,z) =
\/T(ZT(y,x) — Fyx(y,x)) and v%o(y,x) = \/T(FT(y,x,éT) — Fr(y,x,00)) defined in
Lemma A.1 and Lemma A.3, respectively. Under Hy of (1.2), Fyx(y,z) = F(y,x,00),
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and we have

Sy =T / (Zn(y, x) = Prly,z, 60))2d 20 (y, 2)

~

:T/(ZT(ZJ, T) — FT(ZJ, z, éT) + Fyx(y, x))deT(yv z)
N /<UT<ya ) — v (y, )’ dZr(y, z)
N /(UT<ya ) — v (y, ) dFyx (y, ©)

n / (vr(y,2) — 12 (y,2))*d(Zr(y, 7) — Fyx(y,7)).

By Lemma A.1, we have VT(Zr(y,z) — Fyx(y,2)) = Hi(y,z) that is a tight mean

zero Gaussian process in £>°(W). Then
Sr = /(UT(y, z) — v (y, 2))2dFy x(y, z) + op(1).
By Lemmas A.1 and A.3, (vp(y,z),v%(y,2)) = (Hy(y,z), Hy(y,z)) in £2°(W x W).
Then the result follows by an application of the continuous mapping theorem.
In part (ii), under the alternative hypothesis H4 of (1.3), Fyx(y,x) # F(y,x,0,)

for some (y,z) € W and for all §, € B(T,0). Now the process v (y,z) becomes
U%O<y7x) = ﬁ(ﬁT(yax7éT> - FT(y,x,el)). Then

Sr = T/ (ZT(y,x) — FT(y,x, 9T) + Fyx(y,x) + F(y,x, 91)>2 dFyx(y,x)
- / (UT(y, x) — 0P (y, x) + VT (Fyx(y,z) — F(y, z, (91))>2 dFyx(y,z) 4+ op(1).

By Lemmas A.1 and A.3, (vp(y,z),v%(y, ) = (Hi(y,z),Hy(y,z)) in LW x W).
Therefore, for any fixed constant € > 0, limy_,, Pr(Sr > ¢) = 1 and the result follows. [

Proof of Theorem 2. Under the local alternative Har in (1.11), consider the empirical

processes
b0:) = VT (Zrt) = [ Flulon, 214 < a)aFx(@) ), and

T”}r(eﬁ) = ﬁ(‘i’T(gaT) — Epy (Wt,Q»T)D,
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where Ur(0,7) := Ep[p(W,,0,7)] as defined in (1.12). Then

o) VT (Zoto2) = [ Flolboa)1(s < o)ars(a))

T (ZT(%I) B / [FT@,E) i % (F(y|6, %) — J(y|£))} 1{z < :c}dFX(a‘c))

VT (ZT<y,x> - P + = [ (0l) - Pl 21 < x}de<x>) |

Thus, it follows from Lemma A.4 that
ohlya) = Hu(ya)+5 [ (Jyla) — Floldo. 2)1{e < 2}dFx(a),

where H; is a tight mean zero Gaussian process in ¢>°(W) defined in Lemma A.1. Now

we have that
rp(0,7) =VT (U (6, 7) — B[t (W3, 6,7)])
=VT(¥r(0,7) = {Er [ (Wi, 0,7)] + 6 Bp[:(W,, 0,7)] — SB[ (W, 0,7)]} )
VT (U7 (0,7) = Wr, (0,7) + 8 [Bs (Wi, 0,7)] — Ep[ts (Wi, 0,7)]]).
where U (0, 7) := E;[)(W,, 0, 7)] as defined in (1.13). Thus, by Lemma A.4, we have
rh(0,7) = Hy(0,7) + 5[ Es[ (Wi, 0,7)] — B[ (W3, 0, 7)]],

where Hj is a tight mean zero Gaussian process in (7 x ©) defined in Lemma A.2.

. . 1
Now, we consider the empirical process vTeo (y, )

0y, 2) = VT ( [ 6o < eyais() - [ oot < x}dFX<x>) .
Thus, by Lemma A.3, we have that

oy, 1) = Hy(y,z) +6 / E(ylo)[h1{z < 2}dFy (2),
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with h(7) = [Z¥r (6, 7)) "W (6o, 7). Therefore, under Hr of (1.11), we have
$1 [ (Znta) - Pty = [ Floltnonia < x}de<x>)2dZT<y,x>
~ [ h.) ~ (w2 dZr (.
— [ h.) = (w2 dFrx(o. )
+ [ @b ) = o (0. 0)d(Zr(y.2) - Frx(y.2)

= [ @hye) = o} .2)*dFxy.2) + 0r(1),

then the result follows from the continuous mapping theorem. O

Proof of Theorem 3. For part (i), by Lemma A.6, & (a) = c(a) + op(1), where ¢(«)
satisfies Pr(Sr > ¢(a)) = a+ o(1). Then as T' — oo, Pr(Sr > & (a)) = a+ o(1). For
part (ii), there exists a fixed constant C' > 0 such that

Pr(Sr < & (a)) = Pr(Sr < & (a), Sp < C) + Pr(Sr < &(a), Sp > C)
< Pr(Sy < C)+Pr(ép(a) > C)
< o(1) +e+o(1),

where the first element of the third line follows from Theorem 1 - Pr(Sr < C) = o(1) -
and the rest of the third line is due to Lemmas A.5-A.6, that imply the block bootstrap
critical value ¢ (a) is bounded in probability under fixed alternatives, i.e., for any € > 0,
there exists a fixed constant C' such that Pr(¢h(a) > C) < e + o(1). The result follows
from an arbitrary choice of ¢ > 0. Part (iii) follows from an application of Theorem
4 of Andrews (1997) and Anderson’s Lemma in Ibragimov and Has'minskii (1981). By
Anderson’s Lemma, since H;(y, ) — Ha(y, ) has mean zero V(y,z) € W, under Hy we

have

P ( [ (0000 - Bl ) + () dFyx(y.a) > ofe))

> Pr ([ (8 (02) ~ Haly )" Byl 2) 2 ele) )

=Pr(Sr > c¢(a)) = a.
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Thus, under a sequence of local alternatives, we have Pr (St > ¢(a)) > o + o(1). Under
Assumption 6, the conditional distribution under a local alternative Frp(.|.) implies a
sequence of distribution functions Z7(y, ) that is contiguous to the distribution function
F(y,z,00) given by [ F(yl6y,z))1{Z < 2}dFx(), under the sequence of local alterna-
tives Har of (1.11). Since contiguity preserves convergence in probability to constants,

under the sequence of local alternatives H 1 of (1.11) we have

Pr ([ (B0 0) = Balyo) + Alp.a)) dFx(y.2) 2 65(0))

b ( [ F2000) ~ Bty ) + A0 dFrxt) 2 c<a>) o))

= Pr (ST > C(Q)) > Q,

where equality holds when A(y,x) = 0 a.e., with A(y,z) the non-trivial shift function
defined in Theorem 2. O

Proof of Proposition 1. Condition (ii) is equivalent to Assumption 1. Condition (i) en-
sures that, for each 7 € T, ¥(0,7) : © — RE possess a unique zero at 6y(7). By Lemma
D.1 of Chernozhukov et al. (2013), Conditions (iii) and (iv) imply Hadamard differentia-
bility of the map 6 — F(.]0,.), for each 7 € T and for all § € B(7,0). Condition (iii)
provides conditions for the check function ¢(Wy, 07, 7) = (T—1{Y; — X0p(7) < 0}) to be
differentiable, and thus for Assumption 4. Finally, The Lipschitz Condition (iv) ensures
that the class of functions {¢(W,,0,7) = (7 — 1{Y; = X[0(7) <0}) : 0 € ©, 7€ T} is a
VC class. O

Proof of Proposition 2. Conditions CO-C7 and AN1-AN3 of Engle and Manganelli (2004)
assure that conditions (i),(iii)-(v) of Proposition 1 hold for the distribution of Y; given
X, implied by the CAViaR model. Thus, it follows from the proof of Proposition 1. [

Proof of Proposition 3. Condition (i) provides conditions for Assumption 1. Condition
(ii) ensures that, for each 7 € T, ¥(0,7) : © — RE possess a unique zero at y(7). Let
the check function be (Wy, 0(y), 7) = 1{Y; <y} In(A(Y/ 10(y)))+ (1 —1{Y; < y})In(1—
A(Y/ 10(y))). Then conditions (ii)-(v) imply that the mapping ¥(0,7) : © x Z — RF
, %LT/(G,T) = %,T exists at
(6o(7), 7) and is continuous at (6y(7), 7), for each 7 € T, with inf,c7 inf )= |[@, +h]| > 0.

is continuous, where 7 is an open set containing 7. Besides

By Lemma E.1 of Chernozhukov et al. (2013), the mapping 7 — 6(7) is continuously
differentiable. By Lemma E.2 of Chernozhukov et al. (2013), we have Hadamard differ-
entiability of the map 6 — F(.|6,.), for each 7 € T and for all § € B(T,O). ]
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Chapter 2

Testing for Granger-Causality in

Quantiles

2.1 Introduction

The Granger-causality definition proposed by Granger (1969) is the fundamental concept
for studying dynamic relationships between time series. According to this definition, a
series Y} is said to Granger-causes X,y if it incorporates information about the predictabil-
ity for X;;; encompassed nowhere else in some large information set, which includes X;_;
, 7 > 0. Although the concept of Granger-causality is defined in terms of the conditional
distribution, the majority of papers have tested Granger-causality using conditional mean
regression models in which the causal relations are linear. As a result, a conditional mean
regression model cannot assess a tail causal relation or nonlinear causalities.

This paper proposes a parametric omnibus test of Granger-causality in quantiles.
The proposed approach allows us to evaluate nonlinear causalities, causal relations in
conditional quantiles, and provides a sufficient condition for Granger-causality when all
quantiles are considered. The quantile regression approach provides a more detailed and
flexible analysis of the entire conditional distribution than the conditional mean-regression
analysis, that focus only on a single part of the conditional distribution. In addition, a
quantile causal relation may contrast with a causality in the mean of the conditional
distribution. While a relationship with mean-causality shifts at least a non-negligible
number of quantiles, a tail causal relation does not necessarily imply a causality in the
mean. For example, Lee and Yang (2012) show that money-income Granger-causality in
the conditional mean is quite weak and unstable, while it is significant in tail quantiles
in most data sets. Finally, the proposed test is equivalent to testing Granger-causality in
distribution when all quantiles are considered. Rather than checking a necessary condition
for Granger-causality, our approach analyses a continuous space of conditional quantile

functions that fully characterizes the concept of Granger-causality in distribution.
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Our test is an extension of the method proposed by Escanciano and Velasco (2010) in
the context of testing parametric conditional quantile restrictions over a range of quan-
tiles. The intuition is to specify, for each quantile of the conditional distribution, a
parametric conditional quantile model for a series X; contained in an information set
without Y;_ 1, and check if the innovations of this model are correlated with the series
Y;_1, included in a larger information set that contains X;_; for j > 1. To our knowledge,
testing for Granger-causality in quantiles by parametric methods in a flexible specification
setting has not been analysed in the literature before. Our test statistic is a Cramér-von
Mises (CvM) functional norm of quantile-marked empirical processes that characterizes
the null hypothesis of Granger non-causality. We reject the null hypothesis that Y;_; does
not Granger-causes X; whenever our test statistic is significantly different from zero, for
any quantile over a continuum of quantile levels.

As the proposed test statistic is asymptotically non-pivotal and depends on the data
generating process, we tabulate critical values via a subsampling method. The sub-
sampling approach allows us to apply non-linear conditional quantile regression models.
Although our proposed test is computationally demanding, it has many interesting the-
oretical features: it does not require the choice of smoothing parameters, is consistent
against all fixed alternatives, and is asymptotically strictly unbiased against a sequence
of Pitman’s local alternatives.

Chuang, Kuan, and Lin (2009) and Yang, Tu, and Zeng (2014) estimated the quantile
causal effects by quantile regressions and tested the hypothesis of Granger non-causality
by performing the Sup-Wald test of Koenker and Machado (1999) in all quantiles. We
extend their method in two ways. First, our test provides an omnibus type of property: it
requires only a model for the marginal quantile regression (under the null of no causality),
and then searches for rejections of the null hypothesis in every direction, while the Sup-
Wald test requires a particular model specification for the quantile regression under the
alternative hypothesis of causality. In addition, we allow for non-linear specifications of
the quantile regression model under the null. Many causal relations are non-linear, see
for instance Bouezmarni, Rombouts, and Taamouti (2012). Therefore, a test based on a
linear quantile regression model cannot be applied to testing nonlinear causality.

Regarding nonparametric approaches, Hong, Liu, and Wang (2009) proposed a non-
parametric test of causality in Value-at-Risk (VaR), but their method provides only a
necessary condition for Granger-causality. Jeong, Hérdle, and Song (2012) extended
the idea of Zheng (1998) to transform conditional quantile restrictions into conditional
mean restrictions to testing causality in quantiles; more recently, Taamouti et al. (2014)
proposed a nonparametric test for conditional density based Granger-causality. However,
both testing procedures of the Granger-causality null hypothesis require beta-mixing con-
ditions in the data generating process and are based on kernel methods. We provide two

advantages. First, except for the application of the subsampling, our proposed causality
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test does not need mixing assumptions, and it requires only a-mixing assumptions for
the validity of the subsampling, which are less restrictive than beta-mixing conditions.
Moreover, our approach does not require the choice of smoothing parameters. Eventually,
our parametric test is able to identify all the patterns of causality in the conditional dis-
tribution for flexible linear and nonlinear models, while nonparametric methods hardly
provide a clear interpretation of the causal relations.

As further contributions, we investigate the finite sample performance of our method
on simulated data and we illustrate the empirical applicability of our setting by verifying
the causal relation between the gold price, the USD/GBP exchange rate, and the oil
price.

The rest of the paper is organized as follows. In Section 2, we propose a test statistic
for the null hypothesis of non Granger-causality in quantiles. In Section 3, we derive
the asymptotic limit distribution of our test statistic under the null and the alternative
hypotheses. We also prove that our test statistic has nontrivial power against v/T-local
alternatives, with T the sample size, and we theoretically justify the validity of the sub-
sampling approach in our framework. Section 4 presents Monte Carlo simulation results.
In Section 5, we show an empirical application of our proposed test, and Section 6 con-

cludes the paper.

