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Dimensionality Reduction with Image Data

Mónica Benito and Daniel Peña

Universidad Carlos III de Madrid, Spain

Summary. A common objective in image analysis is dimensionality reduction. The most

often used data-exploratory technique with this objective is principal component analysis. We

propose a new method based on the projection of the images as matrices after a Procrustes

rotation and show that it leads to a better reconstruction of images.

Keywords: Eigenfaces; Multivariate linear regression; Singular value decomposition; Princi-

pal component analysis; Generalized proscrustes analysis.

1. Introduction

Exploratory image studies are generally aimed at data inspection and dimensionality re-

duction. One of the most popular approaches to reduce dimensionality and derive useful

compact representations for image data is Principal Component Analysis (PCA). Kirby &

Sirovich (1990) proposed using PCA to reduce the dimensionality when representing human

faces. The performance of this method on aligned and scaled human faces is very good, but

it does not work well for non-aligned faces. Alternative approaches using Independent Com-

ponent Analysis (ICA) for face representation have been proposed by Barlett and Sejnowski

(1997). Wu & Zhou (2002) have also demostrated that a pre-processing step of the image

sample improves the PCA performance. In the last two decades, PCA has been especially

popular in the object recognition community, where it has succesfully been employed by

Turk & Pentland (1991), Valentin et. al (1996) and Swets & Weng (1996).
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The problem we are interested in is as follows. We have a set of images which represent

similar objects, for instance, human faces, temporal images of the same scene, objects in

a process of quality control, and so on. Any particular image (say the n � th image) is

represented by a matrix Xn of I rows and J columns. We assume that the sample contains

the set of N images, X1; X2; :::; XN . Each matrix consists of elements xij , with i = 1; :::; I

and j = 1; :::; J , that represent the pixel intensities extracted from digitized images. All the

elements xij are in the range between 0 and 255, where the value 0 represents black color,

and the value 255 white. Suppose that each matrix is transformed into a vector xn by row

(or column) concatenation. Therefore, we have a set of N vectors in a high dimensional

space, speci�cally, xn 2 <d where d = I � J , n = 1; :::; N: For convenience, the vectors

are assumed to be normalized, so that xTnxn = 1. Note that this set of vectors can be

represented by an N � d matrix X in which the n � th row is equal to xn: When dealing

with high-dimensional observations, linear mappings are often used to reduce dimensional-

ity of the data by extracting a small (compared to the original dimensionality of the data)

number of linear features. Among all linear, orthonormal transformations, principal com-

ponent analysis is optimal in the sense that it minimizes, in mean square sense, the errors

in the reconstruction of the original signal xn from its low-dimensional representation, bxn.
As is well known, PCA is based on �nding directions of maximal variability. In this pa-

per we propose an alternative way of projecting the original data on a subspace of lower

dimension. Instead of concatenating rows or columns, we keep the structure of the matrix

in the projection. The rest of the paper is organized as follows. In the next section, we

brie
y introduce the basic theory of the standard method used for dimensionality reduction

based on principal component in the context of image data. In Section 3 we propose a new

approach which keeps the internal structure of the image and we show that this procedure

has important advantages compared to classical PCA. In section 4 we discuss the problems

of aligning and scaling images before the dimension reduction is carried out, and introduce

a generalized proscrustes rotation to solve this problem. Finally, in Section 5 we present

the experimental results of the procedure when applied to a human face data base.
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2. Principal Component Analysis (PCA)

Assume that xT1 ; x
T
2 ; :::;x

T
N ; is a set of d�dimensional input data vectors which are assumed

to be zero mean and unit variance and let X be the matrix N � d whose n� th row is the

vector xTn : The purpose of PCA is to �nd p (p < d) standardized linear combinations of the

original variables Xu1; Xu2; :::;Xup which are uncorrelated and have maximal variance.

