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Resumen

Dada una muestra aleatoria generada por una mezcla de distribuciones, el objetivo del

análisis de conglomerados es partir la muestra en grupos homogéneos en relación a las

poblaciones que los han generado.

Algoritmos como kmeans y mclust resuelven el problema de conglomerados en el

espacio original. Un enfoque alternativo es reducir primero la dimensión de los datos

proyectando la muestra en un espacio de dimensión menor, e identificar los grupos en

este subespacio. De esta forma, la maldición de la dimensión puede evitarse, pero hay

que asegurarse de que los datos proyectados preservan la estructura de conglomerados de

la muestra original. En este contexto, los métodos de búsqueda de proyecciones tienen

como objetivo encontrar direcciones, o subespacios de baja dimensión, que muestren

las vistas más interesantes de los datos (Friedman and Tukey, 1974; Friedman, 1987).

Reducir la dimensión de la muestra es efectivo ya que no toda la información de los

datos está ligada a la estructura de grupos de la muestra. Con la reducción se pretende

eliminar la información no relevante, y quedarse con un espacio de dimensión menor

donde el problema de conglomerados sea más fácil de resolver. Para ello hace falta un

procedimiento que mantenga la información clave de los grupos.

En este contexto, Peña and Prieto (2001) demuestran que las direcciones que mini-

mizan y maximizan la kurtosis tienen propiedades óptimas para visualizar los grupos, y

proponen un algoritmo de conglomerados que proyecta los datos en ambos tipos de direc-

ciones y asigna las observaciones a los grupos en consonancia con los huecos encontrados

en éstas.

En el caṕıtulo 1 de la tesis el concepto de kurtosis se revisa en detalle. El coeficiente

de kurtosis univariante y las distintas interpretaciones que se le han dado en la literatura

son analizadas. También estudiamos de que maneras puede definirse la kurtosis en una

muestra multivariante y exploramos sus propiedades para detectar grupos.

En el Caṕıtulo 2 estudiamos las propiedades de una matriz de kurtosis y proponemos
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un subconjunto de sus vectores propios como direcciones interesantes para revelar la posi-

ble estructura de grupos de los datos. Esta idea es una extensión al caso multivariante del

algoritmo propuesto en Peña and Prieto (2001). La ventaja de usar los vectores propios

de una matriz para especificar el subespacio de interés radica en que no es necesario usar

un algoritmo de optimización para encontrarlo, como ocurre en Peña and Prieto (2001).

Por otra parte, ante una mezcla de distribuciones eĺıpticas con matrices de covarian-

zas proporcionales, demostramos que un subconjunto de vectores propios de la matriz

coincide con el subespacio lineal discriminante de Fisher. Los vectores propios de la ma-

triz de kurtosis estimada son estimadores consistentes de este subespacio, y su calculo

es fácil de implementar y computacionalmente eficiente. La matriz, por tanto, propor-

ciona una forma de reducir la dimensión de los datos en vistas a resolver el problema de

conglomerados en un subespacio de dimensión menor.

Siguiendo la discusión en el Caṕıtulo 2, en el caṕıtulo 3 estudiamos matrices alternati-

vas de kurtosis basadas en modificaciones locales de los datos, con la intención de mejorar

los resultados obtenidos con los vectores propios de la matriz de kurtosis estudiada en el

Caṕıtulo 2. Mediante la sustitución de las observaciones de la muestra por la media de sus

vecinos, las matrices de covarianzas de las componentes de la mezcla de distribuciones se

contraen, dando un rol predominante a la variabilidad entre grupos en la descomposición

de la matriz de kurtosis. En particular, se demuestra que las propiedades de separación

de los vectores propios de la nueva matriz de kurtosis son mejores en el sentido que la

modificación de las observaciones propuesta produce medias estandarizadas más alejadas

entre śı que las de las observaciones originales.

El Caṕıtulo 4 propone algunas ideas en relación a la identificación de grupos no lin-

eales en un espacio de baja dimensión, proyectando en direcciones aleatorias solamente

las observaciones contenidas en un entorno local definido a partir de la dirección. Estas

direcciones pueden ser entendidas como direcciones recortadas, y permiten detectar for-

mas espećıficas que los algoritmos de conglomerados tradicionales con buenos resultados

en baja dimensión no detectan con facilidad. El algoritmo sugerido está pensado para

usarse una vez la dimensión del espacio de los datos ha sido reducida.

Finalmente, en el Caṕıtulo 5 proponemos un algoritmo de conglomerados no paramétrico

basado en medianas locales. Cada observación es sustituida por su mediana local,

moviéndose de esta manera hacia los picos y lejos de los valles de la distribución. Este

proceso es repetido iterativamente hasta que cada observación converge a un punto fijo.

El resultado es un partición de la muestra basado en donde convergen las secuencias

de medianas locales. El algoritmo determina el número de grupos y la partición de las
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observaciones dada la proporción de vecinos. Una versión rápida del algoritmo, donde

solamente se trata un subconjunto de las observaciones, también se proporciona. En el

caso univariante, se demuestra la convergencia de cada observación al punto fijo más

próximo, aśı como la existencia y unicidad de un punto fijo en un entorno de cada moda

de la distribución.
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Introduction and summary

Given a multivariate sample drawn from a mixture of k distributions, cluster analysis

attempts to partition the sample into homogeneous groups according to the populations

that generate them.

The kmeans algorithm proposed in Hartigan and Wong (1979) starts with an initial

partition of the sample and iteratively reassigns the observations to clusters according

to an homogeneity criterion. The criterion that is generally used is the sum of squares

within groups, which can be written as

SSW =
G∑

g=1

ng∑

i=1

(xig − x̄g)2, (1)

where xig is the observation i in group g and x̄g is the mean of group g. The algorithm

iterates until the criterion is minimized. Since minimizing (1) is equivalent to minimizing

the euclidean distances of the observations to the mean of the group they belong, the

k-means algorithm tends to find spherical clusters.

The algorithm mclust (Banfield and Raftery, 1993; Dasgupta and Raftery, 1998;

Fraley and Raftery, 1999) assumes the sample has been generated from a mixture of G

distributions, usually assumed to be normal, and estimates the parameters of each pop-

ulation of the mixture together with the probability of membership for each observation

of the sample, which is the so-called probability a posteriori

πig =
πgfg(xi)∑G

g=1 πgfg(xi)
, (2)

where fg is the density function of population g, and πg is the a priori probability of

membership to the group g. The observation xi will be assigned, thus, to the cluster

g that maximizes (2). In order to compute (2) we need to estimate the parameters of

the mixture, which is done via the logarithm of the correspondent likelihood function,

which again will depend on (2). The em algorithm is used to jointly estimate both.

The estimation is repeated for different assumptions on the number of components in the
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mixture and covariance matrices of the components, and the bic criteria is used to choose

the assumption more likely to be true. The performance of mclust is better than the

performance of k-means, and in general works well for low dimensional spaces. However,

when the dimension of the space is large, the computational time may become prohibitive;

mclust estimates several covariance matrices, and thus requires a large sample if the

dimension of the data is large.

Note that algorithms such as kmeans and mclust perform cluster analysis in the

original space. An alternative approach to the problem may be to first reduce the di-

mension of the sample by projecting the data onto a lower dimensional subspace and

identifying the clusters there. The curse of dimensionality can thus be avoided, but care

needs to be taken to make sure that the projected data preserve the cluster structure

of the original sample. In this context, projection pursuit aims to find the directions,

or subspaces of low dimension, that show the most interesting views of the data, see

Friedman and Tukey (1974); Friedman (1987).

Reducing the dimension of the sample is effective because not all the information in

the dataset is relevant for clustering. We aim to remove the non-relevant, random infor-

mation and look in a lower dimensional space where the cluster problem is significantly

easier to solve. For that, we need a procedure that maintains the key information about

the clusters and, since in general the cluster structure is not found in all variables, the

selection of the variables to consider must be done carefully.

The dimension reduction approach for clustering is analyzed in Liu et al. (2003), where

the data is projected onto the first principal components, and a Bayesian model for a

mixture of normal distributions is adjusted in the resulting subspace. However, as we

illustrate in Figure 1 with the help of a mixture of two normal populations, using principal

components to reduce the dimension is not always appropriate. If we project the data onto

one of the two principal components, the groups will overlap. The interesting direction in

this case is the one perpendicular to the main axis of the elliptically shaped components

of the mixture, which is Fisher’s discriminant direction. The principal components fail

to detect the clusters because they are the eigenvectors of the covariance matrix of the

whole mixture, and not of the components of the mixture.

Independent Components Analysis (ica) is a relatively new technique whose purpose

is to find the independent latent factors that generate the observed multivariate sample,

see Hyvärinen et al. (2001). ica is a step forward from Principal Components Analysis

(pca), as the data are first standardized to be uncorrelated (pca) and then rotated

so that independent factors can be found. Huber (1985) emphasized that interesting
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Figure 1: Principal Components and Fisher’s discriminant direction.

projections are those that produce non-normal distributions and therefore non-normality

is one of the criteria used to find the factors. However, non-normality is a general

condition, and it is important to specify how to measure it. One of the ica algorithms,

for example, searches for the factors that maximize the absolute value of the univariate

kurtosis coefficient. The idea of maximizing the kurtosis has also been used in cluster

analysis, see Jones and Sibson (1987). In addition to that, Peña and Prieto (2001) showed

that the directions that minimize the kurtosis can be as useful as, if not more than, the

ones that maximize it, and present a cluster algorithm that projects the data in both

the directions that minimize and maximize the kurtosis coefficient, and then assign the

observations to groups according to the clusters found in the directions.

This thesis presents several approaches for the identification of clusters in the data,

that are elaborations of several basic ideas: the use of the kurtosis coefficient to select

subspaces of interest, the iterative application of local aggregation steps to improve the

cluster structure of the original data, and a combination of ideas from local analysis of

the data and kurtosis information to improve the detection of nonlinear structures in the

data.

The contributions of this thesis are organized in chapters as follows.

In Chapter 1 the concept of kurtosis is carefully reviewed. The univariate kurtosis

coefficient is studied and the different interpretations given to it in the literature are

revised. Different attempts to measure what is understood as kurtosis in a multivariate

sample are also analyzed in the chapter. Finally, we summarize the use that has been

given to kurtosis as a tool to perform cluster analysis.
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In Chapter 2 we study the properties of a kurtosis matrix and propose a subset of

its eigenvectors as interesting directions to reveal the possible cluster structure of a data

set. It is an extension to the multivariate case of the kurtosis-based algorithm in Peña

and Prieto (2001), where instead of looking at directions, we look at low-dimensional

subspaces. Note that the eigenvectors of the matrix provide the subspace where to

project without the need to use an optimization algorithm, as in Peña and Prieto (2001).

In addition to that, we prove that the subspace has optimal properties for clustering. In

particular, under a mixture of elliptical distributions with proportional scatter matrices, it

is shown that a subset of the eigenvectors of the fourth-order moment matrix corresponds

to Fisher’s linear discriminant subspace. The eigenvectors of the estimated kurtosis

matrix are consistent estimators of this subspace and its calculation is easy to implement

and computationally efficient, which is specially favourable when the ratio n/p is large.

The matrix, thus, provides a way of reducing the dimension of the space of the data in

order to perform cluster analysis in a subspace of lower dimension.

Following the discussion in Chapter 2, Chapter 3 studies alternative kurtosis matrices

based on local modifications of the data, with the intention of improving the performance

of the eigenvectors of the kurtosis matrix studied in Chapter 2. By substituting each ob-

servation of the sample with the mean of its neighbours, the covariance matrices of the

components of a mixture of distributions will shrink, giving a more predominant role to

the variability between clusters in the decomposition of the kurtosis matrix. Specifically,

we prove that the separation properties of the eigenvectors of the new kurtosis matrix

are better in the sense that the proposed modification of the observations produces stan-

dardized means that are further from each other than those of the original observations,

and thus the clusters will appear more separated.

Chapter 4 draws some ideas on how to identify non-linearly shaped clusters in a low

dimensional space by projecting onto several random directions only those observations

contained in a local neighbourhood defined from the directions. These directions can

be understood as trimmed projections, and allow to identify specific shapes that tradi-

tional clusters methods with good performance in low dimensional spaces fail to detect.

The suggested cluster algorithm is intended to be used once the dimension of a high

dimensional data set has been reduced.

A non-parametric cluster algorithm based on local medians is proposed in Chapter 5.

Each observation is substituted by its local median and this new observation moves

towards the peaks and away from the valleys of the distribution. The process is repeated

until each observation converges to a fixpoint. We obtain a partition of the sample based
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on where the sequences of local medians have converged. The algorithm determines the

number of clusters and the partition of the observations given a value of α, the proportion

of neighbours. A fast version of the algorithm, where only a subset of observations from

the sample are treated, is also given. Furthermore, and for a univariate random variable,

we prove the convergence of each point to the closest fixpoint, and the existence and

uniqueness of a fixpoint on the neighbourhood of each mode.

Finally, we outline our contributions and give directions for future work in a conclud-

ing chapter.
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Chapter 1

A review of kurtosis

In this chapter the concept of kurtosis is carefully reviewed. The univariate kurtosis

coefficient is studied and the different interpretations given to it in the literature are

revised. Different attempts to measure what is understood as kurtosis in a multivariate

sample are also analyzed in the chapter. Finally, we review the use that has been given

to kurtosis as a tool to perform cluster analysis.

1.1 The univariate kurtosis

The word kurtosis comes from the Greek word kyrtos or kurtos which means bulging,

“a curved shape sticking out from the surface of something”. The way the kurtosis

distribution characterizes the shape of the distribution is a controversial matter that has

been discussed extensively in the literature. In this section we review this discussion and

the different interpretations that have been given to what the kurtosis exactly measures.

Let X be a random variable with mean µ and standard deviation σ. The classical

univariate kurtosis coefficient was defined by Pearson (1905) as

µ4

σ4

where µ4 = E(X − µ)4 is the fourth-order central moment of X.

Given a univariate random sample x1, . . . , xn drawn from the random variable X, the

sample univariate kurtosis coefficient is

k =
1
n

∑n
i=1(xi − x̄)4

s4
=

n
∑n

i=1(xi − x̄)4

[
∑

(xi − x̄)2]2
,

where x̄ and s are the mean and standard deviation of the sample.
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It is easy to see that the kurtosis coefficient reaches its minimum value at one. In

effect, if we denote ai = xi − x̄, k can be expressed as

k =
1
2

∑n
i=1

∑n
j=1(a

4
i + a4

j )∑n
i=1

∑n
j=1 a2

i a
2
j

,

and, since (a2
i − a2

j )
2 = a4

i + a4
j − 2a2

i a
2
j ≥ 0, the numerator is always larger than the

denominator and therefore k ≥ 1. The larger the difference between a2
i and a2

j , for two

pairs of observations, the higher the value of the kurtosis, and thus k can be seen as a

measure of variability of the observations with respect to their mean, as we will see later.

1.1.1 Traditional interpretation of the kurtosis coefficient

In the past, in most elementary statistical books, kurtosis has been used to define whether

a unimodal distribution is platykurtic or leptokurtic. “Platy” means flat in Greek and

characterizes the distribution as being the opposite of a peaked distribution, which is what

leptokurtic means. Specifically, if k > 3 the distribution was classified as leptokurtic, and

if k < 3 the distribution was platykurtic, where 3 is the value of the kurtosis for a normal

distribution and therefore the peakedness is defined as relative to that distribution. As a

matter of fact, sometimes the kurtosis coefficient is defined as k′ = k − 3 to standardize

it to the normal distribution. In Figure 1.1 we annex an amusing mnemonic provided by

“Student” (1927).

Figure 1.1: Mnemonic for platykurtic and leptokurtic distributions

However, because of the averaging nature of moments, the kurtosis relationship to

shape is a little more complicated than that. Chissom (1970) claimed that more evidence
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than the sole value of the kurtosis coefficient should be considered to label a distribu-

tion as leptokurtic or platykurtic. By progressively modifying the shape of a (discrete)

distribution, he illustrates that a peaked distribution can have a negative kurtosis value

(k′ < 0), and concludes that in order to have a positive kurtosis the distribution must

not only be peaked, but contain a good number of cases in the tails, acknowledging the

importance of the tails when measuring kurtosis.

1.1.2 Kurtosis as a measure of bimodality

The kurtosis is unaffected by changes in the mean and variance of the sample and there-

fore can be expressed as a function of the z scores,

k = 1
n

∑n
i=1 z4

i

where zi = s−1(xi − x̄). If we calculate the variance of the squared scores we obtain

sz2 = 1
n

∑n
i=1(z

2
i − x̄z2)2 = 1

n

∑n
i=1 z4

i − 1 = k − 1, (1.1)

using x̄z2 = 1, and the kurtosis can be interpreted as the variance of these distances

to their mean. Consequently, if all observations of the sample are approximately at the

same distance to the mean, the variance of these distances is near zero, and the kurtosis

will have a small value. From that, again, since sz2 ≥ 0, the minimum value for the

kurtosis is 1.