2.2 An Omnibus Test for Granger-Causality in Quan-

tiles

2.2.1 Testing Problem

Let {(V;,Z;) : QO x Q — RxR = R%¢ € Z} be a strictly stationary and ergodic
stochastic process defined on some probability space (£, F, P), where F; is the o—field
Fi = {(Y;, Zs),s < t}, with joint distribution function Fy z(y,z). Let Fy(y|Z) be the
conditional distribution function of Y given Z, and we assume it is continuous for all
y € R. For simplicity, we examine only univariate Markov processes of order one and
Granger-causality in lags, but we can extend our results to multivariate Markov processes
of order d > 1 and/or to instantaneous Granger-causality. We define the information
set available at time t as I, = (I}, I7), where I} := (Y,_1,...Y,_r41) € R and
I7 .= (Z,_y,...Zy ;1) € RT71 and A’ denotes the transpose matrix of A.

According to Granger (1969), a random variable Z does not Granger cause another
random variable Y when we are not better able to predict Y using all available information

than if the information apart from the past of Z until £—1 had been used. We characterize
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the null hypothesis of Granger non-causality from Z to Y as follows:
HEY - Fy (y|I) I7) = Fy (y|I)), for all y € R. (2.2.1)

We denote the null hypothesis of (2.2.1) as Granger non-causality in distribution.
Since the estimation of the conditional distribution may be complicated in practice, many
papers have tested Granger non-causality in mean, that is only a necessary condition

(2.2.1). In this case, Z does not Granger cause Y in mean if
E(Y|I,I7) = E(V|I)) as., (2.2.2)

where (Yt‘}") denotes the mean of Fy (‘]—") Granger non-causality in mean of (2.2.2)
can be easily extended to higher order moments, see for example Cheung and Ng (1996).
However, causality in mean (or in higher moments) overlooks the dependence that may
appear in conditional tails of the distribution. On the other hand, the Granger non-
causality distribution of (2.2.1) does not inform us about the level where the causality
exists, if (2.2.1) is rejected. Thus, we propose to test Granger non-causality in conditional
quantiles, since it allows us to determine the pattern of causality and it provides a suffi-
cient condition for testing Granger non-causality in distribution of (2.2.1), as the quantiles
completely characterize a distribution. Let Q7 (.|F) be the a-quantile of Fy (‘.7-" ), we
can equally test (2.2.1) as:

HEOS™ L QEY (I 7) = QY (I as foralla € T, (223

where T is a compact set such that 7 C [0, 1] and the conditional a-quantiles of Y satisfy

the restrictions below

Pr{Y, < QY (M|I))|I}} :=a,foralla € T,
Pr{Y, < Q2 (V|I7, 1) |17, 1)} :=a,foralla € T. (2.2.4)

Since Pr{Y; < Qf (V;|F) |F} = E{1[Y; < Qa (Yi|F)] |F}, where 1(a < b) is an indi-

cator function of the event that a is less or equal than b, (2.2.3) is equivalent to

E{1[v < (V|1 17)]

n 17} = B{1y < Q) (v|1)]

LI/},

a.s. forall o € T, (2.2.5)
where the left-hand side of (2.2.5) is equal to the a-quantile of Fy (.[I}", I7) by definition.
We postulate a parametric model to estimate the a-th quantile of Fy (.|F), where we

assume that Q7 (.|F) is correctly specified by a parametric model m(.,(a)) belonging
to a family of functions M = {m(.,0())|0(.) : 7+ 6(7) € © CRP, for 7 € T C [0,1]}.
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Let B C M be a family of uniformly bounded functions 7 — 6(7) such that 6(r) € © C
RP. Then, under the null hypothesis in (2.2.3), the a-conditional quantile QY (|ItY ) is
correctly specified by a parametric model m(I}, 0y(c)), for some 6y € B, using only the

restricted information set I'', and we redefine our testing problem in (2.2.3) as:

HTY D E[L(Y, <m(I),60(a))) |[I), I7] = o, as. foralla €T, (2.2.6)
Versus

HLY D E[L(Y, <m(I),60(a))) |I), I7] # «, for some a € T, (2.2.7)

with m(I)Y, 0y(c)) as the only element of M that is a possible candidate equivalent for
the true conditional quantile @, (Yt|ItY ), for all a € T. To simplify notation, we rewrite
(2.2.6) as HE™Y : E [Way (60) [T}, I7] = 0 almost surely, for all o € T, where

Way(60) :=1(Y; —m (I),6p(r)) <0) — cv. (2.2.8)

The null hypothesis implies the moment condition £ [\Ifa’t (Op) w (ItY,ItZ” = 0 for all
measurable functions w (I}, I7) such that E [|w (I}, I7)|] < oo and all @ € 7. Fol-
lowing Escanciano and Velasco (2010), we characterize, under a proper measure-theoretic
argument, the null hypothesis (2.2.6) by the infinite set of unconditional moment restric-

tions as follows:
E{V,, (6p)exp (ix'T)I7)} =0, for all x € R" ' and for all & € T, (2.2.9)

where w (I}, I7) = exp (ix'I} I7) was chosen because it has obtained better power
properties than other weighting functions, and ¢ = /—1 is the imaginary root. We base

our test on the sample analog of the moment restriction of (2.2.9)

T
1 .
vp(x, @) == Nia E Wou(6,)exp (ixX'T)I7), (2.2.10)
t=1

where 60,,(«) is a v/T-consistent estimator of (), for all & € T. Our framework applies
for any v/T-consistent estimator of 6, () satisfying some mild conditions (described in the
next section) such as the quantile regression estimator by Koenker and Bassett (1978),
the quantile autoregressive estimator by Koenker and Xiao (2006), and the CAViaR
estimator by Engle and Manganelli (2004). Given our sample {(Y;,Z;) : 1 <t < T},
we define vp(x, ) as the quantile marked-residual process, indexed by x € R~ and

a € T. Our proposed test statistic GCQr is a Cramér-von Mises (CvM) functional norm
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of vr(x, a) defined as

GCQr = /T / |or(x, )| *dFy (x)dFa () (2.2.11)
X
1 m T-—1
:m Z |UT X“Oé] 5
j=1 i=1

where Fy(.) and F,(.) are some integrating measures on X and 7T respectively, X is a
generic compact subset of RT~! containing the origin, and m is the size of a deterministic
grid of equidistributed quantiles, {a;}7.; = Ty, used in the estimation of the parametric
model m (., 0, (). We may also estimate the test statistic of (2.2.11) when m — oo and
the grid {a;}72, is obtained independently from a distribution on 7T, see Escanciano and
Velasco (2010) for more details. We chose the CvM functional norm because unreported
simulations suggested that the Cramér-von Mises type statistics provide better size and
power results than the ones implied by other continuous functional norms such as the
Kolmogorov norm.

Under the assumptions described in the next section, the test statistic GCQr weakly
converges to zero under the null hypothesis (2.2.6), and to a probability limit different
than zero under the alternative (2.2.7). We reject the null hypothesis whenever we observe
“large” values of GC'Qr.

2.2.2 Subsampling Critical Values

The null distribution of test statistic GC'Qr is asymptotically non-pivotal and depends
on the data generating process (DGP), then we implement a subsampling procedure to
calculate critical values for GCQr. Subsampling is a resampling method that provides
an asymptotic inference under general conditions on the DGP, including the time series

case. We can compute a subsampling realization of our test statistic GCQr as follows:

1. Draw a subsample of the variables {(Y,+, Zp:),1 < ¢t < T'} without replacement from
the realized sample {(Y;, Z;),1 <t < T};

2. Using the subsampling data {(Yss, Zpt) .1 <t < T}, compute estimates v, r(x, o) of

vp(x, ) and calculate the correspondent subsampling realization of the test statistic:

m b
GOQyr = mi ZZ |07 (xi, ;)|
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We approximate the CDF of GCQr, Focg,(w) = Pr(GCQr < w), from the distri-

bution of the realizations of v, r(x, ) over the different subsamples of size T — b:

~

b
1 .
Féogp(w) = T—b 1(GCQr <w), w>0. (2.2.12)
1

2

Our proposed test statistic GCQr rejects the null hypothesis (2.2.6) if GCQr >
cp (1 — ) for some significance level o € (0, 1), where the critical value ¢, (1 — «) is the
(1 — a)-th sample quantile of (2.2.12).

2.3 Asymptotic Theory

In this section, we derive the asymptotic distributions of our test statistic GC'Qr under
the null and alternative hypothesis. We consider the process vr (x,a) of (2.2.10) as a
mapping from (2, F, P) taking values in ¢ (X x T), that is the set of all complex-
valued uniformly bounded functions defined with the supremum metric, d., and B, is
its Borel o-algebra. Hereafter “—" denotes the weak convergence on (B,_,ds), and
C is a fixed constant. Let F; = o (I}, I),,...) be the o-field generated up to time ¢,
we define the a-quantile innovation, for each ¢ € Z, as g;(a) == Y; — Qa (ItY ) and the
parametric quantile error as e; (/(«)) :== Y, —m (I},6(a)). In addition, f, denotes the
density function of a conditional distribution function F,. All limits are taken as T" — oo,
where T is the sample size. We maintain the following main assumptions to analyse the

asymptotic behavior of our test statistic:

Assumption 8. {(Y;,7;) : t € Z} is a strictly stationary and ergodic process, with
E[|IT]?] < C. Under HE™Y of (2.2.6), {Vay (6o(a)),Fi} is a martingale difference
sequence for all « € T. The parametric family m(.,0y(c)) is nondecreasing in « a.s.
The family of distributions functions {F,,x € RT™'} has Lebesque densities {f,,x €
RT=1} that are equicontinuous and uniformly bounded away from zero for the quantiles

of interest.
Assumption 9. For each 6, € B,

(a) There exists a vector of functions g,y : © — RTL for g, 1(6,(a)) Fy_1—measurable
for each t € Z satisfying, for all k < oo,

sup T2 ||lm(I),65) — m(I}, 61) — (62 — 61)'g1-1(61)l|5 = 0p(1).
1<t<T, ||61—02||g<kT—1/2
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(b) For all sufficiently small § > 0,

E| sup |1V <m(L,01(e)) = 1(Y; < m(I}, 6a(e)))|| < C9, forallaeT,
[[61—62([5<5

and

E| sup |m(I],01(cn)) —m(I}, 01(a2))| | < C6.

|Oc1—0¢2‘§(5

(¢) Uniformly in o € T, E|gt_1(91(a))‘2 < 00, and uniformly in (z',a) € X x T,

T
th 1(6o(a)) exp(ia I I7) fry (m(I1}, 60))

— Elge-1(00(e)) exp (i I I7) fry (I}, 60))] | = 0p(1).

Assumption 10. Let N.) (6,3, |.||) be the 0-bracketing number of a class of functions
G with respect to a norm|| |. The parametric space © is compact in RT=1. The true
parameter Oy(a) belongs to the interior of © for each o € T, and 0y € B. The class B

satisfies

/0 (og (N (62, B, .[))) 2 d6 < oo

Assumption 11. The estimator 0, satisfies that Pr (0, € B) — 1 as T — oo, and the
following asymptotic expansion under HZ7Y of (2.2.6), uniformly in o € T,

Qn(@) =VT (6a(cr) — ()

1

’ﬂ

T
Zgoc }/tvIt 700 )+Op(1)a
t:l

where E [0, (Y1, 1), 00()] =0, E [€o (Y1, I}, 00()) (Y1, 1Y, 6o(cv))] exists and it is pos-
itive definite, and E [(o(Yy, I}, 00(0)) W 5(00)] = 0 ift # 5. As a process in €°(T), Qn(a)
converges weakly to a Gaussian process Q(-) with zero mean and covariance function

T T

. 1

Kq(a1,a2) = Jim % 0> " [lay (Vi I, 0(e1)) X Loy (Y, IS, O (02))] -
t=1 s=1

Assumption 12. Under the alternative hypothesis H5Z7Y of (2.2.7):

(a) There exists a 6y € B such that ||0,, — 01]|5 = 0,(1);

(b) E{Wa,(0o)exp (i IY I7)} # 0 in a subset with positive Lebesque measure on X x T .
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Assumptions 1-5 are very similar to Assumptions A1-A5 of Escanciano and Velasco
(2010), but we consider most of them in a context of a restricted information set I}
rather than in the full one (I}, I7). Assumptions 1-3 provide conditions for the valid-
ity of a functional central limit theorem for empirical processes in the dependent data
case. Assumption 4 is required to guarantee the asymptotic distribution of our test when
nonlinear quantile regression models are applied, see for example Mukherjee (1999). As-
sumption 5 provides a sufficient condition for the estimator 6, to be consistent under a
fixed alternative hypothesis, see Angrist, Chernozhukov, and Fernandez-Val (2006) for
conditions to satisfy Assumption 5(a); Assumption 5(b) holds if (I}, I7) is bounded.
Theorem 1 below is an application of Theorems 1-3 of Escanciano and Velasco (2010)

and the continuous mapping theorem.
Theorem 1. Under Assumptions 1-5, we have

(i) Under the null hypothesis HZ™Y of (2.2.6),

GCQr % /T /X |G1 (2, a) | dFy(x)dFy(a),

where Gy is a tight mean zero Gaussian process.

(i) Under the alternative hypothesis H57Y of (2.2.7), there exists an € > 0 such that

Tlim Pr(GCQr >¢) =1.

Theorem 1 shows that the asymptotic null distribution of GCQr is a functional of a

zero-mean Gaussian process G;. By Theorem 1, we expect that GCQr is significantly

positive whenever the null hypothesis HZ Y is violated.

2.3.1 Local Alternatives and Subsampling Validity

Now we analyze the asymptotic distribution of GCQr against a sequence of Pitman’s
local alternatives converging to the null hypothesis at rate /7T, where T' denotes the

sample size. Under a sequence of local alternatives ’Hi}iy, we have
HEZY LB [Uay (00) [IY, I7] = 6o/VT, as. foralla e T, (2.3.13)

where ¢, is a function satisfying the following assumption.

Assumption 13. The function §, : RT=!' +— R has the following properties:

(i) E{sup,er [0a(L})[} < o0;
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(ii) There exists a I -measurable random variable h;_, with E [hf_l] < oo such that,
for all t € Z and for all ay, ag € T, |00y (L)) — 0oy (IX)] < hy_1|ay — o, a.s..

