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Abstract

Many important economic and finance hypotheses are investigated through testing

the specification of restrictions on the conditional distribution of a time series, such

as conditional goodness-of-fit (Box and Pierce (1970)), conditional quantiles (Koenker

and Machado (1999)), and distributional Granger non-causality (Taamouti, Bouezmarni,

and El Ghouch, 2014). This PhD Thesis contributes to the study of specification and

causality tests that provide a more flexible and detailed approach to evaluate economic

relationships, which are useful in many relevant empirical applications.

In the first chapter, we propose a practical and consistent specification test of con-

ditional distribution models for dependent data in a very general setting. Our approach

covers conditional distribution models possibly indexed by function-valued parameters,

which allows for a wide range of important empirical applications, such as the linear

quantile auto-regressive, the CAViaR, and the distributional regression models. Our test

statistic is based on a comparison between the estimated parametric and the empiri-

cal distribution functions. The new specification test (i) is valid for general linear and

nonlinear dynamic models under parameter estimation error, (ii) allows for dynamic mis-

specification, (iii) is consistent against fixed alternatives, and (iv) has nontrivial power

against
√
T -local alternatives, with T the sample size. As the test statistic is non-pivotal,

we propose and theoretically justify a block bootstrap approach to obtain valid infer-

ence. Monte Carlo simulations illustrate that the proposed test has good finite sample

properties for different data generating processes and sample sizes. Finally, an empirical

application to models of Value-at-Risk (VaR) highlights the benefits of our approach.

The second chapter proposes a consistent parametric test of Granger-causality in

quantiles. Although the concept of Granger-causality is defined in terms of the conditional

distribution, the majority of papers have tested Granger-causality using conditional mean

regression models in which the causal relations are linear. Rather than focusing on a

single part of the conditional distribution, we develop a test that evaluates nonlinear

causalities and possible causal relations in all conditional quantiles. The proposed test

statistic has correct asymptotic size, is consistent against fixed alternatives and has power

against Pitman deviations from the null hypothesis. The proposed approach allows us

to evaluate nonlinear causalities, causal relations in conditional quantiles, and provides
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a sufficient condition for Granger-causality when all quantiles are considered. As the

proposed test statistic is asymptotically non-pivotal, we tabulate critical values via a

subsampling approach. We present Monte Carlo evidence and an application considering

the causal relation between the gold price, the USD/GBP exchange rate, and the oil

price.

The last chapter of the thesis studies the co-integration relationship between industry

stock returns and excess stock market returns, and it is co-authored with Prof José

Penalva and Prof Abderrahim Taamouti. We find that the equilibrium error term from

this co-integrating relationship has strong predictive power for excess stock returns, which

is increased if combined with the previous month’s excess stock returns. Our results

suggest that short-term return reversals and liquidity measures are primary reasons for

the negative relation between the equilibrium error and expected excess stock returns.

We provide new evidence on the out-of-sample stock return predictability, in contrast

to Welch and Goyal (2008), among others, who found negligible out-of-sample predictive

power using standard variables. We also show that the out-of-sample explanatory power is

economically meaningful for investors. Simple trading strategies implied by the proposed

predictability provide portfolios with higher mean returns and Sharpe ratios than a buy-

and-hold or a benchmark strategy does.

3



Para a minha esposa Elaine,

minha filha Helena

e minha tia Ana Maŕıa.
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Chapter 1

A Specification Test of Dynamic

Conditional Distributions

1.1 Introduction

Many important economic and finance hypotheses are investigated through testing

the specification of restrictions on the conditional distribution of a time series, such as

conditional goodness-of-fit (Box and Pierce (1970)), conditional quantiles (Koenker and

Machado (1999)), and distributional Granger non-causality (Taamouti et al., 2014). After

the landmark work of Hausman (1978), numerous authors have developed specification

tests under i.i.d. observations. White (1982) proposed a comparison of different vari-

ance matrix estimators to detect misspecification of econometric models. Newey (1985)

constructed tests of conditional moment restrictions that generalized the approach of

Hausman (1978) and White (1982). Although these tests can also be applied in a time

series context, none of them is consistent against all possible sources of misspecifica-

tion. Despite Andrews (1997) developed a consistent test statistic for testing conditional

distribution specifications, his approach can be applied only for i.i.d. data.

This paper proposes a practical and consistent specification test of conditional distri-

bution models for dependent data in a very general setting. Our approach covers dynamic

conditional distribution models possibly indexed by function-valued parameters. The dif-

ference between our approach and that taken elsewhere is motivated within the framework

used by Corradi and Swanson (2006) and Rothe and Wied (2013). First, we generalize the

approach of Rothe and Wied (2013) to testing the specification of dynamic conditional

distribution models indexed by function-valued parameters in contexts with dependent

data. This allows for a wide range of models that have been shown to be very useful for

risk management and macroeconomic forecasting within a time series framework, such as

the linear quantile auto-regressive, the CAViaR, and the distributional regression models.

Second, we extend the validity of the block bootstrap for Kolmogorov-type conditional
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distribution tests proposed by Corradi and Swanson (2006) to the context of dynamic

conditional distribution models indexed by function-valued parameters. Rather than

analysing models indexed by finite-dimensional parameters as in Corradi and Swanson

(2006), we derive a test statistic for conditional distribution models indexed by function-

valued parameters that is valid under dynamic misspecification and parameter estimation

error. To the best of our knowledge, it has not been developed yet a consistent specifica-

tion test of conditional distribution models indexed by function-valued parameters under

dependent data.

Dynamic misspecification is relevant when a dynamic specification test is developed,

as one generally has the problem of defining the relevant past information Ft−1 (e.g. how

many lags to include), which may involve pre-testing and imply a sequential test bias.

There exists dynamic misspecification when the conditional distribution of the variable

of interest Yt given a past information set Xt is not equivalent to the conditional distribu-

tion of Yt given all the “relevant” past information set Ft−1 of the conditioning variable,

with Xt ⊂ Ft−1, i.e. Yt|Xt is not equal in distribution as Yt|Ft−1. Bai (2003) developed

a Kolmogorov-Smirnov type test of conditional distribution specifications for time series

based on the comparison of an estimated conditional distribution function with the dis-

tribution function of a uniform on [0, 1]. However, Bai (2003)’s test is inconsistent as it

cannot detect lag order misspecification of a linear autoregressive model with elliptically

distributed innovations (see e.g., Corradi and Swanson, 2006, Delgado and Stute, 2008).

Corradi and Swanson (2006) modified the approach of Bai (2003) allowing for dynamic

misspecification of the past information set under the null hypothesis. They proposed a

consistent test of correct specification for a given information set. In this paper, we extend

the approach of Corradi and Swanson (2006) to construct a specification test for time

series models that takes into account dynamic misspecification and parameter error esti-

mation effect, in a context of conditional distribution models indexed by function-valued

parameters.

Allowing the parameters to be function-valued is important for many empirical ap-

plications. For example, our approach covers the linear quantile autoregressive (QAR) of

Koenker and Xiao (2006), which implies a linear structure for the inverse of the dynamic

conditional distribution F−1(τ |θ0,Yt−p) = Y ′t−pθ0(τ), for the quantile τ ∈ (0, 1), with

Yt−p = {Yt−1, . . . , Yt−p} ∈ Ft−1, and a functional parameter θ0(τ) strictly monotone in τ .

Our procedure also considers testing the specification of nonlinear quantile autoregres-

sive models, such as the CAViaR model of Engle and Manganelli (2004), that directly

measures the market risk of financial institutions by estimating a particular quantile of

future portfolio values - the Value-at-Risk (VaR).

Our proposed test statistic checks the validity of the distributional regression model

introduced by Foresi and Peracchi (1995), where the conditional distribution is modeled

through a family of binary response models for the event that the variable of interest Yt
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exceeds some threshold y ∈ R. The distributional regression approach uncovers higher-

order multidimensional structure that cannot be found by modeling only the first two

moments of the conditional distribution. This has important implications to forecast-

ing excess stock market returns and finding an optimal portfolio (Foresi and Peracchi,

1995). Mean-variance analysis of excess stock market returns works only under special

assumptions, like multivariate normality of asset returns or quadratic utility function of

investors. In general, a precise definition of risk and an unambiguous ranking of portfo-

lio strategies requires the entire distribution of future returns (Rothschild and Stiglitz,

1970). Besides, focusing on location - for example, on the conditional mean regression

- may lead to overlook the impact of certain predictors of excess stock market returns,

whose effect is mostly on high-order aspects of the conditional distribution. To the best

of our knowledge, we are not aware of a framework to testing for the correct specification

of distributional regression models under dependent data.

An additional benefit of our approach is that it permits us to test conditional quantile

models over a continuum of quantiles under time series. Koenker and Machado (1999)

considered tests for the specification of regression quantile location-scale models for inde-

pendent observations. Koenker and Xiao (2002) applied the “Khmaladze” transformation

to test the specification of linear quantile models under i.i.d data. However, none of these

tests are justified for dependent data, and they do not check for the validity of the quan-

tile regression model itself. Whang (2006) proposed a specification test of conditional

quantile models for a given quantile τ for time series data, while Escanciano and Velasco

(2010) generalized this approach by providing consistent tests of dynamic quantile regres-

sion models over a continuum of quantiles under dependent data. Our new test provides

a further advantage: it also checks the validity of models for the whole conditional distri-

bution and distributional regression specifications, while the framework Escanciano and

Velasco (2010) considers only conditional quantile regression models. Koul and Stute

(1999), Neumann and Paparoditis (2008), Andrews (2012), Bierens and Wang (2014),

and Kheifets (2015), among others, have also developed consistent specification tests for

conditional distribution models for dependent data, but these methods cannot be applied

to evaluate models indexed by function-valued parameters. In sum, we believe that our

approach is a useful alternative to existing specification methods for dynamic conditional

models under dependent data because it allows for models indexed by possibly function-

valued parameters, covering the setups of Corradi and Swanson (2006), Escanciano and

Velasco (2010), and Rothe and Wied (2013) in a unified way.

Our test statistic is a Cramér-von-Mises (CVM) functional of the discrepancy between

the empirical distribution function and a restricted estimate imposing the structure im-

plied by the dynamic conditional distribution model, and we reject the null hypothesis of

correct specification if this discrepancy is “large”. Since its asymptotic distribution under

general time series assumptions is non-pivotal, we propose and justify a block bootstrap
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resampling scheme to estimate the critical values. This is likely to be computationally

intensive, but it delivers a test statistic that (i) allows for robust to dynamic misspecifica-

tion, (ii) does not require the estimation of smoothing parameters or nuisance functions

used in a Khmaladze transformation as in Bai (2003) or in Koenker and Xiao (2002), and

(iii) is consistent against all fixed alternatives. Besides, our test statistic has nontrivial

power against
√
T -local alternatives, with T the sample size.

As further contributions, we investigate the finite sample performance of our method

on simulated data and we illustrate the empirical applicability of our setting by verifying

the specification of conditional distribution models for Value-at-Risk (VaR), which is the

most used measure of market risk in the financial industry. Using data on two major stock

return indexes, we show that our test statistic rejects some widely used specifications of

VaR models.

The plan of the paper is as follows. In Section 2, we propose a test statistic for the null

hypothesis of correct specification of dynamic conditional distribution models indexed by

function-valued parameters under time series and dynamic misspecification. In Section

3, we derive the asymptotic limit distribution of our test statistic under the null and the

alternative hypotheses. We also prove that our test statistic has nontrivial power against√
T -local alternatives, with T the sample size. In Section 4, we theoretically justify the

validity of the block bootstrap in our framework. Section 5 provides some examples of

conditional distribution and quantile models that are covered by our setting. Section 6

presents Monte Carlo simulation results. In Section 7, we present an empirical application

of our proposed test. Finally, Section 8 concludes the paper.

1.2 A General Approach to Testing Dynamic Condi-

tional Distributions

Suppose we observe a sample {(Yt, Xt) ∈ R×Rd, t = 1, . . . , T} from a stationary process

{Yt, Xt}∞t=−∞, with joint distribution FY X , where Xt may contain lags of Yt and/or of

other variables. Let Ft−1 := {Xs}ts=−∞ be the information set including all relevant past

information. Let G be a parametric family of conditional distribution models on the

support of Y given X satisfying

G =
{
F (.|θ, .) for some θ ∈ B(T ,Θ)

}
, (1.1)

where θ ∈ B(T ,Θ) is a function-valued parameter, a class of mappings τ 7→ θ(τ) such

that θ(τ) ∈ Θ ⊂ RK , for each τ ∈ T ⊂ R. Focusing on the whole information set Ft−1,

the null hypothesis of correct specification could be written as F (y|Ft−1) = F (y|θ0,Ft−1),

a.s. for all y ∈ R and for some θ0 ∈ B(T ,Θ), against Pr[F (y|Ft−1) 6= F (y|θ,Ft−1)] > 0
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for some y ∈ R and for all θ ∈ B(T ,Θ). Instead, in this paper we are interested in the

distribution of Yt given a finite dimensional vector of conditioning variables Xt ∈ Rd,

for Xt ⊂ Ft−1. If Yt|Ft−1 is not equal in distribution to Yt|Xt, then Xt is dynamically

misspecified. However, in empirical applications we do not know a priori what is the

“relevant” past information set Ft−1, and finding out how much information to include

may involve pre-testing (Corradi and Swanson, 2006). Moreover, the critical values for

specification tests obtained under the under correct specification given Ft−1 are not in

general valid in the case of correct specification given Xt, for Xt ⊂ Ft−1. Thus, we allow

for dynamic misspecification of Xt and even in the presence of it, we obtain an asymptot-

ically consistent test statistic for the correct specification of Yt given Xt. Therefore, we

want to test null hypotheses of correct specification of conditional distribution models of

the form

H0 : F (y|x) = F (y|θ0, x) , for some θ0 ∈ B(T ,Θ) and for all (y, x) ∈ W , (1.2)

versus

HA : F (y|x) 6= F (y|θ, x) , for some (y, x) ∈ W and for all θ ∈ B(T ,Θ), (1.3)

where W is the support of Wt := (Yt, X
′
t)
′. Under the null hypothesis of (1.2), the

functional parameter θ0(.) is identified through a sequence of moment equalities. Let

ψ : W × Θ × T 7→ RK be a uniformly integrable function. For every τ ∈ T , we assume

that the function-valued parameter θ0(τ) solves

Ψ(θ0, τ) := E
[
ψ(Wt, θ0, τ)

]
= 0, (1.4)

where Ψ(θ, τ) is a function Ψ : Θ × T 7→ RK that fulfills some regularity conditions

described in Section 3. As in Rothe and Wied (2013), we assume that under the null

hypothesis, any θ ∈ B(T ,Θ) satisfying F (y|x) = F (y|θ, x) for all (y, x) ∈ W also satisfies

θ(τ) = θ0(τ), for all τ ∈ T . Thus, θ0(τ) is uniquely identified through the moment

conditions (1.4). In this paper, we assume that under HA in equation (1.3), there exists

a “pseudo”-true functional parameter θ1(τ) solving the moment conditions (1.4), for each

τ ∈ T . Chernozhukov, Fernández-Val, and Melly (2013) developed theoretical results for

Z-estimators of the moment conditions of (1.4) for i.i.d. data. Rothe and Wied (2013)

show that a large class of empirically relevant specifications fits into this framework in

a context with i.i.d. data. We provide conditions for the estimation of function-valued

parameters in a context of dependent observations in Section 3.

To test H0 defined in equation (1.2), we first restate our null hypothesis into an equal-

ity of unconditional distributions by integrating-up both sides of H0 with respect to the

marginal distribution of the conditioning variable FX ; see Theorem 16.10 (iii) in Billings-
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ley (1995). We emphasize that the idea of comparing the unrestricted and restricted joint

distribution functions, under the null and the alternative, is more than twenty years old

in the specification testing literature. Stute (1997) and Andrews (1997) apply this idea

in the context of testing specifications of parametric conditional expectation functions

and conditional distribution functions, respectively, under i.i.d. data. In a time series

context, Corradi and Swanson (2006) and Neumann and Paparoditis (2008) also apply

this method to consistently check for the correct specification of dynamic conditional dis-

tributions indexed by finite-dimensional parameters. However, our null hypothesis tests

the validity of a conditional distributional model indexed by function-valued parameters.

As F (y|x) = E(1{Yt ≤ y}|Xt = x), where 1{A} is the indicator function of the event A,

the null hypothesis H0 of (1.2) can be equivalently restated as

∫
F (y|x̄)1{x̄ ≤ x}dFX(x̄) =

∫
F (y|θ0, x̄)1{x̄ ≤ x}dFX(x̄),

for some θ0 ∈ B(T ,Θ) and for all (y, x) ∈ W ,

where FY X(y, x) :=
∫
F (y|x̄)1{x̄ ≤ x}dFX(x̄) is the unconditional joint distribution

function, and F (y, x, θ0) :=
∫
F (y|θ0, x̄)1{x̄ ≤ x}dFX(x̄) is the unconditional distribution

function implied by the parametric conditional distribution model. Let ẐT (y, x) and

F̂T (y, x, θ̂T ) be the joint empirical distribution function and the semi-parametric estimated

distribution function of {Yt, Xt}Tt=1 respectively,

ẐT (y, x) =
1

T

T∑
t=1

1{Yt ≤ y}1{Xt ≤ x}, for (y, x) ∈ R1+d, (1.5)

and

F̂T
(
y, x, θ̂T

)
=

∫
F
(
y|θ̂T , x̄

)
1{x̄ ≤ x}dF̂X(x̄), for (y, x) ∈ R1+d, (1.6)

where F̂X(x) is the empirical distribution function of {Xt}Tt=1,

F̂X(x) =
1

T

T∑
t=1

1{Xt ≤ x}, for x ∈ Rd. (1.7)

Under H0 of (1.2), we assume there is a
√
T -consistent estimator θ̂T (τ) of θ0(τ), for

each τ ∈ T , that minimizes the empirical analog Ψ̂T (θ̂T , τ) of the moment conditions in

(1.4):
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∥∥∥Ψ̂T (θ̂T , τ)
∥∥∥2

≤ inf
θ∈Θ

∥∥∥Ψ̂T (θ, τ)
∥∥∥2

+ û(τ)2, (1.8)

where ‖û‖T = oP (T−1/2), and ‖.‖ denotes the supremum norm. Our proposed test

statistic of H0 is the functional norm of the distance between ẐT (y, x) and F̂T
(
y, x, θ̂T

)
,

similar to the approach of Andrews (1997) and Rothe and Wied (2013). To this purpose

we consider

DT (y, x) =
1

T

T∑
t=1

(
1{Yt ≤ y} − F

(
y|θ̂T , Xt

))
1{Xt ≤ x}, (1.9)

and to test the null hypothesis H0 we propose a T -scaled Cramér-von Mises functional

norm of DT (y, x):

ST = T

∫
W

(
DT (y, x)

)2
dẐT (y, x). (1.10)

The test statistic ST should be small if the null hypothesis is correct, while “large”

values of ST imply the rejection of H0 in (1.2). In Section 3, we develop an asymptotic

theory that covers the case of serial dependence, extending the analysis of Rothe and

Wied (2013) for ST to the specification of time series models and the approach of Corradi

and Swanson (2006) to specification testing under dynamic misspecification for function-

valued parameter models. It is possible to apply other functional norms to DT (y, x),

such as the Kolmogorov-Smirnov functional norm:
√
T sup(y,x)∈W |DT (y, x)|. However,

unreported simulations suggested that the ST test statistic outperforms in terms of size

and power other alternative functionals such as the Kolmogorov-Smirnov. Therefore, we

focus in this paper on ST .

1.3 Asymptotic Theory

In this section, we derive the asymptotic distributions of our test statistic ST under the

null and alternative hypothesis. Let {YTt : t ≤ T, T = 1, 2, . . .} be a triangular array with

stationary rows of random variables defined on a complete probability space (Ω,A, P ),

where T is the sample size. Let AT (m) be the σ-field generated by YTt for t ≤ m, and

BT (m + d) be the σ-field generated by the variables YTt for t ≥ m + d. The sequence

{YTt} is α-mixing if there is a sequence of numbers {α(d)} converging to zero for which

|Pr(AB)− Pr(A) Pr(B)| ≤ α(d), for all A ∈ AT (m), all B ∈ BT (m+ d), all m, d, T.
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Let W be the support of Wt := (Yt, X
′
t)
′ and T ⊂ R. Our test statistic ST in (1.10) is

based on an empirical process indexed by a class of functions `∞ (H), which is the class of

real-valued functions that are uniformly bounded on H, with H :=W×T , equipped with

the supremum norm ||.||`∞(H). To simplify notation, we use ||.|| to denote the supremum

norm. The class M := {Ψ(θ, τ) : θ ∈ Θ, τ ∈ T } is a permissible class of functions

that has a finite and integrable envelope function F(θ, τ) := supΨ∈M |Ψ(θ, τ)| and can be

covered by a finite number of elements, not necessarily inM (see the Appendix for more

details). Let Pf =
∫
f(θ, τ)dP (θ, τ), for f ∈ M. Finally, the M class of functions is

assumed in this paper to form a so-called Vapnik-Chervonenkis (VC) class of functions

(see Dudley, 1978, Pollard, 1984).

Throughout the paper we use “
d−→” and “ =⇒ ” to denote convergence in distribution

of random variables and weak convergence of stochastic processes, respectively. We write

ZT =⇒ Z in `∞ (H) to denote weak convergence of a stochastic process ZT to a random

element Z in the function space `∞ (H) (in the Hoffmann-Jørgensen sense, according to

Alexander, 1987) for the metric induced by ||.||. Let Bε(θ) be a closed ball of radius ε

centered at θ. All limits are taken as T → ∞, where T is the sample size. We maintain

the following main assumptions to analyse the asymptotic behavior of our test statistic:

Assumption 1. {(YTt, XTt) : t ≤ T, T = 1, 2, . . .} is an α-mixing triangular array

with stationary rows, satisfying E(|Y1,1|2+γ) < ∞ and
∑∞

j=1 j
2α(j)γ/(4+γ) < ∞ for some

γ ∈ (0, 2).

Assumption 2. The parametric space Θ is compact in RK and T is a compact set of

some metric space.

Assumption 3. For each τ ∈ T , Ψ(θ, τ) : Θ 7→ RK possess a unique zero at θ0(τ), and

for some ε > 0,
⋃
τ∈T Bε(θ0(τ)) is a compact subset of RK contained in Θ. Moreover,

the class of functions M := {Ψ(θ, τ) : θ ∈ Θ, τ ∈ T } is a permissible and VC class of

measurable functions with a square integrable envelope function F satisfying P (F)p <∞,

for 2 < p <∞.

Assumption 4. Let I be an open set containing T . The mapping Ψ(θ, τ) : Θ×I 7→ RK

is continuous and θ 7→ Ψ(θ, τ) is the gradient of a convex function in θ for each τ ∈ T .

Besides, ∂
∂θ
Ψ(θ, τ) := Ψ̇θ,τ exists at (θ0(τ), τ) and is continuous at (θ0(τ), τ), for each

τ ∈ T , with infτ∈T inf‖h‖=1 ||Ψ̇θ0,τh|| > c0 > 0.

Assumption 5. For each τ ∈ T , the map θ 7→ F (.|θ, .) is Hadamard differentiable at

all θ ∈ B(T ,Θ) with derivative h 7→ Ḟ (.|θ, .)[h].
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Assumption 1 is needed to restrict the dependence of {YTt, XTt} and holds for many

relevant econometric models in practice, including ARMA and GARCH processes under

mild additional assumptions; see e.g. Carrasco and Chen (2002). It enables us to establish

weak convergence of the empirical process ZT (y, x) under a variety of situations, see

Theorem 7.2 in Rio (2000). Assumptions 2-4 provide conditions to guarantee that a

functional central limit theorem holds to the Z-estimator process τ 7→
√
T (θ̂T (τ)−θ0(τ))

for strong mixing processes. Assumption 5 is a smoothness condition required to establish

a functional delta-method for the bootstrap of our test statistic (see Theorem 3.9.11 in

Van der Vaart and Wellner, 2000).

In comparison with the framework of Rothe and Wied (2013), we need to impose

Assumption 1 to establish the asymptotic theory of our test statistic under dependence,

while this assumption is not needed in contexts with independent data. In addition,

Assumption 4 requires that the class of functions M := {Ψ(θ, τ) : θ ∈ Θ, τ ∈ T } is a

permissible and VC class of measurable functions, while Rothe and Wied (2013) work

with Donsker class of functions in an i.i.d. setting. Assumptions 1-5 imply the following

theorem, which describes the limit distribution of the proposed test statistic ST under

the null and the alternative.

Theorem 1. Under Assumptions 1-5, the following hold:

(i) Under the null hypothesis H0 in (1.2),

ST
d−→
∫

(H1(y, x)−H2(y, x))2 dFY X(y, x),

where (H1,H2) follow a tight mean zero Gaussian process.

(ii) Under the alternative hypothesis HA in (1.3), there exists an ε > 0 such that

lim
T→∞

Pr (ST > ε) = 1.