These vectors are obtained by the orthogonal transformation (see Mardia et. al., 1992, for

more details),

Z = XUp (1)

where Up is an orthogonal matrix with columns vectors ui which are eigenvectors linked to

the p-th largest eigenvalues of the matrix X 0X . The optimal prediction bXp with a matrix

of rank p of the X matrix with the least squares criterion is based on the singular value

decomposition of this matrix X: Suppose that the rank of X is r, r = min fN; dg : The best

reconstruction of this matrix using p � r dimensions is given by

bXp = XUpU
T
p (2)

and this implies that each vector xn is predicted as,

bxn =

pX
i=1

(xTnui)ui: (3)

Note that in order to predict the N images, which implies a total of IJN scalar pixel

predictions, we only need the p vectors ui of dimension IJ and the p scalar values zi =

(xTnui) for each image. Thus, the number of scalar values required for the prediction is:

pIJ + pN = IJN(
p

N
+

p

IJ
) = IJNc1 (4)

where c1 represents the factor of reduction. If p=IJ is small, so that c1 is small, the

reduction of dimension required for the reconstraction of the images can be very important.

This decomposition was used for image dimension reduction by Turk & Pentland (1991),

and it is often refered to as the eigenface method. It is the most common approach for

dimension reduction with images.

3. An Alternative approach based on matrix projections

We are interested in a projection method which keep the matrix structure of the image.

Yang & Yang (2002) proposed the projection of the rows of the matrix in the context of
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feature extraction. Here we follow a similar approach. Assume without loss of generality

that I > J . Then, given a a unit norm J � 1 vector, we can project the rows of Xn on the

a direction by,

wn = Xna (5)

We will call this I�dimensional projected vector wn the projected feature vector of Xn.

Suppose that we project all the images in this way and obtain a set of vectors, wn; n =

1; :::; N: In order to �nd a good projection direction, let us call Sr the I � I covariance

matrix for these vectors representing the rows, (the subindex r is due to the projection of

the rows. We will discuss later the projection of the columns). This matrix is given by

Sr =
1

N

NX
n=1

(wn �w) (wn �w)
T
; (6)

wherew is the mean of the projected vectors. The two most often used measures to describe

scatter about the mean in multivariate data are the total variation, given by the trace of the

covariance matrix, and the generalized variance, given by the determinant of this matrix.

For simplicity let us �nd the direction a which maximizes the total variation given by the

trace of Sr. Then

max tr(Sr) = max tr

 
1

N

NX
n=1

(wn �w) (wn �w)
T

!
(7)

and using the de�nition (5),

tr(Sr) = tr

 
1

N

NX
n=1

�
Xna�Xa

� �
Xna�Xa

�T!
(8)

where X =
1

N

NX
n=1

Xn denotes the mean image. As

max tr(Sr) = max
1

N
� tr

 
aT

"
NX
n=1

�
Xn �X

�T �
Xn �X

�#
a

!
(9)

it follows that vector a is the eigenvector linked to the largest eigenvalue of the matrix

�c =
1

N

NX
n=1

�
Xn �X

�T �
Xn �X

�
; �c 2 <

J�J (10)

As we need more than one direction of projection to characterize the sample, we compute

the set of eigenvectors a1; a2; :::; ap; which constitute a basis for <p from which the data
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can be estimated using a subspace of lower dimension, p � min fI; Jg. It is easy to see that

the same criterion is obtained if we start projecting the columns instead of the rows. Given

b a unit norm I � 1 vector, the projection of the columns of Xn on the b direction is given

by,

zn = XT
n b (11)

and this J�dimensional projected vector zn is the projected feature vector of Xn. The

covariance matrix between the projected vectors zn is de�ned by

Sc =
1

N

NX
n=1

(zn � z) (zn � z)
T

(12)

where z is the average projected columns, and maximizing the trace of Sc leads to �nding

the eigenvectors linked to the largest eigenvalues of the matrix

�r =
1

N

NX
n=1

�
Xn �X

� �
Xn �X

�T
; �r 2 <

I�I (13)

which have the same non null eigenvalues as �c.

3.1. Prediction by Multivariate Regression

Let Wn be the feature vectors obtained as the solution of (7),

Wn = [Xna1; :::; Xnap] = XnAp ; Wn 2 <
I�p (14)

we can use these data to predict the matrix Xn by the multivariate regression model

Xn =Wn�n + "n (15)

where the matrix Xn is predicted from its feature vectors Wn using some parameters �n =�
�1n; :::; �

J
n

�
2 <p�J ; which depend on the image. The least squares estimate is given byb�n =

�
W T

n Wn

�
�1

W T
n Xn and the prediction of the matrix Xn with this model is

bXn = HnXn (16)

where Hn =Wn

�
W T

n Wn

�
�1

W T
n is the perpendicular projection operator onto the column

space of Wn . Observe that although the set of design matrices W1; W2; :::; WN are speci�c

for each image, this set has been obtained using a common orthonormal base of projection
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based on the singular value decomposition of the covariance matrix by columns between

the original images, �c, as we discussed above.