Assumption 6 is analogous to Assumption A6 of Escanciano and Velasco (2010), but
we consider just the restricted information set I'. To ensure nontrivial local power of
our proposed test, we need to impose an assumption on the estimator #, under a local

alternative as given in (2.3.13). Then we modify Assumption 4 as follows:

Assumption 4’. Under a local alternative ’HZ*Y in (2.3.13),

1

VT (0,(0) = ofe0)) = ) +

T
Zea Vi, I, 00()) + 0,(1),
t=1

uniformly in o, where £, satisfies the same conditions as in Assumption 4 and n,(a) €

RT=1 for each o € T .

Assumption 4’ can be applied to most quantile regression estimators in the literature,
see for example Mukherjee (1999). Theorem 2 demonstrates that under a local alterna-
tive ’HZ*Y of (2.3.13) the asymptotic distribution of GCQr has an extra shift function
implying consistency against v/T-alternatives. Theorem 2 follows from Theorem 4 of

Escanciano and Velasco (2010) and the continuous mapping theorem.

Theorem 2. Under the local alternatives H%’; in (2.8.13), Assumptions 1-3, 4’ and 5,

we have
GCQr 3 / / Gi(z, ) + Az, )| dFy(x)dFa (),
TJX

where A(x, ) is a non-trivial shift function.

Now we derive the asymptotic validness of the subsampling critical values described
in Section 2.2. Although no mixing conditions are required for the convergence of GCQr,
we need another assumption on the serial dependence of the data generating process to
validate the subsampling theoretically. According to Politis, Romano, and Wolf (1999),
Assumption 7 below is sufficient for the asymptotic validity of the critical values generated

by the subsampling approach.

Assumption 14. {(Y}, Z,.1) 1 t € Z} is a strictly stationary strong mizing process with
a—mizing coefficients satisfying ZrTn:1 a(m) = o(T), with

a(m) = sup sup | Pr(AN B) — Pr(A) Pr(B)|,

TeZ BEFr,AEPr4m

form > 1, where Fr:=oc (I' ,t <T) and Pr:=o(I},t > T).
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The next result allows us to establish the asymptotic distribution of the subsampling
test statistics. Since it is an application of Theorem 2 of Whang (2006) and Theorem 5

of Escanciano and Velasco (2010), we omit the proof.
Theorem 3. Under Assumptions 1-7, b/T — 0 and b — 0o as T — oo, we have:

(i) Under the null hypothesis HZY in (2.2.6),

7lim Pr(GCQr > cyr(a)) = a.

(ii) Under the fized alternative hypothesis H47Y in (2.2.7),

lim Pr (GCQT > Cb7T(Oé)) =1.

T—oo

i) Under the local alternative H47%Y in (2.3.13),
AT

Tlim Pr(GCQr > cpr(a)) > a.

Theorem 3 shows that our test based on the subsampling critical value has asymptoti-
cally correct size, is consistent, and is able to detect alternatives tending to the null at the
parametric rate v/7. Since the asymptotic properties of the subsampling tests depend on
the choice of the subsample b, we follow the approach of Sakov and Bickel (2000) and we
choose a subsample of size b = [kT?/%], for different values of k, where [.] is the integer

part of a number.

2.4 Monte Carlo Experiments

In this section, we perform Monte Carlo simulation experiments with data generating
processes (DGPs) under the null and the alternative hypothesis to evaluate the finite-
sample performance of our proposed test statistic. The data are generated from the

following data-generating processes (DGPs):

DGP1: Y; = 0.5}/;,1 + CZt,1 + €14, and Zt = &9¢, (2414)
DGP2 }/; = 0.5}/;_1 + CZt—l —|— 5175, and Zt = 1 —|— O.8Zt_1 —l— 5275, (2415)
DGP3: Y; = 0.5Y; 1 +cZ} | +eu, and Z; = 1+ 0.8Z;_1 + e, (2.4.16)

where g;; ~ ii.d. N(0,1), for i = 1,2. For all DGPs above, under the null hypothesis
¢ = 0.00, where the coefficient ¢ captures the degree of causality from past values of Z; to
Y;, thus a higher absolute value of ¢ implies a stronger causality. The coefficients of the

DGPs above assure the generated time series are stationary. We consider the empirical
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rejection frequencies for 5% nominal level tests for different sample sizes T', sub-sample
sizes b, conditional quantile parametric models m(.,.), and causality parameters c. We
consider the sample sizes T' = 100, T' = 250 and 7" = 500. To show that our test is robust
to the choice of the sub-sample size, we use three different sub-sample sizes b = [kTQ/ 5]
for each sample T', where [.] is the integer part of a number, for £ = 3,4 and 5. Thus for
k = 3,4 and 5, we have b = 18,25 and 31 for T" = 100, b = 27,36 and 45 for T" = 250
and b = 36,48 and 60 for T = 500. We propose three different parametric quantile
auto-regressive specifications m(+) - quantile AR(1), AR(2) and AR(3) - for modeling the

quantiles of Y;, for all a € T, as follows:

m!' (I}, 0,(a)) = po(a) + pa(@)Yio1 + 0@ (av),
m*(I), 0,(a)) = po(a) + pa(a)Yioy + pa(@)Yis + 0@ (a),
m*(I) . 0,(a)) = po(a) + pa (@) Vi1 + pa(@)Yies + ps(@)Yig + 0@ (av), (2.4.17)

where the parameters 0, () = (po(@), p (@), pa(), ps(a), o) are estimated by maximum
likelihood in an equally spaced grid of 20 quantiles on the interval 7 = [0.10,0.90].
For each of the models, we denote our test statistic as GCQrq for IV = {Y,_1,Y; 4},
for d = 1,2,3. For ¢ = 0.00, there is no causality from past values of Z; to Y; and
the rejection rates denote the empirical sizes. For ¢ # 0.00, there is causality from
lagged values of Z; to Y; and the rejection rates yield the empirical power of our test
statistic. We apply 1,000 Monte Carlo replications in each of the simulations, which
implies a maximal simulation standard error for the empirical sizes and powers of the
test of max, \/m ~ 0.016.

Table 1 shows the rejection frequencies of the GCQr test'. The proposed test has
good power even when the degree of causality c is low. Besides, the GC'Q7 has small size
distortions even when sample size is small. As DGP3 is presented in Jeong et al. (2012),
Table 1 shows that our test not only outperforms their test for 7' = 500, but also that
it obtains reliable results for a smaller sample size of T'= 100. For three different DGPs
and conditional quantile regression models, the power of the GCQr test increases with
the sample size, and these results are also robust to different sub-sample sizes.

We also compare our results with the Sup-Wald test statistic proposed by Koenker and
Machado (1999). To calculate the Sup-Wald test statistic, we include the lagged values
{Zi-1,..., Z;_4} in the linear conditional quantile regression models in (2.4.17). Without
loss of generality, we assume that the quantile regression model is correctly specified

if we include Z;_; in the quantile regression model. Then we consider the following

"'We do not include the results for T' = 250 to save space.
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specifications for the quantiles of Y;:

WL mi(I) 17, 60,(a)) = po(@) + pa(@)Yis + Bi(@) Zi—y + 0:@7 (),
W2t mi(ItY, ItZ, On(@)) = po(@) + pr()Yio1 + Br(a) Zi—1 + pa(@)Yi—o + ath;l(oz),
W3: m3 (1), I7,6,(a)) = pola) + pa @)Yy + Bi(a) Ziy + pa(@)Yi—o + ps(@)Yies + 0,7 (av),

Given a conditional linear model in W1-W3, testing HZ Y of (2.2.6) consists in testing
HYW @ Bi(a) = 0, for all « € T. Table 2 gives the results for the Granger-causality
tests based on the Sup-Wald test. A drawback of the Sup-Wald test is that the critical
values do not have the correct nominal size in small samples, as the empirical sizes are
always smaller than the 5% nominal level of the test. The results also suggest that the
subsampling GC'Qr test considerably outperforms the Sup-Wald procedure in terms of
power. For the DGPs considered, even using a small sub-sample size, b = [37°%/%)], our
test presents powerful and reliable inference. In addition, the subsampling GCQr test is
robust to changes in the sub-sample size. In sum, our proposed test seems to perform

quite well in finite samples.
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Table 2.1. Empirical rejection frequencies for 5% subsampling GCQr 4 test

GCQr,1 GCQry2 GCQry3
b b b
DGP T c k=3 k=4 k=5 k=3 k=4 k=5 k=3 k=4k=5
1
100 0.00 6.8 7.1 6.1 6.4 6.5 6.9 6.1 6.4 6.6
0.01 6.2 6.9 8.6 7.2 6.9 6.4 7.0 6.8 6.4
0.03 6.7 6.7 8.0 7.1 6.0 6.6 7.0 7.2 7.2
0.06 7.4 7.4 7.4 8.9 8.9 7.5 6.9 8.1 8.1
0.12 10.1 10.7 9.9 10.2 9.8 10.4 9.9 9.8 9.5
0.24 24.4 234 21.3 22.7 20.8 1R8.9 21.0 20.3 184
0.50 72.3 681 65.1 72.3 67.0 61.9 71.3 65.9 62.5
500 0.00 5.2 4.9 5.0 5.2 5.0 5.1 5.4 5.3 5.3
0.01 5.1 5.4 5.2 4.8 4.3 4.3 5.8 6.0 5.6
0.03 6.2 5.8 6.4 7.4 7.4 7.4 5.9 5.4 5.2
0.06 10.6 10.6 10.6 10.9 10.8 9.5 11.0 10.7 10.6
0.12 33.1 324 29.6 29.5 279 26.6 33.4 30.7 284
0.24 92.0 &89.8 R&7.1 89.2 K889 R&7.2 90.9 &89.0 &6.5
0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
2
100 0.00 6.2 6.7 7.2 6.0 6.0 5.9 6.2 6.3 6.7
0.01 7.2 7.4 7.6 7.1 7.1 8.2 6.8 6.8 6.1
0.03 6.7 7.0 7.3 7.2 7.5 7.4 6.1 6.1 6.5
0.06 9.1 9.2 8.8 9.4 8.8 9.4 8.4 8.9 9.3
0.12 176 14.8 16.0 15.8 15.2 15.9 15.8 14.7 14.7
0.24 42,5 36.2 35.8 42.1 36.6 35.1 42.6 39.3 36.8
0.50 87.3 &1.6 79.2 84.8 786 735 7.4 K&1.1 77.2
500 0.00 5.1 5.2 5.5 5.2 5.2 5.2 4.7 4.6 5.5
0.01 5.7 5.5 5.7 6.5 5.8 5.8 5.0 4.9 5.1
0.03 8.6 8.4 7.9 7.6 7.3 6.7 8.4 8.1 8.4
0.06 20.8 20.3 20.1 18.5 18.2 16.9 20.2 204 18.7
0.12 67.3 65.3 625 67.3 644 62.7 64.8 62.5 60.9
0.24 99.8 99.8 99.7 99.7 99.6 99.3 99.9 100.0 99.9
0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3
100 0.00 6.3 6.0 6.1 6.1 5.9 7.3 6.4 5.8 6.2
0.01 15.1 14.1 13.8 13.5 12.0 12.0 13.2 132 124
0.03 56.7 52.4 50.2 56.5 53.8 50.0 54.8 49.5 46.0
0.06 91.0 &7.0 82.7 90.2 86.8 8&83.9 90.9 R&7.3 84.7
0.12 98.6 97.7 964 974 96.6 95.3 98.5 98.5 95.2
0.24 98.6 97.8 974 95.1 92.1 90.5 96.2 92.3 91.1
0.50 91.6 &R.9 &7.7 83.4 795 778 83.8 782 175.6
500 0.00 4.9 5.0 5.1 5.3 5.4 5.1 5.3 5.5 5.5
0.01 52.6 50.0 49.6 52.2 50.2 485 50.3 49.0 47.1
0.03 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.06 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.12 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.24 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: We use 1,000 Monte Carlo repetitions based on the DGPs 1-3 of equations (2.4.14)-(2.4.16); b =
[kT?/°]; o € [0.10;0.90).
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Table 2.2. Empirical rejection frequencies for 5% Sup-Wald test

DGP T c w1 W2 w3
1
100 0.00 2.80 2.50 1.30
0.01 2.30 1.90 1.60
0.03 2.20 2.50 3.00
0.06 5.30 3.30 3.30
0.12 8.30 6.10 7.70
0.24 29.40 28.40 30.40
0.50 92.40 90.60 90.40
500 0.00 0.90 1.20 1.00
0.01 0.60 0.60 0.50
0.03 1.80 2.30 1.30
0.06 6.80 6.40 4.70
0.12 31.10 32.70 27.80
0.24 95.40 95.50 95.30
0.50 100.00 100.00 100.00
2
100 0.00 2.30 3.40 3.00
0.01 2.00 2.40 2.70
0.03 2.60 3.60 2.40
0.06 6.50 6.20 6.80
0.12 19.10 16.70 17.60
0.24 64.60 62.30 62.70
0.50 99.10 99.50 99.30
500 0.00 1.50 1.60 1.00
0.01 1.30 1.60 1.00
0.03 4.90 3.80 5.50
0.06 19.00 18.60 18.20
0.12 80.00 80.30 78.70
0.24 100.00 100.00 100.00
0.50 100.00 100.00 100.00
3
100 0.00 2.20 2.30 1.90
0.01 12.80 13.60 12.60
0.03 82.20 79.90 78.50
0.06 99.70 99.90 99.90
0.12 100.00 100.00 100.00
0.24 100.00 100.00 100.00
0.50 100.00 100.00 100.00
500 0.00 1.70 1.20 1.10
0.01 60.60 63.10 58.20
0.03 100.00 100.00 100.00
0.06 100.00 100.00 100.00
0.12 100.00 100.00 100.00
0.24 100.00 100.00 100.00
0.50 100.00 100.00 100.00

Note: W1 — W3 are the parametric quantile regression specifications described above; a €

0.1,0.9].
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2.5 Empirical Application

To illustrate the applicability of our approach, we analyse the causality between gold
prices, oil prices, and USD/GBP exchange rate. The gold and oil market are the main
representatives of the large commodity markets. Gold is a valuable asset and can maintain
its value in turbulent times. There are evidence that the gold and oil markets have a close
interaction. For instance, both gold and crude oil prices entered into a boom time in 2002
due to US dollar depreciation, global inflation, and oil supply manipulation by the OPEC;
and both commodity prices collapsed together in the financial crisis of 2008 (Zhang and
Wei, 2010). Therefore it is important to study how gold and oil prices variate, and
their causal relationship. While standard tests evidence a positive mean causal relation
between oil and gold prices, our main goal is to evaluate such a relation on each quantile
of the distribution.