Theorem 1 shows that the asymptotic null distribution of ST is a functional of the

zero-mean Gaussian processes (H1,H2). By Theorem 1, we expect that ST is significantly

positive whenever the null hypothesis H0 is violated. However, the asymptotic distribu-

tion of ST varies with the conditional distribution model, the parameter θ0(.), and with

the serial dependence in the data. As a result, ST is not asymptotically pivotal and we

cannot tabulate critical values. Since ẐT (y, x) is an integrating measure onW depending

on T and on data, ẐT (y, x) =⇒ FY X(y, x) in `∞(W), as T goes to infinity (see Lemma

A.1 in the Appendix). In Section 4, we justify a block bootstrap approach that provides

critical values for ST and does not require the estimation of nuisance functions.
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1.3.1 Local Power of the Test Statistic

Now we analyze the asymptotic power of ST against a sequence of Pitman’s local alterna-

tives converging to the null hypothesis at rate
√
T , where T denotes the sample size. Let

J(.|.) be an alternative conditional distribution function such that J(.|.) 6∈ G of (1.1).

For any 0 < δ ≤
√
T , we consider that under a sequence of local alternatives HA,T the

data are distributed accordingly to the following conditional distribution

HA,T : FT (y|x) =

(
1− δ√

T

)
F (y|θ0, x) +

(
δ√
T

)
J(y|x), (1.11)

for all (y, x) ∈ W and for some θ0 ∈ B(T ,Θ). To ensure nontrivial local power of our

test statistic, we make the following assumption:

Assumption 6. Under the local alternative in (1.11), the conditional distribution under

the local alternative in (1.11) implies a sequence of distribution functions FA
T

(
y, x
)

=∫
FT
(
y|x̄
)
1{x̄ ≤ x}dFX(x̄) that is contiguous to the distribution function F

(
y, x, θ0

)
=∫

F (y|θ0, x̄)1{x̄ ≤ x}dFX(x̄) based on F (y|θ0, Xt).

Assumption 6 is standard in the study of the asymptotic power under a sequence of

Pitman’s local alternatives. Andrews (1997) shows that when F (.|θ0, .) and J(.|.) have

density functions f (.|θ0, .) and j(.|.) with respect to the same σ-finite measure, then a

sufficient condition for Assumption 6 is

sup
(y,x):f(y|θ0,x)>0

j(y|x)

f(y|θ0, x)
<∞.

Let ΨJ(θ, τ) := EJ [ψ(Wt, θ, τ)] and ΨF (θ, τ) := EF [ψ(Wt, θ, τ)], where EJ [.] and EF [.]
denote expectation w.r.t. J = J(y|Xt) and F = F (y|θ0, Xt), respectively in (1.11). We

consider θ0(.) and θ1(.) as solutions to

ΨF (θ0, τ) =0, (1.12)

and

ΨJ(θ1, τ) =0, (1.13)

for all τ ∈ T respectively. Let ∂
∂θ
ΨF (θ0, τ) satisfy Assumption 4 for the functional pa-

rameter θ0 solving the moment conditions in (1.12). The following theorem sheds light

on the asymptotic power of the test statistic ST under a sequence of local alternatives

satisfying (1.11).
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Theorem 2. Under the local alternative HA,T in (1.11) and Assumptions 1-6

ST
d−→
∫

(H1(y, x)−H2(y, x) + ∆(y, x))2 dFY X(y, x),

with ∆(y, x) = δ
∫

(J(y|x̄) − F (y|θ0, x̄) + Ḟ (y|θ0, x̄)[h])1{x̄ ≤ x}dFX(x̄), and h is the

function h(τ) = [ ∂
∂θ
ΨF (θ0, τ)]−1ΨJ(θ0, τ).

Theorem 2 implies that the test statistic ST has non-trivial local power when ∆(y, x) 6=
0. Note that the choice of θ0 affects the asymptotic power, since ∆(y, x) is a function

of θ0. This follows because we cannot choose θ0 under the local alternatives, and θ1

corresponds to the value that makes J(.|.) as “close” as possible to F (.|θ0, .) in the

sense of the Kullback-Leibler information distance (Andrews, 1997). For a functional

parameter θ1 solving (1.13), we may choose F (.|θ1, .) as the probability limit under J to

which the sequence of local alternatives FT (.|.) shrinks as the sample size grows. Then

[ ∂
∂θ
ΨF (θ0, τ)]−1ΨJ(θ0, τ) = 0, and we have a simpler drift term

∆(y, x) = δ

∫
(J(y|x̄)− F (y|θ0, x̄))1(x̄ ≤ x)dFX(x̄).

1.4 Bootstrap Tests

As the test statistic ST has an asymptotic distribution under H0 that depends on the

data-generating process, we propose a block bootstrap approach to obtain critical values.

We also derive its asymptotic properties under the null and alternative hypothesis. If

there were no dynamic misspecification under H0 of (1.2), we could apply a parametric

bootstrap resampling method on F̂T
(
y, x, θ0(.)

)
to get asymptotic critical values under

the null. However, in the presence of dynamic misspecification, F̂T
(
y, x, θ0(.)

)
is not

independent and the covariance structure of the bootstrap statistic is not asymptotically

valid. Thus, to solve this problem, we extend the block bootstrap approach proposed by

Corradi and Swanson (2006) to test the specification of conditional distribution models

indexed by function-valued parameters. We compare the empirical distribution of the

resampled series, evaluated at the bootstrap estimator, with the empirical distribution of

the actual series, evaluated at the estimator based on the actual data. This resampling

method that takes into account the parameter estimation error effect and allows for

dynamic misspecification.

We could consider a subsampling approach, for which similar asymptotic results can

be shown to hold as well, see e.g. Chernozhukov and Fernández-Val (2005). However,

we choose a block bootstrap because we expect it to have more power asymptotically

and in finite samples. The block bootstrap is a resampling method with replacement

extended to time series observations. It consists of splitting the data into consecutive
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blocks of observations with length ` - (Xt, Xt+1, . . . , Xt+l−`) - and resampling the blocks

with replacement from all blocks and joining them to create a bootstrap sample; for a

review of block bootstrap and other resampling methods for dependent data, see Kreiss

and Paparoditis (2011). Although the block bootstrap is computationally demanding, the

estimated asymptotic critical values are consistent against fixed alternatives and allow

for dynamic misspecification.

Block bootstrap approaches differ on whether the blocks are overlapping or non-

overlapping and on whether the length of the blocks is deterministic or random. We

apply a block bootstrap with an overlapping block length - since it is more efficient than

the non-overlapping one - and with non-random block length, which has a smaller first

order variance (Lahiri, 1999). In what follows, P ∗, E∗, F ∗, . . . denote probability laws,

expectations, distribution functions, etc. in the block bootstrap, i.e., conditionally on the

observed data. The algorithm for computing a fixed block bootstrap realization of our

test statistic ST has the following steps.

1. Let ` be the length of the block, ` ∈ N, ` << T , where T is the sample size. At

each replication, we draw b blocks of length ` from the sample Wt = (Yt, Xt), with

b = [T/`]. For example, for some i with probability 1/(T − ` − 1), the i-th block

is Wi+1,Wi+2, . . . ,Wi+`. Thus, the set of starting indexes of the selected blocks is

described by I1, I2, . . . , Ib discrete i.i.d. uniform random variables taking values in the

set {1, 2, . . . T − `}.

2. Conditional on the sample, we join together the uniform i.i.d. random b blocks to

form a resampled series W ∗
1 ,W

∗
2 , . . . ,W

∗
` ,W

∗
`+1, . . . ,W

∗
T , that can also be written as

WI1 ,WI1+1, . . . ,WI1+`−1︸ ︷︷ ︸
1st block

,WI2 ,WI2+1, . . . ,WI2+`−1︸ ︷︷ ︸
2nd block

, . . . ,WIb ,WIb+1, . . . ,WIb+`−1︸ ︷︷ ︸
bth block

.

3. We denote θ̂∗T as the estimator obtained using the block bootstrap resampled se-

ries {W ∗
t = (Y ∗t , X

∗
t )}. Let Ẑ∗T (y, x) and F̂ ∗T (y, x, θ̂∗T ) be the bootstrap equivalents

of ẐT (y, x) and F̂T (y, x, θ̂T ), respectively. Then we obtain the following re-centered

bootstrap statistic S∗T :

S∗T =
T∑
t=1

[(
Ẑ∗T (Yt, Xt)− F̂ ∗T (Yt, Xt, θ̂

∗
T )
)
−
(
ẐT (Yt, Xt)− F̂T (Yt, Xt, θ̂T )

)]2

.

Given a significance level α ∈ (0, 1), our test rejects H0 if ST > c∗T (α), where the

bootstrap critical value c∗T (α) is the lowest value that satisfies Pr∗ [S∗T ≤ c∗T (α)] ≥ 1− α,

and this is estimated through Monte Carlo simulations. In contrast to the block bootstrap

statistic of Corradi and Swanson (2006), we deal with the convergence of empirical process
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indexed by function-valued parameters. Thus, to justify theoretically the block bootstrap

resampling in our setting, we need an additional assumption on the serial dependence on

the data. We define the k-th beta mixing coefficient β(k) as

β(k) =
1

2
sup

∑
(i,j)∈I×J

|Pr(Ai ∩Bj)− Pr(Ai) Pr(Bj)|,

where the supremum is taken over all finite measurable partitions {Ai}i∈I and {Bj}j∈J
with Ai ∈ σ(Ym : m ≤ 1) and Bj ∈ σ(Ym : m ≥ 1 + k). We say that a sequence {Yt} is

beta mixing if limk→∞ βk → 0. Then we impose the following assumption.

Assumption 7. {YTt, XTt, t ≤ T, T ≥ 1} is a β-mixing triangular array with stationary

rows and β-mixing coefficients satisfying

Γ({βk}k≥T )→ 0, as T →∞,

where Γ : R∞ 7→ R is a monotone mapping such that ai ≤ bi for i ≥ 0 implies Γ({ai}i≥0) ≤
Γ({bi}i≥0).

Assumption 7 generalizes most of the commonly used mixing conditions in time series

processes. Let P ∗(.) be the probability law in the block bootstrap, i.e., conditionally

on the observed data. We follow the approach of Radulović (1996), which delivers a

Block Bootstrap Central Limit Theorem for the class of M-estimators (see Theorem 2

in Radulović (1996)), and justify the block bootstrap approach for our proposed test

statistic in the following theorem.

Theorem 3. Under Assumptions 2-7, let W ∗
1 , . . . ,W

∗
T be generated according to the block

bootstrap with block size ` := `(T ), with `(T ) → ∞ as T → ∞, conditional on the data

W1, . . . ,WT . Let M := {Ψ(θ, τ) : θ ∈ Θ, τ ∈ T } be a permissible VC class of measurable

functions with a square integrable envelope function F. If we also assume:

(i) lim supk→∞ k
qβ(k) <∞, for some q > p/(p−2), for 2 < p <∞ such that P ∗(F)p <

∞, and

(ii) `(T ) = O(T ρ) for some 0 < ρ < (p− 2)/[2(p− 1)],

then:

(i) Under the null hypothesis H0 of (1.2),

Pr
(
ST > c∗T (α)

)
→ α.
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(ii) Under the fixed alternative hypothesis HA of (1.3),

Pr
(
ST > c∗T (α)

)
→ 1.

(iii) Under the local alternative HA,T of (1.11),

lim
T→∞

Pr
(
ST > c∗T (α)

)
≥ α,

where equality holds when ∆(y, x) ≡ 0 a.e., with ∆(y, x) the non-trivial shift func-

tion defined in Theorem 2.

Theorem 3 is an application of the functional delta method for bootstrap. It shows

that our test based on the block bootstrap critical value has asymptotically correct size,

is consistent, and is able to detect alternatives tending to the null at the parametric rate√
T . Bradley (1985) showed that P ∗(F)p < ∞ and

∑∞
k=1 β(k)p/(2−p) for some p > 2

is close to the weakest sufficient conditions for an original (non-bootstrap) central limit

theorem for empirical processes for VC-subgraph classes of functions. As the optimal

length, in terms of bias squared and variance of the block bootstrap approximation, is

` = CT 1/3, for a constant C > 0 (see Künsch, 1989, Remark 3.3), the condition on the

block length is not too restrictive.

1.5 Examples

In this section, we consider certain dynamic conditional distribution models whose spec-

ification can be analysed using our approach. We choose those models since they can be

used in many relevant empirical applications.

1.5.1 Linear Quantile Autoregressive Processes

Under our approach, it is possible to test conditional quantile models over a continuum

of quantiles under time series. Koenker and Machado (1999) and Koenker and Xiao

(2002) considered tests for the specification of regression quantile location-scale models

and linear quantile models under i.i.d data. However, none of these tests are justified for

dependent data, and they do not check for the validity of the quantile regression model

itself.

Whang (2006) proposed a specification test of conditional quantile models for a given

quantile τ for time series data, while Escanciano and Velasco (2010) generalized this

approach by providing consistent tests of dynamic quantile regression models over a con-

tinuum of quantiles under dependent data. Our method is complementary to Escanciano

and Velasco (2010), since we provide a consistent test statistic for dynamic conditional
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quantile models, over a continuum of quantiles. Rather than assuming a martingale dif-

ference hypothesis and applying a subsampling resampling scheme, our method allows

for testing non-markovian quantile models and uses the information of the whole sample

under the block bootstrap method. Moreover, our test is consistent under dynamic mis-

specification. We present some comparisons with the approach of Escanciano and Velasco

(2010) on Section 6.

Many papers in the literature deal with the linear quantile autoregression model, see

for example Weiss (1991), Koul and Mukherjee (1994), and Hallin and Jurečková (1999).

In the linear quantile autoregression model, the τ -quantile of Yt|Xt is a linear function of

Xt, where Xt can take the lagged values of Yt as arguments. Koenker and Xiao (2006)

investigated quantile autoregressive models in which all of the autoregressive coefficients

are τ -dependent and able to change the location, scale, and shape of the conditional

densities, provided that the τ -conditional quantile of Yt is monotone in τ . For example,

the quantile autoregression (QAR) of order p of Koenker and Xiao (2006) can be written

as

Qτ (Yt|Yt−1, . . . , Yt−p) = θ0(τ) + θ1(τ)Yt−1 + . . .+ θp(τ)Yt−p

= X ′tθ(τ), for some θ ∈ B(T ,Θ), (1.14)

where F−1(τ |Yt−1, . . . , Yt−p, θ(τ)) = Qτ (Yt|Yt−1, . . . , Yt−p), and Xt = (1, Yt−1, . . . , Yt−p)
′.

If the τ -conditional quantile of Yt is correctly specified by a QAR model, then there exists

a F (y|θ, x) ⊂ G such that the null hypothesis of (1.2) is not rejected, with G satisfying

G =
{
F (.|θ, .)| F−1 (.|θ,Xt) = X ′tθ for some θ ∈ B(T ,Θ)

}
.

We consider estimators of the QAR model in (1.14) as any solution θ̂T (τ) of the

problem

arg min
θ∈Θ

T∑
t=1

ψ(Wt, θ, τ),

where ψ(Wt, θ, τ) :=
(
τ −1{Yt−X ′tθ(τ) ≤ 0}

)
is the check function. Given the solutions

θ̂T (τ), the τ -quantile of Yt|Xt can be estimated by Q̂τ (Yt|Xt) = X ′tθ̂T (τ). In our setup,

θ̂T belong to the class of Z-estimators with ψ(Wt, θ̂T , τ) =
(
τ − 1{Yt −X ′tθ̂T (τ) ≤ 0}

)
. If

the conditional distribution of Yt is monotone in τ , the QAR model in (1.14) implies a

conditional distribution function that can be estimated by F (y|θ̂T (.), x) =
∫
T 1{x

′θ̂T (τ) ≤
y}dτ . Now we establish the conditions that allows us to apply our test statistic ST to

check the specification of a QAR model.
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Proposition 1. Let:

(i) For every τ ∈ T , E(τ−1{Yt−X ′tθ(τ) ≤ 0}) possesses a unique zero at θ(τ) = θ0(τ),

for some θ0 ∈ B(T ,Θ);

(ii) {(YTt, XTt) : t ≤ T, T = 1, 2, . . .} is an α-mixing triangular array with stationary

rows satisfying E(|Y1,1|2+γ) <∞ and
∑∞

j=1 j
2α(j)γ/(4+γ) <∞ for some γ ∈ (0, 2);

(iii) The conditional distribution function of Yt given Xt, F (.|.), and its density func-

tion f(.|.) have continuous derivatives up to the 2nd-order denoted respectively by

F (s)(.|.) and f (s)(.|.), s = 1, 2;

(iv) f(.|.) is Lipschitz continuous and bounded away from zero on X ′tθ0(τ) a.s., uni-

formly over τ ∈ T , and F (2)(.|.) and f (2)(.|.) are bounded and uniformly continuous

on R a.s.;

(v) The matrix E(XtX
′
t) is finite and has full rank.

Then Assumptions 1-5 hold for the linear quantile autoregression model.

Proposition 1 provides conditions for identifiability of the moment conditions in (1.4)

and the validity of a functional central limit for a dependent stochastic process
√
T (θ̂T (τ)−

θ(τ)) (Andrews and Pollard, 1994, Chernozhukov et al., 2013). The Lipschitz condition

in (iv) gives a sufficient condition for the class of functions {ψ(Wt, θ, τ) =
(
τ − 1{Yt −

X ′tθ(τ) ≤ 0}
)

: θ ∈ Θ, τ ∈ T } to be a VC class.

1.5.2 Nonlinear Quantile Autoregressive Models

We can apply our test to check the correct specification of a nonlinear quantile regression

model such as the Conditional Autoregressive Value at Risk (CAViaR) model proposed

by Engle and Manganelli (2004). Value at Risk (VaR) is the standard measure of market

risk used by financial institutions and market regulators. Let Yt be a return on a portfolio

series. Given a significance level τ , the VaR of a portfolio is the level of return Y T
t over

the period [t, T ) that is exceeded with probability τ : V aRT
t (τ |x) := infL{L : Pr(Y T

t ≤
L|x) ≥ 1− τ}. Analogously, we can also write the VaR as V aRT

t (τ |x) = Qτ (Yt|x). Since

the VaR is a quantile of the conditional distribution of returns, the quantile regression

model is a powerful tool to model VaR, using only information pertaining to the quantiles

of the distribution.

Rather than imposing a linear quantile regression model, we may assume a nonlinear

functional dependence on the quantiles of Yt|Xt:

Qτ (Yt|Xt = x) = m(x, θ(τ)), (1.15)
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where m : Rd ×Θ× T 7→ R is a known function. Under our setup, we have

G =
{
F (.|θ, .)| F−1 (.|θ(.), x) = m(x, θ(.)) for some θ ∈ B(T ,Θ)

}
.

Similarly to the linear QAR process, we can estimate the parameters θ̂T (.) of a non-

linear quantile regression model in (1.15) by solving

arg min
θ∈Θ

T∑
t=1

ρτ (Yt −m(Xt, θ(τ))) , (1.16)

with ρτ (u) = u(τ − 1{u ≤ 0}). For sufficient conditions on m(., .) for the existence

of a solution of (1.16), see Koenker and Park (1996). Given the solutions θ̂T (.), the

conditional distribution function can be obtained as F (y|θ̂T (.), x) =
∫
T 1{m(x, θ̂T (τ)) ≤

y}dτ , assuming that F (y|θ̂T (.), x) is monotone in y. Nonlinear dynamic models allow the

inclusion of past values of the quantiles of Yt|Xt. A general CAViaR specification for the

quantile regression can be the following

Qτ (Yt|θ(τ),Ωp
t−1) = θ0(τ) +

p∑
i=1

θi(τ)Qτ (Yt−i|Ωp
t−i−1) +

q∑
j=1

θj(τ)`t−j
(
xt−j), (1.17)

where Ωp
t−1 := {Yt−1, Yt−2, . . . , Yt−p} is the lagged-value vector of Yt from t− p up to time

t− 1, the parameter vector θ has a dimension of r = p + q + 1, and `(.) is a function of

a vector of lagged values of observables xt−j ∈ Xt−j, which could be the lagged returns

Yt−1 for instance. Let Xt = (1, Yt−1, . . . , Yt−p)
′, then the associated estimator θT is in the

class of Z-estimators with ψ(Wt, θ, τ) = εt(τ)
(
τ − 1 {Yt −Qτ (Yt|θ(τ), Xt) ≤ 0}

)
, where

εt(τ) = Yt −Qτ (Yt|θ(τ), Xt). The following proposition provides conditions for applying

our proposed test to the CAViaR model described in (1.17).

Proposition 2. Let Assumptions C0-C7 and AN1-AN3 of Engle and Manganelli (2004)

hold. Then Assumptions 2-5 hold for the CAViaR model.

1.5.3 Distributional Regression Models

Our proposed test statistic checks the validity of the distributional regression model in-

troduced by Foresi and Peracchi (1995), where the conditional distribution is modeled

through a family of binary response models for the event that the variable of interest

Yt exceeds some threshold y ∈ R. In contrast to the quantile regression model, the dis-

tributional regression model does not require the dependent variable to be continuously
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distributed. This can be useful in many empirical applications. Besides, the distribu-

tional regression approach uncovers higher-order multidimensional structure that cannot

be found by modeling only the first two moments of the conditional distribution. This has

important implications to forecasting excess stock market returns and finding an optimal

portfolio (Foresi and Peracchi, 1995).

Chernozhukov et al. (2013) derive the limit theory for the continuum of binary regres-

sions and Rothe and Wied (2013) provide specification tests for distributional regressions

under i.i.d data. Our setting allows us to evaluate the specification of distributional

regressions under time series data. To the best of our knowledge, we are not aware of

a framework to testing for the correct specification of distributional regression models

under dependent data.

In distributional regression models (DR models), the conditional distribution function

of Yt is model through a family of binary response models for the event that Yt exceeds

some threshold y ∈ R, as follows:

F (y|x) = Λ (x′θ(y)) , for some θ(y) ∈ B(R,Θ) ⊂ RK and all y ∈ R, (1.18)

where Λ(.) is a known strictly increasing link function (e.g., the logistic or standard normal

distribution), and θ(.) is a functional parameter taking values in B(R,Θ). The DR ap-

proach was introduced by Foresi and Peracchi (1995), and it has been analysed by Fortin,

Lemieux, and Firpo (2011), Rothe (2012), Rothe and Wied (2013), and Chernozhukov

et al. (2013). One can also run a distributional regression model of Yt conditional on its

lagged values:

F (y|Yt−1) = Λ
(
Y ′t−1θ(y)

)
, for some θ(y) ∈ B(R,Θ) ⊂ RK and all y ∈ R, (1.19)

For a given cut-off y ∈ R, the estimator θ̂T (y) is given by

θ̂T (y) := arg max
θ∈B(R,Θ)

1

T

T∑
t=1

[
1{Yt ≤ y} ln

[
Λ
(
Y ′t−1θ(y)

)]
+ (1− 1{Yt ≤ y}) ln

[
1− Λ

(
Y ′t−1θ(y)

)] ]
. (1.20)

Then, the conditional distribution of Yt given Yt−1 is estimated as follows:

FT (y|θ̂T (y), Yt−1) = Λ(Y ′t−1θ̂T (y)), for all y ∈ R. (1.21)

The following proposition provides the conditions for the distributional autoregressive

model in (1.19) to satisfy the Assumptions 1-5, and hence the application of our test

statistic ST .
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Proposition 3. Let:

(i) {(YTt, XTt) : t ≤ T, T = 1, 2, . . .} is an α-mixing triangular array with stationary

rows satisfying E(|Y1,1|2+γ) < ∞ and
∑∞

j=1 j
2α(j)γ/(4+γ) < ∞ for some γ ∈ (0, 2).

The support of Y, Supp(Y ), is a finite set or a bounded open subset of R;

(ii) For every y ∈ Supp(Y ), the parameter θ0(.) solves

E
[
1{Yt ≤ y} ln

(
Λ
(
Y ′t−1θ0(y)

))
+ (1− 1{Yt ≤ y}) ln

(
1− Λ

(
Y ′t−1θ0(y)

)) ]
= 0,

such that θ0(y) ∈ Θ;

(iii) The conditional distribution function of Yt given Xt, F (.|.), has a density function

f(.|.) that is continuous, bounded, and bounded away from zero at all y ∈ Supp(Y )

a.s.;

(iv) Λ
(
Y ′t−1θ(.)

)
is bounded away from zero and one uniformly over θ ∈ Θ a.s.;

(v) The matrix E(XtX
′
t) is finite and has full rank.

Then Assumptions 1-5 hold for the distributional autoregressive model in (1.19).

Under Assumptions 1-5, we can apply our test statistic ST to distributional regression

models in dependent data settings, such as in (1.19).