The reconstruction of each image with IJ numbers requires the matrixWn; with dimension

Ip plus the vector �n of dimension pJ leading to

N(Ip+ pJ) = IJN(
p

J
+
p

I
) = IJNc2 (17)

and we see that if both I and J are large with relation to p the reduction in the dimension

of the problem can be important. Suppose that the projection has been done using the

columns of X instead of the rows, then, the feature matrix Zn has dimension J � p and

the perpendicular projection operator Gn = Zn

�
ZT
nZn

�
�1

ZT
n is used to reconstruct each

image. That reconstruction requires the same number of parameters as that de�ned in

(17). Let be r = maxfI; Jg, we suggest using the projection by rows when r = I and on

the contrary, project the columns when r = J . This criterion is based on the idea that we

want to use as much information as possible to reconstruct the images, so we are interested

in a feature matrix which has the highest dimension.

4. Image Registration

When dealing with a set of homogeneous objects, as in the case of the human face database,

the di�erent ilumination and facial expressions greatly increase the diÆculty of the recon-

struction task. To avoid this problem, some procedures have been proposed to pre-process

the images focussing on smoothing techniques, Wu and Zhou (2002). Nevertheless, when

the problem focuses on shape normalization, these techniques are not useful under such

variations. Alternatively, the sample can be seen as a set of shapes with respect to a local

2D coordinates system. We can combine these di�erent local coordinate systems into a

common system in order to have a normalized sample of objects before they are analyzed

by subspace techniques. This geometric transformation process is known as registration.

Depending of the complexity of the object, it may require two or more viewpoints, also

called landmarks, to register it appropiately. From this point of view, we would like all

the images to satisfy some constraints. For instance, these constraints may include the line

between the two eyes being parallel to the horizontal axis, the inter-ocular distance being

set to a �xed value, or the size of the face being �xed. In this sense, when some important

points or landmarks (for instance, the eye location) are �xed, we would expect exactly all
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the sample centered in the middle of the image. This can be solved easily by an aÆne

transformation,

bi = Dai + s ; i = 1; :::; d (18)

where d is the number of pixels, d = I � J and the vectors ai and bi belong to <
2, due the

pixel's spatial coordinates. Thus, for any pixel in the image, say the i� th, this transforma-

tion maps the vector ai to bi. The aÆne transformation is able to rescale the image by the

matrix D as well as a possible rotation of the face. The vector s describes the translation.

Next, we will discuss how the parameters (D; s) for the desidered transformation can be

determined.

4.1. Affine Transformation

What we call aÆne transformation is a procedure in which the landmark points are selected

so that these three landmarks have the same coordinates in all the images. To describe the

face location and orientation in an image, the best selection seems to be the points which

describe the position of the left and right eye, and the point that marks the lower end of

the chin (see Nadenau, 1997 ). Let a1n; a2n and a3n be the points which describe these

positions in the n � th image of the sample, n = 1; :::; N . We want to transform them to

�xed points given by B = [ b1;b2;b3]: Let An = [ a1n; a2n; a3n], then

B = DAn + s ; n = 1; :::; N (19)

and the matrix A and the vector s are obtained by solving this system of 6 equations and

6 unknowns. This approach has two main limitations. The �rst one is that we can select

only three points to �x the object normalization. The second is that we are not keeping

the relative distances among the landmarks in the transformation. As an alternative, we

propose a new procedure to estimate the similarity transformation that avoids these two

liminations.