More particularly, Darlington (1970) pointed out that k can be understood as a

measure of the degree to which the values of z2 cluster around their mean, of value 1.

For the distribution of the z’s, since z = 1 or z = −1 when z2 = 1, the kurtosis can

also be interpreted as a measure of the degree to which the z-scores cluster around +1

and −1, which is a description of a bimodal distribution. In Figure 1.2 we observe this

behaviour in a mixture of two normal distributions. The means are more separated in

Figure 1.2(b) than in Figure 1.2(a) and thus the clustering around one is more accentuated

in the second case. Darlington illustrates the same idea considering the family of all two-

point distributions with densities p and 1− p respectively, whose kurtosis value is proven

in Darlington (1970) to be

k =
1

p(1− p)
− 3.

The minimum value is reached when p = 1
2 , which agrees with the results above regarding

bimodality. On the other hand, k approaches infinity when p → 1 or p → 0, i.e. as the
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(b) µ1 = 0, µ2 = 50.

Figure 1.2: z- and z2-scores for a mixture of two normal distributions.

distribution concentrates on one point or the other. Note that the symmetric two point-

mass distribution is the only distribution that reaches the minimum kurtosis value of

1.

In the same direction, Hildebrand (1971) considers the symmetric beta distribution

family

f(x) =
Γ(2α)
Γ2(α)

xα−1(1− x)α−1, 0 < x < 1,

and shows that its kurtosis value is

k′α =
−6

2α + 3
.

If α = 1 the distribution is uniform (non-modal) and k′ = −1.2. For α < 1 the distri-

bution is bimodal and k′α < −1.2 approaching −2, the minimum value for k′, as α → 0.

On the other hand, k′ approaches 0 as α → ∞. This example confirms Darlington’s

statement.

However, when he studies the double gamma distribution family whose density is

f(x) =
βα

2Γ(α)
|x|α−1 exp(−β|x|), −∞ < x < ∞,

the value of k′ is given by

k′α =
(α + 3)(α + 2)

α(α + 1)
− 3,
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regardless the value of the parameter β. For α = 1, f is double-exponential and k′ = 3.

If α < 1 the distribution is unimodal and k′α > 3 since k′α is decreasing in α, whereas

if α > 1 the distribution is bimodal and k′α ranges from 3 to −2 in the limit. This

family, therefore, is inconsistent with Darlington’s interpretation since it has values of

the kurtosis up to 3 for bimodal distributions.

Moors (1986) claims that bimodal distributions can have large kurtosis and that

Darlington’s result regarding bimodality should be reexamined. He states that kurtosis

measures the dispersion around the values µ−σ and µ+σ, instead of the values−1 and +1.

More explicitly, the kurtosis is an inverse measure of the concentration in these two points.

According to Moors, high values of kurtosis arise in two situations; concentration of the

probability mass near µ, which corresponds to a peaked distribution, or concentration of

the mass in the tails of the distribution.

1.1.3 The influence function for the kurtosis coefficient

Darlington (1970) studied how the kurtosis coefficient changes when new observations

are added to a distribution, and calculated the derivative of k with respect to the total

change in the size of the distribution, which is proven to be

SIF(z, F, k) = (z2 − k)2 − (k2 − k), (1.2)

where F is the distribution function of X, and z is a particular point in the probability

distribution of the z-scores. Interestingly, the expression (1.2) is what is now known as

the influence function, which was only available in an unpublished thesis at the time of

Darlington’s paper. The influence function measures what happens to an estimator when

the distribution of the data is changed slightly. It was first published by Hampel (1974)

and it describes the effect on the estimate of an infinitesimal contamination at a point x of

a distribution F . For simplification purposes, (1.2) corresponds to a symmetric influence

function for k, in the sense that contamination is considered at the points −z and z. The

function is positive if z2 < k − (k2 − k)
1
2 or z2 > k + (k2 − k)

1
2 , which implies that both

low and high values of z2 raise the value of k, and intermediate values lower it. If we

consider the standard normal distribution, SIF(z, Φ, k) is negative for |z| ∈ (0.742, 2.334)

and positive elsewhere, which goes along with Darlington’s result of bimodality, since the

interval is a neighbourhood of ±1. And thus, the center can be identified as the range

of values |z| < 0.742, the flanks are in .742 < |z| < 2.334, and the tails correspond to

|z| > 2.334. Contamination in both the tails and the center of the distribution increases

kurtosis. Ruppert (1987) contextualizes Darlington’s result within the theory of influence
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functions and highlights that in his discussion, Darlington did not pay enough attention

to the effect of tail contamination as opposed to center contamination. In effect, if we
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Figure 1.3: Symmetric influence function of the kurtosis coefficient for a normal distri-

bution.

take a look at the symmetric influence function for k in a normal distribution plotted

in Figure 1.3, we observe that the function grows fast with z, and so large values of z

will raise k considerably. Instead, for values |z| < 0.742, the influence function reaches

a maximum of only 3 at z = 0, and therefore contamination at the center has far less

influence than that in the extreme tails. Ruppert states that k is primarily a measure of

tail behaviour, and only to a lesser extent of peakedness.

1.1.4 Density crossings to predict the kurtosis value

Dyson (1943) gives a sufficient condition for one distribution to have larger kurtosis than

another. Let f1 and f2 be standardized to have mean 0 and equal variances, and let

µ13, µ23, µ14, µ24 be their respective third and fourth moments, a sufficient condition for
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µ14 ≤ µ24 is that there should exist four abscissae a1 < a2 < a3 < a4 such that

−∞ < x < a1

a2 < x < a3

a4 < x < ∞




⇒ f1 ≤ f2,

a1 < x < a2

a3 < x < a4

}
⇒ f1 ≥ f2

and a1 +a2 +a3 +a4 and µ13−µ23 are not both strictly positive or both strictly negative

(in particular that the curves should have equal skewness).

If the conditions hold, the values a1, a2, a3 and a4 are the points where the densities

cross and divide both densities in three parts; tails, shoulders and peak. The first group

of conditions identify the tails (−∞ < x < a1, a4 < x < ∞) and the peak (a2 < x < a3),

whereas the second group identifies the flanks (a1 < x < a2, a3 < x < a4). Peaked-

ness combined with tailedness or lack of shoulders of one distribution compared to the

other imply higher kurtosis. Figure 1.4 illustrates the result for the normal and double-
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Figure 1.4: Normal and double-exponential distributions satisfying the Dyson’s condition.

exponential distributions. The conditions are satisfied for these pair of distributions,

while the kurtosis for the normal is smaller. It is emphasized in the paper that although

the previous condition is sufficient, it is not necessary. An example of two density curves

failing the conditions but with µ14 ≤ µ24 is given. In the example, the two curves cross

one another four times on each side of the mean. Balanda and MacGillivray (1988) sug-

gest that if the distributions cross more than the required minimum number of times, the
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value of k cannot be predicted without more information. According to them, it is the

failure to recognize this that causes most of the mistakes and problems in interpreting k.

1.1.5 An ordering-based approach for kurtosis

The previous sections reviewed different uses and interpretations given to the kurtosis

coefficient, as well as different attempts to describe those shape characteristics that affect

the value of k.

Balanda and MacGillivray (1988) argue that all the interpretations are consistent with

the definition of kurtosis as the location- and scale-free movement of probability mass

from the shoulders or flanks of a distribution into its center and tails. This definition

implies that peakedness and tail weight are best viewed as components of kurtosis, since

any movement of mass from the shoulders into the tails must be accompanied by a

movement of mass into the center if the scale is to be left unchanged. As it happens with

the concepts location, scale, and skewness, the definition is necessarily vague because the

movement can be formalized in many ways.

Given that, other definitions of kurtosis, peakedness and tail weight have appeared

in the literature. Some of them attempt to measure peakedness or tail weight but they

end up measuring both. For example, Horn (1983) proposes an alternative measure of

peakedness for symmetric distributions, arguing that the kurtosis coefficient does not

exist for all densities. Given the rectangle Rp(f) defined by the lines x = 0, y = 0,

y = f(0) and x = F−1(p + 0.5), for 0 < p < 1
4 and µ = 0, the measure of peakedness

is the proportion of area of Rp(f) covered by the density f . Note that the area under

the density contained in Rp(f) is always p. This measure ranks in an increasing order of

peakedness the normal, t-student with 6 degrees of freedom, Cauchy (from whom kurtosis

does not exist) and double-exponential, which seems quite reasonable.

However, as Balanda and MacGillivray (1988) point out, the measure-based approach

has received some criticism. For example, van Zwet (1964) claimed that many of the

comparisons made with the kurtosis coefficient, and any other measure for that matter,

are meaningless. In principle, any two distributions with finite fourth moments could

be compared using k, “whereas one feels there are pairs of such distributions that are

totally incomparable in this regard”. This is due to the fact that a single value for the

parameter may correspond to many different density shapes. For example, the normal

distribution and the double gamma distribution with α = 1
2(1 + 13

1
2 ) have both kurtosis

k = 3, as well as the symmetric Tukey lambda distribution with parameter λ = 5.2,
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and the three distributions correspond to very different distributional shapes; the double

gamma is bimodal whereas the symmetric Tukey is considerably more peaked than the

normal distribution.

Such reasoning led to the ordering-based approach. Instead of measuring the kurtosis

of a given distribution, an order << is defined in such a way that F << G means, in

some sense, that the distribution G has larger kurtosis than F or, in other words, G has

more mass in the center and tails than does F . A measure of kurtosis with respect to

<< is then restricted to any location- and scale-free nonnegative functional T such that

T (F ) << T (G) whenever F << G; a functional that preserves the ordering. In Balanda

and MacGillivray (1988) words, “we believe that a kurtosis measure should not be used

without first identifying the ordering underlying it and that a measure should not be

used to make comparisons within a family of distributions unless that family is totally

ordered by the underlying ordering. It is only in these circumstances that the measure

genuinely summarizes a kurtosis property in a meaningful way”.

The strongest order that has been considered is the ordering ≤S introduced by van

Zwet (1964) for the class of symmetric distributions: F ≤S G if and only if RF,G(x) =

G−1(F (x)) is convex for x > mF , where mF is the point of symmetry of F . van Zwet

(1964) showed that ∪-shaped ≤S uniform ≤S normal ≤S logistic ≤S double-exponential

and logistic ≤S Cauchy, and both the family of double-gamma distributions and the

family of symmetric beta distributions are totally ordered by ≤S . The latter allows to

make comparisons within these families using k, since it preserves the order. Nevertheless,

the examples in Hildebrand (1971) did show that k was inadequate to describe the shape

of individual members.

Although two approaches can be taken when studying kurtosis; the measure-based

approach and the ordering-based approach, when a new measure of kurtosis is defined,

it generally should respect van Zwet’s ordering for it to be considered a valid measure of

kurtosis.

1.1.6 Kurtosis as a measure of heterogeneity

Despite all the efforts done in the past to provide a good understanding of what kurtosis

really measures, the feeling is that the discussion does not bring an unambiguous and

final answer to the question. The understanding of kurtosis as the location- and scale-

free movement of mass from the shoulders to the tails or peak presented in Balanda and

MacGillivray (1988) is difficult to imagine and illustrate. In effect, we cannot take a
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distribution, move mass from the tails to the shoulders and at the same time keep the

variance as it was; every movement of mass will imply a change on the shape and variance

of the distribution, and therefore it will not be a scale-free movement. This limitation

makes the interpretation of the coefficient less obvious and straightforward.

We believe that the only practical interpretation or use of the kurtosis coefficient is

seen as a measure of heterogeneity. If we define di = (xi − x̄)2 as the distances of the

observations to the mean, the variance of these distances is a measure of heterogeneity,

1
n

∑n
i=1(di − s2)2,

where the variance of the sample s2 =
∑n

i=1(xi − x̄)2 = 1
n

∑n
i=1di is also the mean of the

di’s. In effect, if the di’s are very different, it may suggest that some observations are

very far from the mean and therefore the sample is heterogeneous. On the other hand, if

the di’s are all very similar it might be due to a sample with small variance or a sample

generated by two populations of the same size. In order to have a dimensionless measure,

a coefficient of homogeneity is defined as

H =
1
n

∑n
i=1(di − s2)2

s4
,

analogous to the coefficient of variation s/x̄. Since
∑n

i=1(di − s2)2 =
∑n

i=1 d2
i + ns4 −

2s2
∑n

i=1 di =
∑n

i=1 d2
i − ns4, the coefficient H is the variance of the squared scores

in (1.1), and thus basically the kurtosis coefficient. Consequently, the univariate kurtosis

coefficient can be seen as a measure of heterogeneity. If all observations of the sample

are approximately at the same distance to the mean, the variance of these distances is

near zero, and the kurtosis will have a small value. This would be the case with two

well-separated clusters of the same size and in this case the directions that minimize the

kurtosis could reveal the cluster structure.

Heterogeneity arises in several situations. In the following we comment two situations,

both giving extreme values of the coefficient of homogeneity/kurtosis.

1. In the presence of two clusters of similar size - the mean of the sample will be located

in the middle of the two clusters and therefore the distances between the xi’s and the

mean will be similar, specially if the clusters are well separated and their variances

are small. Then the kurtosis and homogeneity coefficients will have a small value,

reaching its minimum in the extreme case of a two point-mass distribution. The

same would happen under the presence of three clusters, if the clusters in the

extremes have the same size.
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2. If we have a sample where most of the observations come from a given distribution,

except for some outliers, the mean of the sample will be located near or in the

larger cluster, and therefore the distances between the outliers and the mean will

be large compared to the other observations, which will make the variance of the

distances large, as well as the coefficients of kurtosis and homogeneity.

Figure 1.5 illustrates these situations that lead to extreme values of the kurtosis.
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(c) Two groups of outliers - small kurtosis.

Figure 1.5: The value of the univariate kurtosis coefficient in the presence of clusters.

Therefore, both the directions that minimize the kurtosis coefficient and the ones

that maximize it are interesting in the sense that are able to identify structures with

more than one cluster. Peña and Prieto (2001) propose a cluster algorithm based on the

p directions of minimum and maximum kurtosis. The algorithm starts computing the

direction di that minimizes k, projects the sample onto the subspace orthogonal to di and
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searches for a new direction that minimizes k in the subspace. The procedure is repeated

iteratively until the whole space is covered, obtaining p directions of minimum kurtosis.

Afterwards, the process is conducted again, but this time maximizing k. The algorithm

finishes with 2p directions that need to be analyzed regarding cluster structure. The

second part of the algorithm assigns observations to clusters based on the information

found in the projections onto the directions.

In addition to that, they prove that under a mixture of two normal distributions

with proportional scatter matrices, either the direction that maximizes or the one that

minimizes the kurtosis coefficient is Fisher’s linear discriminant function. Let π be the

proportion of one of the populations, if π ∈ (0, (
√

3− 1)/(2
√

3)) the Fisher’s function is

the one that maximizes the kurtosis coefficient, whereas for π ∈ ((
√

3−1)/(2
√

3), 0.5] the

interesting direction is the one that minimizes it. This result is in agreement with the

situations we commented before; if the two clusters are similar in size, with π ∈ (0.21, 0.5],

the kurtosis has small value, while if there exists a group of outliers containing at most

20% of the sample, the kurtosis is large.

Heterogeneity can be seen as an extreme case of lack of normality, which explains why

some procedures that try to find non-normality use the kurtosis coefficient. For example

some of the algorithms used in Independent Component Analysis (ica, Hyvärinen et al.

(2001)) search for those components that maximize the absolute value of the univariate

kurtosis coefficient. It is worth mentioning that such algorithms maximize the absolute

value of the kurtosis k′, which ranges among the values −2 and ∞. But since the range

is not symmetric around zero, the maximization of the absolute value would result in

prioritizing those directions that maximize the kurtosis as opposed to those that minimize

it, and we have already seen in this section and in Section 1.1.2 that minimizing the

kurtosis coefficient might also lead to heterogeneity or bimodality and therefore to cases

of unequivocal non-normality.