We apply our GCQr test to check the relationship between the S&P gold prices (per
ounce) and Brent crude oil prices (per barrel). Under our approach, we can discriminate
between causality affecting the median and the tails of the conditional distribution. Then
the empirical analysis should provide a more complete description of the causal relation
between gold and oil prices. We also evaluate the effect of the USD/GBP exchange rate
on gold prices to compare the performance of our parametric test with the nonparametric
approach proposed by Jeong et al. (2012). The data consist of 3,440 daily observations -
from July 2000 to September 2013 and all series were obtained from Datastream.

Figure 1 displays the daily log and log-difference series. It shows that the three return
series display calm as well as volatile periods and also single outlying return observations.
Besides, the graphs of the log series evidence the series are non-stationary and follow a
common pattern. Table 3 presents the summary statistics of the series. The gold and oil
prices are very volatile, and all series are positively skewed and leptokurtic. We apply
the GC'Qr test on the log-difference of the series, as Dickey-Fuller and KPSS unit root

tests show that the three log series are non-stationary.
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Figure 2.1. Log of the series (upper panel) and first-difference of the logs (lower panel).

Table 2.3. Summary statistics:

Gold Prices  Oil Prices  USD/GBP
Mean 466.89 65.31 1.67
Std. Dev. 282.83 33.23 0.18
Median 382.74 62.06 1.61
Skewness 0.64 0.32 0.49
Kurtosis 2.04 1.81 2.05
Minimum 149.39 17.00 1.37
Maximum 1101.48 143.60 2.11

Note: Gold is the S&P GSCI Gold Spot price index; Oil price is the
price adjusted default Crude Oil Dated Brent in US dollars per barrel;
USD/GBP is the exchange rate of US dollars to UK british pounds; The
data covers the period that spans 03 July 2000 to 06 September 2013.

We estimate three quantile auto-regressive QAR models as in (2.4.17) for each depen-
dent variable on the GC'Qr test. Tables 4 and 5 report the subsampling p-values of our
GCQr test. If we take into account all quantiles, the results suggest that variations in
the oil prices Granger-cause variations in the gold prices, and vice-versa, at the 1% sig-
nificance level. However, if we perform a median-regression and consider only o = 0.50,
we do not reject the null hypothesis that variations in the oil prices do not Granger-cause
variations in the gold prices. Therefore, our approach is robust to detect tail causalities
that could possibly be ignored by using a standard conditional regression model analysis.

In addition, changes in the USD/GBP Granger-cause changes in the gold and oil
prices at the 1% significance level, for all quantiles. If we consider only the extreme
tails of the conditional distribution, we cannot always reject at 1% significance level

that variations of USD/GBP Granger-cause variations in gold prices and in oil prices.
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However, for o = 0.10 and o = 0.90, we often do not reject that changes of USD/GBP
do not Granger-cause variations in gold prices and in oil prices at 1% significance level.
These results are consistent with the ones obtained by Jeong et al. (2012), who showed
that USD/GBP exchange rate changes do not cause the gold price change if a < 0.22 or
a > 0.80.

Table 2.4. Causality between AUSD/GBP and AOIil prices to AGold prices - subsampling p-values

T:3,440 (07 GCQT,l GCQT,Q GOQT73

AOQil to AGold [0.10; 0.90] 0.000 0.000 0.000
0.10 0.000 0.000 0.000

0.50 0.294 0.265 0.323

0.90 0.000 0.000 0.000

AUSD/GBP to AGold [0.10;0.90] 0.000 0.000 0.000
0.10 0.011 0.010 0.006

0.50 0.004 0.006 0.007

0.90 0.010 0.007 0.013

Note: For a € [0.10,0.90].

Table 2.5. Causality between AUSD/GBP and AGold prices to AQil prices - subsampling p-values

T=3,440 « GCQr, GCQrp GCQr3

AGold to AOil [0.10;0.90] 0.000 0.000 0.000
0.10 0.000 0.000 0.000

0.50 0.461 0.345 0.384

0.90 0.000 0.000 0.000

AUSD/GBP to AOil [0.10; 0.90] 0.000 0.000 0.000
0.10 0.011 0.010 0.006

0.50 0.005 0.006 0.006

0.90 0.010 0.006 0.012

Note: For a € [0.10,0.90].

2.6 Conclusions

Many important policy and financial analyses are investigated through testing for
Granger-causality between economic time series. However, most of the results in the
literature were obtained in the context of Granger-causality in mean. In this paper,
we present a consistent parametric test of Granger-causality in quantiles. Rather than

focusing on a single part of the conditional distribution, we develop a test that evaluates
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possible causal relations in all conditional quantiles. The proposed test statistic has
correct asymptotic size, is consistent against fixed alternatives and has power against
Pitman deviations from the null hypothesis. In addition, the proposed approach allows
us to evaluate nonlinear causalities, causal relations in conditional quantiles, and provides
a sufficient condition for Granger-causality when all quantiles are considered.

Finite sample experiments suggest that our proposed test has good size and power
properties, and is more powerful than other comparable test in the literature against
almost all alternatives. An empirical application highlights the practical importance of
our setting considering the causal relation between the gold price, the USD/GBP exchange
rate, and the oil price. We illustrate that oil price, USD/GBP, and gold price changes
presented a different causal relationship in the tail and in the center of the distribution.

A possible direction for future work is to extend this method to analyse the effect
of misspecifications in the quantile regression model to Granger-causality. A possi-
bly misspecified quantile regression model may lead to over-rejections of the Granger-

noncausality null hypothesis.
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Chapter 3

Stock Market Equilibrium Error and
Expected Excess Stock Returns

3.1 Introduction

Many studies have investigated the predictability of stock returns in time series data.
Campbell and Shiller (1988), and Fama and French (1988) found that valuation ratios
such as the dividend-price ratio or earnings-price ratio are positively related to subsequent
stock returns and that the implied predictability is large at longer horizons. Fama and
Schwert (1977), Campbell (1987), and Fama and French (1989) found that variables such
as the term premium, the default premium and the yield on corporate bonds forecast sub-
sequent stock returns. Other papers suggested new predictor variables using information
from interest rates (Hodrick, 1992), the consumption-wealth ratio (Lettau and Ludvig-
son, 2001), and the relative valuations of high- and low-beta stocks (Polk, Thompson,
and Vuolteenaho, 2006).

However, many authors cast doubt on the evidence of predictability of stock returns.
Nelson and Kim (1993) and Stambaugh (1999) showed that many predictor variables in
the literature are persistent, which lead to biased coefficients in forecasting models if inno-
vations in the predictor variable are correlated with stock returns. Besides, under these
conditions, the t-test for predictability is biased (Cavanagh, Elliott, and Stock, 1995).
Kilian (1999), Campbell and Yogo (2006) and Jansson and Moreira (2006), among oth-
ers, propose alternative econometric methods for addressing the size bias and performing
valid inference under persistence. Another criticism on the stock returns predictabil-
ity question the poor out-of-sample performance of predictive regressions (Bossaerts and
Hillion, 1999, Goyal and Welch, 2003, Welch and Goyal, 2008). Welch and Goyal (2008)
compare predictive regressions with a benchmark of historical average stock returns and
show that predictive regressions almost never provide superior stock return predictability.

Although Inoue and Kilian (2004) argue that in-sample tests are more powerful and
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not necessarily less reliable than out-of-sample tests, in this paper we provide new evidence
on the out-of-sample predictability of stock returns. We take up the challenge of Welch
and Goyal (2008) and Campbell and Thompson (2008), and we compare the forecasting
performance of some variables with the benchmark of historical average stock returns. We
show that predictive regressions that include variables like the Fama-French factors, the
previous month’s return and the equilibrium error term from the co-integrating relation
with stock market return enhance the out-of-sample predictability of stock returns and
provide profitable market-timing portfolio strategies.

We use the Fama-French 30 industry portfolio returns and obtain the equilibrium error
factor, E'E; ;, as the error term from the co-integration relationship between industry stock
returns and excess stock market returns. We find that the equilibrium error factor (EE; ;)
leads to remarkable out-of-sample forecasting abilities, which are increased if the previous
month’s excess industry stock returns is included in the predictive regression. Our results
show that the omission of the previous month’s excess industry stock returns may lead
to a biased relation between the stock returns and the equilibrium error factor.

We evaluate the economic benefits of stock returns predictability of our forecasting
models, as in Johannes, Polson, and Stroud (2002) and Guo (2006), among others. First,
we take the perspective of an investor who uses predictability from a model of time-
varying expected returns to sequentially build portfolios. Following Breen, Glosten, and
Jagannathan (1989) and Pesaran and Timmermann (1995), we take the case of an investor
who holds stocks of the i-th industry if the predicted excess industry return is positive
and holds bonds if there is no positive expected excess industry return. We also consider
a model of time-varying expected returns and volatility. For each period, an investor
allocates his wealth between the i-th industry stock according to an optimal portfolio
rule, derived from an extension of Stein’s lemma (Johannes et al., 2002). We compare
the generated returns to those implied by a model without predictability and to the excess
stock market return.

We find that strategies based on time-varying expected returns and volatility provide
higher annualized mean returns and Sharpe ratios than historical mean average returns or
the market. For example, an investor with a risk aversion parameter of 5 who adopts the
optimal portfolio strategy obtain an annualized Sharpe Ratio of 45.1%, compared with
37.3% for the no predictability strategy, 41.0% for the predictability strategy without
the equilibrium error factor in the predictive regression. Moreover, the optimal portfolio
strategy generates an annualized certainty equivalence gain of 2.7% relative to the model
of historical average returns.

We provide further tests to demonstrate the economic gains of the stock return pre-
dictability. Following Cumby and Modest (1987) and Breen et al. (1989), we reject the
null hypothesis that our predicted excess returns have no market timing ability. The

Jensen’s « test for supports that our predicted returns cannot be explained neither by
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the CAPM nor by the Fama and French (1993) model. Moreover, these results are are
robust in the presence of transaction costs when the investor pays a fee for switching his
portfolio. Therefore, our results are consistent with Pesaran and Timmermann (1995), Jo-
hannes et al. (2002), and Guo (2006), who find economic gains from time-varying trading
strategies.

Our results differ with those of Bossaerts and Hillion (1999), Goyal and Welch (2003)
and Welch and Goyal (2008), who found that there is no predictability of stock returns. A
possible reason for these contrasts might be that our forecasting variables may discard the
variables used by those authors and the equilibrium error factor is a panel variable that
uses more information than time series variables. However, we include the stochastically
detrended risk-free rate (RREL) suggested by Campbell, Lo, and MacKinlay (1997),
which was used by these authors and provide substantial information about subsequent
stock returns.

We choose our forecasting variables motivated by the common view that expected
stock returns have a mean-reverting component (Campbell and Shiller, 2001, Merton,
1971). This mean-reverting component may be captured by the equilibrium error fac-
tor, which may reflect a short-term reversal, momentum or liquidity premium effect. The
equilibrium error factor appears to be a pervasive variable that captures systematic move-
ments of stock returns. For example, we find that the equilibrium error factor is always
significantly negative in the predictive regression of subsequent stock returns.

We compare the equilibrium error term with aggregate liquidity measures and short-
term reversal measures, which forecast stock returns (Amihud, 2002, Jones, 2002). We
find the equilibrium error and short term reversal measures capture similar forecasting
information of stock returns. Therefore, the equilibrium error is an omitted short term
reversal factor that is negatively related to stock returns. We include the three Fama-
French factors in our model as we need to apply a pricing model to be consistent with
the methodology used to risk-adjust the returns. Over the period Jul.1968-Dec.2007, we
find that although the equilibrium error factor and the previous month’s excess stock
return, R;(—1), have negligible forecasting power in the in-sample regression, they jointly
provide a significant predictor of excess stock returns. We find very similar results using
subsamples. Moreover, their predictive abilities are also statistically significant in the
out-of-sample tests.

Another contribution of this paper is the control for industry effects, as we estimate
the returns using fixed-effects panel data methods. The industry control reduces forecast
biases that are constant across stocks within the same industry (Da, Liu, and Schaumburg,
2014). Besides, the industry control eliminates common trends between expected returns
and discount rate news. Moskowitz and Grinblatt (1999) show that there is a significant
momentum effect in industry components of stock returns. Thus, the industry control

increases the short-term return reversal effect, by removing the industry moment effect.

70



Chapter 3. Stock Market Equilibrium Error and Expected Excess Stock Returns

The remainder of this paper is organized as follows. Section 2 discusses the data
and reports in-sample and out-of-sample forecast results. Section 3 presents the analysis
of trading strategies using the out-of-sample predictability of stock returns from our
forecasting models. In Section 4, we investigate whether F'E;, is related to short-term

return reversals and aggregate stock market liquidity. Section 5 concludes the paper.

3.2 Forecasting Excess Stock Returns

3.2.1 Data

Our data include monthly returns of NYSE, AMEX, and NASDAQ common stocks from
July 1965 to December 2007. We use the data from the 30 industry portfolios of Ken-
neth French’s website, where each NYSE, AMEX, and NASDAQ stock is assigned to an
industry portfolio at the end of June of year ¢ based on its four-digit SIC code at that
time. To calculate the market return at time ¢, Ry, we use the value-weight return of
all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ
at the beginning of month ¢. We use the one-month Treasury Bill rate as the risk-free
rate at time ¢, Rp;, and the cumulative market returns over the six months for month
t — 6 to month £ — 1 as the momentum at time ¢, WM L,, and the difference between the
nominal risk-free rate and its last four-quarter average as the stochastically detrended
risk-free rate at time t, RREL,. We define the excess return for the industry ¢ in month
tas Ry — Rpy.