4.2. Procrustes Analysis

Procrustes analysis theory is a set of mathematical tools to directly estimate and perform

simulteneous similarity transformations among the objects landmarks up to their maximal

agreement. Based on this idea, we can focus on a goodness of �t measure used to compare
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N con�gurations of points. The basic procedure is as follows. Let An be the r�2 matrix of

coordinates of r landmarks in the n� th image, n = 1; :::; N: We wish to �nd simultaneous

translations, rotations, and scale factors of these N sets of points into positions of best �t

with respect to each other. The functional model of the transformation is stated as follows,

bAn = cnAnTn + 1tTn ; n = 1; :::; N (20)

where cn is the scale factor, Tn is 2� 2 orthogonal rotation matrix, tn is a 2� 1 traslation

vector, and 1 is a 2�1 unit vector. The N matched con�gurations are measured by means of

the residual sum of squares between each point of each con�guration and the corresponding

point of the average con�guration or common coordinate system. For this task, Generalized

Orthogonal Procrustes Analysis (Gower, 1975) provides least-squares correspondence of

more than two point matrices. According to Goodall (1991), there is a matrix B, also

called consensus matrix, which contains the true coordinates of the r points de�ned in a

mean and common coordinate system. The solution of the problem can be thought of as

the search for the unknown optimal matrix B: De�ning C as the geometrical centroid of

the transformed matrices bA1; :::; bAN ,

C =
1

N

NX
n=1

bAn (21)

the solution of the registration problem is achieved by using the following minimum condi-

tion
NX
n=1

tr

�h bAn � C
iT h bAn � C

i�
(22)

in an iterative computation scheme of centroid C. To start the algorithm we need to de�ne

an initial centroid, which will be used to �t all the models An, one at time, to this temporary

centroid C (this will be explained in section 4.2.1). The idea behind the procrustes solution

in (19) is an iterative updating of C and bAn according to equations (21) and (20) until

global convergence, i.e., until the centroid con�gurations variations between two subsequent

iterations are smaller than a pre-de�ned threshold �. Hence, the �nal solution of the centroid

corresponds to the least squares estimation bB and shows the �nal coordinates of r points in

the maximal agreement with respect to least squares objetive function. Finally, the unknown

similarity transformation parameters (Tn; tn; cn) , n = 1; :::; N , are then determined using

the procrustes algorithm procedure for �tting two given sets of points, An and C, as we
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did early in each iteration of the algorithm but using the temporary centroid. Next, we

will explain the process of �tting two con�gurations of points and how the initial centroid

is de�ned.

4.2.1. Fitting two con�gurations of points

To solve the problem of transforming a given matrix A into a given matrix B by an or-

thogonal matrix T , a traslation vector t and a scale factor c, Schoenemann and Carroll

(1970) proposed a least squares method called Extended Orthogonal Procrustes (EOP)

which consists of minimizing the sum of squares of the residual matrix

E = cAT + 1tT �B (23)

MatricesA andB are r�p dimensional, containing r corresponding points in the p�dimensional

space. In the image data context, p = 2. Similarly as in (20), 1 is the r� 2 unit vector and

t is 2� 1 traslation vector. In order to obtain the least squares estimation of the unknown

parameters (T; t; c) the solution must satisfy the following condition,

min tr
�
ETE

	
= min tr

n�
cAT + 1tT �B

�T �
cAT + 1tT �B

�o
(24)

Let E = bA�B. Then the criterion condition (22) with the orthogonality condition T TT =

TT T = I , imply the Lagrangean function

L = tr
�
ETE

	
+ trf�(T TT � I)g (25)

where � is a matrix of Lagrangeanmultipliers. As the derivations of the Lagrangean function

with respect to unknowns must be zero in order to obtain a least squares estimation, we

have
@L

@T
= 2c2ATAT + 2cAT1tT � 2cATB + T (� + �T ) = 0 (26)

@L

@t
= 2cT TAT1� 2BT1+21T1t = 0 (27)

@L

@c
= 2c trfT TATATg+ 2trfT TAT1tT g � 2trfATBTg = 0 (28)

Let us say S = AT
�
I � 11

T

1T1

�
B . Since the matrices SST and STS have the same singular

values, de�ning

svd
�
SST

	
= V DV T (29)
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and

svd
�
STS

	
=WDW T (30)

where svdfg stands for Singular Value Decomposition, we can solve the unknown orthogonal

transformation matrix T as

T = V W T (31)

Finally, the solution of the similarity transformation parameters (c; t) can be computed by

c =
tr
n
T TAT

�
I � 11

T

p

�
B
o

tr
n
AT

�
I � 11T

p

�
B
o (32)

and

t =
(B � cAT )

T
1

p
(33)