1.2 Kurtosis of multivariate samples

Let X ∈ Rp be a multivariate random vector with mean µ and covariance matrix

Σ = E[(X − µ)(X − µ)T]. The p eigenvectors of Σ are found in the space of X. In

particular, the eigenvector associated to the largest eigenvalue is the linear combination

of the original variables X1, . . . , Xp that maximize the variance among all possible lin-

ear combinations in Rp, with the value of this variance given by the eigenvalue. The

eigenvector associated to the second largest eigenvalue maximizes the variance among all
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linear combinations orthogonal to the previous eigenvector, and so on. Geometrically,

the eigenvectors represent the axes of the ellipsoid closest to X. The sum of the vari-

ances of the p variables coincides with the sum of the variances of the p eigenvectors,

since tr(Σ) =
∑p

i=1 σi =
∑p

i=1 λi, where σ1, . . . , σp are the variances of the variables

and λ1, . . . , λp are the eigenvalues of Σ. From that, measures such as the total variation

(Seber, 1984) given by tr(Σ) = λ1 + . . . + λp, the generalized variance (Wilks, 1932)

given by |Σ| = λ1 . . . λp, and the effective variance (Peña and Rodŕıguez, 2003) given

by |Σ|1/2 = (λ1 . . . λp)1/2 are ways of summarizing in a scalar measure the multivariate

variability of the random vector X.

In the multivariate case, ass it happens with the concept of scatter, the concept of

kurtosis has to be generalized. In this section we analyze the different attempts that

have appeared to define a multivariate kurtosis. Most of these attempts are based on the

fourth-order moments and summarize in different ways the information that is found in

them.

1.2.1 The Mardia kurtosis and other coefficients

The simplest way to summarize the kurtosis of a multivariate distribution is through a

scalar measure. In this section we review some of the multivariate kurtosis coefficients

that have been defined in the literature.

As the univariate kurtosis coefficient is the second moment of the squared scores,

a natural extension of kurtosis to multivariate random vectors is presented in Mardia

(1970) as the second moment of the Mahalanobis distances,

β2,p = E[(X − µ)TΣ−1(X − µ)]2

Since β2,p can also be expressed as β2,p = σ2
DM + µ2

DM and µDM = p, where DM =

(X − µ)TΣ−1(X − µ) is the Mahalanobis distance, then β2,p ≥ p2. Also, if we formulate

β2,p in terms of the standardized vector Z = Σ−1/2(X − µ),

β2,p = E[ZTZ]2 =
∑p

i=1E(Z4
i ) + 2

∑p
i=1

∑p
j=1
i6=j

E(Z2
i Z2

j ).

Note that β2,p depends only on the symmetric fourth-order moments. The coefficient is

affine invariant and its sample counterpart is b2,p = 1
n

∑n
i=1[(xi−x̄)TS−1(xi−x̄)]2. Mardia

(1970) proposes to use b2,p when testing for normality. Under a gaussian distribution

β2,p = p(p + 2), therefore values of b2,p differing significantly from p(p + 2) indicate

non-normality.
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Other coefficients that intend to summarize the kurtosis of a multivariate random

vector in a scalar measure are described as follows.

Koziol’s kurtosis coefficient. Koziol (1989) defines the following kurtosis measure

b̃2,p = 1
n2

∑n
i=1

∑n
j=1(z

T
i zj)4

as the next higher degree analogue to the Mardia’s sample measure of skewness b1,p =
1
n2

∑n
i=1

∑n
j=1(z

T
i zj)3. It can also be written as b̃2,p =

∑p
j,k,l,m( 1

n

∑n
i=1 zjizkizlizmi)2 and

the population counterpart is β̃2,p =
∑p

j,k,l,m E(ZjZkZlZm)2.

The coefficient β2,p is the sum of just the symmetric fourth-order moments whereas

β̃2,p is the sum of squares for all existing fourth-order moments of Z. As an example, if

p = 2 then β2,p = µ40 + µ04 + 2µ22 and β̃2,p = µ2
40 + µ2

04 + 6µ2
22 + 4µ2

31 + 4µ2
13.

Oja’s kurtosis coefficient. Oja (1983) defines a multivariate kurtosis coefficient by

considering the volume of the simplex in a p-dimensional space determined by p+1 points

as

β∗2,p =
E[∆(X1, . . . , Xp, µ)]4

[E[∆(X1, . . . , Xp, µ)]2]2
,

being X1, . . . , Xp independent random vectors distributed as X and ∆ the volume of this

simplex:

∆ (X1, . . . , Xp+1) = abs




1
p!

∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1

X11 . . . Xp+1,1

...
...

X1p . . . Xp+1,p

∣∣∣∣∣∣∣∣∣∣∣




.

Malkovich and Afifi’s kurtosis coefficient. Malkovich and Afifi (1973) define the

multivariate kurtosis as the maximum univariate kurtosis produced by any projection

of the p-dimensional distribution onto a direction d; βM
2 = maxd |βd

2 − 3|, where βd
2 =

E
[

(dTX−dTµ)4

dTΣd

]
.

The measures β2,p, β∗2,p and βM
2 are invariant under nonsingular affine transformations

and reduce to the univariate kurtosis when p = 1, which is not the case for β̃2,p.

1.2.2 Matrices of kurtosis and cumulants

The mean of the random vector X is a vector of dimension p, the covariance matrix a p×p

matrix that contains the p(p+1)
2 distinct second-order moments, and, by analogy, we would
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need a cube of dimensions p× p× p to contain the third-order central moments and an

object in a fourth-dimensional space to contain the fourth-order central moments. Since it

is easier to work with matrices, what has been done is to collect in a matrix the η distinct

fourth-order central moments, where η = p + 3p(p−1)
2 + p(p−1)(p−2)

2 + p(p−1)(p−2)(p−3)
4! . In

this section we review the different ways of collecting this information in a matrix.

Matrices of kurtosis

The matrix E[(X − µ)(X − µ)T ⊗ (X − µ)(X − µ)T] of dimensions p2 × p2, where ⊗
denotes the Kronecker product, contains the η distinct fourth-order central moments. As

it happens with the covariance matrix, the symmetric versions are also included. The

univariate kurtosis coefficient k is standardized to be scale-free by dividing it by s4, and

to extend the idea of kurtosis to the multivariate case we want to maintain the invariance

property and therefore the corresponding standardized matrix will be

M4 = E
[
Σ−1/2(X − µ)(X − µ)TΣ−1/2 ⊗ Σ−1/2(X − µ)(X − µ)TΣ−1/2

]
,

which results in

M4 = E
(
ZZT ⊗ ZZT

)
.

A detailed expression of the matrix is

M4 = E




Z2
1




Z1

...

Zp


 [Z1 . . . Zp] . . . Z1Zp




Z1

...

Zp


 [Z1 . . . Zp]

...
. . .

...

ZpZ1




Z1

...

Zp


 [Z1 . . . Zp] . . . Z2

p




Z1

...

Zp


 [Z1 . . . Zp]




. (1.3)

Unlike the covariance matrix, which has as dimensions those of the space of X, this

matrix has dimensions p2 × p2, which complicates its use. For instance, the eigenvectors

of this matrix do not belong to the space of the variables. This fact has led to different

definitions for a kurtosis matrix of dimensions p× p.

Cardoso (1989) and Móri et al. (1993) define the following kurtosis matrix

K = E(ZTZZZT). (1.4)
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The matrix is the sum of the p diagonal blocks of size p × p of M4, and contains only

p + 3p(p−1)
2 + p(p−1)(p−2)

2 distinct fourth-order moments, since the moments of the kind

ZiZjZkZl, with i 6= j 6= k 6= l are not there. Also, observe that the cells contain the sum

of p moments, as opposed to (1.3), where a cell corresponded to a single moment:

K = Ip ∗M4 = E




Z2
1 (Z2

1 + . . . + Z2
p) . . . ZpZ1(Z2

1 + . . . + Z2
p)

...
. . .

...

Z1Zp(Z2
1 + . . . + Z2

p) . . . Z2
p(Z2

1 + . . . + Z2
p)


 .

The symbol ∗ denotes the star product defined as follows (McRae, 1974). Let A be a

m×n matrix and B be a mp×nq matrix, the star product of A and B is a p× q matrix

C defined by

C = A ∗B =
p∑

i=1

p∑

j=1

aijBij

where aij is the ijth element of A, and Bij is the ijth block of B, where B is partitioned

into blocks of dimension p× q.

The matrix K reduces to the univariate kurtosis coefficient in the univariate case,

K = E(ZZZZ) = E(Z4) =
µ4

σ4

and is positive semidefinite,

xTKx = xTE(ZZTZZT)x = E[(ZZTx)TZZTx] ≥ 0, for x ∈ Rp.

The sample counterpart of K is,

Kn =
1
n

n∑

i=1

zT
i ziziz

T
i

where zi = S−
1
2 (xi − x̄) and x̄ and S are the mean and covariance matrix of a random

sample x1, . . . , xn of X. The trace of K coincides with the Mardia’s kurtosis coefficient,

trK = tr[E(ZTZZZT)] = E[ZTZ tr(ZZT)] = E[(ZTZ)2] = β2,p. (1.5)

If X follows an elliptical distribution with density

fX(x) = |V |− 1
2 h[(x− µ)TV −1(x− µ)],

for some nonnegative function h, the matrix K is diagonal. In effect, the covariance

matrix of the elliptical distribution is Σ = cV for some c ∈ R and the standardized

random vector Z is spherical because its density only depends on z through zTz. The
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odd moments are zero E(ZiZjZ
2
k) = E(ZiZ

3
j ) = 0, since fZ(z) is an even function of

zi, and the elements of K are Kij = E(ZiZj
∑p

k=1 Z2
k), where the diagonal elements are

given by

Kii = E(Z4
i ) +

p∑

k=1
k 6=i

E(Z2
i Z2

k) = E(Z4
1 ) +

p∑

k=1
k 6=1

E(Z2
1Z2

k), 1 ≤ i ≤ p

since the Zi’s are identically distributed, and the off-diagonal elements are zero. There-

fore, the matrix K is proportional to the identity.

In particular, if X follows a multivariate normal distribution, the diagonal elements

of K are Kii = p + 2 since E(Z4
i ) = 3 and E(Z2

i Z2
j ) = 1 and thus K = (p + 2)I.

Also, if X follows a multivariate t distribution with parameters ν, µ and R, K =

(p + 2)(ν − 2)/(ν − 4)I since E(Z4
i ) = 3(ν − 2)/(ν − 4) and E(Z2

i Z2
k) = (ν − 2)/(ν − 4).

This last result is consistent with the univariate case, where the kurtosis of the Student t

distribution is higher than the kurtosis of the normal distribution due to its heavier tails.

Let µr1,...,rp = E[
∏p

j=1 Z
rj

j ] be a k-order moment of X, r1 + · · ·+ rp = k, then µ̂r1,...,rp

converges to µr1,...,rp in probability and, since K is a continuous function of the moments,

Kn converges to K in probability and the matrix Kn is a consistent estimator of K.

Kollo (2008) defines another kurtosis matrix as

B = E
[
(ZT1)2ZZT

]
, (1.6)

The matrix B is the sum of the p2 blocks of size p× p of M4, and therefore contains the

η distinct fourth-order moments. This time tzhe cells are sums of p2 moments:

B = 1p×p ∗M4 = E




Z2
1 (Z1 + . . . + Zp)2 . . . ZpZ1(Z1 + . . . + Zp)2

...
. . .

...

Z1Zp(Z1 + . . . + Zp)2 . . . Z2
p(Z1 + . . . + Zp)2


 .

The sample counterpart of B is

Bn =
1
n

n∑

i=1

(zT
i 1)2ziz

T
i ,

and the trace of B is the sum of all elements of the matrix K

tr(B) = (Z2
1 + . . . + Z2

p)(Z1 + . . . + Zp)2 =
p∑

i=1

p∑

j=1

Kij .

B also reduces to the univariate kurtosis coefficient in the univariate case,

B = E(Z2ZZ) = E(Z4) =
µ4

σ4
,

34



and is positive semidefinite,

xTBx = xTE[(ZT1)2ZZT]x = E[{(ZT1)ZTx}T(ZT1)ZTx] ≥ 0, for x ∈ Rp.

Under the assumption of an elliptical distribution for X, B is not diagonal because the

term E(Z2
i Z2

j ) appears in the off-diagonal elements, but the diagonal elements have the

same value as in K. For a multivariate normal distribution, for example, Bij = 2 for

i 6= j and Bii = p + 2 otherwise. For a multivariate t distribution with parameters ν,

µ and R, Bij = 2(ν − 2)/(ν − 4). The matrix B contains redundant information as it

depends for its construction on the vector 1. More details on the eigenstructure of B are

explained in Section 2.2.1.

Due to the convergence of moments, Bn converges to B in probability and is a con-

sistent estimator for B.

Both matrices K and B can be seen as weighted scatter matrices with weights ZTZ

and (ZT1)2 respectively. The matrix K in (1.4) has an important invariant property

which is not present in B in (1.6).

Let E be an orthogonal matrix whose columns are eigenvectors of K, the new coordi-

nate system ETZ is invariant under affine transformations of X. In effect, if Y = AX +b

with A non-singular, then KY = UKUT, where U is some orthogonal matrix. This is

true because the standardizations of X and Y are the same up to a rotation, ZY = UZ,

where ZY = Σ−1/2
Y (Y − µY ). That implies that the eigenvalues of K and KY are the

same and the eigenvectors are rotated versions of each other (the eigenvectors of KY are

UE). When applying the same transformation to ZY , we obtain the same coordinates

ETUTUZ = ETZ. The matrix B, however, does not have this desirable property because

its weights are not invariant under orthogonal transformations.

Oja et al. (2006) consider a scatter matrix based on fourth-order moments,

S̃ = E[ZTZ(X − µ)(X − µ)T],

which is related to K by S̃ = Σ1/2KΣ1/2. If instead of S̃ we consider K̃ = S̃Σ−1, then

K̃ = Σ1/2KΣ−1/2 and the matrices K and K̃ share the same eigenvalues and trace. Also,

if u is an eigenvector of K, Σ1/2u is an eigenvector of K̃. Both matrices S̃ and K̃ are

positive semidefinite. The matrix K̃ reduces to the univariate kurtosis coefficient in the

univariate case,

K̃ = E[ZZ(X − µ)(X − µ)σ−2] = E(Z4) =
µ4

σ4
,

which is not the case for S̃. If X follows an elliptical distribution, K̃ = K and S̃ = KΣ.
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In summary, in Chapters 2 and 3, we explore the properties of the matrix K, as we

have seen it has an invariance property that the matrix B does not hold. Note also that

studying K is equivalent to study K̃.

Matrices of cumulants

Independent Component Analysis (ica, Hyvärinen et al. (2001)), a methodology whose

purpose is to find the independent latent factors that have generated the observed mul-

tivariate sample, assumes that the variables X are generated by the independent latent

factors S through the following model,

X = AS.

In order to find S ∈ Rp it is necessary to specify the matrix A, or, if we first whiten

X with a matrix W , where for example W can be the matrix Σ−1/2 and it results in

standardized variables, the model simplifies to

Z = US,

where Z = WX and U = WA is an orthogonal matrix since the whitening condition

makes E(ZZT) = I and the factors are uncorrelated, E(SST) = I. ica uses several

approaches to specify the orthogonal matrix U . We will focus here on those approaches

related to fourth-order moment matrices. More particularly, in Cardoso and Souloumiac

(1993) a matrix based on fourth-order cumulants is used to find the latent factors.

The definition of fourth-order cumulants differs from the definition of fourth-order

moments in some second-order moments,

cum(ZiZjZkZl) = E(ZiZjZkZl)− E(ZiZj)E(ZkZl)

−E(ZiZk)E(ZjZl)− E(ZiZl)E(ZjZk)

Two approaches for the determination of U have been reported and are summarize

in Cardoso and Souloumiac (1993). In the first approach, the columns of U are the

eigenvectors of a p× p cumulant matrix. They define first a cumulant set denoted by

QZ = {cum(ZiZjZkZl) | 1 ≤ i, j, k, l ≤ p},

which contains all p4 fourth-order cumulants of the vector Z.

A cumulant matrix NM is a n× n matrix defined entrywise by

nij =
∑p

k=1

∑p
l=1cum(ZiZjZkZl)mkl, 1 ≤ i, j ≤ p
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where the matrix with entries mkl has to be specified, although the usual choice is

M = bkb
T
l , with bk denoting the n× 1 vector with 1 in the kth position and 0 elsewhere.

When this matrix is used, nij = cum(ZiZjZkZl) and therefore MN contains one cumulant

in each cell. This approach uses only a fraction of the fourth-order information; p2

cumulants out of p4, and there is no clue a priori to which matrix M should be chosen. An

alternative idea is to compute several matrices by randomly selecting k and l, and choose

the one whose eigenvalues present the maximum spread, but the information contained in

the other cumulant matrices will be still lost. The larger the spread between eigenvalues

the higher the possibilities of finding an interesting pattern in X, since it implies that

some eigenvector is giving a very spread and therefore informative projection of X.

The problem of which moments/cumulants should be included arises with any fourth-

order moment or cumulant matrix of dimension p × p, which is why it does not exist a

kurtosis matrix of reference, as it is the covariance matrix for the second-order informa-

tion, since the natural way of representing this information is not a matrix (it would be

an object of four dimensions).