To compute the expected returns, we use a pricing model. There is a long debate
about pricing models in the literature. While the capital asset pricing model (CAPM)
of Sharpe (1964) and Lintner (1965) suffers from a number of limitations to explain
patterns in average stock returns, called as “asset pricing anomalies”, Fama and French
(1993) suggested that the CAPM should be augmented with two additional factors, HM L
and SM B, and showed that their three-factor (F&F') model explains well stock returns.
HML is the return on a portfolio that is long in stocks with high book-to-market value
ratios and short in stocks with low book-to-market value ratios, and SM B is the return
on a portfolio that is long in small stocks and short in big stocks. The monthly Fama
and French factors, HM L and SM B, were obtained from Kenneth French at Darmouth
College.

We use the Fama-French 30 industry portfolio returns and the excess stock market
return, Ryry — Rpy, to obtain the equilibrium error factor, E'F;;, that is the error term
from the co-integration relationship between industry stock returns and excess stock
market returns. We calculate EE;; in two steps. First, we perform the Augmented
Dickey-Fuller test (with constant and trend) on the cumulative industry stock returns

and on the cumulative excess stock market returns. If we do not reject the null hypothesis
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of unit root at the 1% significance level for the cumulative i-th industry stock returns and
the cumulative excess stock market returns, we proceed to Johansen (1988, 1995) ’s co-
integration test. If we cannot reject at the 5% level that the cumulative i-th industry stock
returns is co-integrated with the cumulative excess stock market returns, we compute
EE;; as the error term from the vector error-correction model (VECM) between those
variables, with 18 lags to assure that there is no serial correlation of the residuals.

For example, given a cumulative i-th industry portfolio returns that is I(1), we define
Vi = (Rit, Ry — Rpy)' to apply the co-integration test of Johansen (1988, 1995) using a

finite-order vector error-correction model (VECM) as follows:

p—1

Ay, = a(By,. + 1) + Z LAy, ;+~+e, (3.2.1)

j=1

where Ay, is the L-operator applied to the vector y,, and o, B, , I';j, vy are 2x1 vectors
of parameters, and p is the lag order of the VECM. Then for each i-th industry return
co-integrated with the excess stock market return, we define the the equilibrium error
factor, EE;;, as the error term ¢; from the VECM in (3.2.1) between the cumulative
industry and the cumulative excess stock market return.

Table 3.1 presents summary statistics of the excess industry stock return at time
t+1, Rity1 — Rpeyr , and of the main forecasting variables used in this paper, for the
full sample and two subsamples. For all series of cumulative industry returns and for
the cumulative excess stock market return, we do not reject the null hypothesis of unit
root at the 1% significance level. We found that there are 15 out of 30 industry portfolio
returns co-integrated with the excess stock market return, at the 5% significance level.
We excluded the remaining 15 industry excess returns series from our analysis as we want
to deal only with the industry returns that are co-integrated excess stock market return.
Regarding the subsamples, we divided the full sample before and after Dec.1987 due to
the stock market crash in 1987. We found 17 and 8 co-integrated industry returns with
the excess stock market return for the first and second subsample, respectively.

Table 3.1 shows that the excess stock returns of the industry ¢, R;;+1 — Rpsy1, are
positively correlated with the previous excess stock market return and with the SM B,
factor. On the other hand, there is a negative correlation between R;;1; — Rp;41 and
the equilibrium error at time ¢, EE;,, reflecting a mean-reverting effect of EE;;. The
correlations among the excess industry returns and the forecasting factors are always
below 0.10 in the full sample. We found some different results in the two subsamples.
First, the previous month’s excess stock market return, Ry — Rpy, and SM B are more
positively correlated with R;;11 — Rp¢y1 in the first subsample (Panel B) than in the

second subsample (Panel C). Besides, while F'E;; is negatively related to R; 11 — Rpt+1
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in Panel C, the two are positively related in the first subsample (Panel B). Finally, the
stochastically detrended risk-free rate, RRE L, is negatively related with R; ;11 — Rpq1
in Panel B, while they are positively related in Panel C.

3.2.2 In-Sample Forecasting

We propose the following panel-data forecasting model for excess industry returns:

Rity1 — Rpyv1 = a; + B'X, + BEEEE;  + BERi(—1) + €14, t=1,...,T, (3.2.2)

where X; = [Ryrt — Rpe, HM Ly, SM By, RRE L], R;(—1) is the previous month’s excess
industry stock return, R;(—1) = R;; — Rpy, o, is the industry effect, and ¢;; is the
resulting residual. We may also include the momentum factor, WM L;, in X;. We apply
a fixed effects model to estimate (3.2.2), since standard errors are biased in the presence
of a firm effect (e.g., Cov(EE; €4, EE; 1 reir—x) # 0) when estimated by OLS, White,
Newey-West (modified for panel data sets), Fama-MacBeth, or Fama-MacBeth corrected
for first-order autocorrelation (Petersen, 2009).

Now we discuss the in-sample forecasting results. Although significant in-sample evi-
dence of predictability does not imply significant out-of-sample predictability, Inoue and
Kilian (2004) show that in-sample tests are more powerful than out-of-sample tests, with
no presumption that in-sample tests of predictability suffer from greater size distortions
than out-of-sample tests.

Table 3.2 reports the in-sample least squares regression results of the fixed effects
model (3.2.2), with heteroscedastic-corrected standard errors in parentheses. Panel A is
the full sample spanning from Jul.1965 to Dec.2007. Row 1 shows that Ry, — Rp; is not
significative for predicting future excess stock returns. This result might be explained by
an omitted variables problem. As suggested by Huang, Liu, Rhee, and Zhang (2010), the
omission of the previous month’s industry excess stock return might lead to a omitted
variable bias in estimating the coefficient on the excess stock market return, Ry — Rpy.
There is a negative first-order correlation in monthly stock returns and it is regarded as
short-term return reversals of individual stocks, first noted by Jegadeesh (1990). Row 2
provides evidence that E'E;; is a significant predictor of industry excess stock returns. It
is likely that E'E;, forecasts industry excess stock returns because there is a correlation
between E'E;; and some widely used forecasting variables. The previous month’s Ry, —
R+ becomes significant if the previous month’s industry excess stock return, R;(—1), is
included in the forecasting regression with a higher adjusted R*(row 3). The coefficient
on HM L, and SM B; also change with the inclusion of R;(—1). These results confirm
that there is an omitted-variable bias in rows 1 and 2. Row 4 shows that RRFEL; has
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significative forecasting power for future industry excess stock returns, which is consistent
with the results of Campbell et al. (1997). However, the inclusion of RREL, has a small
effect on the forecasting power of the other variables (row 5). Finally, the momentum at
t—1, WML, 1, provides negligible information besides the other variables for predicting
industry excess stock returns (rows 6-7).

We report the in-sample forecasting results using two subsamples, Jul.1965-Dec.1987
and Jan.1988-Dec.2007, in Panels B and C, respectively. There are some differences
between the two subsamples. First, while H M L, is not significative in the first subsample,
SMB,; and Ry;; — Rp, are not significative in the second subsample. Besides, E'E;; has
a positive sign in the first subsample and a higher predictive power, though it becomes
insignificant when R;(—1) is included (rows 10, 12 and 14). However, in the second
subsample, E'E;; is negatively related to R; ;11 — Rp41, while R;(—1) is not statistically
significant (rows 17, 19 and 21). Finally, RREL; is positively related to R; ;i1 — Rpt41

in Panel C, while the two are negatively related in Panel B.
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Table 3.1. Summary Statistics

R;ty1 — Rpt41 Ryt — Rpg HM Ly SM By EE; RREL;

A. Jul.1965-Dec.2007

Mean .011 .004 .004 .002 .000 .000
Standard Deviation .061 .044 .029 .033 1.308 .001
Median .011 .008 .004 .001 -.005 .000

Correlation Matrix

Rit+1 — Rpit1 1.000

Ryre — Rpg .035 1.000

HML; -.043 -.415 1.000

SM By .058 .303 -.279 1.000

EE; ; -.030 275 -.139 .078 1.000

RREL -.037 -.166 .082 -.132 -.018 1.000
B. Jul.1965-Dec.1987

Mean .008 .003 .005 .005 .000 .000

Standard Deviation .059 .048 .025 .029 .106 .001

Median .008 .004 .003 .001 -.002 .000

Correlation Matrix

Ri 41— Rpta1 1.000

Ry — Rpg .079 1.000

HML; -.014 -.307 1.000

SM By .087 .380 -.107 1.000

EE; .067 .486 =171 .096 1.000

RREL -.095 -.248 119 -.143 -.109 1.000
C. Jan.1981-Dec.2007

Mean .010 .007 .003 .001 .000 .000

Standard Deviation .060 .040 .030 .033 2.146 .001

Median .012 .012 .000 .000 -.011 .000

Correlation Matrix

Rit11 — Rpit1 1.000

Ryre — Rpy .030 1.000

HML; -.074 -.451 1.000

SM By .005 .201 -.339 1.000

EE; -.080 .354 -.140 115 1.000

RREL .028 017 -.031 -.119 -.001 1.000

This table presents summary statistics for the i-th excess industry return at time ¢t + 1, R; 41 — RF ¢++1; the excess
stock market return at time ¢, Ry — RF,; the return on a portfolio that is long in small stocks and short in big
stocks at time t, SM By; the return on a portfolio that is long in stocks with high book-to-market value ratios and
short in stocks with low book-to-market value ratios at time ¢, H M L¢; the equilibrium error of the i-th excess industry
return with the excess stock market return at time t, FE; ;; and the stochastically detrended risk-free rate at time ¢,
RREL;.
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Table 3.2. In-Sample Forecasting Monthly Excess Stock Returns

Models Ryt — Ry HMLy SM By EE;; R;(—1) RREL; WML R?

A. Jul.1965-Dec.2007

(1) 1.26 -5.28 8.91 .004
(2.02) (1.94) (1.98)

(2) 2.96 -5.48 8.94 -0.20 .005
(2.27) (2.28) (2.07) (0.07)

(3) -5.45 -6.72 8.36 -0.32 9.01 .009
(1.90) (1.94) (1.88) (0.08) (2.14)

(4) 2.41 -5.48 8.49 -0.20 -156.96 .006
(2.13) (2.27) (1.99) (0.07) (54.16)

(5) -5.98 -6.72 7.91 -0.31 9.00 -156.17 .009
(1.84) (1.93) (1.81) (0.08) (2.14) (52.73)

(6) 1.96 -6.28 8.54 -0.20 -165.66 -3.34 .006
(2.18) (2.10) (1.99) (0.07) (53.11) (1.32)

(7) -6.34 -7.46 7.96 -0.31 8.93 -164.41 -3.15 .009
(1.89) (1.77) (1.82) (0.08) (2.09) (51.11) (1.40)

B. Jul.1965-Dec.1987

(8) 7.09 2.50 13.62 010
(1.87) (2.51) (2.07)

(9) 4.15 2.75 14.58 2.58 011
(2.61) (2.51) (2.01) (0.87)

(10) -9.41 1.14 10.92 0.53 15.83 017
(2.48) (2.69) (2.15) (1.15) (3.16)

(11) 2.05 3.62 13.69 2.63 -370.89 016
(2.44) (2.50) (1.92) (0.85) (51.63)

(12) -11.70 2.00 9.97 0.55 16.02 -375.71 023
(2.47) (2.70) (2.12) (1.12) (3.16) (49.05)

(13) 2.04 4.27 14.44 2.58 -361.45 3.47 017
(2.45) (2.51) (1.99) (0.86) (50.76) (1.33)

(14) -11.86 2.73 10.79 0.47 16.20 -364.92 3.98 023
(2.51) (2.67) (2.11) (1.13) (3.17) (48.42) (1.34)

B. Jan.1988-Dec.2007

(15) -0.79 -16.37 -3.82 004
(3.46) (5.04) (3.27)

(16) 4.93 -15.95 -2.99 -0.28 013
(3.17) (5.76) (3.58) (0.09)

(17) 3.18 -16.33 -3.09 -0.31 2.19 012
(4.97) (5.99) (3.48) (0.12) (5.37)

(18) 4.89 -15.59 -2.36 -0.28 190.86 013
(3.17) (5.84) (3.55) (0.09) (69.83)

(19) 3.18 -15.96 -2.46 -0.30 2.13 188.73 012
(4.93) (6.07) (3.44) (0.12) (5.32) (66.99)

(20) 3.73 -16.04 -1.57 -0.28 190.89 -4.68 013
(3.76) (5.50) (3.26) (0.09) (69.82) (4.60)

(21) 2.49 -16.30 -1.68 -0.30 1.60 189.29 -4.52 013
(4.42) (5.78) (3.16) (0.13) (5.69) (67.25) (5.20)

This table reports the least squares regression results of the fixed effects model for the one-month-ahead excess stock
returns, R; ;41 — Rpt41, on some variables. The heteroscedastic-corrected standard errors are reported in parentheses,
and bold denotes significance at the 5% level. Ryr¢ — Rp,; is the excess stock market return. HM Ly is the high-minus-
low factor. SM By is the small-minus-big factor. EL; ¢ is the equilibrium error of the i-th industry excess stock return
with the market excess return. R;(—1) is the i-th industry excess stock return during the previous month. RREL; is
the stochastically detrended risk-free rate. W M Ly is the momentum factor. R? is the adjusted-R2.

* Scaled by 100.

76



Chapter 3. Stock Market Equilibrium Error and Expected Excess Stock Returns

3.2.3 Out-of-Sample Forecast Performance

This section provides the analysis of the out-of-sample forecasting performance of our
proposed models. Bossaerts and Hillion (1999), Goyal and Welch (2003), and Welch
and Goyal (2008) question the in-sample evidence of stock return predictability, as they
showed that even the best prediction models have no out-of-sample forecasting power. On
the other hand, Inoue and Kilian (2004) show that out-of-sample tests are not necessarily
more reliable than in-sample tests. To analyse this point, we compare the out-of-sample
performance of our proposed model with a model that does not include the FE;; and
with a benchmark model of historical average returns. We perform two analyses. First,
we assume that investors know the co-integration parameters of EE;;, estimated using
the full sample. In the second analysis, the co-integration parameters are estimated
recursively using only information available at the time of the forecast. This analysis is
more realistic and has more applicability, since investors can use only the data available

at the time of the forecast to make decisions.