For simplicity, in the calculation phase one can use the following result according to Schoen-

emann and Carroll (1970) between the matrices STS; SST and S,

svd fSg = V DsW
T ; Ds 6= D (34)

4.2.2. Computation of centroid C

To obtain the initial centroid C, we should de�ne one of the coordinates matricesAn as �xed,

and sequently link the others by means of the Extended Orthogonal Procrustes algorithm

(EOP) instead of registering pairs of single models (Beinat and Crosilla, 2001). This process

is as follows. First, A1 is �xed as the initial model and A2 is rotated, translated and scaled

to �t this model using (EOP). Similarly, A3 is transformed into positions of best �t with

respect to bA2, the coordinates matrix A2 after the transformation. Next, A4 is transformed

with respect to bA3, and so on. All the models bAn; n = 1; :::; N , are used to estimate the

aproximated shape of the whole object (landmarks), which provides an initial value for the

centroid C, C0

C0 =
1

N

NX
n=1

bAn (35)

where the superscript 0 is due the initial iteration of the algorithm. Once the initial centroid

is estimated, the unknown similarity transformation parameters in (20), (T 0
n , t

0
n, c

0
n), can

be determined by means of the Extended Orthogonal Procrustes (EOP) calculation of each

model point matrix An to the centroid C0: Then, the centroid is iterative updated after
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the calculation of each matrix bAn until the stabilization of the centroid C, i.e. until the

L2-norm between the centroid in the current iteration and the previous one is less than a

�xed threshold �;

jjCiter � Citer�1jj2 < � (36)

5. Experiments

In the �rst example the method proposed in (16) for dimension reduction is compared to

the standard eigenface technique on a gray-level database. We compare the dimensionality

reduction performance when a frontal view face database is used, showing that the new

technique leads to a better result for the data analyzed. In the second example we show

that the proposed Procrustes analysis works well for the image registration problem.

5.1. Example 1

We use a gray-level frontal view face database that comprises 114 full-face pictures, 56

males and 58 females (N = 114). Each image is digitized in a gray-scale, with a resolution of

248�186, i.e. 248 rows and 186 columns (I = 248; J = 186). We compare the reconstruction

performance of the traditional method with the new one when the number of singular values

used (i.e. dimension of the subspace) increase gradually. The quality of the reconstruction,

as the eÆciency of representing the data by the subspace, is measured by the mean square

error (MSE). The maximum dimension of the subspace using the traditional method, is

p = N , i.e., the sample size, while with the new method is p = minfI; Jg = J . Recall that

the number of singular values chosen determines the dimensionality of the subspace used to

reconstruct the face images. In Figure 1 we plot the average reconstruction error (AMSE)

for the training sample when the number of estimated parameters k increase as a function

of the number of singular values used, p. Let kSt = IJN( p
N
+ p

IJ
) and kNew = IJN( p

J
+ p

I
)

be the number of parameters used in the reconstruction by the standard method and the

new one. For simplicity, we only consider p = 1; :::; 40. Figure 1 is a 3D graph, in which each

point has three coordinates, (x; y; z) = (k;AMSE; p): Thus, when the number of singular

values are �xed, the x-axis represents the amount of parameters needed to reconstruct the

image, and the average mean square error (AMSE) in the reconstruction is computed (y-

axis). The upper plotted points correspond to the singular values used by the standard
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method, and the lower points are the ones used by the proposed method. This graph

demostrates that the quality of the reconstruction by the new procedure is better than the

traditional one. If we compare the number of dimensions needed to reconstruct the image

with a �xed amount of average mean square error, for instance, AMSE � 200, we need

to use p = 6 singular values with the new procedure, against the 28 needed with the older

one, which increase the number of estimated parameters substantially. To visualize in more

detail the performance of the reconstruction by both methods, Figure 2 gradually shows

the reconstruction of one individual of the sample when the number of singular values is

p = 5; 10; 20 and 50. Its reconstruction accuracy is measured by the MSE.

These �gures clearly demostrate that when the dimensionality of the subspace is the same,

the new method always perform better than the standard eigenface technique. In order to

further analyze the results depicted in Figure 2, we compare the distances between pairs

of reconstructed images in <p (low-dimensional subspace) with the corresponding distances

in the original high-dimensional space. In Table 1 we show the average L1-norm between

original and projected images, when the dimensionality of the subspace increases from 5 to

50. The L1-norm is de�ned as,

jjÆ � bÆjj1 = NX
n=1

���Æi � bÆi��� (37)

where m = n(n�1)
2 indicates all the combinations of the N elements taken by pairs, and

Æi is the euclidean distance between the original i � th pair in the sample, i = 1; :::;m.