If we choose M = I, each cell of MN is the sum of several cumulants, and it coincides

with the choice in K, if we considered cumulants instead of moments.

It is unclear whether the addition process for moments/cumulants in each cell results

in a smarter way of arranging the matrix, or in a matrix that contains more information.

For instance, the matrix B was redundant with respect to K, but it contained all fourth-

order moments, unlike K that uses only p3 fourth-order moments.

The other approach mentioned in Cardoso and Souloumiac (1993) obtains an estimate

of U as the optimizer of some identification criterion which is a function of the whole

cumulant set QZ , with which “better performance is expected at the expense of solving

an optimization problem”. Cardoso and Souloumiac (1993) finally propose a technique

that combines advantages of both the eigenvalue-based and the criterion-based approach.

1.2.3 Heterogeneity of multivariate samples

Our intention is to explore the properties of multivariate kurtosis measures to perform

cluster analysis. We aim to analyze whether heterogeneity is an appropriate interpreta-

tion of multivariate kurtosis, and we start by studying the behaviour of a multivariate

kurtosis coefficient under a mixture of distributions. In particular, we consider the Mar-

dia (1970)’s kurtosis coefficient, since it is the most widely used and well-known scalar

measure of multivariate kurtosis.
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Figure 1.6: The value of γ for different values of π1.

Let X be distributed as π1f1(X) + π2f2(X), where fi is a normal density with mean

µi and covariance matrix V , and the πi’s are the weights of the mixture. Following

expression (1.5), the trace of K is the Mardia’s kurtosis coefficient, and thus we can

derive the expression for β2,p using (2.5),

β2,p = trK = p(p + 2) + β(ϕTϕ)2, (1.7)

where β = π1π2[1− 6π1π2] and ϕ = Σ−1/2(µ2 − µ1), which can be expressed in terms of

the covariance matrix of the components of the mixture as

β2,p = p(p + 2) +
β[(µ2 − µ1)TV −1(µ2 − µ1)]2

[π1π2(µ2 − µ1)TV −1(µ2 − µ1) + 1]2

since Σ = V + π1π2(µ2 − µ1)(µ2 − µ1)T and from the inverse of the sum property,

Σ−1 = V −1 − π1π2V
−1(µ2 − µ1)(µ2 − µ1)TV −1

π1π2(µ2 − µ1)TV −1(µ2 − µ1) + 1
.

The first term in (1.7) is the value of β2,p under a normal distribution, whereas the second

term indicates deviations from it. If the means of the two populations are the same then

β2,p = p(p + 2), otherwise we are in the mixture case. In the following we analyze how

β2,p changes when we move the means away from each other by calculating the value of

β2,p when the distance between the means tends to infinity,

lim
‖µ2−µ1‖→∞

β2,p = p(p + 2) + γ (1.8)
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where γ = 1−6π1π2
π1π2

, and therefore the value of β2,p in the limit depends on the proportion

of the mixtures: it increases respect to p(p + 2) when 1 − 6π1π2 > 0 and decreases

otherwise. If 1−6π1π2 < 0, it implies that π1 ∈ ((
√

3−1)/(2
√

3), 0.5] and in the extreme

case of π1 = π2 = 1/2, γ = −2 and β2,p = p(p + 2)− 2, which is the maximum distance

that can be reached with respect to p(p+2) for negative values of γ. On the other hand,

if 1− 6π1π2 > 0 then π1 ∈ (0, (
√

3− 1)/(2
√

3)), Figure 1.6 illustrates how γ depends on

values of π1. In the latter case of γ > 0, the departure from the normal assumption can

be made as large as we want for example by selecting sufficiently small values of π1, since

lim
π1→0

γ = ∞,

Observe that the limit in (1.8) is reached fast, in Figure 1.7 we see that as soon as the

means start to separate, β2,p reaches its limit value, around 13 in this case for a value

of π1 = 0.1 and a two-dimensional population. Thus, the Mardia’s kurtosis coefficient
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Figure 1.7: The coefficient β2,p in function of ‖µ2 − µ1‖.

can as well be seen as a measure of heterogeneity. Large values of β2,p with respect to

p(p + 2) may indicate the presence of two different-sized clusters or groups of outliers,

whereas small values of the coefficient detect bimodality. Note that this behaviour is a

generalization to multivariate samples of the properties of k to detect heterogeneity. The

coefficient, thus, may be used to search for optimal subspaces with interesting properties

for clustering. In this case, the reduction of the dimension would not be limited to a
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direction but to a plane or hyperplane where the identification of the clusters will be

easier than in the original space. The subspace might be able to reveal non-linear cluster

structures that are not identifiable when projecting onto directions.

However, an optimization algorithm is needed to identify those subspaces with values

of minimum and maximum Mardia’s kurtosis. An alternative is to explore the properties

of the kurtosis matrices introduced in this chapter, and study whether the eigenvectors

define any interesting subspace. Using the eigenvectors of a given matrix avoids the

need to perform numerical optimization, which can be computationally intensive and its

efficacy may depend on the choice of the optimization algorithm to be used. In Chapter 2

we intend to project the multivariate sample onto a subspace generated by some of the

eigenvectors of the kurtosis matrix K in (1.4), expecting that this new coordinate system

will give us insight on the cluster structure of the data.
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Chapter 2

Eigenvectors of a kurtosis matrix

as interesting directions to reveal

cluster structure

In this chapter we study the properties of a kurtosis matrix and propose its eigenvectors

as interesting directions to reveal the possible cluster structure of a data set. Under a mix-

ture of elliptical distributions with proportional scatter matrices, it is shown that a subset

of the eigenvectors of the fourth-order moment matrix corresponds to Fisher’s linear dis-

criminant subspace. The eigenvectors of the estimated kurtosis matrix are consistent

estimators of this subspace and its calculation is easy to implement and computationally

efficient, which is specially favourable when the ratio n/p is large.

2.1 Introduction

Given a multivariate sample in Rp drawn from a mixture of k populations, cluster analysis

attempts to partition the sample into homogeneous groups, according to the populations

that generate them.

Projection Pursuit finds subspaces of low dimension that show interesting views of the

data according to some criteria, see Friedman and Tukey (1974) and Friedman (1987).

Projection Pursuit can be useful in cluster analysis. One may first reduce the dimension-

ality of the sample by projecting it on a lower dimensional subspace and then finding

the clusters there. The curse of dimensionality can thus be avoided, but care needs to be

taken to make sure that the projected data preserve the cluster structure of the original
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sample. Non-normality is one of the criteria used to find the projections. Huber (1985)

emphasized that interesting projections are those that produce non-normal distributions.

However, non-normality is a general condition, and we need to specify how to measure

it.

The idea of maximizing the kurtosis has also been used in cluster analysis, see Jones

and Sibson (1987). Peña and Prieto (2001) showed that for clustering the directions that

minimize the kurtosis can be more useful than the ones that maximize it. The reason

is that the kurtosis can be seen as the variance of the squared standardized differences

between the variable and its mean. Consequently, if all observations of the sample are

approximately at the same distance to the mean, the variance of these distances is near

zero, and the kurtosis will have a small value. This would be the case with two well-

separated clusters of the same size. Therefore, directions that minimize the kurtosis

could reveal the cluster structure. The method proposed by Peña and Prieto (2001)

(and Projection Pursuit methods in general) needs to perform numerical optimization in

order to find the optimal directions. This is computationally intensive and its efficacy

may depend on the choice of the optimization algorithm to be used.

An alternative to this approach is to find a matrix whose eigenvectors are related

to directions of maximum or minimum kurtosis. In this chapter we study a kurtosis

matrix and show that under a mixture of two elliptical distributions with the same

scatter matrices, the eigenvector associated to the eigenvalue different from the others

coincides with the direction that optimizes the kurtosis coefficient, which is Fisher’s linear

discriminant function. The kurtosis matrix, thus, has similarities to the nonlinear cluster

algorithm in Peña and Prieto (2001). Based on this result, we explore the general case

of k groups and we prove that the subspace orthogonal to the eigenspace associated to

an eigenvalue with multiplicity p−k +1 is Fisher’s linear discriminant subspace. Similar

results are found in Caussinus and Ruiz-Gazen (1993) and Caussinus and Ruiz-Gazen

(1995), where it is shown that Fisher’s subspace can be estimated using the k largest

eigenvectors of some Generalized Principal Components matrix based on W -estimates of

dispersion. Recently, Tyler et al. (2009) prove that a subset of eigenvectors of V −1
1 V2

generate Fisher’s subspace, being V1 and V2 any pair of affine equivariant scatter matrices.

The kurtosis matrix, however, is based on an existent kurtosis-based algorithm which

can always be used. The advantage of using the eigenvectors of a kurtosis matrix instead

of the univariate kurtosis directions is dependent on the ratio n/p, where n is the sample

size and p the dimension. If this ratio is large, the estimation of the kurtosis matrix

of dimension p is reliable and therefore the estimation of its eigenvectors becomes accu-
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rate and useful. Also, in this case numerical optimization is computationally intensive.

However, when n/p is small the estimation of the elements of the matrix has very low

precision and we have found that the eigenvalues are not as useful. We will illustrate in

which situations is more adequate to use one approach or another. Also, we will show

that these eigenvectors are consistent estimators of Fisher’s subspace, which ensures their

convergence.

This chapter is organized as follows. In Section 2.2 we study the theoretical properties

of the eigenvectors of a kurtosis matrix for cluster analysis and present results regarding

the convergence of their estimators. In Section 2.3 the behaviour of the eigenvectors to

perform cluster analysis is analyzed through a simulation study. We finish with some

remarks in Section 2.4.

2.2 The eigenvectors of a kurtosis matrix and its cluster

properties

Let X follow a mixture of k elliptical distributions such that, with probability πi > 0, Xi

has density

fXi(x) = |Vi|−1/2hi[(x− µi)TV −1
i (x− µi)], (2.1)

for some nonnegative function hi, i = 1, . . . , k and
∑k

i=1 πi = 1. We standardize X using

its global mean µ =
∑

i πiµi, and covariance matrix Σ =
∑

i πiVi+
∑

i πi(µi−µ)(µi−µ)T.

The standardized variable Z = Σ−1/2(X−µ) is also a mixture of elliptical distributions Zi

with means and scatter matrices δi and Wi, δi = Σ−1/2(µi− µ) and Wi = Σ−1/2ViΣ−1/2.

Using expectation properties the kurtosis matrix K is,

K = E(ZTZZZT) =
k∑

i=1

πiE(ZT
i ZiZiZ

T
i ).

The fourth-order moment matrix can be expressed as

E(ZT
i ZiZiZ

T
i ) = E[(Zi − δi)T(Zi − δi)(Zi − δi)(Zi − δi)T]

+ tr Wiδiδ
T
i + δT

i δiWi + 2(δiδ
T
i Wi + Wiδiδ

T
i ) + δT

i δiδiδ
T
i ,

where we have used that Zi = W
1/2
i Y + δi, with Y following a spherical distribution, the

intermediate results E(ZiZ
T
i ) = Wi+δiδ

T
i , E(Y TWiY ) = trWi, E(δT

i W
1/2
i Y W

1/2
i Y δT

i ) =

E(W 1/2
i Y Y TW

1/2
i δiδ

T
i ) and the fact that all odd moments of Y are equal to zero.
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The fourth-order central moment matrix of Zi is

M4 = E[(Zi − δi)T(Zi − δi)(Zi − δi)(Zi − δi)T]

= |Wi|−1/2

∫
(z − δi)T(z − δi)(z − δi)(z − δi)Thi((z − δi)TW−1

i (z − δi))dz

=
∫

yTWiyW
1/2
i yyTW

1/2
i hi(yTy)dy = W

1/2
i U

∫
tTΩtttThi(tTt)dtUTW

1/2
i

= W
1/2
i U

∑

j

ωj

∫
t2j tt

Thi(tTt)dtUTW
1/2
i =

∑

j

ωj k̃iWi + k̄iW
1/2
i UΩUTW

1/2
i

= k̃i trWiWi + k̄iW
2
i ,

where we have introduced y = W
−1/2
i (z−δi), t = UTy and

∫
t2j tt

Thi(tTt)dt = k̃iI+k̄ieje
T
j

for k̃i =
∫

t2j t
2
khi(tTt)dt where j 6= k, and k̄i =

∫
t4jhi(tTt)dt− k̃i. Thus, K reduces to

K =
k∑

i=1

πi[trWi(k̃iWi + δiδ
T
i ) + k̄iW

2
i ]

+
k∑

i=1

πi[2(δiδ
T
i Wi + Wiδiδ

T
i ) + δT

i δi(Wi + δiδ
T
i )], (2.2)

This explicit expression for the the matrix gives insight on the structure of the problem.

Some terms depend on the variability between clusters, the δi’s, and others on the vari-

ability within clusters, the Wi’s. We need the eigenstructure of K to capture the cluster

structure, which is found in the δi’s.

2.2.1 Proportional scatter matrices

If the scatter matrices of the groups are proportional, it is seen in Theorem 2.1 that the

eigenvectors of K reveal some desirable properties for clustering.

Theorem 2.1. Suppose X is a mixture of elliptical distributions as stated above with

Vi = V , for i = 1, . . . , k. The matrix K is

K = αI +
∑k

i=1

∑k
j=1βijδiδ

T
j , (2.3)

with α = k̃p + (1− k̃)
∑k

i=1 πiδ
T
i δi + k̄ and where

βij =

{
γπi + (πi + ηπ2

i )δ
T
i δi if i = j

ηπiπjδ
T
i δj if i 6= j

with γ = (1− k̃)p− 2k̄ + 4, η = k̃ + k̄ − 6, k̃ =
∑k

i=1 πik̃i and k̄ =
∑k

i=1 πik̄i.

We denote by ∆ = 〈δ1, . . . , δk〉 the subspace spanned by the δi’s, where dim∆ =

q ≤ k − 1. If u ∈ ∆⊥, Ku = αu holds, and α is an eigenvalue of K with multiplicity
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p − q associated to the eigenspace ∆⊥. The remaining q eigenvectors of K are found

in the ∆ subspace. Let Φ = 〈φ1, . . . , φk〉 be the subspace spanned by Fisher’s directions,

φi = V −1(µi − µ).

Then, the subspaces Φ and ∆X are the same

Φ = ∆X , (2.4)

where ∆X is the ∆-subspace expressed in the space of the original variables, ∆X =

Σ−1/2∆.

Under the assumption of proportional scatter matrices the best discriminant proce-

dure is linear and Fisher’s linear discriminant subspace is optimal in the sense that the

relative separation between means is maximized. The theorem states that an identifiable

subset of q eigenvectors of the kurtosis matrix K generates the subspace on which the

clusters appear more separated. Some details of the theorem are found in the following

proof.

Proof of Theorem 2.1. The result in (2.3) is obtained using in expression (2.2) the result

Wi = Σ−1/2V Σ−1/2 = I −∑
i πiδiδ

T
i , where V = Σ−∑

i πi(µi − µ)(µi − µ)T.

Denote Σ = V + MPMT, with M = (µ1 − µ, . . . , µk − µ) and P diagonal with

elements (π1, . . . , πk), then, from the inverse of the sum property, we have Σ−1 = V −1 −
V −1M(MTV −1M + P−1)−1MTV −1, and multiplying by M ,

Σ−1M = V −1M
[
I − (MTV −1M + P−1)−1MTV −1M

]
.

Therefore, Σ−1M = V −1MT . And, if we add and subtract P−1 appropriately, we can

see that T = [P (MTV −1M +P−1)]−1 is invertible. Therefore, the columns of Σ−1M and

V −1M generate the same subspace and thus Φ=∆X and (2.4) is proven.

Corollary 2.2. In the particular case of a mixture of normal distributions, the constants

are respectively k̃i = 1 and k̄i = 2 and the eigenvalue associated to ∆⊥ has known value

α = p + 2. Also, if there are no clusters, from (2.3) we have K = αI.

Mixture of two normal distributions In the particular case of a mixture of two

normal distributions, the matrix K simplifies to

K = (p + 2)I + βϕTϕϕϕT, (2.5)

where β = π1π2(1 − 6π1π2) and ϕ = Σ−1/2(µ2 − µ1). The vector ϕ is an eigenvector of

K with associated eigenvalue λ = p + 2 + β(ϕTϕ)2, the rest of the eigenvalues are equal
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to p + 2. Also, tr(K) = p(p + 2) + β(ϕTϕ)2 and det(K) = (p + 2)p + β(p + 2)p−1(ϕTϕ)2.

Note that ϕ is Fisher’s best linear discriminant function in the Z-space. The eigenvalue

λ is the largest if β > 0 and the smallest otherwise. The parameter β is positive if

π1 ∈ (0, (
√

3 − 1)/(2
√

3)) and negative if π1 ∈ ((
√

3 − 1)/(2
√

3), 0.5]. Therefore, if we

have homogeneous clusters, the eigenvector associated with the smallest eigenvalue will

be the one that better separates the clusters, while whenever the two clusters have very

different sizes, the largest eigenvalue is the one that identifies the significant eigenvector.