A. Fixed Co-integrating Factors

Table 3.3 evaluates the out-of-sample performance of three models: (i) a model in-
cluding Ryry — Ry, SM By, HM L;, and RRELy; (ii) an augmented model including also
FEEFE;,; and the previous month’s returns of R;; — Rp;, R;(—1); and (iii) a benchmark
model of the historical average excess return estimated through period t, Ri,t — RRt. We
present five forecast performance statistics: (i) the root mean squared error (RMSE),
(i) the mean absolute percentage error (MAPE), (iii) the Theil’s U inequality coefficient
(U), (iv) the out-of-sample R? statistic (R5g), and (v) the correlation between the actual
and the predicted value of the industry excess stock return (p). The out-of-sample R?

statistic (R%g) can be compared with the in-sample R? statistic and is computed as

T+h
R, =1-— ==L
0S

(re — ft)Q
T+h

t=T (re — ft)27

where r, is the industry excess stock return, 7, is the predicted value from a predictive
regression estimated through period 7', 7; is the historical average of the industry excess
stock return estimated through period T, h is the number of out-of-sample periods, and
T is the sample size. In the out-of-sample forecasts, we first run an in-sample regression
using data from Jul.1965 until Jun.1968 and then we forecast the returns R;; — Rp;
of Jul.1968. After computing the forecast, we update the sample from Jul.1965 until
Jul.1968 and we perform a forecast for Aug.1968 and so forth. We estimate the historical
average return in the benchmark model recursively.

Panel A of Table 3.3 shows that the augmented-model including the E'E;, presents
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better forecasting performance than the other two models, except for the MAPE criteria,
for the sample from Jul.1965 to Dec.2007. For example, the augmented-model has the
smallest RMSE and the highest R%¢ between the three models. These results are con-
sistent with the in-sample analysis in Table 3.2, where the inclusion of FE;; and R;(—1)
provides additional forecasting power. Panel B of Table 3.3 displays the out-of-sample
results for Jan.1988-Dec.2007. Consistent with the full sample results, the augmented-
model including the EE;; has better forecasting abilities for subsequent excess industry

stock returns than the other two models in almost all criteria.

Table 3.3. Out-of-Sample Forecasting - Fixed Co-integrating Factors

F&F: + RREL; + R;(—1) F&Fy + RREL; + Ri(—1) + EE; ; Historical Average
(1) ) 3)

A. Jul.1965-Dec.2007

RMSE 0423 .0390 0619

MAPE 2.7491 2.5403 1.6959
U 6751 6236 19892

RZ 5342 6026 -

P 7304 7828 -.0341

B. Jan.1988-Dec.2007

RMSE 0476 0415 .0610

MAPE 3.0832 2.7882 1.5407
U 7707 6721 9878

R .3913 5370 -

p 6242 7357 -.0255

F&F; denotes the three Fama-French factors: the excess stock market return, Ry — Rp ¢, the high-minus-
low factor, HM L¢, and the small-minus-big factor, SM B;. EE; ; is the equilibrium error of the i-th industry
excess stock return with the excess stock market return. R;(—1) is the i-th previous month’s industry excess
stock return. RREL; is the stochastically detrended risk-free rate. Historical Average denotes a benchmark
model of the historical average excess return estimated through period ¢, Ri,t - Rp,t.

Figure 3.1 plots the recursive MSE ratio of the augmented model including EE;;
(column 2 of Table 3.3) to the benchmark model of historical average returns (column
3 of Table 3.3) and to a model including Ry ; — Rpy, SM By, HML;, and RREL;, but
excluding the equilibrium error EE;; (column 1 of Table 3.3). The horizontal line is the
initial forecasting date; for instance, the MSE ratio of Jul.1972 corresponds to the forecast
period Jul.1972-Dec.2007. We use at least 36 observations for the in-sample estimation;
thus, we use the range Jul.1968-Jul.2004 for the starting forecast date. Figure 3.1 shows
that the augmented model including E'E;; has a better out-of-sample forecasting power
than the benchmark model of historical average returns, as the dashed line is always
smaller than one. In comparison with a model including Ry — Ry, SM B, HM Ly,
and RREL,, the equilibrium error adds substantial forecasting power, with a MSE ratio
always smaller than 1. These results are consistent with the MSE-F test in Table 3.5. In
sum, we find evidence that the augmented model with the equilibrium error beats two

competing models for predicting subsequent excess industry stock returns.

78



Chapter 3. Stock Market Equilibrium Error and Expected Excess Stock Returns

1.0

0.8 -
0.6 |
0.4
0.2

00 T T T T T T T T
Jul-68  Jul-72  Jul-76  Jul-80  Jul-84  Jul-88  Jul-92  Jul-96  Jul-00  Jul-04

Figure 3.1. MSE ratio of augmented EFE; ; to F&F; model (solid line) and to historical average returns (dashed line).

B. Recursive Co-integrating Factors

Table 3.4 evaluates the out-of-sample performance of our proposed models using re-
cursively estimated EE;;. The analysis is the same in the case of fixed co-integrating
factors, except that the equilibrium error factor, F'E;;, is estimated recursively using
only information available at the time of the forecast. For instance, we first calculate
the equilibrium error factor from the co-integration relationship between industry stock
returns and excess stock market returns using data from Jul.1965 until Jun.1968. Then
we run an in-sample regression using data from Jul.1965 until Jun.1968 and we make a
forecast of the excess returns R;; — Ry, for Jul.1968. After computing the forecast, we
update the sample from Jul.1965 until Jul.1968, recalculate E'E;; and make a forecast for
Aug.1968 and so forth. The results are similar to those in Table 3.3. The predictability
of the augmented model with EE;; is slightly weaker in Table 3.4 than in Table 3.3,
though the augmented model with E'E;; still remains with the best overall forecasting
performance among the three models.

For the period from Jul.1965 to Dec.2007, the augmented model with EE;; has the
smallest RMSE and the highest Ry among the three models. Those results are robust
in the subsample from Jan.1988 to Dec.2007, where the augmented model with EE; ; still
provides better forecasting abilities than the other two models.

Figure 3.2 plots the recursive MSE ratio of the augmented model including E'E; ; (col.
2 of Table 3.4) to the benchmark model of historical average returns (col. 3 of Table 3.4)
and to a model including Ry — Rp¢, SM By, HM L,, and RREL;, but excluding the equi-
librium error E'E;; (col. 1 of Table 3.4). The horizontal line is the initial forecasting date.
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The results are similar to those in Figure 3.1. The augmented model including FE;; has
better out-of-sample forecasting abilities than the benchmark model of historical average
returns, as the dashed line is always smaller than one. Besides, the augmented model in-
cluding FE;; adds substantial information to the model excluding E'E;;, since the MSE
ratio between them is always smaller than 1 (solid line of Figure 3.2). Overall, these
results indicate the augmented model with recursively estimated E'E;; has substantial

forecasting abilities for subsequent excess industry returns.

Table 3.4. Out-of-Sample Forecasting - Recursive Co-integrating Factors

F&F; + RREL; + R;i(—1) F&F; + RREL; + R;(—1) + EE; 4 Historical Average
(1) (2) (3)

A. Jul.1965-Dec.2007

RMSE 0425 .0398 0621
MAPE 2.7525 2.6271 1.7428
U 6822 6387 9954
2
R 5304 5883 -
p 7287 7789 -.0595
B. Jan.1988-Dec.2007
RMSE 0473 .0423 .0590
MAPE 2.9127 2.4763 1.8912
U 7963 7127 19925
R .3563 4844 -
p 6010 7077 -.0368

F&F; denotes the three Fama-French factors: the excess stock market return, Ry ¢+ — Rp ¢, the high-minus-
low factor, HM L¢, and the small-minus-big factor, SM B;. EE;; is the equilibrium error of the i-th industry
excess stock return with the excess stock market return that is recursively estimated using only data available
at the time of forecast. RREL; is the stochastically detrended risk-free rate. Historical Average denotes a
benchmark model of the historical average excess return estimated through period ¢, Ri,t — RF,:-

C. Testing Out-of-Sample Forecasting Performance

We present three test-statistics to evaluate the out-of-sample forecasting power of our
proposed models. Following Guo and Savickas (2006), we use the mean squared fore-
casting error (MSE) ratio, the encompassing test (ENC-NEW) of Clark and McCracken
(2001), and the equal forecast accuracy test (MSE-F) proposed by McCracken (1999).
The encompassing test (ENC-NEW) tests the null hypothesis that the benchmark model
all of the information about the next month’s industry excess stock return against the
alternative that the augmented model adds information. The equal forecast accuracy
test (MSE-F) tests the null hypothesis that the benchmark model has a MSE less than
or equal to that of the augmented model against the alternative hypothesis that the aug-
mented model has smaller MSE. The MSE-F and ENC-NEW have the best power and
size properties among the many possible tests of out-of-sample forecasting performance
in the literature (Clark and McCracken, 2001).
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Figure 3.2. MSE ratio of augmented EE;; to F&F; model (solid line) and to historical average returns (dashed line) -
recursive co-integrating FFE; ;.

Table 3.5 presents the out-of-sample forecast test statistics. To compare with the
asymptotic critical values of the test statistic, we need to use a large in-sample period of
estimation. Thus, we estimate the in-sample regression using one-third of the observations
and make the out-of-sample forecasts recursively for the rest of the sample. We use the
observations from Jul.1965 to Aug.1979 to forecast the out-of-sample industry excess
returns of Sep.1979 and update the sample recursively to make the forecast for the next
month. The column MSE,/MSEp reports the MSE ratio of the proposed model to that
of the benchmark model. For the ENC-NEW and MSE-F tests, Asy. CV denote the 95%
critical values derived by Clark and McCracken (2001) and McCracken (1999), for a ratio
of out-of-sample to in-sample periods of 2.

In Panel A, we estimate FE;; using the full sample. The augmented model has a
smaller MSE than the benchmark model, as the MSE ratio is smaller than one (rows
1 and 2, Table 3.5). Consistent with the MSE ratio, the MSE-F test rejects the null
hypothesis that the benchmark model has a MSE smaller than the augmented model at
the 5% of significance. Besides, the ENC-NEW rejects the null hypothesis that EFE;,t
contains no additional information about the predictability of future industry excess stock
returns at the 5% of significance. We also add the previous month’s industry excess stock
returns, R;(—1), to check if the equilibrium error has significative forecasting power. Row
2 of table 3.5 shows that the augmented model with EE;; has smaller MSE than the
benchmark model and significative additional information for forecasting future industry
excess stock returns at the 5% significance level, as indicated by the MSE-F and ENC-
NEW tests.
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In Panel B, F'E;; is estimated recursively using only the information available at the
time of the forecast. The augmented model still provides a smaller MSE ratio than the
benchmark model. We find evidence that the augmented model with E'E,,; beats the

other two models at the 5% significance level.

Table 3.5. Out-of-Sample Monthly Forecasts of Excess Stock Market Returns: Performance Tests

ENC-NEW MSE-F

Models MSEs/MSEp Statistic Asy. CV Statistic Asy. CV

A.Fixed Co-Integrating Factors

(1) Bench. + R;(—1) + EE; 4 0.81 89.86 3.56 77.33 1.61
vs. Bench.
(2) Bench. + R;(—1) + EE; 0.81 90.34 2.09 77.94 1.52

vs. Bench. + R;(—1)

B.Recursive Co-Integrating Factors

(1) Bench. + R;(—1) + EE; ¢ 0.88 120.20 2.71 38.64 1.91
vs. Bench.
(2) Bench. + R;(—1) + EE; ; 0.92 123.72 1.58 67.09 1.55

vs. Bench. + R;(—1)

This table presents the mean-squared forecasting error ratio of the augmented model to the benchmark model
(MSE4/MSER), the encompassing test ENC-NEW proposed by Clark and McCracken (2001), and the MSE-
F test derived by McCracken (1999). We assume that the benchmark model includes the three Fama-French
factors - Rys ¢y — Rpy¢, HM L, and SMB; - and the stochastically detrended risk-free rate, RREL¢, in rows
1 and 3, and also the i-th industry excess stock return during the previous month, R;(—1), in rows 2 and 4.
We augment the benchmark model with R;(—1) + EE;; in rows 1 and 3, and with EE;; in rows 2 and 4.
The ENC-NEW tests if the benchmark model encompasses all the relevant information about the next month’s
excess stock market return, against the alternative hypothesis that the augmented model includes additional
relevant information. MSE-F tests if the benchmark model has a smaller mean-squared forecasting error than
the augmented model. The in-sample period estimation spans from Jul.1965 through Aug.1979 and then the
forecasting errors are generated forecasts recursively for excess stock returns over the period Sep.1979-Dec.2007.
The variable EE; ; is estimated using the full sample in panel A and recursively estimated using only data
available at the time of forecast in panel B. Columns 4 and 6 display the asymptotic 95% critical values provided
by McCracken (1999) and Clark and McCracken (2001).

3.3 Economic Value of Forecasting

According to Leitch and Tanner (1991), traditional measures of forecasting perfor-
mance, such as the RMSE, may not be closely related to a forecast’s profit. Using profit
measures, they find only very weak relationships between such summary error statistics
and forecast value. If these results are robust, then least-squares regression analysis may
not be appropriate for many studies of economic behavior. We analyse in this section
if the observed forecasting power can be applied to generate higher returns with lower

volatility than the returns implied by a buy-and-hold strategy.
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3.3.1 Switching Portfolio

To check if our recursive out-of-sample forecasts could have been used to generate a
higher mean return than that earned from adopting a buy-and-hold strategy, we follow the
approach of Pesaran and Timmermann (1995) and use our forecasts in a simple switching
strategy, which has been widely used in the literature. According to this strategy, an
investor holds stocks in periods where the business cycle suggest that stock returns are
going to outperform bond returns (i.e., the predicted excess industry stock return is
positive), and otherwise holds bonds. We do not include the short-selling of assets and
we do not assume that an investor can use leverage when selecting his portfolio.

Table 3.6 reports the mean, the standard deviation (S.D.), the Sharpe ratio, and the
Adjusted Sharpe ratio for the annualized returns on portfolios based on three forecast
models analyzed in the previous sections. As in Graham and Harvey (1997), Johannes
et al. (2002), and Guo (2006), we adjust the return on the managed portfolio to have
the same standard deviation as the stock market return. The realized adjusted return
is used to calculate the Adjusted Sharpe ratio in a regular way. The Adjusted Sharpe
ratio helps to weaken the effect of leverage on the portfolio selection without affecting
the Sharpe ratio calculation. For example, if the portfolio had a 10% mean return and
11% volatility, and the market volatility is 15%, we multiply the mean return by the
ratio of the market volatility to portfolio volatility, (0.15/0.11), which will give a risk-
adjusted return of 13.63%. Then we calculate the Adjusted Sharpe ratio based on this
risk-adjusted return.