1.6 Finite-Sample Performance

To examine the finite-sample performance of our proposed test statistic and its bootstrap

procedure, we perform simulation experiments with data generating processes (DGPs)

under the null and the alternative hypothesis. The data are generated from the processes

below.
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Size DGPs :

DGP.1 (AR(1)) : Yt = 0.3Yt−1 + ut,

DGP.2 (AR(2)) : Yt = 0.3Yt−1 − 0.3Yt−2 + ut,

Power DGPs :

DGP.3 (TAR) :

Yt = 1 + 0.6Yt−1 + ut, if Yt−1 ≤ 1,

Yt = 1− 0.5Yt−1 + ut, if Yt−1 ≥ 1,

DGP.4 (Bilinear) : Yt = 0.8Yt−1ut−1 + ut,

DGP.5 (Nonlinear MA) : Yt = 0.8u2
t−1 + ut,

DGP.6 (Logistic Map) : Yt = 4Yt−1(1− Yt−1),

DGP.7 (GARCH(1,1)) : Yt = htut, h
2
t = 0.02 + 0.06Y 2

t−1 + 0.93h2
t−1,

where ut follows an i.i.d process with distribution N (0, 1). We want to test the null

hypothesis that the quantiles of Yt follow a AR(1) process:

H0 : F−1
Yt

(τ |θ0(τ), Yt−1) = α + βYt−1 + Φ−1
u (τ), a.s.,

where Φ−1
u (τ) is the τ -quantile of the standard Normal error distribution. We use DGP.1

and DGP.2, described in Corradi and Swanson (2006), to check the size performance

of our test statistic. While a QAR(1) model correctly specifies the conditional distri-

bution in DGP.1, we allow for dynamic misspecification in DGP.2, as F (y|θ0, Yt−1) 6=
F (y|θ0, Yt−1, Yt−2) with θ0 6= θ0. The DGPs 3-7 allows us to see the empirical power

performance and have been considered by Hong and Lee (2003) and Escanciano and Ve-

lasco (2010). In these experiments, rejection arises because of misspecification of the

conditional distribution model. DGP.4 and DGP.5 are second-order stationary, though

they are not invertible (Granger and Andersen, 1978). DGP.6 follows a process similar

to a white noise, but it has autocorrelations in squares similar to ARCH(1) (Granger and

Teräsvirta, 2010). DGP.7 examine the power of our test against misspecifications in the

conditional variance.

We also design a DGP for testing the specification of a Distributional Regression model

in the form of (1.19). The data are generated as in DGP.5, a Nonlinear MA(1) model,

and we are interested in testing the null hypothesis that the Distributional Regression
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model is correctly specified conditioning Yt only on Yt−1:

HDR
0 : F (y|Yt−1) = Λ

(
Y ′t−1θ(y)

)
, a.s., (1.22)

where Λ(.) is specified as a logistic distribution function. For all the experiments, we

consider the empirical rejection frequencies for 5% and 10% nominal level tests with

different sample sizes (T = 100 and 300), and choose a grid T = [0.01, 0.99]. In calcu-

lating the test statistics, we use an equally spaced grid of 100 quantiles Tn ⊂ T . We

perform 1, 000 Monte Carlo repetitions in each of the simulations, and apply B = 399

block bootstrap replications in each of the simulations to calculate the critical values.

Then the maximal simulation standard error for the tests empirical sizes and powers is

max0≤p≤1

√
p(1− p)/1000 ≈ 0.016. For each bootstrap replicate, we use three different

block lengths ` = {2, 4, 6}, which are close to the block length of CT 1/3, for a constant

C > 0, suggested by Künsch (1989). In all the replications, we generated and discarded

200 pre-sample data values. Except for the Distributional Regression specification test,

we compare our results with the test proposed by Escanciano and Velasco (2010) (EV

henceforth), based on

EV :=

∫ ∫ ∣∣∣(1(Yt −m(Xt, θ̂T (τ)) ≤ 0
)
− τj

)
exp(ix′Xt)

∣∣∣2 dW (x)dΦ(α), (1.23)

where W and Φ are some integrating measures on R and T , and m(Xt, θ̂T (τ)) is the

estimated parametric QAR(1) model for each τ -quantile, for τ ∈ T . The critical values

of the test (1.23) are obtained by subsampling. In each Monte Carlo replication, T −b−1

subsamples of size b were generated. We apply the EV test for two different subsample

sizes b = [kT (2/5)], for k = 3 and 4, following the suggestion of Sakov and Bickel (2000).

Tables 1.1 and 1.2 report the rejection frequencies of the ST test associated with the

DGPs 1-7, for sample sizes T = 100 and T = 300 respectively. The empirical level of

the ST test is generally close to the nominal level under the null hypothesis, disregarding

whether there is dynamic misspecification (DGP.2) or not (DGP.1). On the other hand,

the EV test of Escanciano and Velasco (2010) presents size distortions for both sample

sizes, increasing in the presence of dynamic misspecification (DGP.2). Those results are

robust for different subsample sizes b. Thus, our test has the correct asymptotic size even

in the presence of dynamic misspecification.

In terms of power, the ST test exhibits good power and reliable inference even when

using a small sample size T = 100. Comparing with the EV test, the ST test performs

well: it is the most powerful test for DPG.3, DGP.4, DGP.6, and DGP.7; it has less

power than the EV test only against DGP.5, when the subsample size is b = 18, but

it still has more power than the EV test for a subsample size of b = 25. In addition,
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the power of both tests converge to 1 for T = 300. Our test statistic is also powerful

against misspecifications in the distributional regression, as the power for testing HDR
0 in

(1.22) is 1 for a small sample size of T = 100 (Table 1.1). To the best of our knowledge,

no specification test for Distributional Regression models has been developed for a time

series setting. In sum, our proposed test seems to perform quite well in finite samples.
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Table 1.1. Monte Carlo empirical rejection frequencies of specification tests: T = 100

ST (` = 2) ST (` = 4) ST (` = 6) EV (b = 18) EV (b = 25)

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.1 0.030 0.110 0.060 0.110 0.036 0.066 0.075 0.129 0.077 0.120

DGP.2 0.030 0.080 0.040 0.100 0.052 0.102 0.091 0.160 0.084 0.143

DGP.3 0.960 0.990 0.990 0.990 0.920 0.960 0.888 0.931 0.847 0.913

DGP.4 0.962 0.990 1.000 1.000 1.000 1.000 0.997 0.999 0.984 0.993

DGP.5 0.912 0.952 0.864 0.916 0.900 0.954 0.944 0.969 0.913 0.944

DGP.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP.7 0.216 0.304 0.260 0.360 0.200 0.380 0.095 0.149 0.101 0.150

HDR0 1.000 1.000 1.000 1.000 1.000 1.000 - - - -

Note: ST denotes our proposed test statistic with B = 399 bootstrap replications with block lengths ` = {2, 4, 6}. EV

denotes the subsampling specification test of Escanciano and Velasco (2010). The null hypothesis HDR
0 test the specifica-

tion of a Distributional Regression model specified in (1.22), under DGP.5. We use 1,000 Monte Carlo repetitions based

on the DGPs 1-7 described above.

Table 1.2. Monte Carlo empirical rejection frequencies of specification tests: T = 300

ST (` = 2) ST (` = 4) ST (` = 6) EV (b = 29) EV (b = 39)

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

DGP.1 0.043 0.087 0.020 0.080 0.031 0.070 0.061 0.107 0.057 0.108

DGP.2 0.053 0.107 0.067 0.107 0.049 0.122 0.092 0.147 0.074 0.134

DGP.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP.7 0.970 0.980 0.960 0.980 0.980 1.000 0.186 0.272 0.189 0.260

HDR0 1.000 1.000 1.000 1.000 1.000 1.000 - - - -

Note: ST denotes our proposed test statistic with B = 399 bootstrap replications with block lengths ` = {2, 4, 6}. EV

denotes the subsampling specification test of Escanciano and Velasco (2010). The null hypothesis HDR
0 test the specifica-

tion of a Distributional Regression model specified in (1.22), under DGP.5. We use 1,000 Monte Carlo repetitions based

on the DGPs 1-7 described above.
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1.7 An Empirical Application

Many empirical papers have proposed methods to precisely check the specification of

models for Value-at-Risk (VaR). Since VaR determines the regulatory risk capital of all

regulated financial institutions (see Basel Committee on Banking Supervision 1996), the

outcome of a VaR model determines the multiplication factors for market risk capital

requirements of financial institutions. Thus, an inaccurate VaR model leads to an un-

derestimated multiplicative factor, that delivers an insufficient reserve of capital risk for

financial institutions. Therefore, the specification of VaR models is crucial for risk man-

agers, regulators, and financial institutions.

Since the VaR is a quantile of the portfolio returns, conditional on past informa-

tion, and as the distribution of portfolio returns evolves over time, it is challenging to

model time-varying conditional quantiles. An accurate VaR model satisfies Pr(Yt ≤
−V aRt|Ft−1) = τ , for a portfolio return series Yt, a past information set Ft−1, and a

quantile τ ∈ (0, 1). The dynamic conditional quantile regression approach specifies a

conditional VaR model using only the relevant past information that influence the quan-

tiles of interest, and many applications support this methodology (Chernozhukov and

Umantsev, 2001, Engle and Manganelli, 2004, Escanciano and Olmo, 2010).

To illustrate the performance of our proposed test statistic, we test different specifi-

cations of conditional quantile regression models for estimating the VaR of stock returns.

We estimate the VaR of the returns of two major stock indexes, the Frankfurt Dax Index

(DAX) and the London FTSE-100 Index (FTSE-100). The DAX and the FTSE-100 daily

stock indexes are two representatives of the data for which linear and non-linear quantile

regression models have been widely used, see e.g. Escanciano and Velasco (2010), Iqbal

and Mukherjee (2012), and Jeon and Taylor (2013). The dataset consists of 2,981 daily

observations - from January 2003 to June 2014 - on Yt, the one-day returns, and Xt, the

lagged returns (Yt−1, . . . , Yt−p).

Figure 1.1 displays the daily log-return series of the two series. It shows that both

log-return series display calm as well as volatile periods and also single outlying log-return

observations. Table 1.3 presents the summary statistics of the series. Both log-returns

series are highly leptokurtic and present autocorrelation.
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Table 1.3. Summary statistics: DAX and FTSE-100 daily log-returns

DAX FTSE-100

Mean 0.02 0.01

Std. Dev. 0.61 0.51

Median 0.03 0.01

Skewness 0.01 -0.12

Kurtosis 9.14 11.71

Minimum -3.23 -4.02

Maximum 4.69 4.08

Autocorrelation -0.01 -0.06

LB(10) 21.34 62.35

Note: The Autocorrelation is the first-order autocorrelation coeffi-
cient, and LB(10) denotes the Ljung-Box Q-statistic of order 10.

For each series, we estimate a Gaussian AR(1)-GARCH(1,1) of the VaR, V aRt(τ), as

follows:

AR(1)-GARCH(1,1): F−1
Yt

(τ |θ0(τ), Yt−1, σt) = β0 + β1Yt−1 + F−1
ε (τ)σt,

σ2
t = γ0 + γ1Y

2
t−1 + γ2σ

2
t−1,

where F−1
ε (τ) is the τ -quantile of the standard Gaussian error distribution. Thus, we test

the hypothesis H0: the VaR of the log-return Yt follows an AR(1)-GARCH(1,1) Gaussian

process. We choose this specification as GARCH models have provided appropriate spec-

ifications of the VaR of stock returns in the literature (Escanciano and Olmo, 2010). We

also entertain other models: GARCH(1,1), AR(2)-GARCH(2,2), E-GARCH(1,1), AR(1)-

GARCH(1,1) with Student-t5 distribution, and GARCH(1,1) with Student-t5 distribu-

tion. We apply GARCH(1,1) and AR(1)-GARCH(1,1) with a Student-t5 distribution

because they are valid models for the distribution of monthly stock returns in Bai (2003)

and Kheifets (2015). To present results with a different GARCH specification, we estimate

an E-GARCH(1,1) model for the VaR as:

E-GARCH(1,1): F−1
Yt

(τ |θ0(τ), Yt−1, ht) = F−1
ε (τ)ht, (1.24)

lnh2
t = α0 + α1 lnh2

t−1 + α2

(
|Y 2
t−1| − (2/π)

1
2

)
− α3Y

2
t−1.

As we want to compare our methodology with standard specification tests for condi-

tional quantile regression models in the literature, we perform the EV test described in

(1.23), with two different subsample sizes b = [kT 2/5] for k = 3 and k = 4.

Table 1.4 shows the p-values of the specification tests for all the VaR models for the
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Figure 1.1. Daily log-returns of DAX and FTSE-100 indexes in the period January 6th, 2003 to June 9th, 2014

full sample from January 2003 to June 2014. For the DAX index series, our test ST

rejects the specifications of all proposed models to fitting a VaR for the log-returns at 1%

significance level. These results are robust to three different block lengths. On the other

hand, the EV test of Escanciano and Velasco (2010) do not reject an AR(1)-GARCH(1,1)

specification with Student-t5 distribution at 1% significance level. Regarding the FTSE-

100 series, the ST test does not reject a AR(1)-GARCH(1,1) model at 1% significance

level, while the EV test does not reject a AR(1)-GARCH(1,1) model with Student-t5

distribution at the 1% significance level. We note that the AR(1)-GARCH(1, 1) family

of models is the only class of models that is not rejected for these returns series, but this

result is not robust to different block lengths.

For robustness, we perform the same tests to these models using only one year of

data, from June 26th, 2013 to June 9th, 2014. Table 1.5 displays the results for this

period. While the EV test of Escanciano and Velasco (2010) rejects all models, our test

ST does not reject most of the models at the 1% significance level for the DAX daily

returns series. Moreover, the AR(1)-GARCH(1,1) model with Student-t5 distribution

has obtained the highest p-value and is the only model that is not rejected at the 10%
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significance level. For the FTSE-100 returns, our test does not reject the GARCH(1,1),

GARCH(1,1) with Student-t5 distribution and the AR(1)-GARCH(1,1) model at the 1%

significance level, while the the EV test of Escanciano and Velasco (2010) does not reject

only the ARCH(1,1) with Student-t5 distribution at the 1% significance level.

Thus, the empirical application shows the ability of our test to detect possibly mis-

specified conditional distribution models when we have a small sample size. This is useful

for risk managers and financial institutions to apply a valid VaR model and obtain the

correct multiplicative factors for their market risk capital requirements.

37



Chapter 1. A Specification Test of Dynamic Conditional Distributions

Table 1.4. Specification tests p-values of VaR models of DAX and FTSE-100 returns: January 6th, 2003-June 9th, 2014

DAX

ST,6 ST,8 ST,16 EV(b=98) EV(b=122)

GARCH(1,1) - CAViaR 0.001 0.001 0.001 0.000 0.000

GARCH(1,1)-t5 - CAViaR 0.001 0.001 0.001 0.001 0.000

AR(1)-GARCH(1,1) - CAViaR 0.002 0.001 0.001 0.000 0.000

AR(1)-GARCH(1,1)-t5 - CAViaR 0.001 0.001 0.002 0.010 0.007

AR(2)-GARCH(2,2) - CAViaR 0.001 0.001 0.001 0.000 0.000

E-GARCH(1,1) - CAViaR 0.001 0.001 0.001 0.001 0.001

FTSE-100

ST,6 ST,8 ST,16 EV(b=98) EV(b=122)

GARCH(1,1) - CAViaR 0.001 0.001 0.001 0.000 0.000

GARCH(1,1)-t5 - CAViaR 0.001 0.001 0.001 0.010 0.002

AR(1)-GARCH(1,1) - CAViaR 0.002 0.011 0.003 0.009 0.004

AR(1)-GARCH(1,1)-t5 - CAViaR 0.004 0.005 0.004 0.010 0.007

AR(2)-GARCH(2,2) - CAViaR 0.009 0.004 0.003 0.000 0.000

E-GARCH(1,1) - CAViaR 0.001 0.001 0.001 0.001 0.001

Note: ST,` is the ST test with block length ` = {6, 8, 16}. We denote EV as the specification test of Escanciano and Velasco
(2010), with sub-sample size b. The E-GARCH(1,1) is estimated as in (1.24).
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Table 1.5. Specification tests p-values of VaR models of DAX and FTSE-100 returns: June 26th, 2013-June 9th, 2014

DAX

ST,3 ST,4 ST,6 EV(b=27) EV(b=36)

GARCH(1,1) - CAViaR 0.028 0.031 0.035 0.000 0.000

GARCH(1,1) - t5 - CAViaR 0.040 0.030 0.033 0.000 0.000

AR(1)-GARCH(1,1) - CAViaR 0.018 0.029 0.001 0.000 0.000

AR(1)-GARCH(1,1) - t5 - CAViaR 0.175 0.167 0.159 0.000 0.000

AR(2)-GARCH(2,2) - CAViaR 0.059 0.050 0.044 0.000 0.000

E-GARCH(1,1) - CAViaR 0.034 0.033 0.044 0.001 0.001

FTSE-100

ST,3 ST,4 ST,6 EV(b=27) EV(b=36)

GARCH(1,1) - CAViaR 0.634 0.608 0.614 0.000 0.000

GARCH(1,1) - t5 - CAViaR 0.622 0.582 0.602 0.010 0.002

AR(1)-GARCH(1,1) - CAViaR 0.451 0.443 0.465 0.009 0.004

AR(1)-GARCH(1,1) - t5 - CAViaR 0.288 0.001 0.001 0.010 0.007

AR(2)-GARCH(2,2) - CAViaR 0.001 0.001 0.001 0.000 0.000

E-GARCH(1,1) - CAViaR 0.001 0.001 0.001 0.001 0.001

Note: ST,` is the ST test with block length ` = {3, 4, 6}. We denote EV as the specification test of Escanciano and Velasco
(2010), with sub-sample size b. The E-GARCH(1,1) is estimated as in (1.24).

39



Chapter 1. A Specification Test of Dynamic Conditional Distributions

1.8 Conclusion

In this paper, we present a practical and consistent specification test of conditional dis-

tribution and quantile models in a very general setting for dependent observations. Our

setting covers conditional distribution models possibly indexed by function-valued param-

eters, which allows for a wide range of important empirical applications in economics and

finance, such as the linear quantile auto-regressive, the CAViaR, and the distributional

regression models. Based on a comparison between an estimated parametric distribu-

tion and the empirical distribution function, our proposed bootstrap test has the correct

asymptotic size and is consistent against fixed alternatives. In addition, our test has

non-trivial power against
√
T -local alternatives, with T the sample size.

Finite sample experiments suggest that our proposed test has good size and power

properties, and is more powerful than other comparable specification tests in the litera-

ture against almost all alternatives. In addition, our approach has the correct asymptotic

size under dynamic misspecification. An empirical application illustrates the practical

importance of our setting in risk management. The use of misspecified VaR models may

lead to the acceptance of a sub-optimal model for VaR, underestimating the multiplicative

factors of the reserve of capital risk of financial institutions. Therefore, checking the va-

lidity of a VaR model is of crucial importance for monitoring risk of financial institutions.

We observe that the AR(1)-GARCH(1, 1) family of models provided valid specifications

for the VaR of two major stock returns indexes.

A possible direction for future work is to extend this study to test Granger-causality

in distribution. Although the concept of Granger-causality is defined in terms of the

conditional distribution, the majority of papers have tested Granger-causality using con-

ditional mean regression models in which the causal relations are linear. As a result, a

conditional mean regression model cannot assess a tail causal relation or nonlinear causal-

ities. Our proposed approach allows us to evaluate nonlinear causalities, causal relations

in conditional quantiles, and Granger-causality in distribution through an application of

distributional regression in a time series context. One could also extend our approach to

the class of multivariate models, providing specification tests for vector autoregressions

and multivariate linear and non-linear models, see e.g. Francq and Räıssi (2007) and

Escanciano, Lobato, and Zhu (2013).

1.9 Appendix

1.9.1 Tools

In this section, we introduce some auxiliary results. Let M be a permissible class of

functions such that it can be indexed by some set T , i.e.,M = {Ψ(., τ) : τ ∈ T }, in such
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a way that the following holds: (i) T is a Suslin metric space (a Hausdorff topological

space that is the continuous image of a Polish space) with Borel σ-field B(T ), and (ii)

Ψ(., .) is ×B(T )-measurable function from RK×T to R (see Kosorok, 2007, Section 11.6).

Let Pf =
∫
f(θ, τ)dP (θ, τ), for f ∈ M. Given ε > 0, we define the covering number

N(ε,M, ||.||) as the minimal number of L2(P )-balls of radius ε needed to coverM, where

a L2(P )-ball of radius ε around a function g ∈ L2(P ) is the set {h ∈ L2(P ) : ||h−g|| < ε}.
We define the uniform covering numbers as supP N(ε||F||,M, L2(P )), with F the square-

integrable envelope of M. We assume that the M class of functions forms a so-called

Vapnik-Chervonenkis (VC) class of functions (see Dudley, 1978, Pollard, 1984). The VC

class is an extension of the class of indicator functions and has the interesting property

that for 1 ≤ p <∞, there are constants C1 and C2 satisfying

N(ε,M, ||.||) ≤ C1

(
(P (F)p)1/p

ε

)C2

,

for all ε > 0 and all probability measures P (see Lemmas II.25 and II.32 in Pollard, 1984).

In the following Lemma, we derive a Central Limit Theorem for strong mixing processes

for the empirical distribution, ẐT (y, x), under the null and the alternative hypothesis.

Lemma 1.9.1. Given Assumption 1, under H0 of (1.2) or HA of (1.3),

vT (y, x) :=
√
T (ẐT (y, x)− FY X(y, x)) =⇒ H1(y, x), in `∞(W),

where H1 is a tight mean zero Gaussian process in `∞(W) with covariance function

Cov(H1(y, x),H1(y′, x′)) =
∞∑

k=−∞

Cov
(
1{Y0 ≤ y}1{X0 ≤ x},1{Yk ≤ y′}1{Xk ≤ x′}

)
.

Proof. Assumption 1 implies strong mixing coefficients α(j) = O(j−k), for some k > 1.

Then the result follows from a direct application of Theorem 7.2 in Rio (2000).

In the paper, we have a functional parameter τ 7→ θ(τ), where τ ∈ T and θ(τ) ∈
B(T ,Θ), and the true value θ0(τ) solves the moment equations Ψ(θ, τ) = 0. The following

lemma establishes a functional delta method for the empirical analog Ψ̂T (θ, τ) of the

previous moment equations and for the estimator of the functional parameter, θ̂T (.).

Lemma 1.9.2. Given Assumptions 1-5, under H0 of (1.2) or HA of (1.3), we have

rT (θ, τ) :=
√
T (Ψ̂T (θ, τ)−Ψ(θ, τ)) =⇒ H̃2(θ, τ), in `∞(T ×Θ),

√
T (θ̂T (.)− θ0(.)) =⇒ −Ψ̇−1

θ0,.[H̃2(θ0(.), .)] in `∞ (T ) ,
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where H̃2 is a tight mean zero Gaussian process in `∞(T ×Θ) with covariance function

Cov(H̃2(θ, τ), H̃2(θ′, τ ′)) =
∞∑

k=−∞

Cov(ψ(W0, θ, τ), ψ(Wk, θ
′, τ ′)).

Proof. First, by Lemma E.1 in Chernozhukov et al. (2013), Assumptions 2-5 imply that

(i) the inverse of Ψ(., τ) defined as Ψ−1(x, τ) := {θ ∈ Θ : Ψ(θ, τ) = x} is continuous at

x = 0 uniformly in τ ∈ T with respect to the Hausdorff distance, (ii) there exists Ψ̇θ0,τ

such that limt→0 supτ∈T ,||h||=1 |t−1[Ψ(θ0(τ) + th, τ) − Ψ(θ0(τ), τ)] − Ψ̇θ0,τh| = 0, where

infτ∈T inf‖h‖=1 ||Ψ̇θ0,τh|| > 0, (iii) the maps τ 7→ θ0(τ) and τ 7→ Ψ̇θ0,τ are continuous, and

(iv) the mapping τ 7→ θ0(τ) is continuously differentiable. Under the previous conditions,

Lemma E.2 in Chernozhukov et al. (2013) holds, and the process rT (θ, τ) weakly converges

to H̃2(θ, τ) in `∞(T ×Θ) and the map θ 7→ Ψ(θ, .) is Hadamard differentiable at θ0 with

continuously invertible derivative Ψ̇θ0,.. By Hadamard differentiability of the map θ 7→
Ψ(θ, .), it follows the weak convergence of the process

√
T (θ̂T (.)− θ0(.)) in `∞ (T ).

Lemma 1.9.3. Given Assumptions 1-5, under H0 of (1.2) or HA of (1.3), we have

vθ0T (y, x) :=
√
T (F̂T (y, x, θ̂T )− FT (y, x, θ0)) =⇒ H2(y, x) in `∞ (W) ,

where H2 is a tight mean zero Gaussian process in `∞(W).

Proof. From Lemma A.2,
√
T (θ̂T (.) − θ0(.)) =⇒ −Ψ̇−1

θ0,.[H̃2(θ0(.), .)] in `∞ (T ), where

H̃2 is a Gaussian process in `∞(T ×Θ). By the functional delta method, we can rewrite

vθ0T (y, x) as

√
T (F̂T (y, x, θ̂T )− FT (y, x, θ0)) =

∫
(F (y|θ̂T , x̄)− F (y|x̄))1{x̄ ≤ x}

√
TdFX(x̄)

+

∫
F (y|x̄)1{x̄ ≤ x}

√
Td[F̂X(x̄)− FX(x̄)] + op(1).