These values are the same ones that arise in Corollary 2 in Peña and Prieto (2001), where

it is shown that the direction that optimizes the univariate kurtosis coefficient corresponds

to Fisher’s best linear discriminant function, maximizing it if π1 ∈ (0, (
√

3 − 1)/(2
√

3))

and minimizing it if π1 ∈ ((
√

3 − 1)/(2
√

3), 0.5]. Both approaches give estimations of

Fisher’s linear discriminant function, and a reasonable question is in which circumstances

one procedure is more satisfactory than the other. On one hand, the estimation of

eigenvectors may suffer from lack of precision when the sample size is small, but on

the other hand a non-linear computationally intensive algorithm is needed to solve the

optimization problem of finding the direction of kurtosis. We will address this issue in

the next section with the help of some simulations.

Theorem 2.1 is in agreement with Theorem 5.2 in Tyler et al. (2009) and is similar

to Proposition 1 in Caussinus and Ruiz-Gazen (1993). In the former the authors present

a general method to generate an affine invariant coordinate system to reveal interesting

departures from an elliptical distribution by using the eigenvectors of V −1
1 V2, the relative

scatter matrix. The idea is to first ‘standardize’ the data with respect to one scatter

matrix V1, and then perform generalized principal components on the ‘standardized’

data using a different scatter statistic V2. Calculating the eigenvectors of the kurtosis

matrix K is equivalent to choosing V1 = Σ, and V2 = E[ZTZ(X − µ)(X − µ)T]. In this

case V −1
1 V2 = Σ−1/2KΣ1/2, and the eigenvalues of V −1

1 V2 and K are the same while the

eigenvectors are Σ−1/2u and u respectively. As a matter of fact, these choices are the

ones proposed in Caussinus and Ruiz-Gazen (1993), where more generally they study

V2 = E[ω(βZTZ)(X −µ)(X −µ)T]/E[ω(βZTZ)], being ω a positive decreasing function

and β a positive parameter.

The general case of different scatter matrices, however, is not considered in these

references. In particular, the use of just any pair of robust scatter matrices in Tyler

et al. (2009) does not guarantee the identification of the clusters, while the kurtosis has

already proven to be effective in this situation. Also, the computation of most robust

matrices is computationally very expensive. A discussion of the paper is found in Peña

and Viladomat (2009).
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Comparison with the kurtosis matrix B Under the same assumptions considered

when calculating (2.3) plus normality for the components of the mixture, the matrix B

in (1.6) is

B = pI + 211T +
∑k

i=1

∑k
j=1γijδiδ

T
j 11T,

where

γij =

{
(πi − 3π2

i )δ
T
i δi if i = j

−3πiπjδ
T
i δj if i 6= j

Let ∆1 = 〈∆,1〉 be the subspace spanned by the 1 and the δi’s and suppose we are in the

general case 1 /∈ ∆ and 1 6⊥ ∆. If u ∈ ∆⊥
1 , Bu = pu holds, and p is an eigenvector of B

with multiplicity p−k associated to the eigenspace ∆⊥
1 . The remaining k eigenvectors are

found in the ∆1 subspace. When using the matrix K, the ∆ subspace can be identified

by selecting the eigenvectors with eigenvalues different from p + 2. Instead, if we were

to use the matrix B, we could only isolate the ∆1 subspace, which is a non-informative

choice. The procedure thus becomes dependent on the position of the δi’s with respect

to the vector 1. This dependency is the reason why the matrix B is not invariant under

affine transformations. In the two special cases where 1 ∈ ∆ or 1 ⊥ ∆, the ∆ subspace

can still be identified using eigenvectors of B. In effect, if 1 ∈ ∆ then we can choose

p − k + 1 orthogonal eigenvectors from ∆⊥ with eigenvalues equal to p. And if 1 ⊥ ∆

then 1 is an eigenvector itself with eigenvalue 3p, which also brings the total number of

eigenvectors in ∆⊥ with known eigenvalues to p−k+1. The remaining k−1 eigenvectors

are therefore an orthogonal basis of ∆.

2.2.2 Consistency of the eigenvectors of the estimated matrix Kn

Let µr1,...,rp = E(
∏p

j=1 X
rj

j ) be a k-order moment of X, r1 + · · · + rp = k, then µ̂r1,...,rp

converges to µr1,...,rp in probability and, since K is a continuous function of the moments,

Kn converges to K in probability and therefore the matrix Kn is a consistent estima-

tor of K. The spectral set of K, denoted Λ, is the set of all eigenvalues of K. The

eigenspace of K associated with λ is V (λ) = {x ∈ Rp | Kx = λx}, whose dimension

is the algebraic multiplicity of λ. Since K is symmetric, then Rp =
∑

λ∈Λ V (λ) holds.

The eigenprojection of K associated with λ, denoted P (λ), is the projection operator

onto V (λ) with respect to the decomposition of Rp. If v is any subset of the spectral set

Λ, then the total eigenprojection for K associated with the eigenvalues in v is defined

to be
∑

λ∈v P (λ). The following lemma (Tyler, 1981) states that, for any subset v of
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eigenvalues of Λ, we can identify the corresponding subset vn (because of the relative po-

sition of the eigenvalues), and the subspace defined as the sum of subspaces
∑

λ∈vn
Vn(λ)

will converge in probability to the subspace
∑

λ∈v V (λ). That is, the subspace generated

by eigenvectors of Kn associated to the eigenvalues vn is a consistent estimator for the

subspace generated by eigenvectors of K associated to the corresponding eigenvalues v.

Lemma 2.3. Let Kn be a p× p symmetric matrix with eigenvalues λn
1 ≥ . . . ≥ λn

p . Let

Pn
j,t represent the subspace generated by the eigenvectors of Kn associated with λn

j , . . . , λn
t

for t ≥ j. If Kn converges to K in probability, then

1. λn
j converges to λj in probability,

2. Pn
j,t converges to Pj,t in probability, provided λj−1 6= λj and λt 6= λt+1.

The distance between two subspaces is measured using ‖P1−P2‖2, the matrix spectral

norm, and the proof of the lemma can be found in Section VIII-§3.5 of Kato (1980). A

corollary of this lemma is that, when the scatter matrices are the same, the subspace

orthogonal to the eigenspace associated to an eigenvalue of multiplicity q and value α, is

a consistent estimator for Fisher’s subspace.

Table 2.1: Factors f used to generate the samples of a mixture of normal populations.
p k f

2 2 16

4 22

8 30

4 2 14

4 20

8 28

8 2 12

4 18

8 26

15 2 10

4 16

8 24

30 2 8

4 14

8 22

We analyze this convergence through a simulation study. Throughout the thesis, we

draw samples from mixtures of distributions as follows. Sets of 100p random observations,

48



with dimensions p = 2, 4, 8, 15, 30, are generated from a mixture of k multivariate normal

distributions. The number of observations in each population is determined randomly,

but ensuring that each cluster contains a minimum of p + 1 observations. The means

for each normal distribution are chosen as values from a multivariate normal distribution

Np(0, fI), for a factor f selected to be as small as possible whereas ensuring that the

probability of overlapping between groups is roughly equal to 1%, see Table 2.1 for the

values of f . The covariance matrices are generated as S = UDUT, using a random

orthogonal matrix U and a diagonal matrix D with entries from a uniform distribution

on [10−3, 5
√

p].

In Table 2.2 we consider the case of a mixture of two normal distributions with equal

scatter matrices and present the angle between Fisher’s discriminant function V −1(µ2 −
µ1) and the eigenvector of Kn associated to the eigenvalue that differs most from the

value p + 2. Also, we compare the results with the angle between Fisher’s direction and

the direction of kurtosis that maximizes | log(κd) − log(3)| among the 2p considered in

Peña and Prieto (2001), where κd is the univariate kurtosis coefficient of the direction d.

Table 2.2: Two groups and equal scatter matrices. Angle between Fisher’s direction and:

1. the direction (kurt) that maximizes | log(κd) − log(3)| and 2. the eigenvector of Kn

(eigK) whose eigenvalue maximizes |λi − (p + 2)|.
p kurt eigK kurt eigK kurt eigK kurt eigK

4 16.03 35.39 10.10 21.45 6.91 15.08 3.64 8.01

8 16.03 36.44 12.93 21.74 6.88 18.15 4.36 7.52

15 11.25 42.86 8.96 25.92 14.82 19.61 9.60 10.28

30 24.99 50.30 12.41 26.37 8.32 19.95 4.77 8.70

Average 17.08 41.25 11.10 23.87 9.23 18.20 5.60 8.63

n=100p n=500p n=1000p n=5000p

The results for small sample sizes are better for the kurtosis directions due to the

limited precision of the eigenvectors and therefore we suggest using the optimization

algorithm in these circumstances. However, the angles become more similar as the sample

size increases, as expected.

We generate now mixtures of three normal distributions. In this case the subspace

of interest is a plane and we want to measure how close Fisher’s plane is to the plane

generated by the two eigenvectors associated to eigenvalues that differ most from the

value p + 2. Again, in order to compare the results with the kurtosis directions, we

will also consider the plane generated by the two directions that maximize | log(κdi) −
log(3)|. When comparing directions, the angle between them is a convenient measure.
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As a measure of distance between subspaces we will compute the angle between two

hyperplanes, which is defined in Section 12.4.3 of Golub and van Loan (1996). Section

16.5 of Peña (2002) provides a geometrical interpretation of the angle. Let F and G be

planes in Rp, the angle between F and G is defined as the angle θ∗ between u∗ and v∗, the

vectors that maximize cos θ = uTv, where u ∈ F and v ∈ G, subject to ‖u‖ = ‖v‖ = 1.

Geometrically, u∗ is collinear with the projection of v∗ into F and v∗ is collinear with

the projection of u∗ into G. In practice, to obtain θ∗ we perform the singular value

decomposition of QT
F QG, where the columns of the p × 2 matrices QF and QG define

orthonormal bases for F and G respectively. The smallest singular value is the cosine

of θ∗. The angles in Table 2.3 are calculated using this decomposition. This case is

Table 2.3: Three groups and equal scatter matrices. Angle between Fisher’s plane and: 1.

the plane generated by the directions (kurt) that maximize | log(κd)− log(3)| and 2. the

plane generated by the two eigenvectors of Kn (eigK) whose eigenvalues maximize |λi −
(p + 2)|.

p kurt eigK kurt eigK kurt eigK kurt eigK

4 44.90 44.53 37.76 26.75 30.68 19.03 33.47 10.21

8 43.55 51.28 39.69 27.66 31.34 20.47 25.71 12.77

15 51.62 56.05 42.65 35.94 42.10 30.78 35.86 16.54

30 62.79 63.76 45.59 41.80 40.63 33.12 35.94 19.47

Average 50.72 53.91 41.42 33.04 36.19 25.85 32.75 14.75

n=100p n=500p n=1000p n=5000p

an example of the benefit of using the matrix Kn. For three groups we know that the

the optimal direction is a combination of the directions δ1 and δ2, the ones related to

the cluster structure, but we cannot identify the directions that would define the best

plane. Instead, the eigenvectors do identify the optimal subspace. The angles in both

approaches are similar for small samples, but as the sample size increases the distance

from the eigenvectors to Fisher’s subspace becomes smaller, as expected from the results

in Lemma 2.3, while the convergence of the optimization directions is slower.

Another factor in consideration when comparing both approaches is related to the

time needed for the kurtosis directions and the eigenvectors to be calculated. We did

compute the running times for the p eigenvectors of Kn and the two extreme kurtosis

directions. The results were calculated on a PC with Intel 3GHz CPU and are summarized

in Table 2.4. Their increase with n is similar for both approaches, slightly faster than

linear. This agrees with the fact that the main effort affected by n is the computation of

the kurtosis matrix and the evaluation of the kurtosis coefficient, respectively. Regarding
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increases in p, the matrix Kn presents a clear advantage, as the time ratios for both

algorithms increase from values in the order of 4 for small dimensions to values in the

order of 13 to 20 for the largest dimension under consideration (p = 30). This growth is

associated with the use of Newton’s method in the optimization of the kurtosis coefficient,

and the need to factorize the corresponding second-derivative matrix in each iteration,

as opposed to a single eigenvalue computation for the matrix Kn. In summary, the

proposed algorithm seems to be computationally more efficient, particularly for the case

of higher-dimensional data.

Table 2.4: Two groups and different scatter matrices. Time ratios in seconds between the

two extreme univariate kurtosis directions and the p eigenvectors of Kn to be calculated.
p kurt/eigK kurt/eigK kurt/eigK kurt/eigK

2 6.56 3.83 4.09 3.63

4 24.50 6.21 5.53 5.22

8 13.91 8.78 7.04 7.12

15 20.42 11.32 10.48 9.68

30 19.08 17.09 13.83 12.75

Average 16.89 9.45 8.19 7.68

n=100p n=1000p n=5000p n=10000p

2.2.3 Different scatter matrices

In order to study the general case of different scatter matrices in a mixture of elliptical

distributions, we start by studying a perturbation of the simpler model, a mixture of

two normal distributions with equal scatter matrices. We perturb the covariance matrix

of one of the mixtures to see the effect that the relaxation in the condition of equal

covariances causes in both the eigenvectors of K and the directions that optimize the

kurtosis coefficient.

After standardization and using the same notation as in previous sections, the mixture

is characterized as π1N(δ1, W )+π2N(δ2,W +∆W ), where ∆W is the perturbation added

to the model. Consider now the equations that define the solutions for both approaches,

an eigenvector of K and the optimum univariate kurtosis direction. For the kurtosis

matrix, an eigenvector d is such that Kd = λd, which in our case can be formulated as

(a0 − λ)d + a1∆Wd + a2∆W 2d = −b1δ1 − b2∆Wδ1. (2.6)

For the kurtosis direction, the equivalent equation comes from ∇κd = λd, and reduces to

(c0 − λ)d + c1∆Wd = −f1δ1. (2.7)
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Details of the derivations are found in Appendix 2.A.

When the scatter matrices are the same, the solution to both approaches is d =

cδ1, for some constant c. Deviations from this solution appear as terms related to the

perturbation such as ∆W and ∆W 2, the latter found only in (2.6). Consequently, in

addition to ∆W , the eigenvectors of K differ from Fisher’s discriminant function also in

a quadratic term that does not arise in (2.7). Nevertheless, as we will see in simulation

studies, the use of K is helpful when the sample size is not small, as in these cases the

nonlinear algorithm for finding the optimal directions is time consuming and the results

are similar to the ones obtained using K.

Table 2.5: Two groups and equal scatter matrices. Proportion of variance explained

by the clusters, (φ̂), for the optimum direction (d.opt), the eigenvector of Kn associated

with the max/min eigenvalue (max/min eigK), the max/min kurtosis direction (max/min

kurt), the best eigenvector of Kn (best eigK) and the best kurtosis direction (best kurt).

p n d. opt max/min eigK max/min kurt best eigK best kurt

2 200 0.80 0.77 0.77 0.77 0.79

4 400 0.86 0.79 0.77 0.79 0.83

8 800 0.89 0.79 0.82 0.79 0.84

15 1500 0.93 0.78 0.86 0.78 0.87

30 3000 0.95 0.75 0.87 0.75 0.88

2 1000 0.78 0.78 0.76 0.78 0.78

4 2000 0.84 0.80 0.79 0.81 0.82

8 4000 0.89 0.85 0.85 0.85 0.88

15 7500 0.94 0.87 0.90 0.87 0.92

30 15000 0.96 0.86 0.92 0.86 0.93

2 2000 0.82 0.81 0.79 0.81 0.81

4 4000 0.84 0.82 0.82 0.83 0.83

8 8000 0.88 0.85 0.85 0.85 0.86

15 15000 0.93 0.86 0.89 0.86 0.90

30 30000 0.96 0.87 0.92 0.87 0.93

Average 0.88 0.82 0.84 0.82 0.86

Moreover, this result provides hints on how one might modify the matrix K in order

to improve the performance when the scatter matrices are different, which has not been

addressed yet in the literature. Further research will we focus in finding a matrix that

could manage to reduce the impact of the terms ∆W and ∆W 2.
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2.3 Computational results

Table 2.6: Two groups and equal scatter matrices. Percentage (%) of misclassified ob-

servations for the optimum direction (d.opt), the eigenvector of Kn associated with the

max/min eigenvalue (max/min eigK), the max/min kurtosis direction (max/min kurt),

the best eigenvector of Kn (best eigK) and the best kurtosis direction (best kurt).

p n d. opt max/min eigK max/min kurt best eigK best kurt

2 200 2.0 3.9 5.1 3.9 2.7

4 400 0.7 4.9 6.4 3.9 1.5

8 800 0.1 6.1 7.0 5.2 3.4

15 1500 0.0 6.9 6.1 6.2 4.2

30 3000 0.0 8.4 7.6 8.1 5.6

2 1000 2.8 3.7 4.6 3.7 3.2

4 2000 0.7 4.0 5.4 2.3 2.0

8 4000 0.1 2.5 3.7 2.2 0.9

15 7500 0.0 3.4 3.5 2.7 1.8

30 15000 0.0 2.8 3.3 2.6 2.3

2 2000 1.9 2.3 3.5 2.3 2.1

4 4000 0.9 2.0 3.2 1.6 1.5

8 8000 0.1 2.7 3.6 1.7 1.5

15 15000 0.0 3.4 4.2 2.9 2.2

30 30000 0.0 3.0 3.3 2.9 2.5

Average 0.6 4.0 4.7 3.5 2.5

We perform a set of simulations to evaluate the properties of the eigenvectors of Kn

for cluster analysis. The measure chosen to assess the performance is the proportion of

total projected variance explained by the projected clusters, given by φ = dTBd/(dTΣd),

where B = π1π2(µ2 − µ1)(µ2 − µ1)T. The larger the gap between the projected means,

the more separated the clusters are. Thus, we are interested in the directions that make

φ large. If we search for the direction d that maximizes φ, it is well-known that Fisher’s

direction d = (π1V1 + π2V2)−1(µ2 − µ1) satisfies the optimality condition δφ/δd = 0.