The distances between the reconstructed i� th pair by the standard and the new method

are denoted by bÆSti and bÆNew
i , respectively. Figure 3 shows the L1-norm between distances

when the reconstruction has been done by the standard method and by the new one, when

the subspace of projection increases from 1 to 50 (horizontal axis). It can be observed that

the proposed method provides an important improvement in comparison with the standard

method in replicating the original distances between observations.

5.2. Example 2

In this example, we will show that the proposed image registration procedure is more

e�ective than the aÆne transformation. For this purpose, we will register the face database

used in example 1 in order to work with normalized objects. We choose as control points

(landmarks) the coordinates associated to the left and right eyes and the end point of the



Dimensionality Reduction with Image Data 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

200

400

600

800

1000

1200

1400
1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

30

30

31

31

32

32

33

33

34

34

35

35

36

36

37

37

38

38

39

39

40

40

Number of parameters

A
v
e

ra
g

e
 M

S
E

Fig. 1. Comparision of the average mean square error between eigenface method (upper points)

and the proposed method (lower points) when the number of singular values used increases from 1

to 40.
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p=5,  MSE=628

p=10,  MSE=396

p=20,  MSE=303

p=50,  MSE=134

p=5,  MSE=277

p=10,  MSE=80

p=20,  MSE=26

p=50,  MSE=3

Fig. 2. Image Reconstruction by means of the standard method (left panels) and by the new method

(right panels) using p = 5; 10; 20 and 50 singular values
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Table 1. Average L1-norm be-

tween pairs of original and re-

constructed images when the sub-

space increase from 5 to 50

p jjÆ � bÆSti jj1 jjÆ � bÆNew

i jj1

5 14:99 4:92

10 9:86 2:24

20 5:74 0:75

30 3:68 0:36

50 1:52 0:10

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Dimensionality of the Subspace of Projection

Fig. 3. L1-norm between original and reconstructed images by the standard method (continuous

line) and by the new one (dash line)
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Table 2. Model Coordinates Matrices in the Sample

Landmarks A1 A2 A3 A4 A5

left eye (124; 74) (121; 70) (123; 65) (127; 71) (123; 74)

right eye (124; 130) (120; 129) (121; 125) (125; 126) (123; 126)

chin (232; 107) (229; 105) (234; 100) (221; 102) (229; 98)

Landmarks A6 A7 A8 A9 A10

left eye (121; 63) (118; 66) (115; 63) (126; 63) (125; 68)

right eye (122; 123) (116; 125) (115; 123) (123; 117) (124; 124)

chin (231; 93) (234; 100) (228; 91) (228; 91) (229; 101)

chin. Thus, each image Xn has associated to a coordinate matrix An; n = 1; :::; N; where

An 2 <
3�2: The accuracy locating these points is critical because they are used to estimate

the transformation parameters. For simplicity, we only consider in this example N = 10 and

in Table 2 we show the landmarks selected. In order to solve the normal equation system

(19), we need to �x the output coordinates, B, to �t the sample matrices An, n = 1; :::; N .

We will use the average coordinates in the sample,

B =
1

N

NX
n=1

An =

26664
(121; 68)

(120; 125)

(228; 99)

37775 (38)

For the procrustes analysis, we �x the threshold � to stop the algorithm at 0:001. The least

squares estimation of the true coordinates de�ned in a common coordinate system are,

C =

26664
(125; 74)

(124; 131)

(231; 106)

37775 (39)

As an illustration, Figure 4 shows the solution of the registration problem for the 10� th

image in the sample. Comparing the coordinate matrix A10 with the target B, the image

has to be moved down. The left panel in Figure 4 shows the original image. The middle

panel shows the image registration by means of the aÆne transformation and the right panel

by means of the procrustes analysis. Notice that while in the middle panel the classical

aÆne transformation procedure deforms the original image, in the left image the procrustes

algorithm perfectly reproduces the image.
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Fig. 4. Image Registration of one individual in the sample
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