By the Hadamard differentiability of the map θ 7→ F (.|θ(.), .) in Assumption 5, we

can apply the functional delta method, for fixed y and x, as follows:

√
T (F (y|θ̂T , x)− F (y|x)) =⇒ −Ḟ−1(y|θ0, x)

[
−Ψ̇−1

θ0,.[H̃2(θ0(.), .)]
]

:= H∗2(y, x) in `∞ (W) .

Similarly to Lemma A.1, under H0 of (1.2) or HA of (1.3), given the strong mixing

condition of Assumption 1,
√
T (F̂X(x̄) − FX(x̄)) weakly converges to a tight mean zero

Gaussian process. Now, let the measurable functions Γ : W 7→ [0, 1] be defined by

(y, x) 7→ Γ(y, x) and the bounded maps Π : H 7→ R be defined by f 7→
∫
fdΠ. Then
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it follows from Lemma D.1 in Chernozhukov et al. (2013) that the mapping (Γ,Π) 7→∫
Γ(., x)dΠ(x) - with Γ(., x) = 1{. ≤ x}F (.|x) and Π = FX(.) - is well defined and

Hadamard differentiable at (Γ,Π). Given the Hadamard differentiability of the mapping

(Γ,Π) 7→
∫

Γ(., x)dΠ(x), the result follows from an application of the functional delta

method, where the Gaussian process H2 is given by

H2(y, x) :=

∫
H∗2(y, x̄)1{x̄ ≤ x}dFX(x̄) +

∫
F (y|x̄)1{x̄ ≤ x}dH1(∞, x̄),

where H1 is the same tight mean zero Gaussian process described in Lemma A.1.

Lemma 1.9.4. Under the sequence of local alternatives HA,T of (1.11) and Assumptions

1-6,

√
T (ẐT (y, x)− FA

T (y, x)) =⇒ H1(y, x), in `∞(W),

√
T (Ψ̂T (θ, τ)−ΨFT

(θ, τ)) =⇒ H̃2(θ, τ), in `∞(T ×Θ),

where FA
T (y, x) =

∫
FT
(
y|x̄
)
1{x̄ ≤ x}dFX(x̄), ΨFT

(θ, τ) = EFT

[
ψ(Wt, θ, τ)

]
, and (H1, H̃2)

are the tight mean zero Gaussian processes derived in Lemmas A.1-A.2.

Proof. First, under Assumption 6, FA
T (y, x) is contiguous to F

(
y, x, θ0

)
, then the con-

vergence of the process vθ0T (y, x) :=
√
T (F̂T (y, x, θ̂T )− FT (y, x, θ0)) on Lemma A.3 imply

that
√
T (ẐT (y, x)−FA

T (y, x)) =⇒ H1(y, x) in `∞(W). Under the sequence of local alter-

natives HA,T of (1.11) and Assumptions 1-6, FT (y|Xt) of (1.11) is a linear combination of

two measures that are VC class with a square integrable envelope. From the convergence

of the process
√
T (Ψ̂T (θ, τ)−Ψ(θ, τ)) in Lemma A.2 and an application of Lemma 2.8.7

in Van der Vaart and Wellner (2000), we have that
√
T (Ψ̂T (θ, τ) − ΨFT

(θ, τ)) weakly

converges to H̃2(θ, τ) in `∞(T ×Θ).

We define weak convergence conditional on the data in probability (
P

=⇒
M

-convergence)

in the Hoffmann-Jørgensen sense, i.e., X̂n
P

=⇒
M

X in a metric space D denotes conditional

bootstrap convergence in probability under P, that is, supf∈`∞(H) |EMf(X̂n)−Ef(Xn)| P→
0. The subscript M denotes taking the expectation conditional on the data. The following

lemma derives the convergence of the block bootstrap of empirical process for dependent

observations.

Lemma 1.9.5. Let Wt = {YTt, XTt} be a (1 + d)-dimensional triangular array with

stationary rows satisfying Assumption 7 with marginal distribution P , and let M :=

{Ψ(θ, τ) : θ ∈ Θ, τ ∈ T } be a permissible VC class of measurable functions with a square

integrable envelope function F satisfying P (F)p <∞, for 2 < p <∞. Conditional on the
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data W1, . . . ,WT , let W ∗
1 , . . . ,W

∗
T be generated according to the block bootstrap with block

length ` := `(T ), with `(T )→∞ as T →∞. Let v∗T (y, x) :=
√
T (Ẑ∗T (y, x)− ẐT (y, x)) be

the block bootstrap version of the empirical process vT (y, x) =
√
T (ẐT (y, x)−FY X(y, x)).

Suppose that

lim sup
k→∞

kqβ(k) <∞ for some q > p/(p− 2) and that P ∗(F)p <∞ for some p > 2.

Assume that the block length `(T ) also satisfies

`(T ) = O(T ρ) for some 0 < ρ < (p− 2)/[2(p− 1)].

Then

v∗T (y, x)
P

=⇒
M

H1(y, x), in `∞(W),

where H1 is a tight mean zero Gaussian process as defined in Lemma A.1.

Proof. The result follows directly from an application of Theorem 1 in Radulović (1996)

or Theorem 11.26 in Kosorok (2007), slightly modified to address measurability.

Lemma 1.9.6. Under Assumptions 2-7, under H0 of (1.2), or HA of (1.3), or under the

local alternative HA,T of (1.11),

√
T (F̂ ∗T (y, x, θ̂∗T )− F̂T (y, x, θ̂T ))

P
=⇒
M

H2(y, x) in `∞ (W) ,

where H2 is the tight mean zero Gaussian process defined in Lemma A.3.

Proof. Since F (.|θ, .) is Hadamard differentiable, by the chain rule for the Hadamard

derivative and bootstrap convergence result of Lemma A.5 we can apply a functional

delta-method for bootstrap in probability defined in Theorem 3.9.11 of Van der Vaart

and Wellner (2000) that yields the result.

1.9.2 Proofs

Proof of Theorem 1. To prove part (i), we consider the empirical processes vT (y, x) =√
T (ẐT (y, x) − FY X(y, x)) and vθ0T (y, x) =

√
T (F̂T (y, x, θ̂T ) − FT (y, x, θ0)) defined in

Lemma A.1 and Lemma A.3, respectively. Under H0 of (1.2), FY X(y, x) ≡ F (y, x, θ0),
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and we have

ST =T

∫
(ẐT (y, x)− F̂T (y, x, θ̂T ))2dẐT (y, x)

=T

∫
(ẐT (y, x)− F̂T (y, x, θ̂T )± FY X(y, x))2dẐT (y, x)

=

∫
(vT (y, x)− vθ0T (y, x))2dẐT (y, x)

=

∫
(vT (y, x)− vθ0T (y, x))2dFY X(y, x)

+

∫
(vT (y, x)− vθ0T (y, x))2d(ẐT (y, x)− FY X(y, x)).

By Lemma A.1, we have
√
T (ẐT (y, x) − FY X(y, x)) =⇒ H1(y, x) that is a tight mean

zero Gaussian process in `∞(W). Then

ST =

∫
(vT (y, x)− vθ0T (y, x))2dFY X(y, x) + oP (1).

By Lemmas A.1 and A.3, (vT (y, x), vθ0T (y, x)) =⇒ (H1(y, x),H2(y, x)) in `∞(W ×W).

Then the result follows by an application of the continuous mapping theorem.

In part (ii), under the alternative hypothesis HA of (1.3), FY X(y, x) 6= F (y, x, θ1)

for some (y, x) ∈ W and for all θ1 ∈ B(T ,Θ). Now the process vθ0T (y, x) becomes

vθ0T (y, x) =
√
T (F̂T (y, x, θ̂T )− FT (y, x, θ1)). Then

ST = T

∫ (
ẐT (y, x)− F̂T (y, x, θ̂T )± FY X(y, x)± F (y, x, θ1)

)2

dFY X(y, x)

=

∫ (
vT (y, x)− vθ0T (y, x) +

√
T (FY X(y, x)− F (y, x, θ1))

)2

dFY X(y, x) + oP (1).

By Lemmas A.1 and A.3, (vT (y, x), vθ0T (y, x)) =⇒ (H1(y, x),H2(y, x)) in `∞(W ×W).

Therefore, for any fixed constant ε > 0, limT→∞ Pr(ST > ε) = 1 and the result follows.

Proof of Theorem 2. Under the local alternative HA,T in (1.11), consider the empirical

processes

v1
T (y, x) =

√
T

(
ẐT (y, x)−

∫
F (y|θ0, x̄)1{x̄ ≤ x}dFX(x̄)

)
, and

r1
T (θ, τ) =

√
T
(
Ψ̂T (θ, τ)− EF [ψ (Wt, θ, τ)]

)
,
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where ΨF (θ, τ) := EF [ψ(Wt, θ, τ)] as defined in (1.12). Then

v1
T (y, x) =

√
T

(
ẐT (y, x)−

∫
F (y|θ0, x̄)1{x̄ ≤ x}dFX(x̄)

)

=
√
T

(
ẐT (y, x)−

∫ [
FT (y|x̄) +

δ√
T

(F (y|θ0, x̄)− J(y|x̄))

]
1{x̄ ≤ x}dFX(x̄)

)

=
√
T

(
ẐT (y, x)− FA

T (y, x) +
δ√
T

∫
(J(y|x̄)− F (y|θ0, x̄)))1{x̄ ≤ x}dFX(x̄)

)
.

Thus, it follows from Lemma A.4 that

v1
T (y, x) =⇒ H1(y, x) + δ

∫
(J(y|x̄)− F (y|θ0, x̄))1{x̄ ≤ x}dFX(x̄),

where H1 is a tight mean zero Gaussian process in `∞(W) defined in Lemma A.1. Now

we have that

r1
T (θ, τ) =

√
T
(
Ψ̂T (θ, τ)− EF [ψ (Wt, θ, τ)]

)
=
√
T
(
Ψ̂T (θ, τ)− {EFT

[ψ (Wt, θ, τ)] + δ EF [ψ(Wt, θ, τ)]− δ EJ [ψ(Wt, θ, τ)]}
)

=
√
T
(
Ψ̂T (θ, τ)−ΨFT

(θ, τ) + δ [EJ [ψ(Wt, θ, τ)]− EF [ψ(Wt, θ, τ)]]
)
,

where ΨJ(θ, τ) := EJ [ψ(Wt, θ, τ)] as defined in (1.13). Thus, by Lemma A.4, we have

r1
T (θ, τ) =⇒ H̃2(θ, τ) + δ

[
EJ [ψ(Wt, θ, τ)]− EF [ψ(Wt, θ, τ)]

]
,

where H̃2 is a tight mean zero Gaussian process in `∞(T × Θ) defined in Lemma A.2.

Now, we consider the empirical process v1θ0
T (y, x)

v1θ0
T (y, x) =

√
T

(∫
F (y|θ̂T , x̄)1{x̄ ≤ x}dF̂X(x̄)−

∫
F (y|θ0, x̄)1{x̄ ≤ x}dFX(x̄)

)
.

Thus, by Lemma A.3, we have that

v1θ0
T (y, x) =⇒ H2(y, x) + δ

∫
Ḟ (y|x̄)[h]1{x̄ ≤ x}dFX(x̄),
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with h(τ) = [ ∂
∂θ
ΨF (θ0, τ)]−1ΨJ(θ0, τ). Therefore, under HA,T of (1.11), we have

ST =T

∫ (
ẐT (y, x)− F̂T (y, x, θ̂T )±

∫
F (y|θ0, x̄)1{x̄ ≤ x}dFX(x̄)

)2

dẐT (y, x)

=

∫
(v1
T (y, x)− v1θ0

T (y, x))2dẐT (y, x)

=

∫
(v1
T (y, x)− v1θ0

T (y, x))2dFY X(y, x)

+

∫
(v1
T (y, x)− v1θ0

T (y, x))2d(ẐT (y, x)− FY X(y, x))

=

∫
(v1
T (y, x)− v1θ0

T (y, x))2dFY X(y, x) + oP (1),

then the result follows from the continuous mapping theorem.

Proof of Theorem 3. For part (i), by Lemma A.6, ĉ∗T (α) = c(α) + oP (1), where c(α)

satisfies Pr(ST > c(α)) = α + o(1). Then as T → ∞, Pr(ST > ĉ∗T (α)) = α + o(1). For

part (ii), there exists a fixed constant C > 0 such that

Pr(ST ≤ ĉ∗T (α)) = Pr(ST ≤ ĉ∗T (α), ST ≤ C) + Pr(ST ≤ ĉ∗T (α), ST > C)

≤ Pr(ST ≤ C) + Pr(ĉ∗T (α) > C)

≤ o(1) + ε+ o(1),

where the first element of the third line follows from Theorem 1 - Pr(ST ≤ C) = o(1) -

and the rest of the third line is due to Lemmas A.5-A.6, that imply the block bootstrap

critical value ĉ∗T (α) is bounded in probability under fixed alternatives, i.e., for any ε > 0,

there exists a fixed constant C such that Pr(ĉ∗T (α) > C) < ε + o(1). The result follows

from an arbitrary choice of ε > 0. Part (iii) follows from an application of Theorem

4 of Andrews (1997) and Anderson’s Lemma in Ibragimov and Has’minskii (1981). By

Anderson’s Lemma, since H1(y, x) − H2(y, x) has mean zero ∀(y, x) ∈ W , under H0 we

have

Pr

(∫
(H1(y, x)−H2(y, x) + ∆(y, x))2 dFY X(y, x) ≥ c(α)

)

≥ Pr

(∫
(H1(y, x)−H2(y, x))2 dFY X(y, x) ≥ c(α)

)
= Pr (ST ≥ c(α)) = α.
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Thus, under a sequence of local alternatives, we have Pr (ST > c(α)) ≥ α + o(1). Under

Assumption 6, the conditional distribution under a local alternative FT (.|.) implies a

sequence of distribution functions ZT (y, x) that is contiguous to the distribution function

F
(
y, x, θ0

)
given by

∫
F (y|θ0, x̄))1{x̄ ≤ x}dFX(x̄), under the sequence of local alterna-

tives HA,T of (1.11). Since contiguity preserves convergence in probability to constants,

under the sequence of local alternatives HA,T of (1.11) we have

Pr

(∫
(H1(y, x)−H2(y, x) + ∆(y, x))2 dFY X(y, x) ≥ ĉ∗T (α)

)

= Pr

(∫
(H1(y, x)−H2(y, x) + ∆(y, x))2 dFY X(y, x) ≥ c(α)

)
+ o(1)

≥ Pr

(∫
(H1(y, x)−H2(y, x))2 dFY X(y, x) ≥ c(α)

)
= Pr (ST ≥ c(α)) ≥ α,

where equality holds when ∆(y, x) ≡ 0 a.e., with ∆(y, x) the non-trivial shift function

defined in Theorem 2.

Proof of Proposition 1. Condition (ii) is equivalent to Assumption 1. Condition (i) en-

sures that, for each τ ∈ T , Ψ(θ, τ) : Θ 7→ RK possess a unique zero at θ0(τ). By Lemma

D.1 of Chernozhukov et al. (2013), Conditions (iii) and (iv) imply Hadamard differentia-

bility of the map θ 7→ F (.|θ, .), for each τ ∈ T and for all θ ∈ B(T ,Θ). Condition (iii)

provides conditions for the check function ψ(Wt, θ̂T , τ) =
(
τ−1{Yt−X ′tθ̂T (τ) ≤ 0}

)
to be

differentiable, and thus for Assumption 4. Finally, The Lipschitz Condition (iv) ensures

that the class of functions {ψ(Wt, θ, τ) =
(
τ − 1{Yt −X ′tθ(τ) ≤ 0}

)
: θ ∈ Θ, τ ∈ T } is a

VC class.

Proof of Proposition 2. Conditions C0-C7 and AN1-AN3 of Engle and Manganelli (2004)

assure that conditions (i),(iii)-(v) of Proposition 1 hold for the distribution of Yt given

Xt implied by the CAViaR model. Thus, it follows from the proof of Proposition 1.

Proof of Proposition 3. Condition (i) provides conditions for Assumption 1. Condition

(ii) ensures that, for each τ ∈ T , Ψ(θ, τ) : Θ 7→ RK possess a unique zero at θ0(τ). Let

the check function be ψ(Wt, θ(y), τ) = 1{Yt ≤ y} ln(Λ(Y ′t−1θ(y)))+(1−1{Yt ≤ y}) ln(1−
Λ(Y ′t−1θ(y))). Then conditions (ii)-(v) imply that the mapping Ψ(θ, τ) : Θ × I 7→ RK

is continuous, where I is an open set containing T . Besides, ∂
∂θ
Ψ(θ, τ) := Ψ̇θ,τ exists at

(θ0(τ), τ) and is continuous at (θ0(τ), τ), for each τ ∈ T , with infτ∈T inf‖h‖=1 ||Ψ̇θ0,τh|| > 0.

By Lemma E.1 of Chernozhukov et al. (2013), the mapping τ 7→ θ(τ) is continuously

differentiable. By Lemma E.2 of Chernozhukov et al. (2013), we have Hadamard differ-

entiability of the map θ 7→ F (.|θ, .), for each τ ∈ T and for all θ ∈ B(T ,Θ).
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Chapter 2

Testing for Granger-Causality in

Quantiles

2.1 Introduction

The Granger-causality definition proposed by Granger (1969) is the fundamental concept

for studying dynamic relationships between time series. According to this definition, a

series Yt is said to Granger-causesXt+l if it incorporates information about the predictabil-

ity for Xt+l encompassed nowhere else in some large information set, which includes Xt−j

, j ≥ 0. Although the concept of Granger-causality is defined in terms of the conditional

distribution, the majority of papers have tested Granger-causality using conditional mean

regression models in which the causal relations are linear. As a result, a conditional mean

regression model cannot assess a tail causal relation or nonlinear causalities.

This paper proposes a parametric omnibus test of Granger-causality in quantiles.

The proposed approach allows us to evaluate nonlinear causalities, causal relations in

conditional quantiles, and provides a sufficient condition for Granger-causality when all

quantiles are considered. The quantile regression approach provides a more detailed and

flexible analysis of the entire conditional distribution than the conditional mean-regression

analysis, that focus only on a single part of the conditional distribution. In addition, a

quantile causal relation may contrast with a causality in the mean of the conditional

distribution. While a relationship with mean-causality shifts at least a non-negligible

number of quantiles, a tail causal relation does not necessarily imply a causality in the

mean. For example, Lee and Yang (2012) show that money-income Granger-causality in

the conditional mean is quite weak and unstable, while it is significant in tail quantiles

in most data sets. Finally, the proposed test is equivalent to testing Granger-causality in

distribution when all quantiles are considered. Rather than checking a necessary condition

for Granger-causality, our approach analyses a continuous space of conditional quantile

functions that fully characterizes the concept of Granger-causality in distribution.
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Our test is an extension of the method proposed by Escanciano and Velasco (2010) in

the context of testing parametric conditional quantile restrictions over a range of quan-

tiles. The intuition is to specify, for each quantile of the conditional distribution, a

parametric conditional quantile model for a series Xt contained in an information set

without Yt−1, and check if the innovations of this model are correlated with the series

Yt−1, included in a larger information set that contains Xt−j for j ≥ 1. To our knowledge,

testing for Granger-causality in quantiles by parametric methods in a flexible specification

setting has not been analysed in the literature before. Our test statistic is a Cramér-von

Mises (CvM) functional norm of quantile-marked empirical processes that characterizes

the null hypothesis of Granger non-causality. We reject the null hypothesis that Yt−1 does

not Granger-causes Xt whenever our test statistic is significantly different from zero, for

any quantile over a continuum of quantile levels.

As the proposed test statistic is asymptotically non-pivotal and depends on the data

generating process, we tabulate critical values via a subsampling method. The sub-

sampling approach allows us to apply non-linear conditional quantile regression models.

Although our proposed test is computationally demanding, it has many interesting the-

oretical features: it does not require the choice of smoothing parameters, is consistent

against all fixed alternatives, and is asymptotically strictly unbiased against a sequence

of Pitman’s local alternatives.

Chuang, Kuan, and Lin (2009) and Yang, Tu, and Zeng (2014) estimated the quantile

causal effects by quantile regressions and tested the hypothesis of Granger non-causality

by performing the Sup-Wald test of Koenker and Machado (1999) in all quantiles. We

extend their method in two ways. First, our test provides an omnibus type of property: it

requires only a model for the marginal quantile regression (under the null of no causality),

and then searches for rejections of the null hypothesis in every direction, while the Sup-

Wald test requires a particular model specification for the quantile regression under the

alternative hypothesis of causality. In addition, we allow for non-linear specifications of

the quantile regression model under the null. Many causal relations are non-linear, see

for instance Bouezmarni, Rombouts, and Taamouti (2012). Therefore, a test based on a

linear quantile regression model cannot be applied to testing nonlinear causality.

Regarding nonparametric approaches, Hong, Liu, and Wang (2009) proposed a non-

parametric test of causality in Value-at-Risk (VaR), but their method provides only a

necessary condition for Granger-causality. Jeong, Härdle, and Song (2012) extended

the idea of Zheng (1998) to transform conditional quantile restrictions into conditional

mean restrictions to testing causality in quantiles; more recently, Taamouti et al. (2014)

proposed a nonparametric test for conditional density based Granger-causality. However,

both testing procedures of the Granger-causality null hypothesis require beta-mixing con-

ditions in the data generating process and are based on kernel methods. We provide two

advantages. First, except for the application of the subsampling, our proposed causality
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test does not need mixing assumptions, and it requires only α-mixing assumptions for

the validity of the subsampling, which are less restrictive than beta-mixing conditions.

Moreover, our approach does not require the choice of smoothing parameters. Eventually,

our parametric test is able to identify all the patterns of causality in the conditional dis-

tribution for flexible linear and nonlinear models, while nonparametric methods hardly

provide a clear interpretation of the causal relations.

As further contributions, we investigate the finite sample performance of our method

on simulated data and we illustrate the empirical applicability of our setting by verifying

the causal relation between the gold price, the USD/GBP exchange rate, and the oil

price.

The rest of the paper is organized as follows. In Section 2, we propose a test statistic

for the null hypothesis of non Granger-causality in quantiles. In Section 3, we derive

the asymptotic limit distribution of our test statistic under the null and the alternative

hypotheses. We also prove that our test statistic has nontrivial power against
√
T -local

alternatives, with T the sample size, and we theoretically justify the validity of the sub-

sampling approach in our framework. Section 4 presents Monte Carlo simulation results.

In Section 5, we show an empirical application of our proposed test, and Section 6 con-

cludes the paper.

2.2 An Omnibus Test for Granger-Causality in Quan-

tiles

2.2.1 Testing Problem

Let {(Yt, Zt) : Ω × Ω 7→ R × R ≡ R2, t ∈ Z} be a strictly stationary and ergodic

stochastic process defined on some probability space (Ω,F , P ), where Ft is the σ−field

Ft = {(Ys, Zs), s ≤ t}, with joint distribution function FY,Z(y, z). Let FY (y|Z) be the

conditional distribution function of Y given Z, and we assume it is continuous for all

y ∈ R. For simplicity, we examine only univariate Markov processes of order one and

Granger-causality in lags, but we can extend our results to multivariate Markov processes

of order d > 1 and/or to instantaneous Granger-causality. We define the information

set available at time t as It ≡
(
IYt , I

Z
t

)
, where IYt := (Yt−1, . . . Yt−T+1)′ ∈ RT−1 and

IZt := (Zt−1, . . . Zt−T+1)′ ∈ RT−1, and A′ denotes the transpose matrix of A.

According to Granger (1969), a random variable Z does not Granger cause another

random variable Y when we are not better able to predict Y using all available information

than if the information apart from the past of Z until t−1 had been used. We characterize
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the null hypothesis of Granger non-causality from Z to Y as follows:

HZ9Y
0 : FY

(
y
∣∣IYt , IZt ) = FY

(
y
∣∣IYt ) , for all y ∈ R. (2.2.1)

We denote the null hypothesis of (2.2.1) as Granger non-causality in distribution.

Since the estimation of the conditional distribution may be complicated in practice, many

papers have tested Granger non-causality in mean, that is only a necessary condition

(2.2.1). In this case, Z does not Granger cause Y in mean if

E
(
Yt
∣∣IYt , IZt ) = E

(
Yt
∣∣IYt ) a.s., (2.2.2)

where E
(
Yt
∣∣F) denotes the mean of FY

(
�
∣∣F). Granger non-causality in mean of (2.2.2)

can be easily extended to higher order moments, see for example Cheung and Ng (1996).