We will estimate φ for the eigenvectors of Kn and for the directions of minimum and

maximum kurtosis by generating random samples from a mixture of two p-variate normal

populations. In order to have an idea on how close we are to the optimum, we will include

the value φ̂ corresponding to Fisher’s direction. Also, to estimate φ without assuming

that we know the parameters of the two distributions, we need a procedure to assign

observations to clusters. Once we project the data onto the direction d, we choose the

particular assignation maximizing φ̂. In particular, since the cluster problem reduces to
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one dimension, we choose n1 such that φ̂ = dTB̂d/[(n − 1)dTSd] is maximized, where

B̂ = n1n2/(n1 +n2)(x̄2− x̄1)(x̄2− x̄1)T and x̄j = 1
nj

∑nj

i=1 x(i). We assume that we know

of the existence of just two clusters in the data.

2.3.1 Proportional scatter matrices

We start analyzing the results when the scatter matrices are the same. Table 2.5 presents

the measure φ̂ for the optimum direction V −1(µ2−µ1), the eigenvector of Kn (‘max/min

eigK’) that maximizes φ̂ among the two eigenvectors corresponding to the maximum and

minimum eigenvalue, the univariate kurtosis direction (‘max/min kurt’) that maximizes

φ̂ among the maximum and minimum univariate kurtosis directions, the eigenvector of

Kn (‘best eigK’) that maximizes φ̂ among the p existing eigenvectors and the univariate

kurtosis direction (‘best kurt’) that maximizes φ̂ among the 2p directions considered in

Peña and Prieto (2001). In Table 2.6 we present the proportion of misclassified obser-

vations after assigning them to clusters as stated above. Each value has been replicated

100 times.

Table 2.7: Two groups and equal scatter matrices. Number of times out of 100 where

the eigenvalue of Kn corresponding to the eigenvector that maximizes φ̂ does not belong

to the 30%-40% largest or smallest eigenvalues.
p n 30% 40%

2 200 - -

4 400 9 9

8 800 15 8

15 1500 13 9

30 3000 13 8

2 1000 - -

4 2000 11 11

8 4000 6 3

15 7500 5 4

30 15000 4 3

2 2000 - -

4 4000 2 2

8 8000 8 3

15 15000 7 5

30 30000 5 3

When considering only two eigenvectors and two kurtosis directions, the results in

the two tables are similar. We observe that the extreme eigenvector of Kn performs
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better when the dimension of the space is small (2,4,8), whereas the univariate kurtosis

has better results when p is larger. We also observe that the values are very close to the

optimum ones, indicating the appropriateness of the two methods. However, when all

eigenvectors and kurtosis directions are considered, the results for the eigenvectors are

very similar (column ‘max/min eigK’ and ‘best eigK’ are practically identical) whereas

there is some improvement in the projected kurtosis directions, especially for large p. Note

that, for a given p, the eigenvectors improve as n increases, while the kurtosis directions

behave more stable in this sense. Also, if we count the number of times that the selected

eigenvector in ‘best eigK’ does not correspond to one of the extreme eigenvalues, we obtain

that this number is very small, specially when n is large, in Table 2.7 we summarize these

results. Thus we conclude that the maximum/minimum eigenvalue of the kurtosis matrix

provides a useful direction for clustering which is very fast to compute. The computation

of the matrix K and its eigenvectors is computationally very efficient, while the directions

of kurtosis require an optimization algorithm and are computationally more expensive.

Table 2.8: Two groups and different scatter matrices. Proportion of variance explained

by the clusters (φ̂) for the optimum direction (d.opt), the best eigenvector of Kn (best

eigK) and the best kurtosis direction (best kurt).

p n d. opt best eigK best kurt

2 200 0.78 0.75 0.77

4 400 0.82 0.74 0.76

8 800 0.87 0.73 0.78

15 1500 0.90 0.76 0.81

30 3000 0.93 0.69 0.80

2 1000 0.78 0.75 0.77

4 2000 0.81 0.76 0.77

8 4000 0.87 0.79 0.80

15 7500 0.90 0.76 0.79

30 15000 0.93 0.75 0.82

2 2000 0.77 0.75 0.76

4 4000 0.82 0.77 0.77

8 8000 0.87 0.77 0.78

15 15000 0.90 0.80 0.81

30 30000 0.93 0.75 0.81

Average 0.86 0.75 0.79
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Table 2.9: Two groups and different scatter matrices. Percentage(%) of misclassified

observations for the optimum direction (d.opt), the best eigenvector of Kn (best eigK)

and the best kurtosis direction (best kurt).

p n d. opt best eigK best kurt

2 200 3.20 5.30 4.30

4 400 1.10 4.00 3.90

8 800 0.30 5.00 3.30

15 1500 0.10 4.40 5.20

30 3000 0.00 6.10 5.50

2 1000 2.80 4.80 3.50

4 2000 1.30 4.90 4.10

8 4000 0.30 3.80 3.50

15 7500 0.10 3.30 5.10

30 15000 0.00 3.90 5.00

2 2000 3.30 5.00 4.00

4 4000 0.90 4.40 3.70

8 8000 0.30 4.00 3.10

15 15000 0.10 2.60 4.70

30 30000 0.00 3.80 5.40

Average 0.92 4.35 4.29

2.3.2 Different scatter matrices

In the general case of different scatter matrices, the optimum direction for φ is (π1V1 +

π2V2)−1(µ2 − µ1). If we compare in Table 2.8 the columns ‘best eigK’ and ‘best kurt’

we observe that the kurtosis directions perform slightly better. However, if we look at

the same columns in Table 2.9, the proportion of misclassified observations, the results

are very similar. In particular, the eigenvectors perform better when the sample size is

large. This behaviour could be due to the lack of precision in the eigenvectors when the

sample size is small. As before, we check which eigenvalue is associated to the selected

eigenvector; in Table 2.10 we observe that it does not seem to follow a strong pattern

in terms of its eigenvalue, even though it looks that most of the times the eigenvalue

associated to the chosen eigenvector is one of the extreme ones.

56



Table 2.10: Two groups and different scatter matrices. Number of times out of 100 where

the eigenvalue of Kn corresponding to the eigenvector that maximizes φ̂ does not belong

to the 30%-40% largest or smallest eigenvalues.
p n 30% 40%

2 200 - -

4 400 17 17

8 800 37 15

15 1500 41 29

30 3000 41 25

2 1000 - -

4 2000 13 13

8 4000 32 16

15 7500 36 26

30 15000 46 30

2 2000 - -

4 4000 16 16

8 8000 32 20

15 15000 42 31

30 30000 45 23

2.4 Discussion

In Chapter 3 we study alternative kurtosis matrices based on local modifications of the

data, with the intention of improving the performance of the eigenvectors of the kurtosis

matrix studied in this chapter. In particular, we explore variations of the kurtosis matrix

where the terms in (2.2) that depend on the scatter matrices Wi have less influence on

the eigenstructure of the matrix. By substituting each observation of the sample with

the mean of its neighbours, the covariance matrices of the components of a mixture

of distributions would be expected to shrink, giving a more predominant role to the

variability between clusters in the decomposition of the kurtosis matrix.

Appendix 2.A Derivations for the case of different scatters

We have that δ2 = −π1
π2

δ1 and, from the decomposition of the covariance matrix in

the case of mixture distributions, I = π1W + π2W + π2∆W +
∑

i πiδiδ
T
i , and thus

W = W̄ −π2∆W , where W̄ = I− π1
π2

δ1δ
T
1 corresponds to the equal scatter matrices case.

Also W + ∆W = W̄ + π1∆W . Replacing W1 = W = W̄ −π2∆W and W2 = W + ∆W =
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W̄ + π1∆W in (2.2) we obtain

K = K̄ + π1π2∆W tr∆W + 2π1π2∆W 2 +
π1

π2
(π1 − π2)δ1δ

T
1 tr∆W

+2
π1

π2
(π1 − π2)(δ1δ

T
1 ∆W + ∆Wδ1δ

T
1 ) +

π1

π2
(π1 − π2)δT

1 δ1∆W,

where K̄ = (p + 2)I + π1

π3
2
(1 − 6π1π2)δT

1 δ1δ1δ
T
1 . The kurtosis coefficient on a direction

is κd = 3
∑

i πi(dTWid)2 + 6
∑

i πi(dTWid)(δT
i d)2 +

∑
i πi(δT

i d)4, and substituting in our

case

κd = κ̄d + 3π1π2(dT∆Wd)2 + 6
π1

π2
(π1 − π2)(δT

1 d)2dT∆Wd,

where κ̄d = 3(dTd)2 + π1

π3
2
(1− 6π1π2)(δT

1 d)4. The parameters in equations (2.6) and (2.7)

derived from these results are a0 = p+2, a1 = π1π2 tr∆W + π1
π2

(π1−π2)δT
1 δ1, a2 = 2π1π2,

b1 = π1

π3
2
(1− 6π1π2)δT

1 δ1δ
T
1 d+ π1

π2
(π1−π2)(δT

1 d tr∆W +2δT
1 ∆Wd), b2 = 2π1

π2
(π1−π2)δT

1 d,

c0 = 12, c1 = 12π1π2d
T∆Wd + 12π1

π2
(π1 − π2)(δT

1 d)2 and f1 = 4π1

π3
2
(1 − 6π1π2)(δT

1 d)3 +

12π1
π2

(π1 − π2)δT
1 ddT∆Wd.
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Chapter 3

Kurtosis matrices based on local

modifications of the data

Following the discussion in Chapter 2, this chapter studies alternative kurtosis matrices

based on local modifications of the data, with the intention of improving the performance

of the eigenvectors of the kurtosis matrix studied in Chapter 2. By substituting each

observation of the sample with the mean of its neighbours, the covariance matrices of

the components of a mixture of distributions would be expected to shrink, giving a more

predominant role to the variability between clusters in the decomposition of the kurtosis

matrix. Specifically, we prove that the separation properties of the eigenvectors of the new

kurtosis matrix are better in the sense that the proposed modification of the observations

produces standardized means that are further from each other than those of the original

observations, and thus the clusters will appear to be more clearly separated.

3.1 Using the kurtosis matrix for concentrated data

The kurtosis matrix K that we studied in Chapter 2 can be decomposed as a sum of two

matrices, K = KW + KB, where

KB =
k∑

i=1

πiδ
T
i δiδiδ

T
i

KW =
k∑

i=1

πi[trWi(k̃iWi + δiδ
T
i ) + k̄iW

2
i + 2(δiδ

T
i Wi + Wiδiδ

T
i ) + δT

i δiWi],

which can be understood as a decomposition of the variability. In effect, KW is function

of the covariance matrices Wi and therefore it measures the variability within clusters,
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while KB measures the variability between clusters as it only depends on the cluster

means. We want the eigenstructure of K to capture the cluster information, which is

found in the δi’s. If the covariance matrices Wi are “big” enough, the eigenvectors of K

will depend mainly on them, hiding the cluster structure, to avoid that we need KB to

have a sufficiently large contribution to K to dominate the effect of KW .

Suppose we replace each observation from a sample {xi} of X, with sample size n,

by the average of the bκnc closest observations to xi (in the euclidean norm), x̃i.

In population terms the new random variable is defined as

x̃(w) =
1
κ

∫

S
yfX(y)dy, S = {z : ‖z − x(w)‖ ≤ ε}, (3.1)

where ε, the size of the ball, is related to κ through
∫

S
fX(y)dy = κ. (3.2)

Our interest is to study the moments of the new random variable to obtain the

expression for the modified matrix K̄. In particular, we wish to search for a relationship

between the covariance matrices of the original random variable and the modified one,

particularly in the case when κ is small.

We start by linking the original and modified observations, where we obtain

x̃ = x + βε2V −1(x− µ) + O(ε4), (3.3)

the details are found in Appendix 3.A. This relationship is our starting point to analyze

the moments of interest. Our first step is to consider the density associated to the new

variable x̃. We have,

x̃− µ = (I − βε2V −1)(x− µ) + O(ε4).

Note first that by taking expectations in (3.3) we have that

µ̃ = E[x̃] = µ + (I − βε2V −1)(E[x]− µ) + O(ε4) = µ + O(ε4). (3.4)

The density for the new variable will be given by

fx̃(x̃) = |V |−1/2h
(
(x− µ)TV −1(x− µ)

) (|(I − βε2V −1)−1|+ O(ε4)
)

= |V |−1/2h
(
(x̃− µ)T(I − βε2V −1)−1V −1(I − βε2V −1)−1(x̃− µ) + O(ε4)

)

× (|(I − βε2V −1)−1|+ O(ε4)
)

= |V − 2βε2I|−1/2h
(
(x̃− µ)T(V − 2βε2I)−1(x̃− µ)

)
+ O(ε4). (3.5)

60



This density function corresponds, up to order ε4, to an elliptical distribution with the

same function h as the original observations, mean µ and covariance matrix proportional

to V − 2βε2I.

A consequence of this result is that we can use the moment results for the original

observations x, replacing µ with µ + O(ε4), and V with V − 2βε2I + O(ε4).

3.2 The model of interest: a mixture of elliptical distribu-

tions

Consider now the case where we have k groups of observations, each one generated from

an elliptical distribution with density as in (2.1), and weights πi.

We start by standardizing the observations as Z = Σ−1/2(X −µ), where µ =
∑

i πiµi

and Σ =
∑

i πiciVi +
∑

i πi(µi − µ)(µi − µ)T are the mean and covariance matrix of

the mixture. The resulting observations can be considered to have been generated from

elliptical distributions with new means δi, covariance matrices Wi, the same functions hi

and weights πi. The values of these parameters are given by

δi = Σ−1/2(µi − µ), Wi = ciΣ−1/2ViΣ−1/2. (3.6)

In the next step, we modify the observations replacing each z with the average z̃ of

a percentage of the observations closest to it. Assuming that the groups are sufficiently

removed from each other, we obtain new observations defined from (3.3).

The new mixture of observations can be considered (for small values of ε) to follow

ellipsoidal distributions with parameters δ̃i and W̃i, and the same functions hi and weights

πi. From (3.4) and (3.6), the values of the means are given by

δ̃i = δi + O(ε4) = Σ−1/2(µi − µ) + O(ε4), (3.7)

and for the covariance matrices, from (3.5),

W̃i = Wi − 2βiε
2I + O(ε4) = Σ−1/2

(
Vi − 2βiε

2Σ
)
Σ−1/2 + O(ε4). (3.8)

As a last step prior to the computation of the new kurtosis matrix, these transformed

observations have to be standardized again. This is equivalent to introducing a new

linear transformation of the form Z̄ = Σ̃−1/2(Z̃ − δ̃), where δ̃ denotes the mean of the

transformed observations, which from (3.7) satisfies

δ̃ =
∑

i

πiδ̃i = O(ε4),
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and Σ̃ denotes their covariance matrix, which from (3.7) and (3.8) satisfies

Σ̃ =
∑

i

πiW̃i +
∑

i

πi(δ̃i − δ̃)(δ̃i − δ̃)T

=
∑

i

πi(Wi − 2βiε
2I) +

∑

i

πiδiδ
T
i + O(ε4)

=
∑

i

πiWi +
∑

i

πiδiδ
T
i − 2ε2β̄I + O(ε4)

= (1− 2ε2β̄)I + O(ε4),

where β̄ =
∑

i πiβi. Note that from this result,

Σ̃−1/2 = (1 + ε2β̄)I + O(ε4).