Table 3.6 shows that the managed portfolio based on an augmented model including
EE;; has annualized return of higher mean and Sharpe ratio than those implied by the
two competing models, over the period Jul.1965-Dec.2007. For instance, the switching
portfolio based on augmented forecast model of column 2 provides an annual mean return
of 31.5% with a volatility of 70.0% compared with 25.6% and 68.6% respectively, for a
switching strategy based on a benchmark of historical average returns. Besides, the
Sharpe ratio of the augmented model is 120% higher than the benchmark portfolio. Thus,
the equilibrium error F'F;; is not only statistically significant in terms of out-of-sample
forecasting ability, but also economically important. The additional information provided
by the equilibrium error is used effectively in the switching portfolio.

Our results are robust in the three subsample periods presented in Panels B-D of
Table 3.6. For all subsample periods, the managed portfolio based on an augmented
model including F'E;; has the highest annualized mean return and Sharpe ratio among
the three models. Consistent with Pesaran and Timmermann (1995) and Guo (2006),
the performance of the managed portfolio relative to the benchmark varies over time.
For example, the managed portfolio has an Adjusted Sharpe ratio of 38.1% for the pe-
riod Jul.1965-Dec.1979, compared with 31.1% for the benchmark portfolio. However, the
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managed portfolio generates an Adjusted Sharpe ratio of 39.2% (48.2%) for the period
Jan.1980-Dec.1994 (Jan.1995-Dec.2007), compared with 35.5% (30.2% ) for the bench-

mark portfolio

Table 3.6. Performance Measures for the Switching Portfolio - No Transaction Costs

F&F; + RREL: + R;(-1) F&F; + RRELy + EE; ¢+ + R;(—1) Historical Average
1) (2) (3)

A. Jul.1965-Dec.2007

Mean Return .2835 .3155 .2562
S.D. .6917 .6999 .6863
Sharpe Ratio .4099 4508 .3733
Adj. Sharpe Ratio .3498 .3809 .3109

B. Jul.1965-Dec.1979

Mean Return .2486 2631 .2498
S.D. .8600 .8545 .8582
Sharpe Ratio .2891 .3078 .2910
Adj. Sharpe Ratio .2404 .2533 .2422

C. Jan.1980-Dec.1994

Mean Return .2819 .2957 .2695
S.D. .6162 .6189 .6242
Sharpe Ratio 4574 4778 14318
Adj. Sharpe Ratio .3817 .3922 .3552

D. Jan.1995-Dec.2007

Mean Return .2492 .3478 1975
S.D. .5300 .6139 .5265
Sharpe Ratio 4702 .5666 .3752
Adj. Sharpe Ratio .4003 .4820 .3018

This table display returns on switching portfolios, where an investor holds stocks if the predicted industry excess stock
return is positive and holds bonds otherwise. All the statistics are for the annualized returns. As in Graham and Harvey
(1997) and Guo (2006), we adjust the return on the managed portfolio to have the same standard deviation as the
stock market return to calculate the Adjusted Sharpe Ratio. The variable EE; ; is recursively estimated using only data
available at the time of forecast.

Allowing for “high” transaction costs of 1.0 of a percent on switching from bonds to
stocks and 0.1 of a percent on switching from stocks to bonds, Table 3.7 presents the
effect of transaction costs on the switching portfolio. Investors have to pay 1% of the
return on stocks if they switch from bonds to stocks and 0.1% of the return on bonds
if they switch from stocks to bonds. As a 25-basis-point fee is in the upper range of
transaction costs for the market index (Balduzzi and Lynch, 1999), we assure that we are
imposing a high fee of 100-basis-point fee. The effects of imposing transaction costs on
the switching portfolios is negligible on the performance of the trading strategies (Table
3.7). The strategy based on the augmented model with E'E;; still has higher mean and

lower volatility than other strategies.
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Table 3.7. Performance Measures for the Switching Portfolio - High Transaction Costs

F&F; + RREL; + Ri(—1)  F&F; + RREL; + EE;; + R;(—1)  Historical Average
(1 (2 3)

A. Jul.1965-Dec.2007

Mean Return .2819 .3139 .2562
S.D. .6879 .6962 .6863
Sharpe Ratio .4098 .4509 .3733
Adj. Sharpe Ratio .3497 3811 .3109

B. Jul.1965-Dec.1979

Mean Return .2465 2612 .2498
S.D. .8535 .8487 .8582
Sharpe Ratio .2888 3077 .2910
Adj. Sharpe Ratio .2401 .2533 .2422

C. Jan.1980-Dec.1994

Mean Return .2802 .2942 .2695
S.D. .6126 6157 .6242
Sharpe Ratio 4573 4778 14318
Adj. Sharpe Ratio .3813 .3920 .3552

D. Jan.1995-Dec.2007

Mean Return .2478 .3461 1975
S.D. .5280 6111 .5265
Sharpe Ratio .4693 .5663 3752
Adj. Sharpe Ratio .3995 4819 .3018

This table display returns on switching portfolios, where an investor holds stocks if the predicted industry excess stock
return is positive and holds bonds otherwise. All the statistics are for the annualized returns. As in Graham and Harvey
(1997) and Guo (2006), we adjust the return on the managed portfolio to have the same standard deviation as the
stock market return to calculate the Adjusted Sharpe Ratio. The variable EE; ; is recursively estimated using only data
available at the time of forecast. We assume that investors pay 1.0% on switching from bonds to stocks and 0.1% on
switching from stocks to bonds.

3.3.2 Optimal Portfolio Weights

Now we allocate wealth between stocks and bonds using the optimal portfolio weight
approach, taken in Kandel and Stambaugh (1996), Stambaugh (1999), Péstor and Stam-
baugh (2000), Pastor (2000), and Johannes et al. (2002). The investor solves a single-

period optimal portfolio problem:

HBXE [U(Wii)|RY] = mw%x/U(WtH)Pr(Rt+1|Rt)th+1,

where R! is a vector of observed compounded returns up to time t, W, = W, [we(Ri+ +
(1—w;) Rp,] is the next period’s wealth, Pr(R;1|R") is the predictive distribution of future
returns, and the maximization is subject to the usual budget constraint. We assume that
the utility function, U (W), is strictly increasing, twice differentiable and concave in

the portfolio weight. Solving for the single-period optimal portfolio gives, we have
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o 1 E(R; 41 — Rppi1| R
t— )
v E [0} |R]

where v denotes the investor’s relative risk aversion, E [R; ;11 — Rpy1|R'] is the forecast
industry excess stock return, and E [ait +1|Rt] is the forecast conditional variance of
Rii11 — Rpy+1. We focus on the single-period portfolio problem. The difference between
single period and multi-period problems is hedging demands. Ang and Bekaert (2002),
Chacko and Viceira (2005), and Pastor and Stambaugh (2000), among others, found that
hedging demands are typically extremely small components of the optimal allocation
and are important only for long-horizon investors such as the infinitely lived investors in
Campbell, Chan, and Viceira (2003).

We forecast the conditional variance at t + 1, E [07,,4|R'], from an AR(2) model of
Uﬁt, for each i-th excess industry stock return. For simplicity, we do not allow for the
short-selling of assets or borrowing from bond markets, i.e. w; € [0, 1], and we do not
take into account the estimation uncertainty. The optimal portfolio weight justifies a
mean-variance rule for investing in stocks, where the risk-aversion parameter v takes into
account returns that are generated by a fat-tailed stochastic volatility distribution. While
the switching strategy just gives information on the signs of predicted excess industry
stock returns, this investment strategy also includes information on the magnitude of the
forecast excess returns normalized by its forecast conditional variance.

Table 3.8 provides the summary statistics for the annualized returns from an optimal
portfolio strategy weight based on three different forecasting models. We assume that v =
5 in the calculation of the optimal weights, but the results are robust to different choices
of 7. The portfolio based on the augmented model with E'E;; has higher annualized
mean return and Sharpe ratios than those reported in Table 3.6 for a switching strategy.
For example, over the period Jul.1965-Dec.2007, the Adjusted Sharpe ratio is 69.6% if
an investor allocates portfolio weight optimally, compared with 38.9% for the switching
strategy. However, the results are similar to those presented in Table 3.6. Optimal
portfolio weighting based on augmented models using E'F;; provides return of higher
annualized mean and Sharpe ratios than portfolio based on the other two models, over
the full sample and the three subsample periods. Besides, the relative performance of

optimal portfolio weighting strategies varies over time.
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Table 3.8. Choosing Optimal Portfolio Weights with No Transaction Costs

F&F; + RREL; + Ri(—1)  F&F; + RREL; + EE;; + R;(—1)  Historical Average
(1 (2 3)

A. Jul.1965-Dec.2007

Mean Return .3960 .5290 1982
S.D. .5667 .6434 5137
Sharpe Ratio .6987 .8221 .3858
Adj. Sharpe Ratio .6028 .6960 .3203

B. Jul.1965-Dec.1979

Mean Return .4482 5116 .1085
S.D. 7174 7871 .4533
Sharpe Ratio .6247 .6500 .2395
Adj. Sharpe Ratio .5060 5171 .1955

C. Jan.1980-Dec.1994

Mean Return .3902 .5001 .2585
S.D. .5060 .5571 .5879
Sharpe Ratio 7711 8977 .4397
Adj. Sharpe Ratio 7335 .8440 .3585

D. Jan.1995-Dec.2007

Mean Return .2999 .5268 .1856
S.D. .3881 .5630 .5062
Sharpe Ratio T727 9357 .3666
Adj. Sharpe Ratio 7027 .8170 .2930

This table presents the returns for an optimal weighting strategy, where an investor allocates an optimal weight of the
total wealth in stocks:

_1E [Rit+1 — Rp,t4+1|RY)
T EB[o?,,IRY

Wi

where R? is a vector of observed compounded returns up to time ¢, + denotes the investor’s relative risk aversion,
E [Ri,t+1 —Rp 41 \Rt] is the forecast industry excess stock return, and E [a’?t 11 |Rt} is the forecast conditional variance
of Rit+1 — Rp41 based on a AR(2) model of o2

7,1
recursively estimated using only data available at the time of forecast. We assume that v = 5, w; € [0, 1], and we ignore

the estimation uncertainty.

for each i-th excess industry stock return. The variable EE; ; is

3.3.3 Market Timing Ability Test

In this section, we check the forecasting power of our model by testing whether the
expected excess industry stock returns during forecast up markets is different from that
during forecast down markets. This was first proposed by Cumby and Modest (1987)
and it is called the market timing ability test. It consists on testing the null hypothesis

a; = 0 in the regression
Riy1 — Rrpgq1 = ag + ardy + v,

where R; ;11 — Rpsy1 are the observed excess industry stock returns, and I; is one if the

forecasting model predicts R;;+1 — Rr+1 to be positive and is equal zero otherwise. The
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Table 3.9. Choosing Optimal Portfolio Weights with High Transaction Costs

F&F; + RREL; + Ri(—1)  F&F; + RREL; + EE;; + R;(—1)  Historical Average
(1 (2 3)

A. Jul.1965-Dec.2007

Mean Return .3937 5251 1982
S.D. .5605 .6360 5137
Sharpe Ratio .7025 .8256 .3858
Adj. Sharpe Ratio .6065 .6993 .3203

B. Jul.1965-Dec.1979

Mean Return 4446 5077 .1085
S.D. .7064 7755 .4533
Sharpe Ratio .6293 .6546 .2395
Adj. Sharpe Ratio .5103 .5215 .1955

C. Jan.1980-Dec.1994

Mean Return .3878 4971 .2585
S.D. .5005 .5510 .5879
Sharpe Ratio 7748 .9022 .4397
Adj. Sharpe Ratio 7374 .8484 .3585

D. Jan.1995-Dec.2007

Mean Return .2987 .5242 .1856
S.D. .3865 .5600 .5062
Sharpe Ratio 7729 9361 .3666
Adj. Sharpe Ratio .7032 8177 .2930

This table presents the returns for an optimal weighting strategy, with the same specifications as in Table 3.8. We assume
that investors pay 1.0% on switching from bonds to stocks and 0.1% on switching from stocks to bonds.

market timing ability analyses only the first moment, but investors may care about other
moments of the return distribution. Following Breen et al. (1989), we also investigate the
forecast ability of the variance of the excess industry stock market returns during forecast

up and down markets. Thus, we test the null b = 0 in the regression
Ut2+1 = bo + o1y + Mg,

where v, are the squared residuals of the first regression. Table 3.10 reports the results
of the market timing ability test for the first and second moment based on three different
forecasting models. We reject the null hypothesis of no market timing ability for all the
three models (Panel A) at the 5% significance level. Besides, we find evidence that the
variance of the excess industry stock returns are slightly positive related to the market

index based on the augmented model including EE;; (col.2, Panel B).
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Table 3.10. Market Timing Ability Test: Jul.1968-Dec.2007

F&Fy + RREL; + Ri(—1) F&F; + RRELy + R;(—1) + EE; ; Historical Average
(1) (2) ®3)

A R;t11— Rpiy1 =ao+ a1l +viq1

ao -0.034 -0.035 .000
(16.37) (19.37) (1.04)
@ 0.058 0.058 .016
(20.30) (23.93) (3.15)

B. vt2+1 =bo +b1lt + ne41

bo .003 0.003 0.004
(45.41) (19.45) (7.17)

b1 .000 0.001 -.003
(1.5) (4.30) (1.31)

This table presents a panel version of the market timing ability test developed by Cumby and Modest (1987) on the
excess stock returns in Panel A and on the variance of the excess stock return in Panel B as suggested by Breen et al.
(1989). The regression coeflicients were estimated by a fixed effects method, where dependent variable is the excess
stock market return of the i-th industry at ¢t +1, R; ;11 — Rp 41, and the regressor is an indicator function, I¢, that is
equal to one if R; ;11 — Rp 141 is expected to be positive at t and zero otherwise. F'&F; denotes the three Fama-French
factors: the excess stock market return, Rys ¢ — Rp ¢, the high-minus-low factor, HM L, and the small-minus-big factor,
SMBy. EE;; is the equilibrium error of the i-th industry excess stock return with the market excess return. R;(—1) is
the i-th industry excess stock return during the previous month. RRFEL: is the stochastically detrended risk-free rate.
The heteroscedastic-corrected t-statistics are reported in parentheses, and bold denotes significance at the 5% level.