However, causality in mean (or in higher moments) overlooks the dependence that may

appear in conditional tails of the distribution. On the other hand, the Granger non-

causality distribution of (2.2.1) does not inform us about the level where the causality

exists, if (2.2.1) is rejected. Thus, we propose to test Granger non-causality in conditional

quantiles, since it allows us to determine the pattern of causality and it provides a suffi-

cient condition for testing Granger non-causality in distribution of (2.2.1), as the quantiles

completely characterize a distribution. Let QFα (�|F) be the α-quantile of FY
(
�
∣∣F), we

can equally test (2.2.1) as:

HQC:Z9Y
0 : QZ,Y

α

(
Yt
∣∣IYt , IZt ) = QY

α

(
Yt
∣∣IYt ) , a.s. for all α ∈ T , (2.2.3)

where T is a compact set such that T ⊂ [0, 1] and the conditional α-quantiles of Y satisfy

the restrictions below

Pr
{
Yt ≤ QY

α

(
Yt
∣∣IYt ) ∣∣IYt } := α, for all α ∈ T ,

Pr
{
Yt ≤ QZ,Y

α

(
Yt
∣∣IZt , IYt ) ∣∣IZt , IYt } := α, for all α ∈ T . (2.2.4)

Since Pr
{
Yt ≤ QFα

(
Yt
∣∣F) ∣∣F} = E

{
1
[
Yt ≤ Qα

(
Yt
∣∣F)] ∣∣F}, where 1(a ≤ b) is an indi-

cator function of the event that a is less or equal than b, (2.2.3) is equivalent to

E
{
1
[
Yt ≤ QZ,Y

α

(
Yt
∣∣IYt , IZt )] ∣∣∣IYt , IZt } = E

{
1
[
Yt ≤ QY

α

(
Yt
∣∣IYt )] ∣∣∣IYt , IZt } ,

a.s. for all α ∈ T , (2.2.5)

where the left-hand side of (2.2.5) is equal to the α-quantile of FY
(
�|IYt , IZt

)
by definition.

We postulate a parametric model to estimate the α-th quantile of FY (�|F), where we

assume that QFα (�|F) is correctly specified by a parametric model m(., θ(α)) belonging

to a family of functionsM =
{
m(., θ(α))

∣∣θ(.) : τ 7→ θ(τ) ∈ Θ ⊂ Rp, for τ ∈ T ⊂ [0, 1]
}

.
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Let B ⊂ M be a family of uniformly bounded functions τ 7→ θ(τ) such that θ(τ) ∈ Θ ⊂
Rp. Then, under the null hypothesis in (2.2.3), the α-conditional quantile QY

α

(
�|IYt

)
is

correctly specified by a parametric model m(IYt , θ0(α)), for some θ0 ∈ B, using only the

restricted information set IYt , and we redefine our testing problem in (2.2.3) as:

HZ9Y
0 : E

[
1
(
Yt ≤ m

(
IYt , θ0(α)

)) ∣∣IYt , IZt ] = α, a.s. for all α ∈ T , (2.2.6)

versus

HZ9Y
A : E

[
1
(
Yt ≤ m

(
IYt , θ0(α)

)) ∣∣IYt , IZt ] 6= α, for some α ∈ T , (2.2.7)

with m(IYt , θ0(α)) as the only element of M that is a possible candidate equivalent for

the true conditional quantile Qα

(
Yt|IYt

)
, for all α ∈ T . To simplify notation, we rewrite

(2.2.6) as HZ9Y
0 : E

[
Ψα,t (θ0) |IYt , IZt

]
= 0 almost surely, for all α ∈ T , where

Ψα,t (θ0) := 1
(
Yt −m

(
IYt , θ0(α)

)
≤ 0
)
− α. (2.2.8)

The null hypothesis implies the moment condition E
[
Ψα,t (θ0)w

(
IYt , I

Z
t

)]
= 0 for all

measurable functions w
(
IYt , I

Z
t

)
such that E

[
|w
(
IYt , I

Z
t

)
|
]
< ∞ and all α ∈ T . Fol-

lowing Escanciano and Velasco (2010), we characterize, under a proper measure-theoretic

argument, the null hypothesis (2.2.6) by the infinite set of unconditional moment restric-

tions as follows:

E
{

Ψα,t (θ0) exp
(
ix′IYt I

Z
t

)}
=0, for all x ∈ RT−1 and for all α ∈ T , (2.2.9)

where w
(
IYt , I

Z
t

)
= exp

(
ix′IYt I

Z
t

)
was chosen because it has obtained better power

properties than other weighting functions, and i =
√
−1 is the imaginary root. We base

our test on the sample analog of the moment restriction of (2.2.9)

vT (x, α) :=
1√
T

T∑
t=1

Ψα,t (θn) exp
(
ix′IYt I

Z
t

)
, (2.2.10)

where θn(α) is a
√
T -consistent estimator of θ0(α), for all α ∈ T . Our framework applies

for any
√
T -consistent estimator of θn(α) satisfying some mild conditions (described in the

next section) such as the quantile regression estimator by Koenker and Bassett (1978),

the quantile autoregressive estimator by Koenker and Xiao (2006), and the CAViaR

estimator by Engle and Manganelli (2004). Given our sample {(Yt, Zt) : 1 ≤ t ≤ T},
we define vT (x, α) as the quantile marked-residual process, indexed by x ∈ RT−1 and

α ∈ T . Our proposed test statistic GCQT is a Cramér-von Mises (CvM) functional norm
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of vT (x, α) defined as

GCQT :=

∫
T

∫
X

∣∣vT (x, α)
∣∣2dFx(x)dFα(α) (2.2.11)

=
1

m(T − 1)

m∑
j=1

T−1∑
i=1

∣∣vT (xi, αj)
∣∣2,

where Fx(�) and Fα(�) are some integrating measures on X and T respectively, X is a

generic compact subset of RT−1 containing the origin, and m is the size of a deterministic

grid of equidistributed quantiles, {αj}mj=1 = Tm, used in the estimation of the parametric

model m (�, θn(α)). We may also estimate the test statistic of (2.2.11) when m→∞ and

the grid {αj}mj=1 is obtained independently from a distribution on T , see Escanciano and

Velasco (2010) for more details. We chose the CvM functional norm because unreported

simulations suggested that the Cramér-von Mises type statistics provide better size and

power results than the ones implied by other continuous functional norms such as the

Kolmogorov norm.

Under the assumptions described in the next section, the test statistic GCQT weakly

converges to zero under the null hypothesis (2.2.6), and to a probability limit different

than zero under the alternative (2.2.7). We reject the null hypothesis whenever we observe

“large” values of GCQT .

2.2.2 Subsampling Critical Values

The null distribution of test statistic GCQT is asymptotically non-pivotal and depends

on the data generating process (DGP), then we implement a subsampling procedure to

calculate critical values for GCQT . Subsampling is a resampling method that provides

an asymptotic inference under general conditions on the DGP, including the time series

case. We can compute a subsampling realization of our test statistic GCQT as follows:

1. Draw a subsample of the variables {(Yb,t, Zb,t) , 1 ≤ t ≤ T} without replacement from

the realized sample {(Yt, Zt) , 1 ≤ t ≤ T};

2. Using the subsampling data {(Yb,t, Zb,t) , 1 ≤ t ≤ T}, compute estimates vb,T (x, α) of

vT (x, α) and calculate the correspondent subsampling realization of the test statistic:

GCQb,T =
1

mb

m∑
j=1

b∑
i=1

∣∣vb,T (xi, αj)
∣∣2.
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We approximate the CDF of GCQT , FGCQT
(w) = Pr (GCQT ≤ w), from the distri-

bution of the realizations of vb,T (x, α) over the different subsamples of size T − b:

F b
GCQT

(w) =
1

T − b

T−b∑
i=1

1
(
GCQi

b,T ≤ w
)
, w ≥ 0. (2.2.12)

Our proposed test statistic GCQT rejects the null hypothesis (2.2.6) if GCQT >

cb,T (1−α) for some significance level α ∈ (0, 1), where the critical value cb,T (1−α) is the

(1− α)-th sample quantile of (2.2.12).

2.3 Asymptotic Theory

In this section, we derive the asymptotic distributions of our test statistic GCQT under

the null and alternative hypothesis. We consider the process vT (x, α) of (2.2.10) as a

mapping from (Ω,F , P ) taking values in `∞ (X × T ), that is the set of all complex-

valued uniformly bounded functions defined with the supremum metric, d∞, and Bd∞ is

its Borel σ-algebra. Hereafter “=⇒” denotes the weak convergence on (Bd∞ , d∞), and

C is a fixed constant. Let Ft = σ
(
IYt , I

Y
t−1, . . .

)
be the σ-field generated up to time t,

we define the α-quantile innovation, for each t ∈ Z, as εt(α) := Yt − Qα

(
IYt
)

and the

parametric quantile error as et (θ(α)) := Yt −m
(
IYt , θ(α)

)
. In addition, fx denotes the

density function of a conditional distribution function Fx. All limits are taken as T →∞,

where T is the sample size. We maintain the following main assumptions to analyse the

asymptotic behavior of our test statistic:

Assumption 8. {(Yt, Zt) : t ∈ Z} is a strictly stationary and ergodic process, with

E
[
|IY0 |2

]
< C. Under HZ9Y

0 of (2.2.6), {Ψα,t (θ0(α)) ,Ft} is a martingale difference

sequence for all α ∈ T . The parametric family m(., θ0(α)) is nondecreasing in α a.s.

The family of distributions functions {Fx, x ∈ RT−1} has Lebesgue densities {fx, x ∈
RT−1} that are equicontinuous and uniformly bounded away from zero for the quantiles

of interest.

Assumption 9. For each θ1 ∈ B,

(a) There exists a vector of functions gt−1 : Θ 7→ RT−1, for gt−1(θ1(α)) Ft−1−measurable

for each t ∈ Z satisfying, for all k <∞,

sup
1≤t≤T, ‖θ1−θ2‖B≤kT−1/2

T 1/2‖m(IYt , θ2)−m(IYt , θ1)− (θ2 − θ1)′gt−1(θ1)‖B = op(1).
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(b) For all sufficiently small δ > 0,

E

[
sup

‖θ1−θ2‖B≤δ

∣∣1(Yt ≤ m(IYt , θ1(α)))− 1(Yt ≤ m(IYt , θ2(α)))
∣∣] ≤ Cδ, for all α ∈ T ,

and

E

[
sup

|α1−α2|≤δ

∣∣m(IYt , θ1(α1))−m(IYt , θ1(α2))
∣∣] ≤ Cδ.

(c) Uniformly in α ∈ T , E
∣∣gt−1(θ1(α))

∣∣2 <∞, and uniformly in (x′, α)′ ∈ X × T ,

∣∣∣∣∣ 1

T

T∑
t=1

gt−1(θ0(α)) exp(ix′IYt I
Z
t )fIY

t
(m(IYt , θ0))

− E[gt−1(θ0(α)) exp(ix′IYt I
Z
t )fIY

t
(m(IYt , θ0))]

∣∣∣∣∣ = op(1).

Assumption 10. Let N[.] (δ,G, ‖.‖B) be the δ-bracketing number of a class of functions

G with respect to a norm‖.‖. The parametric space Θ is compact in RT−1. The true

parameter θ0(α) belongs to the interior of Θ for each α ∈ T , and θ0 ∈ B. The class B
satisfies ∫ ∞

0

(
log
(
N[.]

(
δ2,B, ‖.‖B

)))1/2
dδ <∞.

Assumption 11. The estimator θn satisfies that Pr (θn ∈ B) → 1 as T → ∞, and the

following asymptotic expansion under HZ9Y
0 of (2.2.6), uniformly in α ∈ T ,

Qn(α) =
√
T (θn(α)− θ0(α))

=
1√
T

T∑
t=1

`α(Yt, I
Y
t , θ0(α)) + op(1),

where E
[
`α(Y1, I

Y
0 , θ0(α))

]
= 0, E

[
`α(Y1, I

Y
0 , θ0(α))`′α(Y1, I

Y
0 , θ0(α))

]
exists and it is pos-

itive definite, and E
[
`α(Yt, I

Y
t , θ0(α))Ψα,s(θ0)

]
= 0 if t 6= s. As a process in `∞(T ), Qn(α)

converges weakly to a Gaussian process Q(.) with zero mean and covariance function

KQ(α1, α2) = lim
T→∞

1

T

T∑
t=1

T∑
s=1

E
[
`α1(Yt, I

Y
t , θ0(α1))× `α2(Ys, I

Y
s , θ0(α2))

]
.

Assumption 12. Under the alternative hypothesis HZ9Y
A of (2.2.7):

(a) There exists a θ1 ∈ B such that ‖θn − θ1‖B = op(1);

(b) E
{

Ψα,t (θ0) exp
(
ix′IYt I

Z
t

)}
6= 0 in a subset with positive Lebesgue measure on X×T .
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Assumptions 1-5 are very similar to Assumptions A1-A5 of Escanciano and Velasco

(2010), but we consider most of them in a context of a restricted information set IYt

rather than in the full one (IYt , I
Z
t ). Assumptions 1-3 provide conditions for the valid-

ity of a functional central limit theorem for empirical processes in the dependent data

case. Assumption 4 is required to guarantee the asymptotic distribution of our test when

nonlinear quantile regression models are applied, see for example Mukherjee (1999). As-

sumption 5 provides a sufficient condition for the estimator θn to be consistent under a

fixed alternative hypothesis, see Angrist, Chernozhukov, and Fernández-Val (2006) for

conditions to satisfy Assumption 5(a); Assumption 5(b) holds if (IYt , I
Z
t ) is bounded.

Theorem 1 below is an application of Theorems 1-3 of Escanciano and Velasco (2010)

and the continuous mapping theorem.

Theorem 1. Under Assumptions 1-5, we have

(i) Under the null hypothesis HZ9Y
0 of (2.2.6),

GCQT
d−→
∫
T

∫
X

∣∣G1(x, α)
∣∣2dFx(x)dFα(α),

where G1 is a tight mean zero Gaussian process.

(ii) Under the alternative hypothesis HZ9Y
A of (2.2.7), there exists an ε > 0 such that

lim
T→∞

Pr (GCQT > ε) = 1.

Theorem 1 shows that the asymptotic null distribution of GCQT is a functional of a

zero-mean Gaussian process G1. By Theorem 1, we expect that GCQT is significantly

positive whenever the null hypothesis HZ9Y
0 is violated.

2.3.1 Local Alternatives and Subsampling Validity

Now we analyze the asymptotic distribution of GCQT against a sequence of Pitman’s

local alternatives converging to the null hypothesis at rate
√
T , where T denotes the

sample size. Under a sequence of local alternatives HZ9Y
A,T , we have

HZ9Y
A,T : E

[
Ψα,t (θ0) |IYt , IZt

]
= δα/

√
T , a.s. for all α ∈ T , (2.3.13)

where δα is a function satisfying the following assumption.

Assumption 13. The function δα : RT−1 7→ R has the following properties:

(i) E{supα∈T |δα(IYt )|} <∞;
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(ii) There exists a IYt -measurable random variable ht−1 with E
[
h2
t−1

]
< ∞ such that,

for all t ∈ Z and for all α1, α2 ∈ T , |δα1(I
Y
t )− δα2(I

Y
t )| ≤ ht−1|α1 − α2|, a.s..

Assumption 6 is analogous to Assumption A6 of Escanciano and Velasco (2010), but

we consider just the restricted information set IYt . To ensure nontrivial local power of

our proposed test, we need to impose an assumption on the estimator θn under a local

alternative as given in (2.3.13). Then we modify Assumption 4 as follows:

Assumption 4’. Under a local alternative HZ9Y
A,T in (2.3.13),

√
T (θn(α)− θ0(α))) = ηa(α) +

1√
T

T∑
t=1

`α
(
Yt, I

Y
t , θ0(α)

)
+ op(1),

uniformly in α, where `α satisfies the same conditions as in Assumption 4 and ηa(α) ∈
RT−1 for each α ∈ T .

Assumption 4’ can be applied to most quantile regression estimators in the literature,

see for example Mukherjee (1999). Theorem 2 demonstrates that under a local alterna-

tive HZ9Y
A,T of (2.3.13) the asymptotic distribution of GCQT has an extra shift function

implying consistency against
√
T -alternatives. Theorem 2 follows from Theorem 4 of

Escanciano and Velasco (2010) and the continuous mapping theorem.

Theorem 2. Under the local alternatives HQC
A,n in (2.3.13), Assumptions 1-3, 4’ and 5,

we have

GCQT
d−→
∫
T

∫
X

∣∣G1(x, α) + ∆(x, α)
∣∣2dFx(x)dFα(α),

where ∆(x, α) is a non-trivial shift function.

Now we derive the asymptotic validness of the subsampling critical values described

in Section 2.2. Although no mixing conditions are required for the convergence of GCQT ,

we need another assumption on the serial dependence of the data generating process to

validate the subsampling theoretically. According to Politis, Romano, and Wolf (1999),

Assumption 7 below is sufficient for the asymptotic validity of the critical values generated

by the subsampling approach.

Assumption 14. {(Yt, Zt+1)′ : t ∈ Z} is a strictly stationary strong mixing process with

α−mixing coefficients satisfying
∑T

m=1 α(m) = o(T ), with

α(m) = sup
T∈Z

sup
B∈FT ,A∈PT+m

|Pr(A ∩B)− Pr(A) Pr(B)|,

for m ≥ 1, where FT := σ
(
IYt , t ≤ T

)
and PT := σ(IYt , t ≥ T ).
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The next result allows us to establish the asymptotic distribution of the subsampling

test statistics. Since it is an application of Theorem 2 of Whang (2006) and Theorem 5

of Escanciano and Velasco (2010), we omit the proof.

Theorem 3. Under Assumptions 1-7, b/T → 0 and b→∞ as T →∞, we have:

(i) Under the null hypothesis HZ9Y
0 in (2.2.6),

lim
T→∞

Pr (GCQT > cb,T (α)) = α.

(ii) Under the fixed alternative hypothesis HZ9Y
A in (2.2.7),

lim
T→∞

Pr (GCQT > cb,T (α)) = 1.

(iii) Under the local alternative HZ9Y
A,T in (2.3.13),

lim
T→∞

Pr(GCQT > cb,T (α)) ≥ α.

Theorem 3 shows that our test based on the subsampling critical value has asymptoti-

cally correct size, is consistent, and is able to detect alternatives tending to the null at the

parametric rate
√
T . Since the asymptotic properties of the subsampling tests depend on

the choice of the subsample b, we follow the approach of Sakov and Bickel (2000) and we

choose a subsample of size b =
[
kT 2/5

]
, for different values of k, where [.] is the integer

part of a number.

2.4 Monte Carlo Experiments

In this section, we perform Monte Carlo simulation experiments with data generating

processes (DGPs) under the null and the alternative hypothesis to evaluate the finite-

sample performance of our proposed test statistic. The data are generated from the

following data-generating processes (DGPs):

DGP1: Yt = 0.5Yt−1 + cZt−1 + ε1t, and Zt = ε2t, (2.4.14)

DGP2: Yt = 0.5Yt−1 + cZt−1 + ε1t, and Zt = 1 + 0.8Zt−1 + ε2t, (2.4.15)

DGP3: Yt = 0.5Yt−1 + cZ2
t−1 + ε1t, and Zt = 1 + 0.8Zt−1 + ε2t, (2.4.16)

where εit ∼ i.i.d. N(0, 1), for i = 1, 2. For all DGPs above, under the null hypothesis

c = 0.00, where the coefficient c captures the degree of causality from past values of Zt to

Yt, thus a higher absolute value of c implies a stronger causality. The coefficients of the

DGPs above assure the generated time series are stationary. We consider the empirical
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rejection frequencies for 5% nominal level tests for different sample sizes T , sub-sample

sizes b, conditional quantile parametric models m(�, �), and causality parameters c. We

consider the sample sizes T = 100, T = 250 and T = 500. To show that our test is robust

to the choice of the sub-sample size, we use three different sub-sample sizes b =
[
kT 2/5

]
for each sample T , where [.] is the integer part of a number, for k = 3, 4 and 5. Thus for

k = 3, 4 and 5, we have b = 18, 25 and 31 for T = 100, b = 27, 36 and 45 for T = 250

and b = 36, 48 and 60 for T = 500. We propose three different parametric quantile

auto-regressive specifications m(.) - quantile AR(1), AR(2) and AR(3) - for modeling the

quantiles of Yt, for all α ∈ T , as follows:

m1(IYt , θn(α)) = µ0(α) + µ1(α)Yt−1 + σtΦ
−1
ε (α),

m2(IYt , θn(α)) = µ0(α) + µ1(α)Yt−1 + µ2(α)Yt−2 + σtΦ
−1
ε (α),

m3(IYt , θn(α)) = µ0(α) + µ1(α)Yt−1 + µ2(α)Yt−2 + µ3(α)Yt−3 + σtΦ
−1
ε (α), (2.4.17)

where the parameters θn(α) = (µ0(α), µ1(α), µ2(α), µ3(α), σt)
′ are estimated by maximum

likelihood in an equally spaced grid of 20 quantiles on the interval T = [0.10, 0.90].

For each of the models, we denote our test statistic as GCQT,d for IYt = {Yt−1, Yt−d},
for d = 1, 2, 3. For c = 0.00, there is no causality from past values of Zt to Yt and

the rejection rates denote the empirical sizes. For c 6= 0.00, there is causality from

lagged values of Zt to Yt and the rejection rates yield the empirical power of our test

statistic. We apply 1, 000 Monte Carlo replications in each of the simulations, which

implies a maximal simulation standard error for the empirical sizes and powers of the

test of maxp
√
p(1− p)/1000 ≈ 0.016.

Table 1 shows the rejection frequencies of the GCQT test1. The proposed test has

good power even when the degree of causality c is low. Besides, the GCQT has small size

distortions even when sample size is small. As DGP3 is presented in Jeong et al. (2012),

Table 1 shows that our test not only outperforms their test for T = 500, but also that

it obtains reliable results for a smaller sample size of T = 100. For three different DGPs

and conditional quantile regression models, the power of the GCQT test increases with

the sample size, and these results are also robust to different sub-sample sizes.