Using these moments, the values of the parameters for the new standardized obser-

vations will be given by

δ̄i = Σ̃−1/2(δ̃i − δ̃) = (1 + β̄ε2)δi + O(ε4), (3.9)

W̄i = Σ̃−1/2W̃iΣ̃−1/2 = (1 + ε2β̄)2(Wi − 2βiε
2I) + O(ε4)

= (1 + 2β̄ε2)Wi − 2βiε
2I + O(ε4). (3.10)

3.3 The definition of the kurtosis matrix K̄

Given the parameters derived in the preceding section for the different transformed ob-

servations, we now analyze their impact on the kurtosis matrix.

Consider first a mixture of variables Zi with ellipsoidal distributions with parameters

δi and Wi and weights πi, and introduce a shift Yi = Zi − δi. The kurtosis matrix is

defined as

K = E[ZTZZZT] =
∑

i

πiE[ZT
i ZiZiZ

T
i ]

=
∑

i

πiE[(Yi + δi)T(Yi + δi)(Yi + δi)(Yi + δi)T] =
∑

i

πiKi.

Using the property that all odd moments of Yi are equal to zero, we have that

Ki = E[Y T
i YiYiY

T
i ] + E[Y T

i Yi]δiδ
T
i + δT

i δiE[YiY
T
i ]

+2δiδ
T
i E[YiY

T
i ] + 2E[YiY

T
i ]δiδ

T
i + δT

i δiδiδ
T
i .
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If we now analyze each one of the terms, using the results in Appendix 3.C, we have

E[Y T
i YiYiY

T
i ] = k̃i tr(Wi)Wi + k̄iW

2
i

E[Y T
i Yi]δiδ

T
i = ki tr(Wi)δiδ

T
i

δT
i δiE[YiY

T
i ] = kiδ

T
i δiWi

δiδ
T
i E[YiY

T
i ] = kiδiδ

T
i Wi

E[YiY
T
i ]δiδ

T
i = kiWiδiδ

T
i .

Therefore,

K =
∑

i

πi[k̃i tr(Wi)Wi + k̄iW
2
i + ki tr(Wi)δiδ

T
i ]

+
∑

i

πi[kiδ
T
i δiWi + 2kiδiδ

T
i Wi + 2kiWiδiδ

T
i + δT

i δiδiδ
T
i ].

Now we consider the same matrix for the transformed and standardized observations Z̄i.

The main change is that the parameters δi and Wi are replaced by δ̄i and W̄i, defined in

(3.9) and (3.10). We obtain

K̄i = (1 + 4β̄ε2)Ki − 2βiε
2(pk̃i + 2k̄i)Wi − 2βiε

2[k̃i tr(Wi) + kiδ
T
i δi]I

−2βiε
2(p + 4)kiδiδ

T
i + O(ε4),

and the corresponding matrix K̄ is given by

K̄ = (1 + 4β̄ε2)K − 2ε2
∑

i

πiβi[(pk̃i + 2k̄i)Wi + (k̃i tr(Wi) + kiδ
T
i δi)I]

−2ε2
∑

i

πiβi(p + 4)kiδiδ
T
i + O(ε4).

3.4 Properties of the modified data: separation of the ob-

servations

We now consider the impact of the modification of the observations on the separation

properties of the directions obtained from the kurtosis matrices. To simplify the analysis

we will analyze the case where we only have two different groups.

The quality of the directions will be studied by comparing for the selected projection

direction d the value of the criterion

(dTδ)2

dTΣd
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in both cases. Note that for the standardized observations the denominator is equal to

one, and the criterion reduces to the value of the numerator. We should thus compare

the values of (dTδi)2 with those of (d̄Tδ̄i)2, where d denotes the eigenvector associated

to the largest eigenvalue of K, while d̄ denotes the eigenvector associated to the largest

eigenvalue of K̄. As π1δ1 = −π2δ2, it does not matter which δi is considered, as long

as it is the same in both cases. Also, since we observed through simulations that most

of the times (d̄Tδ̄i)2 > (dTδ̄i)2, it is enough to compare (dTδ̄i)2 with (dTδi)2 in order to

draw conclusions. From (3.9) we have that

(dTδ̄i)2 = (1 + 2β̄ε2)(dTδi)2 + O(ε4) = (dTδi)2 + 2β̄ε2(dTδi)2 + O(ε4).

Therefore, (dTδ̄i)2 > (dTδi)2 for small enough values of ε, which implies that the proposed

modification of the observations produces standardized means that are further from each

other than those of the original observations, and thus the clusters will appear more

separated.

Appendix 3.A Linking the original and modified observa-

tions

Consider x̃ in (3.1), it can be written as

x̃ =
1
κ

x

∫

S
fX(y)dy +

1
κ

∫

S
fX(y)(y − x)dy

= x +
1
κ

∫

S
fX(y)(y − x)dy,

and introducing the Taylor series expansion for fX(y) around x,

x̃ = x +
fX(x)

κ

∫

S
(y − x)dy

+
2|V |−1/2

κ
h′

(
(x− µ)TV −1(x− µ)

) ∫

S
(x− µ)TV −1(y − x)(y − x)dy

+
2|V |−1/2

κ
h′′

(
(x− µ)TV −1(x− µ)

) ∫

S
((x− µ)TV −1(y − x))2(y − x)dy

+
|V |−1/2

2κ
h′

(
(x− µ)TV −1(x− µ)

) ∫

S
(y − x)TV −1(y − x)(y − x)dy

+
1
κ

∫

S
|V |−1/2O(‖y − x‖4)dy

= x +
2
κ
|V |−1/2h′

(
(x− µ)TV −1(x− µ)

) ∫

S
(x− µ)TV −1(y − x)(y − x)dy +

1
κ

O(ε4vp(ε))

= x +
h′

(
(x− µ)TV −1(x− µ)

)

h ((x− µ)TV −1(x− µ))
2

vp(ε)

∫

S
(x− µ)TV −1(y − x)(y − x)dy + O(ε4), (3.11)
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where we have used symmetry to cancel the third-order terms, together with
∫
S(x −

µ)TV −1(y − x)(y − x)dy = O(ε2vp(ε)) and the result in (3.12) to replace the terms

depending on κ.

Consider now the remaining integral in the preceding expression,
∫

S
(x− µ)TV −1(y − x)(y − x)dy =

∫

S̄
(x− µ)TV −1x̄x̄dx̄ = . . .

for x̄ = y − x and S̄ = {z : ‖z‖ ≤ ε}. Let x̄ = Uy, where U is an orthogonal matrix

having its first column equal to V −1(x− µ)/‖V −1(x− µ)‖, we have that

. . . = ‖V −1(x− µ)‖
∫

S̄
y1Uydy = ‖V −1(x− µ)‖

∑

i

∫

S̄
y1yiuidy

= ‖V −1(x− µ)‖u1

∫

S̄
y2
1dy = V −1(x− µ)

∫

S̄
y2
1dy = . . .

where we have used symmetry to cancel the terms
∫
S̄ y1yidy with i 6= 1 from the sum.

We can write

. . . =
1
p
V −1(x− µ)

∫

S̄
yTydy = . . .

again from symmetry, as
∫
S̄ y2

1dy =
∫
S̄ y2

i dy = (1/p)
∫
S̄ yTydy. Letting yTy = z2,

. . . =
1
p
V −1(x− µ)

∫ ε

0
z2v′p(z)dz

=
1
p
V −1(x− µ)Kpp

∫ ε

0
z2zp−1dz = V −1(x− µ)Kp

εp+2

p + 2

= V −1(x− µ)
1

p + 2
vp(ε)ε2.

where we have used vp(ε) = εpπp/2/Γ(p/2 + 1) = Kpε
p. Replacing the result for the

integral in (3.11), we obtain

x̃ = x + βε2V −1(x− µ) + O(ε4).

where β = − 2
p+2

h′((x−µ)TV −1(x−µ))
h((x−µ)TV −1(x−µ))

> 0, since we assume that h(z) > 0 and h′(z) < 0 for

all z > 0.

65



Appendix 3.B Neighbourhood size

We relate the value of κ and ε. Using Taylor series expansions for fX(y) around x in

(3.2),

κ =
∫

S
fX(y)dy = fX(x)

∫

S
dy

+ 2|V |−1/2h′
(
(x− µ)TV −1(x− µ)

) ∫

S
(x− µ)TV −1(y − x)dy

+ |V |−1/2

∫

S
O(‖y − x‖2)dy

= fX(x)vp(ε) + O(ε2vp(ε)),

where vp(ε) denotes the volume of S (a hypersphere in dimension p with radius equal

to ε),
∫
S dy = vp(ε), and we have used

∫
S(y − x)dy = 0 (from symmetry) to cancel the

second term in the expansion.

From this result we have that

κ

vp(ε)
− fX(x) = O(ε2),

and for fX(x) > 0 we also have

vp(ε)
κ

− 1
fX(x)

=
fX(x)− κ/vp(ε)
fX(x)κ/vp(ε)

= O(ε2),

and thus

fX(x)
vp(ε)

κ
= 1 + O(ε2). (3.12)

Appendix 3.C Moments of an elliptical distribution

Consider a random variable X following an elliptical distribution with density as in (2.1).

Note that the covariance matrix of X is given by

E[(X − µ)(X − µ)T] = |V |−1/2

∫
(x− µ)(x− µ)Th

(
(x− µ)TV −1(x− µ)

)
dx

= |V |−1/2V 1/2

∫
yyTh(yTy)|V |1/2dyV 1/2

= V 1/2

∫
yyTh(yTy)dyV 1/2 = kV,

where we have used the change of variable y = V −1/2(x − µ), and also symmetry to

obtain ∫
yyTh(yTy)dy = kI,
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for k =
∫

y2
i h(yTy)dy = (1/p)

∫
yTyh(yTy)dy, with k > 0.

Also, its fourth-order central moments M4 = E[(X − µ)T(X − µ)(X − µ)(X − µ)T]

are

M4 = |V |−1/2

∫
(x− µ)T(x− µ)(x− µ)(x− µ)Th((x− µ)TV −1(x− µ))dx

=
∫

yTV yV 1/2yyTV 1/2h(yTy)dy = V 1/2U

∫
zTΩzzzTh(zTz)dzUTV 1/2

= V 1/2U
∑

i

ωi

∫
z2
i zzTh(zTz)dzUTV 1/2 =

∑

i

ωik̃V + k̄V 1/2UΩUTV 1/2

= k̃ tr(V )V + k̄V 2,

where we have introduced y = V −1/2(x− µ), z = UTy and
∫

z2
i zzTh(zTz)dz = k̃I + k̄eie

T
i ,

for k̃ =
∫

z2
i z2

j h(zTz)dz where i 6= j, and k̄ =
∫

z4
i h(zTz)dz − k̃.
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Chapter 4

Cluster analysis using trimmed

projections

This chapter describes some ideas to help identify non-linearly shaped clusters in a low di-

mensional space. The procedure projects onto several affine subspaces those observations

that are closest to the subspaces. In our proposal the affine subspaces are one-dimensional

(straight lines) and are defined from observations in the data. The projections are then

examined to determine the possible existence of clusters. This procedure can be in-

terpreted as the computation of trimmed projections, and allows the identification of

specific shapes that traditional clusters methods with good performance in low dimen-

sional spaces may fail to detect. The suggested cluster algorithm is intended to be used

once the dimension of a high dimensional data set has been reduced.

4.1 Identifying the local structure of the data

In previous chapters we have seen techniques to reduce the dimension of the space pre-

vious to clustering. This chapter presents a new method that searches for clusters in a

space of low dimension, by detecting the areas of low or no density in the sample.

The method attempts to identify the presence of empty spaces in the data and use

them as evidence of the existence of clusters. The algorithm we present generalizes to

multivariate samples the idea proposed in Peña and Prieto (2001), where a large distance

or gap between two consecutive observations was an indication of the end of one cluster

and the beginning of the next, and therefore an indication of heterogeneity. In a space

of dimension larger than one we cannot use the concept of ordering, and the way we
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Figure 4.1: Clusters non linearly separable.

identify the gaps must be modified.

As an alternative, we explore the space considering only those observations contained

in a sequence of bands. We select several random directions from observations in the data

and project only the α-nearest observations onto the one-dimensional affine subspace

defined by the direction and the observations. The parameter α, that indicates the

proportion of observations projected onto any given line, has to be chosen. The resulting

values can be understood as trimmed projections, and if we find a gap in the projections

onto at least one of the lines, we may conclude that the sample is heterogeneous. By

doing that, we identify the local structure of the sample closest to each line every time

we select one. After defining enough affine subspaces, and computing the corresponding

projections, we should be able to reconstruct the structure of the whole data.

If we choose to project the whole sample onto a given subspace, we may not be able

to see the different clusters unless they are linearly separable. The linearity may not be

present globally, but it can still be present locally, and projecting a subset of the sample

might be enough to reveal part of the cluster structure. For example, in Figure 4.1 there

is no direction able to discriminate the three clusters. But if we consider the line in black

and project onto it the observations within the cyan lines, the spherical cluster would

be set apart from the other clusters. Cluster methods such as kmeans or mclust have

problems dealing with this type of structures because they tend to identify elliptically

shaped groups, while our strategy would seem better suited to detect them.

We want each observation to be projected onto at least one line, so that we can classify
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the whole sample and capture its structure. Therefore, we need to draw a sufficient

number of lines. Each line is defined by linking two chosen random observations from

the sample.

The gaps in each set of projections are identified using a procedure proposed in Peña

and Prieto (2001), where it is assumed that a lack of clusters in the data implies that the

sample has been generated from a unimodal multivariate distribution, and therefore any

projection of this sample will also be unimodal. The sample spacings of the projected

observations zi = dTxi onto the direction d are used to detect patterns that may indicate

the presence of clusters. Thus, a subset of observations can be split into two clusters

when a sufficiently large gap is found. The gaps or spacings of the sample are defined as

the differences between two consecutive order statistics

wi = z(i+1) − z(i).

It is known that when the sample comes from a uniform distribution, the expected value

for the gaps is E(wi) = 1/(n+1), which does not depend on i and so all gaps are expected

to be equal. A gap will be considered to be significant if it has a very low probability of

appearing in that position under a univariate normal distribution. More details on the

properties of the gaps are found in Peña and Prieto (2001). We analyze the observations

and identify the gaps assuming they follow a normal distribution function. If an inverse

transformation is applied to the gaps using the normal distribution function, the resulting

distribution for the modified gaps should be uniform in [0, 1], where the distances between

consecutive observations are expected to be of the same length. If any of these distances

is significantly larger than the others, we conclude that the unimodal assumption does

not hold and instead the data have been generated from a mixture of distributions, where

the gaps indicate the different clusters.

4.2 Assigning labels to observations

Once we have looked for gaps in each trimmed projection, we need an algorithm that

combines all this information and assigns a label to each observation, according to the

group they belong.

The basic idea of this phase of the algorithm is to assign different labels to obser-

vations found in different clusters in any of the trimmed projections. The process is

done iteratively: we analyze a first line d1 and study the observations projected onto it,

giving them appropriate labels. We then proceed analyzing the next line di and treat the
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correspondent observations, and continue until all lines are treated. The fact that not

all the observations are projected onto a given line adds extra complications that need

to be commented.

For a given line di, two kinds of situations can arise regarding the observations that

have been projected onto di;

• the observation is already labelled: it means that it has been projected onto previous

line/s.

• the observation is not yet labelled: it is the first time that we treat it.

These situations may arise for any line we consider, except for the first one, when all

observations are still unlabelled.

For the first projection where gaps were detected, we identify the clusters from the

values of the gaps, defining as many clusters as the number of significantly large gaps

plus one, and label the projected observations according to the groups they belong. Note

that after completing this step, only the observations projected onto the first line may

have been assigned to a group, the rest remain unclassified at this stage.

For the subsequent projections with gaps, we identify the partition from the values

of the gaps and treat the observations as follows:

• If the observation is already labelled, we might need to assign a new label in case

other observations with the same label are found in other group/s for this projec-

tion. In this case, we proceed to partition the sample according to the groups found

for the current line.

• If the observation is not labelled, two situations may arise.

– If the observation is found in a group containing only non-labelled observa-

tions, we assign a new label to the whole group.

– On the contrary, if the observation appears in a group with other labelled

observations, again two things might happen.

∗ The group is homogeneous in the sense that only one label is involved.

We assign to the non-labelled observations the label of the group. If in

fact they did not belong to this group, another direction will eventually

partition the group.
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Figure 4.2: Trimmed projection with gaps.

∗ Or, the group is heterogeneous, and different labels are present. We do

not treat the non-labelled observations and wait until they are projected

for an upcoming line. There is not enough evidence to decide to which

group they should be assigned.