3.3.4 Additional Tests

In this section, we follow the approach of Fleming, Kirby, and Ostdiek (2001) and
measure the volatility timing of our forecasting strategies. For each one of the forecasting-
based strategy, we compare its performance with an unconditional mean-variance efficient
static strategy that would have the same target expected return and volatility. If the
volatility timing implied by our strategies has no value, then their performance should be
no different from an unconditional mean-variance efficient static strategy. To make this
comparison, we use a performance measure that evaluates the trade-off between risk and
return. Assuming a fixed parameter of the investor’s relative risk aversion, ~, we use an

utility function

T-1
2l 2
U(') = WO ZRi,t+1 - —Ri,t—i-l s (333)
— 2(1+7)

where W is the investor’s initial wealth. We calculate the certainty equivalent gain A
by equating the utility for two different portfolios. Then A is the maximum performance
fee that an investor would be willing to pay to switch from a strategy to another. In our
approach, we compare each forecast-based strategy that pays a rate of R;;;1 with the

market portfolio that pays Ry .+1. Thus, to estimate the certainty equivalent A, we find
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the value of A that satisfies

h

T-1
8 2 gl 2
i1 — A) = = (Rigp — A =Y S - . 3.4
(R17t+1 ) 2(1 + ’Y) (R'Lat+1 ) — RM,t+1 2(1 + ,y) RM7t+1 (3 3 )

-
Il
o

Table 3.11 illustrates the certainty equivalent gain from holding a portfolio based on
each of the three forecasting strategies. The strategy based on the augmented model
including the EFE;; always provides a higher certainty equivalent than the one obtained
using the other forecast models, and it gives a value of 0.7%—2.7% that is not significantly

affected by transaction costs.

Table 3.11. Certainty Equivalence Gain (A): Jul.1968-Dec.2007

F&F: + RREL: + R;i(—1) F&F; + RREL: + R;(—1) + EE; 4 Historical Average
1) (2) (3)

1. Switching Strategies

.0055 .0073 .0037

2. Switching Strategies with Transaction Costs

.0055 .0073 .0037

3. Optimal Portfolio Weighting Strategy

.0199 .0270 .0033

4. Optimal Portfolio Weighting Strategy with Transaction Costs

.0198 .0268 .0033

This table presents the average annualized certainty equivalent (A) that an investor with quadratic utility
defined in equation (3.3.3) and constant relative risk aversion of v = 5 would be willing to pay to switch
from the static portfolios paying a market portfolio, Rz ¢41, to the strategies based on the three forecasting
models, as in equation (3.3.4). The variable EE; ; is recursively estimated using only data available at the
time of forecast.

We also check if the returns generated by a forecasting strategy can be explained by

the CAPM and the Fama-French model. We run the following regressions:

Rpiy1 — Rrip1 = a@APM 5MKTMKTt+1 + Upt1, (3.3.5)

Rpiy1 — Rpgy1 = o 4 BMETM KTy 4 BMPSM By + B™MPHM Ly + v,
(3.3.6)
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where Rp;y1 — Rpy+1 are the portfolio excess returns and M KTy = Ryge1 — Rpgq-
This is called the Jensen’s « test for the portfolio returns. Under the null hypothesis,
the constant term of (3.3.5) or (3.3.6) is not significantly different from zero, implying
that each of these models are correct for explaining the portfolio excess returns. Table
3.12 shows that both CAPM and Fama-French model cannot explained the returns based
on the three forecasting strategies at the 5% significance level. Besides, the results are

robust to the presence of transaction costs (Panels 3 and 4).
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Table 3.12. Jensen’s a Test for Portfolio Returns: Jul.1968-Dec.2007

F&F: + RREL: + R;(—1) F&F; + RREL; + Ri(—1) + EE; 4 Historical Average
(1) (2) (3)

1. Switching Strategies

aCAPM .022 .026 .005
(27.33) (31.93) (12.76)

aof'F .022 .026 .005
(25.40) (30.42) (11.81)

2. Switching Strategies with Transaction Costs

aCAPM .023 .024 .006
(26.62) (29.05) (10.12)

aof'F .023 .024 .006
(24.81) (27.00) (9.23)

3. Optimal Portfolio Weighting Strategy

aCAPM .022 .026 .005
(27.33) (31.93) (12.76)

of'F .022 .026 .005
(25.40) (30.42) (11.81)

4. Optimal Portfolio Weighting Strategy with Transaction Costs

aCAPM .022 .029 .004
(27.46) (32.86) (5.13)
of'F .021 .028 .003
(25.01) (32.34) (3.71)

This table presents the estimated constant of an OLS regression of the excess portfolio returns, Rp ;11 — RF 41,
on solely the excess stock market returns (CAPM), Ras,44+1 — RF,t+1, and on the excess stock market returns plus
the other two Fama-French factors (FF), SMByy+1 and HM Ly, as in equations (3.3.5) and (3.3.6). The variable
EE,; ; is recursively estimated using only data available at the time of forecast. Bold denotes significance at the 5%
level.
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3.4 Equilibrium Error, Stock Market Liquidity and

Return Reversals

In this section, we check whether the equilibrium error term (E'E; ;) is related to stock
market liquidity and return reversals. According to Pdstor and Stambaugh (2003), stock
market liquidity is a broad and elusive concept that generally denotes the ability to trade
large quantities at low cost, and without moving the price. Therefore, many concepts
have been proposed in the literature to define stock market liquidity. We follow the
approach of Péastor and Stambaugh (2003) and focus on an aspect of liquidity associated
with transitory price fluctuations implied by order flow. We also investigate whether
EE;, is related to the funding liquidity risk (F'L) measure of Fontaine and Garcia (2012),
obtained from a panel of U.S. Treasury security pairs across a range of maturities. The
elements of each pair have identical maturities, similar cash flows, but may have different
ages. The funding factor (F'L) can be interpreted as a measure of liquidity risk by relating
F'L to future repo spreads and by linking F'L to broader measures of funding conditions.

To analyse if E'E;; is related to stock market return reversals, we investigate whether
EE;; varies with the momentum factor, WM L. The momentum factor is calculated as the
cumulative stock market return from month ¢t —6 to t —1, with the previous month being ¢
and the current month being t+1. For robustness, we also include other measures of return
reversals, like the Short-Term (ST R) and Long-Term return reversal (LT R) factors from
French’s data library. The Short-Term and Long-Term reversal factors are defined as the
average return on the two low prior return portfolios minus the average return on the two
high prior return portfolios, or 1/2(SmallLow + BigLow) —1/2(SmallHigh+ BigHigh).
A stock must have a price for the end of month ¢ — 2 and a good return for ¢ — 1 to be
included in a portfolio for month ¢ in the calculation of ST R, while LT R only includes
stock that have a price for the end of month ¢t — 61 and a good return for ¢ — 13 to be
included in a portfolio for month ¢.

Table 3.13 presents summary statistics of the liquidity and return reversals measures.
There are four liquidity measures: the levels of aggregate liquidity (ALiq), innovations in
aggregate liquidity or the non-traded liquidity factor (InLiq), the value-weighted return
on the 10-1 portfolio from a sort on historical liquidity betas or the traded liquidity betas
(T'Liq), and the funding liquidity factor (F'L). The liquidity measures ALiq, InLiq, and
T Liq were proposed by Pastor and Stambaugh (2003) and obtained from Lubos Pastor’s
website. The funding liquidity factor,F'L, was available on the website of Jean-Sébastien
Fontaine. Panel A of Table 3.13 shows that the ALiq, InLiq, and T Liq are positively
correlated with E'E} ;, while the funding liquidity factor presents no correlation with the
equilibrium error term. In contrast, E'E;, is negatively related to the Momentum factor
W ML and positively correlated with ST R, whereas there is no correlation with LT R.

Panel B of Table 3.13 displays the results of forecasting one-month-ahead excess in-
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dustry stock returns. The equilibrium error factor, E'E;,, is insignificant individually,
but it becomes significant when the previous month’s excess industry return, R;(—1), is
included in the regression. Besides, FE;; and R;(—1) never become insignificant when
combined with other variables. The aggregate liquidity factor, ALiq, and the non-traded
liquidity factor, InLiq, of Pastor and Stambaugh (2003) does not forecast excess industry
stock market returns over our monthly sample (rows 3 and 6). However, ALiq and InLiq
become significant when combined with FE;; and R;(—1). These results suggest that
EFE;; has some forecast abilities close to those of ALiq and InLiq.

We find that the traded liquidity factor T'Liq of Péstor and Stambaugh (2003) and
the F'L of Fontaine and Garcia (2012) are positively and significantly related to future
excess industry stock market returns. T'Lig and F'L are still significant after we control
for EFE;; and R;(—1) (rows 11 and 14 of Table 3.13). In sum, these results indicate that
EFE;; does not share the forecasting abilities of T'Liq and F'L.

The momentum factor, WML, is negative and significant alone in the forecasting
equation (row 15). However, it becomes statistically insignificant after including EFE;,
(row 16) and EE;; with the previous month’s excess industry return R;(—1) (row 17).
The short-term reversal factor, ST'R, is positive and significant related to future excess
stock industry returns (row 18). However, it is insignificant when combined with E'E;,
and R;(—1) (row 20). In contrast, LT'R is negative and statistically significant by itself
(row 21) and when combined with EE;; and R;(—1) (row 23). Finally, Table 3.13 pro-
vides evidence that F'E;; shares some similar information about one-month-ahead excess
industry stock returns with the short-term return reversals measures WML and STR.

In sum, our analysis suggests that E'E;; is related to some liquidity and short-term

reversals measures.
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Table 3.13. Equilibrium Error, Stock Market Liquidity and Return Reversals Measures

AlLiq InLiq TLiq FL WML STR LTR
A. Summary statistics
Mean -.032 -.001 .005 -.108 .009 .006 .003
S.D. .062 .056 .032 .984 .041 .031 .025
Corr. with EE; 4 .072 .061 .044 .009 -.042 .048 -.004
B. Forecasting one-month-ahead excess stock returns
EE;; R;(-1) AlLiq InLiq TLiq FL WML STR LTR R?
(1) -.049 .000
(-.888)
(2) -.315 9.458 .007
(-5.428)  (7.345)
3) 618 .000
(.845)
(4) -.045 -.728 .000
(-.783) (-.730)
(5) -.319 10.068 -2.567 .008
(-5.596)  (7.630)  (-2.556)
(6) -1.417 .000
(-1.836)
(7) -.037 -2.861 .001
(-.646) (-2.334)
(8) -.334 10.959 -5.564 .009
(-5.802)  (8.281) (-4.369)
9) 3.367 .000
(3.341)
(10) -.054 3.663 .000
(-.973) (2.429)
(11) -.315 9.310 4.035 .007
(-5.473)  (7.444) (2.655)
(12) .373 .003
(7.212)
(13) -.065 .324 .002
(-1.236) (4.470)
(14) -.225  5.913 .305 .004
(-4.212)  (3.847) (4.284)
(15) -3.940 .001
(-3.624)
(16) -.052 -1.563 .000
(-.959) (-.981)
(17) -.315 9.436 -.276 .007
(-5.401)  (7.204) (-.166)
(18) 6.967 .001
(4.877)
(19) -.059 5.970 .001
(-1.089) (3.189)
(20) -.310  9.119 3.027 .007
(-5.380)  (7.393) (1.767)
(21) -17.402  .005
(-14.771)
(22) -.054 -23.356  .009
(-1.036) (-16.632)
(23) -.291 8.480 -21.472 .014
(-5.078)  (6.722) (-16.075)

This table reports the Fixed-Effect regression results of the one-month-ahead excess stock returns on some variables. The
heteroscedastic-corrected t-statistics are reported in parentheses and bold denotes significance at the 5% level. The liquidity
measures ALiq, InLiq, and T Liqg were proposed by Pdstor and Stambaugh (2003). ALiq denotes the levels of aggregate
liquidity. InLiq denotes innovations in aggregate liquidity or the non-traded liquidity factor. 7'Liq is the traded liquidity
factor. FL is the funding liquidity factor proposed by Fontaine and Garcia (2012). R;(—1) is the i-th industry excess stock
return during the previous month. WML is the momentum factor. STR and LTR are the short and long-term reversal
factors from French’s data library. R? is the adjusted-R2. EE; ¢ is the recursively estimated equilibrium error factor.
*Scaled by 100.
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3.5 Conclusion

In this paper, we find that the equilibrium error, the error term from the co-integration
relationship between industry stock returns and excess stock market returns, has strong
forecasting abilities for excess stock returns, which are increased if combined with the
previous month’s excess stock returns. Besides, our results suggest that short-term return
reversals and liquidity measures are primary reasons for the negative relation between
EFE;; and excess stock returns in the subsequent month. This relation is robust after
the previous month’s excess stock returns is included to account for return reversals. In
general, the equilibrium error factor appears to be a pervasive variable that captures
systematic movements of stock returns.

We provide new evidence on the out-of-sample stock return predictability, in contrast
to Bossaerts and Hillion (1999), Goyal and Welch (2003), and Welch and Goyal (2008),
among others, who found negligible out-of-sample predictive power using standard vari-
ables. This difference might be due to our forecasting variables discard the variables
used by those authors, and the equilibrium error factor is a panel variable that uses more
information than time series variables. We also show that the out-of-sample explanatory
power is economically meaningful for investors. Simple trading strategies implied by the
proposed predictability provide portfolios with higher mean returns and Sharpe ratios
than a buy-and-hold or a benchmark strategy does.

In future work, a number of extensions is possible. First, our results seem to be con-
sistent with two different hypotheses, that E'E; ; is a proxy for liquidity premium and that
EFE;,; is a proxy for short-term return reversals. However, it is not possible to discrimi-
nate between these two hypotheses, as liquidity and short-term return reversals are two
related concepts (Da et al., 2014). Using standard economic theories, we may develop
more powerful tests to discriminate between the two hypotheses. Second, the relationship
among E'E; ;, short-term return reversals, and liquidity reveals a connection between mar-
ket microstructure and general equilibrium theory, as shown in O’Hara (2003). A joint

analysis of these two approaches may have important implications for asset pricing.
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