We also compare our results with the Sup-Wald test statistic proposed by Koenker and

Machado (1999). To calculate the Sup-Wald test statistic, we include the lagged values

{Zt−1, . . . , Zt−d} in the linear conditional quantile regression models in (2.4.17). Without

loss of generality, we assume that the quantile regression model is correctly specified

if we include Zt−1 in the quantile regression model. Then we consider the following

1We do not include the results for T = 250 to save space.
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specifications for the quantiles of Yt:

W1: m1
∗(I

Y
t , I

Z
t , θn(α)) = µ0(α) + µ1(α)Yt−1 + β1(α)Zt−1 + σtΦ

−1
ε (α),

W2: m2
∗(I

Y
t , I

Z
t , θn(α)) = µ0(α) + µ1(α)Yt−1 + β1(α)Zt−1 + µ2(α)Yt−2 + σtΦ

−1
ε (α),

W3: m3
∗(I

Y
t , I

Z
t , θn(α)) = µ0(α) + µ1(α)Yt−1 + β1(α)Zt−1 + µ2(α)Yt−2 + µ3(α)Yt−3 + σtΦ

−1
ε (α),

Given a conditional linear model in W1-W3, testing HZ9Y
0 of (2.2.6) consists in testing

HSW
0 : β1(α) = 0, for all α ∈ T . Table 2 gives the results for the Granger-causality

tests based on the Sup-Wald test. A drawback of the Sup-Wald test is that the critical

values do not have the correct nominal size in small samples, as the empirical sizes are

always smaller than the 5% nominal level of the test. The results also suggest that the

subsampling GCQT test considerably outperforms the Sup-Wald procedure in terms of

power. For the DGPs considered, even using a small sub-sample size, b = [3T (2/5)], our

test presents powerful and reliable inference. In addition, the subsampling GCQT test is

robust to changes in the sub-sample size. In sum, our proposed test seems to perform

quite well in finite samples.
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Table 2.1. Empirical rejection frequencies for 5% subsampling GCQT,d test

GCQT,1 GCQT,2 GCQT,3

b b b

DGP T c k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

1
100 0.00 6.8 7.1 6.1 6.4 6.5 6.9 6.1 6.4 6.6

0.01 6.2 6.9 8.6 7.2 6.9 6.4 7.0 6.8 6.4
0.03 6.7 6.7 8.0 7.1 6.0 6.6 7.0 7.2 7.2
0.06 7.4 7.4 7.4 8.9 8.9 7.5 6.9 8.1 8.1
0.12 10.1 10.7 9.9 10.2 9.8 10.4 9.9 9.8 9.5
0.24 24.4 23.4 21.3 22.7 20.8 18.9 21.0 20.3 18.4
0.50 72.3 68.1 65.1 72.3 67.0 61.9 71.3 65.9 62.5

500 0.00 5.2 4.9 5.0 5.2 5.0 5.1 5.4 5.3 5.3
0.01 5.1 5.4 5.2 4.8 4.3 4.3 5.8 6.0 5.6
0.03 6.2 5.8 6.4 7.4 7.4 7.4 5.9 5.4 5.2
0.06 10.6 10.6 10.6 10.9 10.8 9.5 11.0 10.7 10.6
0.12 33.1 32.4 29.6 29.5 27.9 26.6 33.4 30.7 28.4
0.24 92.0 89.8 87.1 89.2 88.9 87.2 90.9 89.0 86.5
0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

2
100 0.00 6.2 6.7 7.2 6.0 6.0 5.9 6.2 6.3 6.7

0.01 7.2 7.4 7.6 7.1 7.1 8.2 6.8 6.8 6.1
0.03 6.7 7.0 7.3 7.2 7.5 7.4 6.1 6.1 6.5
0.06 9.1 9.2 8.8 9.4 8.8 9.4 8.4 8.9 9.3
0.12 17.6 14.8 16.0 15.8 15.2 15.9 15.8 14.7 14.7
0.24 42.5 36.2 35.8 42.1 36.6 35.1 42.6 39.3 36.8
0.50 87.3 81.6 79.2 84.8 78.6 73.5 87.4 81.1 77.2

500 0.00 5.1 5.2 5.5 5.2 5.2 5.2 4.7 4.6 5.5
0.01 5.7 5.5 5.7 6.5 5.8 5.8 5.0 4.9 5.1
0.03 8.6 8.4 7.9 7.6 7.3 6.7 8.4 8.1 8.4
0.06 20.8 20.3 20.1 18.5 18.2 16.9 20.2 20.4 18.7
0.12 67.3 65.3 62.5 67.3 64.4 62.7 64.8 62.5 60.9
0.24 99.8 99.8 99.7 99.7 99.6 99.3 99.9 100.0 99.9
0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3

100 0.00 6.3 6.0 6.1 6.1 5.9 7.3 6.4 5.8 6.2
0.01 15.1 14.1 13.8 13.5 12.0 12.0 13.2 13.2 12.4
0.03 56.7 52.4 50.2 56.5 53.8 50.0 54.8 49.5 46.0
0.06 91.0 87.0 82.7 90.2 86.8 83.9 90.9 87.3 84.7
0.12 98.6 97.7 96.4 97.4 96.6 95.3 98.5 98.5 95.2
0.24 98.6 97.8 97.4 95.1 92.1 90.5 96.2 92.3 91.1
0.50 91.6 88.9 87.7 83.4 79.5 77.8 83.8 78.2 75.6

500 0.00 4.9 5.0 5.1 5.3 5.4 5.1 5.3 5.5 5.5
0.01 52.6 50.0 49.6 52.2 50.2 48.5 50.3 49.0 47.1
0.03 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.06 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.12 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.24 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: We use 1,000 Monte Carlo repetitions based on the DGPs 1-3 of equations (2.4.14)-(2.4.16); b =
[kT 2/5]; α ∈ [0.10; 0.90].
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Table 2.2. Empirical rejection frequencies for 5% Sup-Wald test

DGP T c W1 W2 W3

1
100 0.00 2.80 2.50 1.30

0.01 2.30 1.90 1.60
0.03 2.20 2.50 3.00
0.06 5.30 3.30 3.30
0.12 8.30 6.10 7.70
0.24 29.40 28.40 30.40
0.50 92.40 90.60 90.40

500 0.00 0.90 1.20 1.00
0.01 0.60 0.60 0.50
0.03 1.80 2.30 1.30
0.06 6.80 6.40 4.70
0.12 31.10 32.70 27.80
0.24 95.40 95.50 95.30
0.50 100.00 100.00 100.00

2
100 0.00 2.30 3.40 3.00

0.01 2.00 2.40 2.70
0.03 2.60 3.60 2.40
0.06 6.50 6.20 6.80
0.12 19.10 16.70 17.60
0.24 64.60 62.30 62.70
0.50 99.10 99.50 99.30

500 0.00 1.50 1.60 1.00
0.01 1.30 1.60 1.00
0.03 4.90 3.80 5.50
0.06 19.00 18.60 18.20
0.12 80.00 80.30 78.70
0.24 100.00 100.00 100.00
0.50 100.00 100.00 100.00

3
100 0.00 2.20 2.30 1.90

0.01 12.80 13.60 12.60
0.03 82.20 79.90 78.50
0.06 99.70 99.90 99.90
0.12 100.00 100.00 100.00
0.24 100.00 100.00 100.00
0.50 100.00 100.00 100.00

500 0.00 1.70 1.20 1.10
0.01 60.60 63.10 58.20
0.03 100.00 100.00 100.00
0.06 100.00 100.00 100.00
0.12 100.00 100.00 100.00
0.24 100.00 100.00 100.00
0.50 100.00 100.00 100.00

Note: W1 − W3 are the parametric quantile regression specifications described above; α ∈
[0.1, 0.9].
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2.5 Empirical Application

To illustrate the applicability of our approach, we analyse the causality between gold

prices, oil prices, and USD/GBP exchange rate. The gold and oil market are the main

representatives of the large commodity markets. Gold is a valuable asset and can maintain

its value in turbulent times. There are evidence that the gold and oil markets have a close

interaction. For instance, both gold and crude oil prices entered into a boom time in 2002

due to US dollar depreciation, global inflation, and oil supply manipulation by the OPEC;

and both commodity prices collapsed together in the financial crisis of 2008 (Zhang and

Wei, 2010). Therefore it is important to study how gold and oil prices variate, and

their causal relationship. While standard tests evidence a positive mean causal relation

between oil and gold prices, our main goal is to evaluate such a relation on each quantile

of the distribution.

We apply our GCQT test to check the relationship between the S&P gold prices (per

ounce) and Brent crude oil prices (per barrel). Under our approach, we can discriminate

between causality affecting the median and the tails of the conditional distribution. Then

the empirical analysis should provide a more complete description of the causal relation

between gold and oil prices. We also evaluate the effect of the USD/GBP exchange rate

on gold prices to compare the performance of our parametric test with the nonparametric

approach proposed by Jeong et al. (2012). The data consist of 3,440 daily observations -

from July 2000 to September 2013 and all series were obtained from Datastream.

Figure 1 displays the daily log and log-difference series. It shows that the three return

series display calm as well as volatile periods and also single outlying return observations.

Besides, the graphs of the log series evidence the series are non-stationary and follow a

common pattern. Table 3 presents the summary statistics of the series. The gold and oil

prices are very volatile, and all series are positively skewed and leptokurtic. We apply

the GCQT test on the log-difference of the series, as Dickey-Fuller and KPSS unit root

tests show that the three log series are non-stationary.
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Figure 2.1. Log of the series (upper panel) and first-difference of the logs (lower panel).

Table 2.3. Summary statistics:

Gold Prices Oil Prices USD/GBP

Mean 466.89 65.31 1.67

Std. Dev. 282.83 33.23 0.18

Median 382.74 62.06 1.61

Skewness 0.64 0.32 0.49

Kurtosis 2.04 1.81 2.05

Minimum 149.39 17.00 1.37

Maximum 1101.48 143.60 2.11

Note: Gold is the S&P GSCI Gold Spot price index; Oil price is the
price adjusted default Crude Oil Dated Brent in US dollars per barrel;
USD/GBP is the exchange rate of US dollars to UK british pounds; The
data covers the period that spans 03 July 2000 to 06 September 2013.

We estimate three quantile auto-regressive QAR models as in (2.4.17) for each depen-

dent variable on the GCQT test. Tables 4 and 5 report the subsampling p-values of our

GCQT test. If we take into account all quantiles, the results suggest that variations in

the oil prices Granger-cause variations in the gold prices, and vice-versa, at the 1% sig-

nificance level. However, if we perform a median-regression and consider only α = 0.50,

we do not reject the null hypothesis that variations in the oil prices do not Granger-cause

variations in the gold prices. Therefore, our approach is robust to detect tail causalities

that could possibly be ignored by using a standard conditional regression model analysis.

In addition, changes in the USD/GBP Granger-cause changes in the gold and oil

prices at the 1% significance level, for all quantiles. If we consider only the extreme

tails of the conditional distribution, we cannot always reject at 1% significance level

that variations of USD/GBP Granger-cause variations in gold prices and in oil prices.
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However, for α = 0.10 and α = 0.90, we often do not reject that changes of USD/GBP

do not Granger-cause variations in gold prices and in oil prices at 1% significance level.

These results are consistent with the ones obtained by Jeong et al. (2012), who showed

that USD/GBP exchange rate changes do not cause the gold price change if α < 0.22 or

α > 0.80.

Table 2.4. Causality between ∆USD/GBP and ∆Oil prices to ∆Gold prices - subsampling p-values

T =3,440 α GCQT,1 GCQT,2 GCQT,3

∆Oil to ∆Gold [0.10; 0.90] 0.000 0.000 0.000
0.10 0.000 0.000 0.000
0.50 0.294 0.265 0.323
0.90 0.000 0.000 0.000

∆USD/GBP to ∆Gold [0.10; 0.90] 0.000 0.000 0.000
0.10 0.011 0.010 0.006
0.50 0.004 0.006 0.007
0.90 0.010 0.007 0.013

Note: For α ∈ [0.10, 0.90].

Table 2.5. Causality between ∆USD/GBP and ∆Gold prices to ∆Oil prices - subsampling p-values

T =3,440 α GCQT,1 GCQT,2 GCQT,3

∆Gold to ∆Oil [0.10; 0.90] 0.000 0.000 0.000
0.10 0.000 0.000 0.000
0.50 0.461 0.345 0.384
0.90 0.000 0.000 0.000

∆USD/GBP to ∆Oil [0.10; 0.90] 0.000 0.000 0.000
0.10 0.011 0.010 0.006
0.50 0.005 0.006 0.006
0.90 0.010 0.006 0.012

Note: For α ∈ [0.10, 0.90].

2.6 Conclusions

Many important policy and financial analyses are investigated through testing for

Granger-causality between economic time series. However, most of the results in the

literature were obtained in the context of Granger-causality in mean. In this paper,

we present a consistent parametric test of Granger-causality in quantiles. Rather than

focusing on a single part of the conditional distribution, we develop a test that evaluates
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possible causal relations in all conditional quantiles. The proposed test statistic has

correct asymptotic size, is consistent against fixed alternatives and has power against

Pitman deviations from the null hypothesis. In addition, the proposed approach allows

us to evaluate nonlinear causalities, causal relations in conditional quantiles, and provides

a sufficient condition for Granger-causality when all quantiles are considered.

Finite sample experiments suggest that our proposed test has good size and power

properties, and is more powerful than other comparable test in the literature against

almost all alternatives. An empirical application highlights the practical importance of

our setting considering the causal relation between the gold price, the USD/GBP exchange

rate, and the oil price. We illustrate that oil price, USD/GBP, and gold price changes

presented a different causal relationship in the tail and in the center of the distribution.

A possible direction for future work is to extend this method to analyse the effect

of misspecifications in the quantile regression model to Granger-causality. A possi-

bly misspecified quantile regression model may lead to over-rejections of the Granger-

noncausality null hypothesis.
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Chapter 3

Stock Market Equilibrium Error and

Expected Excess Stock Returns

3.1 Introduction

Many studies have investigated the predictability of stock returns in time series data.

Campbell and Shiller (1988), and Fama and French (1988) found that valuation ratios

such as the dividend-price ratio or earnings-price ratio are positively related to subsequent

stock returns and that the implied predictability is large at longer horizons. Fama and

Schwert (1977), Campbell (1987), and Fama and French (1989) found that variables such

as the term premium, the default premium and the yield on corporate bonds forecast sub-

sequent stock returns. Other papers suggested new predictor variables using information

from interest rates (Hodrick, 1992), the consumption-wealth ratio (Lettau and Ludvig-

son, 2001), and the relative valuations of high- and low-beta stocks (Polk, Thompson,

and Vuolteenaho, 2006).

However, many authors cast doubt on the evidence of predictability of stock returns.

Nelson and Kim (1993) and Stambaugh (1999) showed that many predictor variables in

the literature are persistent, which lead to biased coefficients in forecasting models if inno-

vations in the predictor variable are correlated with stock returns. Besides, under these

conditions, the t-test for predictability is biased (Cavanagh, Elliott, and Stock, 1995).

Kilian (1999), Campbell and Yogo (2006) and Jansson and Moreira (2006), among oth-

ers, propose alternative econometric methods for addressing the size bias and performing

valid inference under persistence. Another criticism on the stock returns predictabil-

ity question the poor out-of-sample performance of predictive regressions (Bossaerts and

Hillion, 1999, Goyal and Welch, 2003, Welch and Goyal, 2008). Welch and Goyal (2008)

compare predictive regressions with a benchmark of historical average stock returns and

show that predictive regressions almost never provide superior stock return predictability.

Although Inoue and Kilian (2004) argue that in-sample tests are more powerful and
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not necessarily less reliable than out-of-sample tests, in this paper we provide new evidence

on the out-of-sample predictability of stock returns. We take up the challenge of Welch

and Goyal (2008) and Campbell and Thompson (2008), and we compare the forecasting

performance of some variables with the benchmark of historical average stock returns. We

show that predictive regressions that include variables like the Fama-French factors, the

previous month’s return and the equilibrium error term from the co-integrating relation

with stock market return enhance the out-of-sample predictability of stock returns and

provide profitable market-timing portfolio strategies.

We use the Fama-French 30 industry portfolio returns and obtain the equilibrium error

factor, EEi,t, as the error term from the co-integration relationship between industry stock

returns and excess stock market returns. We find that the equilibrium error factor (EEi,t)

leads to remarkable out-of-sample forecasting abilities, which are increased if the previous

month’s excess industry stock returns is included in the predictive regression. Our results

show that the omission of the previous month’s excess industry stock returns may lead

to a biased relation between the stock returns and the equilibrium error factor.

We evaluate the economic benefits of stock returns predictability of our forecasting

models, as in Johannes, Polson, and Stroud (2002) and Guo (2006), among others. First,

we take the perspective of an investor who uses predictability from a model of time-

varying expected returns to sequentially build portfolios. Following Breen, Glosten, and

Jagannathan (1989) and Pesaran and Timmermann (1995), we take the case of an investor

who holds stocks of the i-th industry if the predicted excess industry return is positive

and holds bonds if there is no positive expected excess industry return. We also consider

a model of time-varying expected returns and volatility. For each period, an investor

allocates his wealth between the i-th industry stock according to an optimal portfolio

rule, derived from an extension of Stein’s lemma (Johannes et al., 2002). We compare

the generated returns to those implied by a model without predictability and to the excess

stock market return.

We find that strategies based on time-varying expected returns and volatility provide

higher annualized mean returns and Sharpe ratios than historical mean average returns or

the market. For example, an investor with a risk aversion parameter of 5 who adopts the

optimal portfolio strategy obtain an annualized Sharpe Ratio of 45.1%, compared with

37.3% for the no predictability strategy, 41.0% for the predictability strategy without

the equilibrium error factor in the predictive regression. Moreover, the optimal portfolio

strategy generates an annualized certainty equivalence gain of 2.7% relative to the model

of historical average returns.

We provide further tests to demonstrate the economic gains of the stock return pre-

dictability. Following Cumby and Modest (1987) and Breen et al. (1989), we reject the

null hypothesis that our predicted excess returns have no market timing ability. The

Jensen’s α test for supports that our predicted returns cannot be explained neither by
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the CAPM nor by the Fama and French (1993) model. Moreover, these results are are

robust in the presence of transaction costs when the investor pays a fee for switching his

portfolio. Therefore, our results are consistent with Pesaran and Timmermann (1995), Jo-

hannes et al. (2002), and Guo (2006), who find economic gains from time-varying trading

strategies.

Our results differ with those of Bossaerts and Hillion (1999), Goyal and Welch (2003)

and Welch and Goyal (2008), who found that there is no predictability of stock returns. A

possible reason for these contrasts might be that our forecasting variables may discard the

variables used by those authors and the equilibrium error factor is a panel variable that

uses more information than time series variables. However, we include the stochastically

detrended risk-free rate (RREL) suggested by Campbell, Lo, and MacKinlay (1997),

which was used by these authors and provide substantial information about subsequent

stock returns.

We choose our forecasting variables motivated by the common view that expected

stock returns have a mean-reverting component (Campbell and Shiller, 2001, Merton,

1971). This mean-reverting component may be captured by the equilibrium error fac-

tor, which may reflect a short-term reversal, momentum or liquidity premium effect. The

equilibrium error factor appears to be a pervasive variable that captures systematic move-

ments of stock returns. For example, we find that the equilibrium error factor is always

significantly negative in the predictive regression of subsequent stock returns.

We compare the equilibrium error term with aggregate liquidity measures and short-

term reversal measures, which forecast stock returns (Amihud, 2002, Jones, 2002). We

find the equilibrium error and short term reversal measures capture similar forecasting

information of stock returns. Therefore, the equilibrium error is an omitted short term

reversal factor that is negatively related to stock returns. We include the three Fama-

French factors in our model as we need to apply a pricing model to be consistent with

the methodology used to risk-adjust the returns. Over the period Jul.1968-Dec.2007, we

find that although the equilibrium error factor and the previous month’s excess stock

return, Ri(−1), have negligible forecasting power in the in-sample regression, they jointly

provide a significant predictor of excess stock returns. We find very similar results using

subsamples. Moreover, their predictive abilities are also statistically significant in the

out-of-sample tests.

Another contribution of this paper is the control for industry effects, as we estimate

the returns using fixed-effects panel data methods. The industry control reduces forecast

biases that are constant across stocks within the same industry (Da, Liu, and Schaumburg,

2014). Besides, the industry control eliminates common trends between expected returns

and discount rate news. Moskowitz and Grinblatt (1999) show that there is a significant

momentum effect in industry components of stock returns. Thus, the industry control

increases the short-term return reversal effect, by removing the industry moment effect.

70



Chapter 3. Stock Market Equilibrium Error and Expected Excess Stock Returns

The remainder of this paper is organized as follows. Section 2 discusses the data

and reports in-sample and out-of-sample forecast results. Section 3 presents the analysis

of trading strategies using the out-of-sample predictability of stock returns from our

forecasting models. In Section 4, we investigate whether EEi,t is related to short-term

return reversals and aggregate stock market liquidity. Section 5 concludes the paper.

3.2 Forecasting Excess Stock Returns

3.2.1 Data

Our data include monthly returns of NYSE, AMEX, and NASDAQ common stocks from

July 1965 to December 2007. We use the data from the 30 industry portfolios of Ken-

neth French’s website, where each NYSE, AMEX, and NASDAQ stock is assigned to an

industry portfolio at the end of June of year t based on its four-digit SIC code at that

time. To calculate the market return at time t, RM,t, we use the value-weight return of

all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ

at the beginning of month t. We use the one-month Treasury Bill rate as the risk-free

rate at time t, RF,t, and the cumulative market returns over the six months for month

t− 6 to month t− 1 as the momentum at time t, WMLt, and the difference between the

nominal risk-free rate and its last four-quarter average as the stochastically detrended

risk-free rate at time t, RRELt. We define the excess return for the industry i in month

t as Ri,t −RF,t.

To compute the expected returns, we use a pricing model. There is a long debate

about pricing models in the literature. While the capital asset pricing model (CAPM)

of Sharpe (1964) and Lintner (1965) suffers from a number of limitations to explain

patterns in average stock returns, called as “asset pricing anomalies”, Fama and French

(1993) suggested that the CAPM should be augmented with two additional factors, HML

and SMB, and showed that their three-factor (F&F ) model explains well stock returns.

HML is the return on a portfolio that is long in stocks with high book-to-market value

ratios and short in stocks with low book-to-market value ratios, and SMB is the return

on a portfolio that is long in small stocks and short in big stocks. The monthly Fama

and French factors, HML and SMB, were obtained from Kenneth French at Darmouth

College.

We use the Fama-French 30 industry portfolio returns and the excess stock market

return, RM,t − RF,t, to obtain the equilibrium error factor, EEi,t, that is the error term

from the co-integration relationship between industry stock returns and excess stock

market returns. We calculate EEi,t in two steps. First, we perform the Augmented

Dickey-Fuller test (with constant and trend) on the cumulative industry stock returns

and on the cumulative excess stock market returns. If we do not reject the null hypothesis
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of unit root at the 1% significance level for the cumulative i-th industry stock returns and

the cumulative excess stock market returns, we proceed to Johansen (1988, 1995) ’s co-

integration test. If we cannot reject at the 5% level that the cumulative i-th industry stock

returns is co-integrated with the cumulative excess stock market returns, we compute

EEi,t as the error term from the vector error-correction model (VECM) between those

variables, with 18 lags to assure that there is no serial correlation of the residuals.

For example, given a cumulative i-th industry portfolio returns that is I(1), we define

yt = (Ri,t, RM,t−RF,t)
′ to apply the co-integration test of Johansen (1988, 1995) using a

finite-order vector error-correction model (VECM) as follows:

∆yt = α(βyt−1 + µ) +

p−1∑
j=1

Γj∆yt−j + γ + εt, (3.2.1)

where ∆yt is the L-operator applied to the vector yt, and α,β,µ,Γj,γ are 2×1 vectors

of parameters, and p is the lag order of the VECM. Then for each i-th industry return

co-integrated with the excess stock market return, we define the the equilibrium error

factor, EEi,t, as the error term εt from the VECM in (3.2.1) between the cumulative

industry and the cumulative excess stock market return.

Table 3.1 presents summary statistics of the excess industry stock return at time

t + 1, Ri,t+1 − RF,t+1 , and of the main forecasting variables used in this paper, for the

full sample and two subsamples. For all series of cumulative industry returns and for

the cumulative excess stock market return, we do not reject the null hypothesis of unit

root at the 1% significance level. We found that there are 15 out of 30 industry portfolio

returns co-integrated with the excess stock market return, at the 5% significance level.

We excluded the remaining 15 industry excess returns series from our analysis as we want

to deal only with the industry returns that are co-integrated excess stock market return.

Regarding the subsamples, we divided the full sample before and after Dec.1987 due to

the stock market crash in 1987. We found 17 and 8 co-integrated industry returns with

the excess stock market return for the first and second subsample, respectively.

Table 3.1 shows that the excess stock returns of the industry i, Ri,t+1 − RF,t+1, are

positively correlated with the previous excess stock market return and with the SMBt

factor. On the other hand, there is a negative correlation between Ri,t+1 − RF,t+1 and

the equilibrium error at time t, EEi,t, reflecting a mean-reverting effect of EEi,t. The

correlations among the excess industry returns and the forecasting factors are always

below 0.10 in the full sample. We found some different results in the two subsamples.

First, the previous month’s excess stock market return, RM,t −RF,t, and SMB are more

positively correlated with Ri,t+1 − RF,t+1 in the first subsample (Panel B) than in the

second subsample (Panel C). Besides, while EEi,t is negatively related to Ri,t+1 −RF,t+1
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in Panel C, the two are positively related in the first subsample (Panel B). Finally, the

stochastically detrended risk-free rate, RRELt, is negatively related with Ri,t+1 −RF,t+1

in Panel B, while they are positively related in Panel C.

3.2.2 In-Sample Forecasting

We propose the following panel-data forecasting model for excess industry returns:

Ri,t+1 −RF,t+1 = αi + β′Xt + βEEi EEi,t + βRi Ri(−1) + εi,t, t = 1, . . . , T, (3.2.2)

where Xt = [RM,t −RF,t, HMLt, SMBt, RRELt], Ri(−1) is the previous month’s excess

industry stock return, Ri(−1) = Ri,t − RF,t, αi is the industry effect, and εi,t is the

resulting residual. We may also include the momentum factor, WMLt, in Xt. We apply

a fixed effects model to estimate (3.2.2), since standard errors are biased in the presence

of a firm effect (e.g., Cov(EEi,tεi,t, EEi,t−kεi,t−k) 6= 0) when estimated by OLS, White,

Newey-West (modified for panel data sets), Fama-MacBeth, or Fama-MacBeth corrected

for first-order autocorrelation (Petersen, 2009).

Now we discuss the in-sample forecasting results. Although significant in-sample evi-

dence of predictability does not imply significant out-of-sample predictability, Inoue and

Kilian (2004) show that in-sample tests are more powerful than out-of-sample tests, with

no presumption that in-sample tests of predictability suffer from greater size distortions

than out-of-sample tests.

Table 3.2 reports the in-sample least squares regression results of the fixed effects

model (3.2.2), with heteroscedastic-corrected standard errors in parentheses. Panel A is

the full sample spanning from Jul.1965 to Dec.2007. Row 1 shows that RM,t−RF,t is not

significative for predicting future excess stock returns. This result might be explained by

an omitted variables problem. As suggested by Huang, Liu, Rhee, and Zhang (2010), the

omission of the previous month’s industry excess stock return might lead to a omitted

variable bias in estimating the coefficient on the excess stock market return, RM,t−RF,t.

There is a negative first-order correlation in monthly stock returns and it is regarded as

short-term return reversals of individual stocks, first noted by Jegadeesh (1990). Row 2

provides evidence that EEi,t is a significant predictor of industry excess stock returns. It

is likely that EEi,t forecasts industry excess stock returns because there is a correlation

between EEi,t and some widely used forecasting variables. The previous month’s RM,t−
RF,t becomes significant if the previous month’s industry excess stock return, Ri(−1), is

included in the forecasting regression with a higher adjusted R2(row 3). The coefficient

on HMLt and SMBt also change with the inclusion of Ri(−1). These results confirm

that there is an omitted-variable bias in rows 1 and 2. Row 4 shows that RRELt has
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significative forecasting power for future industry excess stock returns, which is consistent

with the results of Campbell et al. (1997). However, the inclusion of RRELt has a small

effect on the forecasting power of the other variables (row 5). Finally, the momentum at

t− 1, WMLt−1, provides negligible information besides the other variables for predicting

industry excess stock returns (rows 6-7).

We report the in-sample forecasting results using two subsamples, Jul.1965-Dec.1987

and Jan.1988-Dec.2007, in Panels B and C, respectively. There are some differences

between the two subsamples. First, while HMLt is not significative in the first subsample,

SMBt and RM,t − RF,t are not significative in the second subsample. Besides, EEi,t has

a positive sign in the first subsample and a higher predictive power, though it becomes

insignificant when Ri(−1) is included (rows 10, 12 and 14). However, in the second

subsample, EEi,t is negatively related to Ri,t+1−RF,t+1, while Ri(−1) is not statistically

significant (rows 17, 19 and 21). Finally, RRELt is positively related to Ri,t+1 − RF,t+1

in Panel C, while the two are negatively related in Panel B.
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Table 3.1. Summary Statistics

Ri,t+1 −RF,t+1 RM,t −RF,t HMLt SMBt EEi,t RRELt

A. Jul.1965-Dec.2007

Mean .011 .004 .004 .002 .000 .000

Standard Deviation .061 .044 .029 .033 1.308 .001

Median .011 .008 .004 .001 -.005 .000

Correlation Matrix

Ri,t+1 −RF,t+1 1.000

RM,t −RF,t .035 1.000

HMLt -.043 -.415 1.000

SMBt .058 .303 -.279 1.000

EEi,t -.030 .275 -.139 .078 1.000

RRELt -.037 -.166 .082 -.132 -.018 1.000

B. Jul.1965-Dec.1987

Mean .008 .003 .005 .005 .000 .000

Standard Deviation .059 .048 .025 .029 .106 .001

Median .008 .004 .003 .001 -.002 .000

Correlation Matrix

Ri,t+1 −RF,t+1 1.000

RM,t −RF,t .079 1.000

HMLt -.014 -.307 1.000

SMBt .087 .380 -.107 1.000

EEi,t .067 .486 -.171 .096 1.000

RRELt -.095 -.248 .119 -.143 -.109 1.000

C. Jan.1981-Dec.2007

Mean .010 .007 .003 .001 .000 .000

Standard Deviation .060 .040 .030 .033 2.146 .001

Median .012 .012 .000 .000 -.011 .000

Correlation Matrix

Ri,t+1 −RF,t+1 1.000

RM,t −RF,t .030 1.000

HMLt -.074 -.451 1.000

SMBt .005 .201 -.339 1.000

EEi,t -.080 .354 -.140 .115 1.000

RRELt .028 .017 -.031 -.119 -.001 1.000

This table presents summary statistics for the i-th excess industry return at time t+ 1, Ri,t+1 −RF,t+1; the excess
stock market return at time t, RM,t − RF,t; the return on a portfolio that is long in small stocks and short in big
stocks at time t, SMBt; the return on a portfolio that is long in stocks with high book-to-market value ratios and
short in stocks with low book-to-market value ratios at time t, HMLt; the equilibrium error of the i-th excess industry
return with the excess stock market return at time t, EEi,t; and the stochastically detrended risk-free rate at time t,
RRELt.
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Table 3.2. In-Sample Forecasting Monthly Excess Stock Returns

Models RM,t −RF,t HMLt SMBt EEi,t Ri(−1) RRELt WMLt R̄2

A. Jul.1965-Dec.2007

(1) 1.26 -5.28 8.91 .004

(2.02) (1.94) (1.98)

(2) 2.96 -5.48 8.94 -0.20 .005

(2.27) (2.28) (2.07) (0.07)

(3) -5.45 -6.72 8.36 -0.32 9.01 .009

(1.90) (1.94) (1.88) (0.08) (2.14)

(4) 2.41 -5.48 8.49 -0.20 -156.96 .006

(2.13) (2.27) (1.99) (0.07) (54.16)

(5) -5.98 -6.72 7.91 -0.31 9.00 -156.17 .009

(1.84) (1.93) (1.81) (0.08) (2.14) (52.73)

(6) 1.96 -6.28 8.54 -0.20 -165.66 -3.34 .006

(2.18) (2.10) (1.99) (0.07) (53.11) (1.32)

(7) -6.34 -7.46 7.96 -0.31 8.93 -164.41 -3.15 .009

(1.89) (1.77) (1.82) (0.08) (2.09) (51.11) (1.40)

B. Jul.1965-Dec.1987

(8) 7.09 2.50 13.62 .010

(1.87) (2.51) (2.07)

(9) 4.15 2.75 14.58 2.58 .011

(2.61) (2.51) (2.01) (0.87)

(10) -9.41 1.14 10.92 0.53 15.83 .017

(2.48) (2.69) (2.15) (1.15) (3.16)

(11) 2.05 3.62 13.69 2.63 -370.89 .016

(2.44) (2.50) (1.92) (0.85) (51.63)

(12) -11.70 2.00 9.97 0.55 16.02 -375.71 .023

(2.47) (2.70) (2.12) (1.12) (3.16) (49.05)

(13) 2.04 4.27 14.44 2.58 -361.45 3.47 .017

(2.45) (2.51) (1.99) (0.86) (50.76) (1.33)

(14) -11.86 2.73 10.79 0.47 16.20 -364.92 3.98 .023

(2.51) (2.67) (2.11) (1.13) (3.17) (48.42) (1.34)

B. Jan.1988-Dec.2007

(15) -0.79 -16.37 -3.82 .004

(3.46) (5.04) (3.27)

(16) 4.93 -15.95 -2.99 -0.28 .013

(3.17) (5.76) (3.58) (0.09)

(17) 3.18 -16.33 -3.09 -0.31 2.19 .012

(4.97) (5.99) (3.48) (0.12) (5.37)

(18) 4.89 -15.59 -2.36 -0.28 190.86 .013

(3.17) (5.84) (3.55) (0.09) (69.83)

(19) 3.18 -15.96 -2.46 -0.30 2.13 188.73 .012

(4.93) (6.07) (3.44) (0.12) (5.32) (66.99)

(20) 3.73 -16.04 -1.57 -0.28 190.89 -4.68 .013

(3.76) (5.50) (3.26) (0.09) (69.82) (4.60)

(21) 2.49 -16.30 -1.68 -0.30 1.60 189.29 -4.52 .013

(4.42) (5.78) (3.16) (0.13) (5.69) (67.25) (5.20)

This table reports the least squares regression results of the fixed effects model for the one-month-ahead excess stock
returns, Ri,t+1 −RF,t+1, on some variables. The heteroscedastic-corrected standard errors are reported in parentheses,
and bold denotes significance at the 5% level. RM,t −RF,t is the excess stock market return. HMLt is the high-minus-
low factor. SMBt is the small-minus-big factor. EEi,t is the equilibrium error of the i-th industry excess stock return
with the market excess return. Ri(−1) is the i-th industry excess stock return during the previous month. RRELt is
the stochastically detrended risk-free rate. WMLt is the momentum factor. R̄2 is the adjusted-R2.
∗ Scaled by 100.
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3.2.3 Out-of-Sample Forecast Performance

This section provides the analysis of the out-of-sample forecasting performance of our

proposed models. Bossaerts and Hillion (1999), Goyal and Welch (2003), and Welch

and Goyal (2008) question the in-sample evidence of stock return predictability, as they

showed that even the best prediction models have no out-of-sample forecasting power. On

the other hand, Inoue and Kilian (2004) show that out-of-sample tests are not necessarily

more reliable than in-sample tests. To analyse this point, we compare the out-of-sample

performance of our proposed model with a model that does not include the EEi,t and

with a benchmark model of historical average returns. We perform two analyses. First,

we assume that investors know the co-integration parameters of EEi,t, estimated using

the full sample. In the second analysis, the co-integration parameters are estimated

recursively using only information available at the time of the forecast. This analysis is

more realistic and has more applicability, since investors can use only the data available

at the time of the forecast to make decisions.

A. Fixed Co-integrating Factors

Table 3.3 evaluates the out-of-sample performance of three models: (i) a model in-

cluding RM,t−RF,t, SMBt, HMLt, and RRELt; (ii) an augmented model including also

EEi,t and the previous month’s returns of Ri,t − RF,t, Ri(−1); and (iii) a benchmark

model of the historical average excess return estimated through period t, R̄i,t− R̄F,t. We

present five forecast performance statistics: (i) the root mean squared error (RMSE),

(ii) the mean absolute percentage error (MAPE), (iii) the Theil’s U inequality coefficient

(U), (iv) the out-of-sample R2 statistic (R2
OS), and (v) the correlation between the actual

and the predicted value of the industry excess stock return (ρ). The out-of-sample R2

statistic (R2
OS) can be compared with the in-sample R2 statistic and is computed as

R2
OS = 1−

∑T+h
t=T (rt − r̂t)2∑T+h
t=T (rt − r̄t)2

,

where rt is the industry excess stock return, r̂t is the predicted value from a predictive

regression estimated through period T , r̄t is the historical average of the industry excess

stock return estimated through period T , h is the number of out-of-sample periods, and

T is the sample size. In the out-of-sample forecasts, we first run an in-sample regression

using data from Jul.1965 until Jun.1968 and then we forecast the returns Ri,t − RF,t

of Jul.1968. After computing the forecast, we update the sample from Jul.1965 until

Jul.1968 and we perform a forecast for Aug.1968 and so forth. We estimate the historical

average return in the benchmark model recursively.

Panel A of Table 3.3 shows that the augmented-model including the EEi,t presents
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better forecasting performance than the other two models, except for the MAPE criteria,

for the sample from Jul.1965 to Dec.2007. For example, the augmented-model has the

smallest RMSE and the highest R2
OS between the three models. These results are con-

sistent with the in-sample analysis in Table 3.2, where the inclusion of EEi,t and Ri(−1)

provides additional forecasting power. Panel B of Table 3.3 displays the out-of-sample

results for Jan.1988-Dec.2007. Consistent with the full sample results, the augmented-

model including the EEi,t has better forecasting abilities for subsequent excess industry

stock returns than the other two models in almost all criteria.

Table 3.3. Out-of-Sample Forecasting - Fixed Co-integrating Factors

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + Ri(−1) + EEi,t Historical Average

(1) (2) (3)

A. Jul.1965-Dec.2007

RMSE .0423 .0390 .0619

MAPE 2.7491 2.5403 1.6959

U .6751 .6236 .9892

R2
OS .5342 .6026 -

ρ .7304 .7828 -.0341

B. Jan.1988-Dec.2007

RMSE .0476 .0415 .0610

MAPE 3.0832 2.7882 1.5407

U .7707 .6721 .9878

R2
OS .3913 .5370 -

ρ .6242 .7357 -.0255

F&Ft denotes the three Fama-French factors: the excess stock market return, RM,t −RF,t, the high-minus-
low factor, HMLt, and the small-minus-big factor, SMBt. EEi,t is the equilibrium error of the i-th industry
excess stock return with the excess stock market return. Ri(−1) is the i-th previous month’s industry excess
stock return. RRELt is the stochastically detrended risk-free rate. Historical Average denotes a benchmark
model of the historical average excess return estimated through period t, R̄i,t − R̄F,t.

Figure 3.1 plots the recursive MSE ratio of the augmented model including EEi,t

(column 2 of Table 3.3) to the benchmark model of historical average returns (column

3 of Table 3.3) and to a model including RM,t − RF,t, SMBt, HMLt, and RRELt, but

excluding the equilibrium error EEi,t (column 1 of Table 3.3). The horizontal line is the

initial forecasting date; for instance, the MSE ratio of Jul.1972 corresponds to the forecast

period Jul.1972-Dec.2007. We use at least 36 observations for the in-sample estimation;

thus, we use the range Jul.1968-Jul.2004 for the starting forecast date. Figure 3.1 shows

that the augmented model including EEi,t has a better out-of-sample forecasting power

than the benchmark model of historical average returns, as the dashed line is always

smaller than one. In comparison with a model including RM,t − RF,t, SMBt, HMLt,

and RRELt, the equilibrium error adds substantial forecasting power, with a MSE ratio

always smaller than 1. These results are consistent with the MSE-F test in Table 3.5. In

sum, we find evidence that the augmented model with the equilibrium error beats two

competing models for predicting subsequent excess industry stock returns.
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Figure 3.1. MSE ratio of augmented EEi,t to F&Ft model (solid line) and to historical average returns (dashed line).

B. Recursive Co-integrating Factors

Table 3.4 evaluates the out-of-sample performance of our proposed models using re-

cursively estimated EEi,t. The analysis is the same in the case of fixed co-integrating

factors, except that the equilibrium error factor, EEi,t, is estimated recursively using

only information available at the time of the forecast. For instance, we first calculate

the equilibrium error factor from the co-integration relationship between industry stock

returns and excess stock market returns using data from Jul.1965 until Jun.1968. Then

we run an in-sample regression using data from Jul.1965 until Jun.1968 and we make a

forecast of the excess returns Ri,t − RF,t for Jul.1968. After computing the forecast, we

update the sample from Jul.1965 until Jul.1968, recalculate EEi,t and make a forecast for

Aug.1968 and so forth. The results are similar to those in Table 3.3. The predictability

of the augmented model with EEi,t is slightly weaker in Table 3.4 than in Table 3.3,

though the augmented model with EEi,t still remains with the best overall forecasting

performance among the three models.

For the period from Jul.1965 to Dec.2007, the augmented model with EEi,t has the

smallest RMSE and the highest R2
OS among the three models. Those results are robust

in the subsample from Jan.1988 to Dec.2007, where the augmented model with EEi,t still

provides better forecasting abilities than the other two models.

Figure 3.2 plots the recursive MSE ratio of the augmented model including EEi,t (col.

2 of Table 3.4) to the benchmark model of historical average returns (col. 3 of Table 3.4)

and to a model including RM,t−RF,t, SMBt, HMLt, and RRELt, but excluding the equi-

librium error EEi,t (col. 1 of Table 3.4). The horizontal line is the initial forecasting date.
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The results are similar to those in Figure 3.1. The augmented model including EEi,t has

better out-of-sample forecasting abilities than the benchmark model of historical average

returns, as the dashed line is always smaller than one. Besides, the augmented model in-

cluding EEi,t adds substantial information to the model excluding EEi,t, since the MSE

ratio between them is always smaller than 1 (solid line of Figure 3.2). Overall, these

results indicate the augmented model with recursively estimated EEi,t has substantial

forecasting abilities for subsequent excess industry returns.

Table 3.4. Out-of-Sample Forecasting - Recursive Co-integrating Factors

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + Ri(−1) + EEi,t Historical Average

(1) (2) (3)

A. Jul.1965-Dec.2007

RMSE .0425 .0398 .0621

MAPE 2.7525 2.6271 1.7428

U .6822 .6387 .9954

R2
OS .5304 .5883 -

ρ .7287 .7789 -.0595

B. Jan.1988-Dec.2007

RMSE .0473 .0423 .0590

MAPE 2.9127 2.4763 1.8912

U .7963 .7127 .9925

R2
OS .3563 .4844 -

ρ .6010 .7077 -.0368

F&Ft denotes the three Fama-French factors: the excess stock market return, RM,t −RF,t, the high-minus-
low factor, HMLt, and the small-minus-big factor, SMBt. EEi,t is the equilibrium error of the i-th industry
excess stock return with the excess stock market return that is recursively estimated using only data available
at the time of forecast. RRELt is the stochastically detrended risk-free rate. Historical Average denotes a
benchmark model of the historical average excess return estimated through period t, R̄i,t − R̄F,t.

C. Testing Out-of-Sample Forecasting Performance

We present three test-statistics to evaluate the out-of-sample forecasting power of our

proposed models. Following Guo and Savickas (2006), we use the mean squared fore-

casting error (MSE) ratio, the encompassing test (ENC-NEW) of Clark and McCracken

(2001), and the equal forecast accuracy test (MSE-F) proposed by McCracken (1999).

The encompassing test (ENC-NEW) tests the null hypothesis that the benchmark model

all of the information about the next month’s industry excess stock return against the

alternative that the augmented model adds information. The equal forecast accuracy

test (MSE-F) tests the null hypothesis that the benchmark model has a MSE less than

or equal to that of the augmented model against the alternative hypothesis that the aug-

mented model has smaller MSE. The MSE-F and ENC-NEW have the best power and

size properties among the many possible tests of out-of-sample forecasting performance

in the literature (Clark and McCracken, 2001).
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Figure 3.2. MSE ratio of augmented EEi,t to F&Ft model (solid line) and to historical average returns (dashed line) -
recursive co-integrating EEi,t.

Table 3.5 presents the out-of-sample forecast test statistics. To compare with the

asymptotic critical values of the test statistic, we need to use a large in-sample period of

estimation. Thus, we estimate the in-sample regression using one-third of the observations

and make the out-of-sample forecasts recursively for the rest of the sample. We use the

observations from Jul.1965 to Aug.1979 to forecast the out-of-sample industry excess

returns of Sep.1979 and update the sample recursively to make the forecast for the next

month. The column MSEA/MSEB reports the MSE ratio of the proposed model to that

of the benchmark model. For the ENC-NEW and MSE-F tests, Asy. CV denote the 95%

critical values derived by Clark and McCracken (2001) and McCracken (1999), for a ratio

of out-of-sample to in-sample periods of 2.

In Panel A, we estimate EEi,t using the full sample. The augmented model has a

smaller MSE than the benchmark model, as the MSE ratio is smaller than one (rows

1 and 2, Table 3.5). Consistent with the MSE ratio, the MSE-F test rejects the null

hypothesis that the benchmark model has a MSE smaller than the augmented model at

the 5% of significance. Besides, the ENC-NEW rejects the null hypothesis that EEi, t

contains no additional information about the predictability of future industry excess stock

returns at the 5% of significance. We also add the previous month’s industry excess stock

returns, Ri(−1), to check if the equilibrium error has significative forecasting power. Row

2 of table 3.5 shows that the augmented model with EEi,t has smaller MSE than the

benchmark model and significative additional information for forecasting future industry

excess stock returns at the 5% significance level, as indicated by the MSE-F and ENC-

NEW tests.
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In Panel B, EEi,t is estimated recursively using only the information available at the

time of the forecast. The augmented model still provides a smaller MSE ratio than the

benchmark model. We find evidence that the augmented model with EEi,t beats the

other two models at the 5% significance level.

Table 3.5. Out-of-Sample Monthly Forecasts of Excess Stock Market Returns: Performance Tests

ENC-NEW MSE-F

Models MSEA/MSEB Statistic Asy. CV Statistic Asy. CV

A.Fixed Co-Integrating Factors

(1) Bench. + Ri(−1) + EEi,t 0.81 89.86 3.56 77.33 1.61

vs. Bench.

(2) Bench. + Ri(−1) + EEi,t 0.81 90.34 2.09 77.94 1.52

vs. Bench. + Ri(−1)

B.Recursive Co-Integrating Factors

(1) Bench. + Ri(−1) + EEi,t 0.88 120.20 2.71 38.64 1.91

vs. Bench.

(2) Bench. + Ri(−1) + EEi,t 0.92 123.72 1.58 67.09 1.55

vs. Bench. + Ri(−1)

This table presents the mean-squared forecasting error ratio of the augmented model to the benchmark model
(MSEA/MSEB), the encompassing test ENC-NEW proposed by Clark and McCracken (2001), and the MSE-
F test derived by McCracken (1999). We assume that the benchmark model includes the three Fama-French
factors - RM,t − RF,t, HMLt, and SMBt - and the stochastically detrended risk-free rate, RRELt, in rows
1 and 3, and also the i-th industry excess stock return during the previous month, Ri(−1), in rows 2 and 4.
We augment the benchmark model with Ri(−1) + EEi,t in rows 1 and 3, and with EEi,t in rows 2 and 4.
The ENC-NEW tests if the benchmark model encompasses all the relevant information about the next month’s
excess stock market return, against the alternative hypothesis that the augmented model includes additional
relevant information. MSE-F tests if the benchmark model has a smaller mean-squared forecasting error than
the augmented model. The in-sample period estimation spans from Jul.1965 through Aug.1979 and then the
forecasting errors are generated forecasts recursively for excess stock returns over the period Sep.1979-Dec.2007.
The variable EEi,t is estimated using the full sample in panel A and recursively estimated using only data
available at the time of forecast in panel B. Columns 4 and 6 display the asymptotic 95% critical values provided
by McCracken (1999) and Clark and McCracken (2001).

3.3 Economic Value of Forecasting

According to Leitch and Tanner (1991), traditional measures of forecasting perfor-

mance, such as the RMSE, may not be closely related to a forecast’s profit. Using profit

measures, they find only very weak relationships between such summary error statistics

and forecast value. If these results are robust, then least-squares regression analysis may

not be appropriate for many studies of economic behavior. We analyse in this section

if the observed forecasting power can be applied to generate higher returns with lower

volatility than the returns implied by a buy-and-hold strategy.

82



Chapter 3. Stock Market Equilibrium Error and Expected Excess Stock Returns

3.3.1 Switching Portfolio

To check if our recursive out-of-sample forecasts could have been used to generate a

higher mean return than that earned from adopting a buy-and-hold strategy, we follow the

approach of Pesaran and Timmermann (1995) and use our forecasts in a simple switching

strategy, which has been widely used in the literature. According to this strategy, an

investor holds stocks in periods where the business cycle suggest that stock returns are

going to outperform bond returns (i.e., the predicted excess industry stock return is

positive), and otherwise holds bonds. We do not include the short-selling of assets and

we do not assume that an investor can use leverage when selecting his portfolio.

Table 3.6 reports the mean, the standard deviation (S.D.), the Sharpe ratio, and the

Adjusted Sharpe ratio for the annualized returns on portfolios based on three forecast

models analyzed in the previous sections. As in Graham and Harvey (1997), Johannes

et al. (2002), and Guo (2006), we adjust the return on the managed portfolio to have

the same standard deviation as the stock market return. The realized adjusted return

is used to calculate the Adjusted Sharpe ratio in a regular way. The Adjusted Sharpe

ratio helps to weaken the effect of leverage on the portfolio selection without affecting

the Sharpe ratio calculation. For example, if the portfolio had a 10% mean return and

11% volatility, and the market volatility is 15%, we multiply the mean return by the

ratio of the market volatility to portfolio volatility, (0.15/0.11), which will give a risk-

adjusted return of 13.63%. Then we calculate the Adjusted Sharpe ratio based on this

risk-adjusted return.

Table 3.6 shows that the managed portfolio based on an augmented model including

EEi,t has annualized return of higher mean and Sharpe ratio than those implied by the

two competing models, over the period Jul.1965-Dec.2007. For instance, the switching

portfolio based on augmented forecast model of column 2 provides an annual mean return

of 31.5% with a volatility of 70.0% compared with 25.6% and 68.6% respectively, for a

switching strategy based on a benchmark of historical average returns. Besides, the

Sharpe ratio of the augmented model is 120% higher than the benchmark portfolio. Thus,

the equilibrium error EEi,t is not only statistically significant in terms of out-of-sample

forecasting ability, but also economically important. The additional information provided

by the equilibrium error is used effectively in the switching portfolio.

Our results are robust in the three subsample periods presented in Panels B-D of

Table 3.6. For all subsample periods, the managed portfolio based on an augmented

model including EEi,t has the highest annualized mean return and Sharpe ratio among

the three models. Consistent with Pesaran and Timmermann (1995) and Guo (2006),

the performance of the managed portfolio relative to the benchmark varies over time.

For example, the managed portfolio has an Adjusted Sharpe ratio of 38.1% for the pe-

riod Jul.1965-Dec.1979, compared with 31.1% for the benchmark portfolio. However, the
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managed portfolio generates an Adjusted Sharpe ratio of 39.2% (48.2%) for the period

Jan.1980-Dec.1994 (Jan.1995-Dec.2007), compared with 35.5% (30.2% ) for the bench-

mark portfolio

Table 3.6. Performance Measures for the Switching Portfolio - No Transaction Costs

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + EEi,t + Ri(−1) Historical Average

(1) (2) (3)

A. Jul.1965-Dec.2007

Mean Return .2835 .3155 .2562

S.D. .6917 .6999 .6863

Sharpe Ratio .4099 .4508 .3733

Adj. Sharpe Ratio .3498 .3809 .3109

B. Jul.1965-Dec.1979

Mean Return .2486 .2631 .2498

S.D. .8600 .8545 .8582

Sharpe Ratio .2891 .3078 .2910

Adj. Sharpe Ratio .2404 .2533 .2422

C. Jan.1980-Dec.1994

Mean Return .2819 .2957 .2695

S.D. .6162 .6189 .6242

Sharpe Ratio .4574 .4778 .4318

Adj. Sharpe Ratio .3817 .3922 .3552

D. Jan.1995-Dec.2007

Mean Return .2492 .3478 .1975

S.D. .5300 .6139 .5265

Sharpe Ratio .4702 .5666 .3752

Adj. Sharpe Ratio .4003 .4820 .3018

This table display returns on switching portfolios, where an investor holds stocks if the predicted industry excess stock
return is positive and holds bonds otherwise. All the statistics are for the annualized returns. As in Graham and Harvey
(1997) and Guo (2006), we adjust the return on the managed portfolio to have the same standard deviation as the
stock market return to calculate the Adjusted Sharpe Ratio. The variable EEi,t is recursively estimated using only data
available at the time of forecast.

Allowing for “high” transaction costs of 1.0 of a percent on switching from bonds to

stocks and 0.1 of a percent on switching from stocks to bonds, Table 3.7 presents the

effect of transaction costs on the switching portfolio. Investors have to pay 1% of the

return on stocks if they switch from bonds to stocks and 0.1% of the return on bonds

if they switch from stocks to bonds. As a 25-basis-point fee is in the upper range of

transaction costs for the market index (Balduzzi and Lynch, 1999), we assure that we are

imposing a high fee of 100-basis-point fee. The effects of imposing transaction costs on

the switching portfolios is negligible on the performance of the trading strategies (Table

3.7). The strategy based on the augmented model with EEi,t still has higher mean and

lower volatility than other strategies.
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Table 3.7. Performance Measures for the Switching Portfolio - High Transaction Costs

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + EEi,t + Ri(−1) Historical Average

(1) (2) (3)

A. Jul.1965-Dec.2007

Mean Return .2819 .3139 .2562

S.D. .6879 .6962 .6863

Sharpe Ratio .4098 .4509 .3733

Adj. Sharpe Ratio .3497 .3811 .3109

B. Jul.1965-Dec.1979

Mean Return .2465 .2612 .2498

S.D. .8535 .8487 .8582

Sharpe Ratio .2888 .3077 .2910

Adj. Sharpe Ratio .2401 .2533 .2422

C. Jan.1980-Dec.1994

Mean Return .2802 .2942 .2695

S.D. .6126 .6157 .6242

Sharpe Ratio .4573 .4778 .4318

Adj. Sharpe Ratio .3813 .3920 .3552

D. Jan.1995-Dec.2007

Mean Return .2478 .3461 .1975

S.D. .5280 .6111 .5265

Sharpe Ratio .4693 .5663 .3752

Adj. Sharpe Ratio .3995 .4819 .3018

This table display returns on switching portfolios, where an investor holds stocks if the predicted industry excess stock
return is positive and holds bonds otherwise. All the statistics are for the annualized returns. As in Graham and Harvey
(1997) and Guo (2006), we adjust the return on the managed portfolio to have the same standard deviation as the
stock market return to calculate the Adjusted Sharpe Ratio. The variable EEi,t is recursively estimated using only data
available at the time of forecast. We assume that investors pay 1.0% on switching from bonds to stocks and 0.1% on
switching from stocks to bonds.

3.3.2 Optimal Portfolio Weights

Now we allocate wealth between stocks and bonds using the optimal portfolio weight

approach, taken in Kandel and Stambaugh (1996), Stambaugh (1999), Pástor and Stam-

baugh (2000), Pástor (2000), and Johannes et al. (2002). The investor solves a single-

period optimal portfolio problem:

max
ωt

E
[
U(Wt+1)|Rt

]
:= max

ωt

∫
U(Wt+1) Pr(Rt+1|Rt)dRt+1,

where Rt is a vector of observed compounded returns up to time t, Wt+1 = Wt[ωt(Ri,t +

(1−ωt)RF,t] is the next period’s wealth, Pr(Rt+1|Rt) is the predictive distribution of future

returns, and the maximization is subject to the usual budget constraint. We assume that

the utility function, U(Wt+1), is strictly increasing, twice differentiable and concave in

the portfolio weight. Solving for the single-period optimal portfolio gives, we have
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ωt =
1

γ

E [Ri,t+1 −RF,t+1|Rt]

E
[
σ2
i,t+1|Rt

] ,

where γ denotes the investor’s relative risk aversion, E [Ri,t+1 −RF,t+1|Rt] is the forecast

industry excess stock return, and E
[
σ2
i,t+1|Rt

]
is the forecast conditional variance of

Ri,t+1 −RF,t+1. We focus on the single-period portfolio problem. The difference between

single period and multi-period problems is hedging demands. Ang and Bekaert (2002),

Chacko and Viceira (2005), and Pástor and Stambaugh (2000), among others, found that

hedging demands are typically extremely small components of the optimal allocation

and are important only for long-horizon investors such as the infinitely lived investors in

Campbell, Chan, and Viceira (2003).

We forecast the conditional variance at t + 1, E
[
σ2
i,t+1|Rt

]
, from an AR(2) model of

σ2
i,t, for each i-th excess industry stock return. For simplicity, we do not allow for the

short-selling of assets or borrowing from bond markets, i.e. ωt ∈ [0, 1], and we do not

take into account the estimation uncertainty. The optimal portfolio weight justifies a

mean-variance rule for investing in stocks, where the risk-aversion parameter γ takes into

account returns that are generated by a fat-tailed stochastic volatility distribution. While

the switching strategy just gives information on the signs of predicted excess industry

stock returns, this investment strategy also includes information on the magnitude of the

forecast excess returns normalized by its forecast conditional variance.

Table 3.8 provides the summary statistics for the annualized returns from an optimal

portfolio strategy weight based on three different forecasting models. We assume that γ =

5 in the calculation of the optimal weights, but the results are robust to different choices

of γ. The portfolio based on the augmented model with EEi,t has higher annualized

mean return and Sharpe ratios than those reported in Table 3.6 for a switching strategy.

For example, over the period Jul.1965-Dec.2007, the Adjusted Sharpe ratio is 69.6% if

an investor allocates portfolio weight optimally, compared with 38.9% for the switching

strategy. However, the results are similar to those presented in Table 3.6. Optimal

portfolio weighting based on augmented models using EEi,t provides return of higher

annualized mean and Sharpe ratios than portfolio based on the other two models, over

the full sample and the three subsample periods. Besides, the relative performance of

optimal portfolio weighting strategies varies over time.
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Table 3.8. Choosing Optimal Portfolio Weights with No Transaction Costs

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + EEi,t + Ri(−1) Historical Average

(1) (2) (3)

A. Jul.1965-Dec.2007

Mean Return .3960 .5290 .1982

S.D. .5667 .6434 .5137

Sharpe Ratio .6987 .8221 .3858

Adj. Sharpe Ratio .6028 .6960 .3203

B. Jul.1965-Dec.1979

Mean Return .4482 .5116 .1085

S.D. .7174 .7871 .4533

Sharpe Ratio .6247 .6500 .2395

Adj. Sharpe Ratio .5060 .5171 .1955

C. Jan.1980-Dec.1994

Mean Return .3902 .5001 .2585

S.D. .5060 .5571 .5879

Sharpe Ratio .7711 .8977 .4397

Adj. Sharpe Ratio .7335 .8440 .3585

D. Jan.1995-Dec.2007

Mean Return .2999 .5268 .1856

S.D. .3881 .5630 .5062

Sharpe Ratio .7727 .9357 .3666

Adj. Sharpe Ratio .7027 .8170 .2930

This table presents the returns for an optimal weighting strategy, where an investor allocates an optimal weight of the
total wealth in stocks:

ωt =
1

γ

E
[
Ri,t+1 −RF,t+1|Rt

]
E
[
σ2
i,t+1|Rt

] ,

where Rt is a vector of observed compounded returns up to time t, γ denotes the investor’s relative risk aversion,

E
[
Ri,t+1 −RF,t+1|Rt

]
is the forecast industry excess stock return, and E

[
σ2
i,t+1|Rt

]
is the forecast conditional variance

of Ri,t+1 − RF,t+1 based on a AR(2) model of σ2
i,t, for each i-th excess industry stock return. The variable EEi,t is

recursively estimated using only data available at the time of forecast. We assume that γ = 5, ωt ∈ [0, 1], and we ignore
the estimation uncertainty.

3.3.3 Market Timing Ability Test

In this section, we check the forecasting power of our model by testing whether the

expected excess industry stock returns during forecast up markets is different from that

during forecast down markets. This was first proposed by Cumby and Modest (1987)

and it is called the market timing ability test. It consists on testing the null hypothesis

a1 = 0 in the regression

Ri,t+1 −RF,t+1 = a0 + a1It + vt+1,

where Ri,t+1 − RF,t+1 are the observed excess industry stock returns, and It is one if the

forecasting model predicts Ri,t+1−RF,t+1 to be positive and is equal zero otherwise. The
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Table 3.9. Choosing Optimal Portfolio Weights with High Transaction Costs

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + EEi,t + Ri(−1) Historical Average

(1) (2) (3)

A. Jul.1965-Dec.2007

Mean Return .3937 .5251 .1982

S.D. .5605 .6360 .5137

Sharpe Ratio .7025 .8256 .3858

Adj. Sharpe Ratio .6065 .6993 .3203

B. Jul.1965-Dec.1979

Mean Return .4446 .5077 .1085

S.D. .7064 .7755 .4533

Sharpe Ratio .6293 .6546 .2395

Adj. Sharpe Ratio .5103 .5215 .1955

C. Jan.1980-Dec.1994

Mean Return .3878 .4971 .2585

S.D. .5005 .5510 .5879

Sharpe Ratio .7748 .9022 .4397

Adj. Sharpe Ratio .7374 .8484 .3585

D. Jan.1995-Dec.2007

Mean Return .2987 .5242 .1856

S.D. .3865 .5600 .5062

Sharpe Ratio .7729 .9361 .3666

Adj. Sharpe Ratio .7032 .8177 .2930

This table presents the returns for an optimal weighting strategy, with the same specifications as in Table 3.8. We assume
that investors pay 1.0% on switching from bonds to stocks and 0.1% on switching from stocks to bonds.

market timing ability analyses only the first moment, but investors may care about other

moments of the return distribution. Following Breen et al. (1989), we also investigate the

forecast ability of the variance of the excess industry stock market returns during forecast

up and down markets. Thus, we test the null b1 = 0 in the regression

v2
t+1 = b0 + b1It + ηt+1,

where vt+1 are the squared residuals of the first regression. Table 3.10 reports the results

of the market timing ability test for the first and second moment based on three different

forecasting models. We reject the null hypothesis of no market timing ability for all the

three models (Panel A) at the 5% significance level. Besides, we find evidence that the

variance of the excess industry stock returns are slightly positive related to the market

index based on the augmented model including EEi,t (col.2, Panel B).
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Table 3.10. Market Timing Ability Test: Jul.1968-Dec.2007

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + Ri(−1) + EEi,t Historical Average

(1) (2) (3)

A. Ri,t+1 −RF,t+1 = a0 + a1It + vt+1

a0 -0.034 -0.035 .000

(16.37) (19.37) (1.04)

a1 0.058 0.058 .016

(20.30) (23.93) (3.15)

B. v2t+1 = b0 + b1It + ηt+1

b0 .003 0.003 0.004

(45.41) (19.45) (7.17)

b1 .000 0.001 -.003

(1.5) (4.30) (1.31)

This table presents a panel version of the market timing ability test developed by Cumby and Modest (1987) on the
excess stock returns in Panel A and on the variance of the excess stock return in Panel B as suggested by Breen et al.
(1989). The regression coefficients were estimated by a fixed effects method, where dependent variable is the excess
stock market return of the i-th industry at t+ 1, Ri,t+1 −RF,t+1, and the regressor is an indicator function, It, that is
equal to one if Ri,t+1−RF,t+1 is expected to be positive at t and zero otherwise. F&Ft denotes the three Fama-French
factors: the excess stock market return, RM,t−RF,t, the high-minus-low factor, HMLt, and the small-minus-big factor,
SMBt. EEi,t is the equilibrium error of the i-th industry excess stock return with the market excess return. Ri(−1) is
the i-th industry excess stock return during the previous month. RRELt is the stochastically detrended risk-free rate.
The heteroscedastic-corrected t-statistics are reported in parentheses, and bold denotes significance at the 5% level.

3.3.4 Additional Tests

In this section, we follow the approach of Fleming, Kirby, and Ostdiek (2001) and

measure the volatility timing of our forecasting strategies. For each one of the forecasting-

based strategy, we compare its performance with an unconditional mean-variance efficient

static strategy that would have the same target expected return and volatility. If the

volatility timing implied by our strategies has no value, then their performance should be

no different from an unconditional mean-variance efficient static strategy. To make this

comparison, we use a performance measure that evaluates the trade-off between risk and

return. Assuming a fixed parameter of the investor’s relative risk aversion, γ, we use an

utility function

U(.) = W0

(
T−1∑
t=0

Ri,t+1 −
γ

2(1 + γ)
R2
i,t+1

)
, (3.3.3)

where W0 is the investor’s initial wealth. We calculate the certainty equivalent gain ∆

by equating the utility for two different portfolios. Then ∆ is the maximum performance

fee that an investor would be willing to pay to switch from a strategy to another. In our

approach, we compare each forecast-based strategy that pays a rate of Ri,t+1 with the

market portfolio that pays RM,t+1. Thus, to estimate the certainty equivalent ∆, we find
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the value of ∆ that satisfies

T−1∑
t=0

(Ri,t+1 −∆)− γ

2(1 + γ)
(Ri,t+1 −∆)2 =

T−1∑
t=0

RM,t+1 −
γ

2(1 + γ)
R2
M,t+1. (3.3.4)

Table 3.11 illustrates the certainty equivalent gain from holding a portfolio based on

each of the three forecasting strategies. The strategy based on the augmented model

including the EEi,t always provides a higher certainty equivalent than the one obtained

using the other forecast models, and it gives a value of 0.7%−2.7% that is not significantly

affected by transaction costs.

Table 3.11. Certainty Equivalence Gain (∆): Jul.1968-Dec.2007

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + Ri(−1) + EEi,t Historical Average

(1) (2) (3)

1. Switching Strategies

.0055 .0073 .0037

2. Switching Strategies with Transaction Costs

.0055 .0073 .0037

3. Optimal Portfolio Weighting Strategy

.0199 .0270 .0033

4. Optimal Portfolio Weighting Strategy with Transaction Costs

.0198 .0268 .0033

This table presents the average annualized certainty equivalent (∆) that an investor with quadratic utility
defined in equation (3.3.3) and constant relative risk aversion of γ = 5 would be willing to pay to switch
from the static portfolios paying a market portfolio, RM,t+1, to the strategies based on the three forecasting
models, as in equation (3.3.4). The variable EEi,t is recursively estimated using only data available at the
time of forecast.

We also check if the returns generated by a forecasting strategy can be explained by

the CAPM and the Fama-French model. We run the following regressions:

RP,t+1 −RF,t+1 = αCAPM + βMKTMKTt+1 + ut+1, (3.3.5)

RP,t+1 −RF,t+1 = αFF + βMKTMKTt+1 + βSMBSMBt+1 + βHMLHMLt+1 + vt+1,

(3.3.6)
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where RP,t+1 − RF,t+1 are the portfolio excess returns and MKTt+1 = RM,t+1 − RF,t+1.

This is called the Jensen’s α test for the portfolio returns. Under the null hypothesis,

the constant term of (3.3.5) or (3.3.6) is not significantly different from zero, implying

that each of these models are correct for explaining the portfolio excess returns. Table

3.12 shows that both CAPM and Fama-French model cannot explained the returns based

on the three forecasting strategies at the 5% significance level. Besides, the results are

robust to the presence of transaction costs (Panels 3 and 4).
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Table 3.12. Jensen’s α Test for Portfolio Returns: Jul.1968-Dec.2007

F&Ft + RRELt + Ri(−1) F&Ft + RRELt + Ri(−1) + EEi,t Historical Average

(1) (2) (3)

1. Switching Strategies

αCAPM .022 .026 .005

(27.33) (31.93) (12.76)

αFF .022 .026 .005

(25.40) (30.42) (11.81)

2. Switching Strategies with Transaction Costs

αCAPM .023 .024 .006

(26.62) (29.05) (10.12)

αFF .023 .024 .006

(24.81) (27.00) (9.23)

3. Optimal Portfolio Weighting Strategy

αCAPM .022 .026 .005

(27.33) (31.93) (12.76)

αFF .022 .026 .005

(25.40) (30.42) (11.81)

4. Optimal Portfolio Weighting Strategy with Transaction Costs

αCAPM .022 .029 .004

(27.46) (32.86) (5.13)

αFF .021 .028 .003

(25.01) (32.34) (3.71)

This table presents the estimated constant of an OLS regression of the excess portfolio returns, RP,t+1 −RF,t+1,
on solely the excess stock market returns (CAPM), RM,t+1 −RF,t+1, and on the excess stock market returns plus
the other two Fama-French factors (FF), SMBt+1 and HMLt+1, as in equations (3.3.5) and (3.3.6). The variable
EEi,t is recursively estimated using only data available at the time of forecast. Bold denotes significance at the 5%
level.
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3.4 Equilibrium Error, Stock Market Liquidity and

Return Reversals

In this section, we check whether the equilibrium error term (EEi,t) is related to stock

market liquidity and return reversals. According to Pástor and Stambaugh (2003), stock

market liquidity is a broad and elusive concept that generally denotes the ability to trade

large quantities at low cost, and without moving the price. Therefore, many concepts

have been proposed in the literature to define stock market liquidity. We follow the

approach of Pástor and Stambaugh (2003) and focus on an aspect of liquidity associated

with transitory price fluctuations implied by order flow. We also investigate whether

EEi,t is related to the funding liquidity risk (FL) measure of Fontaine and Garcia (2012),

obtained from a panel of U.S. Treasury security pairs across a range of maturities. The

elements of each pair have identical maturities, similar cash flows, but may have different

ages. The funding factor (FL) can be interpreted as a measure of liquidity risk by relating

FL to future repo spreads and by linking FL to broader measures of funding conditions.

To analyse if EEi,t is related to stock market return reversals, we investigate whether

EEi,t varies with the momentum factor, WML. The momentum factor is calculated as the

cumulative stock market return from month t−6 to t−1, with the previous month being t

and the current month being t+1. For robustness, we also include other measures of return

reversals, like the Short-Term (STR) and Long-Term return reversal (LTR) factors from

French’s data library. The Short-Term and Long-Term reversal factors are defined as the

average return on the two low prior return portfolios minus the average return on the two

high prior return portfolios, or 1/2(SmallLow+BigLow)−1/2(SmallHigh+BigHigh).

A stock must have a price for the end of month t − 2 and a good return for t − 1 to be

included in a portfolio for month t in the calculation of STR, while LTR only includes

stock that have a price for the end of month t − 61 and a good return for t − 13 to be

included in a portfolio for month t.

Table 3.13 presents summary statistics of the liquidity and return reversals measures.

There are four liquidity measures: the levels of aggregate liquidity (ALiq), innovations in

aggregate liquidity or the non-traded liquidity factor (InLiq), the value-weighted return

on the 10-1 portfolio from a sort on historical liquidity betas or the traded liquidity betas

(TLiq), and the funding liquidity factor (FL). The liquidity measures ALiq, InLiq, and

TLiq were proposed by Pástor and Stambaugh (2003) and obtained from Lubos Pastor’s

website. The funding liquidity factor,FL, was available on the website of Jean-Sébastien

Fontaine. Panel A of Table 3.13 shows that the ALiq, InLiq, and TLiq are positively

correlated with EEt,i, while the funding liquidity factor presents no correlation with the

equilibrium error term. In contrast, EEi,t is negatively related to the Momentum factor

WML and positively correlated with STR, whereas there is no correlation with LTR.

Panel B of Table 3.13 displays the results of forecasting one-month-ahead excess in-
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dustry stock returns. The equilibrium error factor, EEi,t, is insignificant individually,

but it becomes significant when the previous month’s excess industry return, Ri(−1), is

included in the regression. Besides, EEi,t and Ri(−1) never become insignificant when

combined with other variables. The aggregate liquidity factor, ALiq, and the non-traded

liquidity factor, InLiq, of Pástor and Stambaugh (2003) does not forecast excess industry

stock market returns over our monthly sample (rows 3 and 6). However, ALiq and InLiq

become significant when combined with EEi,t and Ri(−1). These results suggest that

EEi,t has some forecast abilities close to those of ALiq and InLiq.

We find that the traded liquidity factor TLiq of Pástor and Stambaugh (2003) and

the FL of Fontaine and Garcia (2012) are positively and significantly related to future

excess industry stock market returns. TLiq and FL are still significant after we control

for EEi,t and Ri(−1) (rows 11 and 14 of Table 3.13). In sum, these results indicate that

EEi,t does not share the forecasting abilities of TLiq and FL.

The momentum factor, WML, is negative and significant alone in the forecasting

equation (row 15). However, it becomes statistically insignificant after including EEi,t

(row 16) and EEi,t with the previous month’s excess industry return Ri(−1) (row 17).

The short-term reversal factor, STR, is positive and significant related to future excess

stock industry returns (row 18). However, it is insignificant when combined with EEi,t

and Ri(−1) (row 20). In contrast, LTR is negative and statistically significant by itself

(row 21) and when combined with EEi,t and Ri(−1) (row 23). Finally, Table 3.13 pro-

vides evidence that EEi,t shares some similar information about one-month-ahead excess

industry stock returns with the short-term return reversals measures WML and STR.

In sum, our analysis suggests that EEi,t is related to some liquidity and short-term

reversals measures.
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Table 3.13. Equilibrium Error, Stock Market Liquidity and Return Reversals Measures

ALiq InLiq TLiq FL WML STR LTR

A. Summary statistics
Mean -.032 -.001 .005 -.108 .009 .006 .003
S.D. .062 .056 .032 .984 .041 .031 .025
Corr. with EEi,t .072 .061 .044 .009 -.042 .048 -.004
B. Forecasting one-month-ahead excess stock returns

EEi,t Ri(−1) ALiq InLiq TLiq FL WML STR LTR R̄2

(1) -.049 .000
(-.888)

(2) -.315 9.458 .007
(-5.428) (7.345)

(3) .618 .000
(.845)

(4) -.045 -.728 .000
(-.783) (-.730)

(5) -.319 10.068 -2.567 .008
(-5.596) (7.630) (-2.556)

(6) -1.417 .000
(-1.836)

(7) -.037 -2.861 .001
(-.646) (-2.334)

(8) -.334 10.959 -5.564 .009
(-5.802) (8.281) (-4.369)

(9) 3.367 .000
(3.341)

(10) -.054 3.663 .000
(-.973) (2.429)

(11) -.315 9.310 4.035 .007
(-5.473) (7.444) (2.655)

(12) .373 .003
(7.212)

(13) -.065 .324 .002
(-1.236) (4.470)

(14) -.225 5.913 .305 .004
(-4.212) (3.847) (4.284)

(15) -3.940 .001
(-3.624)

(16) -.052 -1.563 .000
(-.959) (-.981)

(17) -.315 9.436 -.276 .007
(-5.401) (7.204) (-.166)

(18) 6.967 .001
(4.877)

(19) -.059 5.970 .001
(-1.089) (3.189)

(20) -.310 9.119 3.027 .007
(-5.380) (7.393) (1.767)

(21) -17.402 .005
(-14.771)

(22) -.054 -23.356 .009
(-1.036) (-16.632)

(23) -.291 8.480 -21.472 .014
(-5.078) (6.722) (-16.075)

This table reports the Fixed-Effect regression results of the one-month-ahead excess stock returns on some variables. The
heteroscedastic-corrected t-statistics are reported in parentheses and bold denotes significance at the 5% level. The liquidity
measures ALiq, InLiq, and TLiq were proposed by Pástor and Stambaugh (2003). ALiq denotes the levels of aggregate
liquidity. InLiq denotes innovations in aggregate liquidity or the non-traded liquidity factor. TLiq is the traded liquidity
factor. FL is the funding liquidity factor proposed by Fontaine and Garcia (2012). Ri(−1) is the i-th industry excess stock
return during the previous month. WML is the momentum factor. STR and LTR are the short and long-term reversal
factors from French’s data library. R̄2 is the adjusted-R2. EEi,t is the recursively estimated equilibrium error factor.
*Scaled by 100.
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3.5 Conclusion

In this paper, we find that the equilibrium error, the error term from the co-integration

relationship between industry stock returns and excess stock market returns, has strong

forecasting abilities for excess stock returns, which are increased if combined with the

previous month’s excess stock returns. Besides, our results suggest that short-term return

reversals and liquidity measures are primary reasons for the negative relation between

EEi,t and excess stock returns in the subsequent month. This relation is robust after

the previous month’s excess stock returns is included to account for return reversals. In

general, the equilibrium error factor appears to be a pervasive variable that captures

systematic movements of stock returns.

We provide new evidence on the out-of-sample stock return predictability, in contrast

to Bossaerts and Hillion (1999), Goyal and Welch (2003), and Welch and Goyal (2008),

among others, who found negligible out-of-sample predictive power using standard vari-

ables. This difference might be due to our forecasting variables discard the variables

used by those authors, and the equilibrium error factor is a panel variable that uses more

information than time series variables. We also show that the out-of-sample explanatory

power is economically meaningful for investors. Simple trading strategies implied by the

proposed predictability provide portfolios with higher mean returns and Sharpe ratios

than a buy-and-hold or a benchmark strategy does.

In future work, a number of extensions is possible. First, our results seem to be con-

sistent with two different hypotheses, that EEi,t is a proxy for liquidity premium and that

EEi,t is a proxy for short-term return reversals. However, it is not possible to discrimi-

nate between these two hypotheses, as liquidity and short-term return reversals are two

related concepts (Da et al., 2014). Using standard economic theories, we may develop

more powerful tests to discriminate between the two hypotheses. Second, the relationship

among EEi,t, short-term return reversals, and liquidity reveals a connection between mar-

ket microstructure and general equilibrium theory, as shown in O’Hara (2003). A joint

analysis of these two approaches may have important implications for asset pricing.
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