We summarize the different cases in the following scheme:

• labelled observations: assign a new label to observations having the same label as

other observations found in another group of the current direction.

• non-labelled observations:

– non-labelled group: new label to the whole group.

– labelled group:

∗ homogeneous group: give the label of the group to the non-labelled ob-

servations.

∗ heterogeneous group: do nothing.

We are aware of the complicated nature of this procedure, although it is the one that

provides better results in the simulations. One of the pitfalls associated to the way the

observations are assigned to clusters it is the danger of ending up with a partition of

the sample into too many clusters. There are several ways of regrouping clusters, but

we realize the merging has to be done in a way that the non-linear structure detected
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Figure 4.3: Non informative direction: no gaps.

with the help of the trimmed projections is not lost. We have tried different techniques,

and although the results obtained are reasonable, they are still subject to improvement.

We intend to work on the improvement of this stage of the algorithm in the future by

studying non-linear merging strategies.

An example of a projection with gaps is found in Figure 4.1. Figure 4.2 shows the

observations that were projected onto this direction, coloured according to the cluster

they belong. The direction is represented in the vertical axis, while the horizontal axis is

non informative. The number of gaps found in this direction is three, and they separate

observations from the three original groups. Thus, this was an informative direction that

helped classify 30% of the sample, because that is the proportion of the sample projected

onto the direction. On the other hand, in Figure 4.3 a non informative direction is

represented, where no gaps were found.

4.3 The GAPS algorithm

Let x1, . . . , xn be a sample drawn from X. The following steps define the gaps algorithm.

1. Choose α, the proportion of observations to project. Let m = [αn] be the number

of observations to project.

Let G be a vector that assigns a label to each observation from the sample, and set

g = 1, the number of groups.
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Choose w0, a cutoff that decides whether a distance between consecutive observa-

tions is large enough to be considered a gap or not.

2. Repeat the following for i = 1 . . . nd, where nd is the number of random directions

to be drawn.

(a) Choose two random observations xi1 , xi2 from the sample and define the di-

rection di = xi1
−xi2

‖xi1
−xi2

‖ that links them, for i1, i2 = 1, . . . , n, i1 6= i2.

(b) Find x(1), . . . , x(m), the m-nearest observations to the line defined by di, and

project them onto di: uj = xT
(j)did

T
i .

(c) Let zj = (uj − ū)/s be the standardization of uj , where ū and s are the mean

and standard deviation of u1, . . . , um.

(d) Sort out and transform z1, . . . , zm using the standard normal distribution func-

tion: z̄j = Φ(z(j)). Store in the jth component of a vector named pos the

position of z(j) before sorting out, for j = 1, . . . , m.

(e) Let wj = z̄j+1 − z̄j be the distances between consecutive values.

(f) Let J = {1 ≤ j ≤ m− 1 : wj > w0} and J = J ∪ {0,m}. If |J | > 2 we found

at least a gap in di:

• If di is the first projection with gaps:

i. For k ∈ 1 : |J | − 1 repeat: set G(pos(t)) = g for t = J(k) + 1 : J(k+1)

and g = g + 1.

• Otherwise:

i. Let N = {G(pos(1)), . . . , G(pos(J(2)))}.
ii. For k ∈ 2 : |J | − 1 repeat:

– For s ∈ 1 : |N |, if Ns 6= 0 repeat: if G(pos(t)) = Ns then set

G(pos(t)) = g, for any t = J(k) + 1 : J(k+1) and g = g + 1.

– Update N = N
⋃J(k+1)

t=J(k)+1{G(pos(t))}.
iii. For k ∈ 1 : |J | − 1 repeat: if G(pos(t)) = 0 for all t = J(k) + 1 : J(k+1),

set G(pos(t)) = g for t = J(k) + 1 : J(k+1) and g = g + 1.

3. The vector G returns, for each observation of the sample, a label indicating one of

the corresponding g − 1 clusters.
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4.4 Implementation details and examples

To illustrate the contribution of our algorithm, we use the example shown in Figure 4.4,

where two uniformly distributed rings of different sizes are simulated. One ring is located

inside the other, and thus they cannot be linearly separated by any direction. The two

clusters are not spherically or elliptically shaped, which makes it a challenging example,

specially for algorithms such as kmeans or mclust. The sample size of the example is

n = 1200, partitioned in clusters of sizes 400 and 800 respectively.

−100 −50 0 50 100

−1
00

−5
0

0
50

10
0

(a) kmeans algorithm.

−100 −50 0 50 100

−1
00

−5
0

0
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0

(b) mclust algorithm.

−100 −50 0 50 100

−1
00

−5
0

0
50

10
0

(c) gaps algorithm

Figure 4.4: An example of two rings on a two dimensional space, and the results obtained

with the algorithms kmeans, mclust and gaps.

Figure 4.4 presents the results for the algorithms kmeans, mclust and gaps. The

kmeans algorithm needs the number of clusters to be specified by the user. We perform
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kmeans iteratively by increasing the number of groups and select the choice that max-

imizes the following standardized difference between consecutive sum of squares within

groups

(n− g)
[SSWg−1 − SSWg]

SSWg
,

where SSWg is the sum of squares within groups defined in (1), for a partition of the

sample in g clusters. In Figure 4.4(a) we observe that kmeans overlooks both clusters,

providing a pretty bad solution. Approximately half of the observations are misclassified,

since half of each ring is classified to another cluster. Table 4.1 shows how the observations

have been classified, with 396 observations of the larger ring being classified to another

cluster, as well as 205 observations of the smaller ring. What happens is that kmeans

partitions the sample using linear discrimination, and ignores the shape of the clusters.

Table 4.1: Results obtained with the kmeans algorithm for the ring example in Fig-

ure 4.4.
Cluster 1 Cluster 2

Ring 1 395 405 800

Ring 2 198 202 400

593 607 1200

The algorithm mclust, which uses the bic criteria to choose the number of clusters,

also fails in the identification of the two rings. The algorithm is suited to find elliptical

shapes for the clusters. For the smaller ring, it expects the observations to be denser

in the center than in the extremes, and therefore does not identify it as a cluster and

combines observations from the two rings, as the blue- and green-coloured observations

in Figure 4.4(b) show. In Table 4.2 we can see the number of observations from each ring

assigned to each cluster, observe that clusters 6 to 9 are formed with observations from

both rings, indicating the confusion between clusters mentioned.

Table 4.2: Results obtained with the mclust algorithm for the ring example in Figure 4.4.

Clus 1 Clus 2 Clus 3 Clus 4 Clus 5 Clus 6 Clus 7 Clus 8 Clus 9

Ring 1 160 155 142 137 127 6 17 55 1 800

Ring 2 0 0 0 0 0 134 124 79 63 400

160 155 142 137 127 140 141 134 64 1200

Our algorithm performs significantly better than the preceding two algorithms, the

results can be seen in Figure 4.4(c). The gaps algorithm is able to completely discrim-
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inate the inner ring as one cluster. On the other hand, the larger ring is partitioned in

four clusters. Nevertheless, we think that as long as the two clusters are identified, the

fact that one cluster is partitioned in several pieces is a minor problem. But this exam-

ple shows that, as we mentioned above, the method is in need of a non-linear merging

strategy, and that is what we intend to study in the future. Observe that this strategy

should be able to merge clusters that are contiguous to each other. The algorithm is

applied with a parameter α = 0.4, and thus, the 40% of the sample is projected onto

each random direction. In this case, projecting almost half of the sample is enough to

detect the clusters. Table 4.3 shows the number of observations from each ring assigned

to each cluster.

Table 4.3: Results obtained with the gaps algorithm for the ring example in Figure 4.4.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Ring 1 231 208 199 162 0 800

Ring 2 0 0 0 0 400 400

231 208 199 162 400 1200

4.5 Discussion

Further research will be conducted to reevaluate the group assignments. At present,

the algorithm partitions the sample into too many clusters and a merging strategy is

needed to be applied after the gaps algorithm. This strategy must be able to merge

non-linear clusters, as this is the target of our algorithm. If we look at the example

in Figure 4.4, we observe that adjacent clusters need to be merged, that is, clusters

that leave no gap between them. This could be done by computing a measure that

summarized the distance of the neighbours to observations belonging to the extremes of

different clusters. Given an observation in the border of the two clusters, the distance of

this observation to neighbours within its cluster does not differ much from the distance of

the same observation to neighbours belonging to the other cluster, since they touch each

other. Therefore, we could consider a measure of this kind in order to merge adjacent

clusters. Other procedures that recombine observations could be applied, as for example

the one proposed in Peña et al. (2003).
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Chapter 5

Nearest-neighbours median

cluster algorithm §

In Chapter 2 we presented a method to reduce the dimension of the space in order to

perform cluster analysis in a subspace of lower dimension. Chapter 4 described a way of

identifying non-linearly shaped clusters in this low dimensional space based on projection

pursuit ideas. In this chapter we propose a non-parametric cluster algorithm based on

local medians that may also be applied after the dimension has been reduced and can

as well be used to detect non-linear clusters. The detection of the clusters is carried

on in the original space, and not based on projections, as the previous methods. Each

observation is substituted by its local median and this new observation moves towards

the peaks and away from the valleys of the distribution. The process is repeated until

each observation converges to a fixpoint. We obtain a partition of the sample based

on where the sequences of local medians have converged. The algorithm determines the

number of clusters and the partition of the observations given a value of α, the proportion

of neighbours. A fast version of the algorithm, where only a subset of the observations

from the sample are treated, is also proposed. Furthermore, and for a univariate random

variable, we prove the convergence of each point to the closest fixpoint, and the existence

and uniqueness of a fixpoint on the neighbourhood of each mode.
§This chapter is a joint work with Professor Ruben Zamar from University of British Columbia.
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5.1 Introduction

Given a multivariate sample in Rp drawn from a mixture of g populations, cluster analysis

attempts to partition the sample into homogeneous groups according to the populations

that generate them. Numerous cluster algorithms, such as k-means (Hartigan and Wong,

1979) or its robust version pam (Kaufman and Rousseeuw, 1990), need the number

of clusters to be specified by the user. Choosing the number of groups is one of the

most difficult problems in cluster analysis and several approaches have been considered.

One way of dealing with it is obtaining partitions of the data for different values of g

and choosing the one that optimizes a certain measure of the strength of the clusters

(Tibshirani et al., 2001). For instance, mclust algorithm (Fraley and Raftery, 1999)

uses the bic criteria to choose the number of components in a mixture of elliptical

distributions. A second strategy that can be considered is to first partition the data into

many small clusters, and merge the clusters on a second stage (Frigui and Krishnapuram,

1999). Other approaches consider extracting one cluster at a time (Zhung et al., 1996)

or using methods that detect modes or bumps (Cheng and Hall, 1998).

Recently, a new strategy for the estimation of g has appeared. The purpose is to

iteratively move the data points towards the centers of the clusters and use the number

of convergence points as the number of clusters. In this sense, gravitational clustering

(Wright, 1977; Kundu, 1999; Sato, 2000; Wang and Rau, 2001) assumes the data points

are particles of unit mass with zero velocity which move towards clusters centers due

to gravitational forces. Furthermore, mean-shift clustering (Fukunaga and Hostetler,

1975; Cheng, 1995; Comaniciu and Meer, 1999, 2000, 2001, 2002) uses kernel functions

in density estimation to move data points towards denser areas.

In this chapter we also present an algorithm that moves the observations towards

their cluster centers, but using the nearest neighbour approach (Mardia et al., 1979). In

particular we benefit from the properties of the nearest neighbour median. Let X be

a p-variate random vector with density function f , the α-nearest neighbour median at

x ∈ Rp is the median of the distribution of X conditioned on X ∈ Bx, where Bx is a

ball around x such that P (X ∈ Bx) = α. If the local median at x is equal to x, x is

a fixpoint. Otherwise, the local median has the property of moving towards the peaks

and away from the valleys of f because it is located at the denser region of Bx. We can

iterate the process by calculating the local median at the local median of x, and so on.

The sequence will converge to a neighbourhood of a mode. If we repeat the above for

all points in Rp, we obtain a partition of them based on where the sequences of local

medians have converged (fixpoints). The properties of the local median suggest a cluster
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algorithm. Starting by calculating the local median at each observation of a p-variate

sample of size n, we will obtain n sequences of local medians. The sequences will converge

to k < n different fixpoints, which returns a partition of the sample in g clusters. We

call it attractors algorithm.

A similar algorithm was presented in Wang et al. (2007). Attractors algorithm is a

modified version of it where some improvements have been made. For each observation,

both algorithms calculate its local median until convergence and therefore neighbours

need to be identified at each iteration. While in Wang et al. (2007) the observations

are updated on the value of its local medians, attractors does not update them and

therefore the neighbours are always observations from the sample. This difference makes

possible to deduce some theoretical results for the attractors algorithm, which was

not possible with its previous version due to the mathematical complexity of updating

the observations after each iteration. In particular, we prove, for the univariate case, the

convergence of each point to the closest fixpoint and the existence and uniqueness of a

fixpoint on the neighbourhood of each mode. Details are found in Section 5.4.

Furthermore, and from a computational point of view, attractors algorithm allows

for some improvement of the efficiency based on not considering all the observations of

the sample, which permits a considerable saving on computational time. Section 5.2.2

addresses this issue.

The chapter is organized as follows. Section 5.2 describes the algorithm in detail and

introduces the fast modified version. In Section 5.3 we study its behaviour through real

and simulated examples. The theoretical results of the method are given in Section 5.4

and we conclude with some final remarks in Section 5.5.

5.2 Nearest neighbours and cluster analysis

Let X be a p-variate random vector with density function f and support S. The α-

nearest neighbours median at x ∈ Rp is gα(x) = (m1, . . . ,mp)T, where mj is the median

of the marginal distribution Yj and Y = X | X ∈ Bx is the distribution of X conditioned

on X ∈ Bx, with Bx being a ball around x such that P (X ∈ Bx) = α. Several definitions

of the multivariate median can be found in the literature. We use the coordinate-wise

median for computational reasons.

Definition 5.1. A fixpoint of gα is any x ∈ S such that gα(x) = x.

If x is a fixpoint, the local median of f at x is x. If not, the local median has the
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property of moving towards the peaks and away from the valleys of f because it is located

at the denser region of Bx. We can iterate the process by calculating the local median

at the local median of x, and so on. In effect, suppose that we iterate

xk+1 = gα(xk),

for any starting value x0 ∈ Rp, the sequence {xk} will converge to a fixpoint of gα. This

process returns a partition of Rp based on where the sequences of local medians have

converged (fixpoints).

Based on these results we suggest an algorithm for clustering.

Let x1, . . . , xn be a sample from the random vector X. Let m = [αn] be the number

of neighbours, given α. For each element of the sample, the algorithm iterates as

xi
k+1 = ĝα(xi

k),

starting at xi
0 = xi, and where ĝα(xi

k) = (m̂1, . . . , m̂p)T is the m-nearest neighbour

median at xi
k, where m̂j is the median of the jth component of x(1), . . . , x(m), the m

observations from the sample that minimize the euclidean distances ‖xi
k−xl‖, l = 1 . . . n.

The algorithm stops when xi
k+1 = xi

k for i = 1, . . . , n. This phase of the algorithm

finalizes with a division of the sample into as many clusters as fixpoints.

A representation of the local medians when X is distributed as a univariate mixture

of three normal populations with means µ1 = −4, µ2 = 0 and µ3 = 4 and variances

equal to 1 is found in Table 5.1. In Figure 5.1(a) we illustrate the density function f

and the local median function gα of f for α = 1
3 . In Figure 5.1(b) we represent the

estimated ĝα evaluated at a random sample of size 100 drawn from X. The black line

corresponds to gα(x) = x, therefore every x in this line is a fixpoint. The function

gα has five fixpoints, three of them (attractors) correspond to the three modes. Since

the populations are symmetric around the mode, the fixpoints coincide with the modes

(x∗1 = µ1, x∗2 = µ2 and x∗3 = µ3). The other two fixpoints correspond to the two valleys of

the distribution (these fixpoints attract no x’s and thus they are not of interest because

they do not reveal any population). Observe that all points in (−∞, v1) converge to µ1,

the points in (v1, v2) converge to µ2 and the ones in (v2,∞) converge to µ3, where v1

and v2 are the two valleys. In effect, if you try to delineate the sequence of local medians

for a given x, you can see that they terminate in one of the three modes (proven in

Theorem 5.3). In fact, the points in the extremes have already converged after the first

iteration (gα((−∞, µ1)) = µ1 and gα((µ3,∞)) = µ3).

In practice, α is a parameter to be chosen by the user when invoking the algorithm,

and consequently it is the user’s choice to decide which α is appropriate for his purposes.
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Figure 5.1: Function gα, ĝα and density function f for a mixture of three normal distri-

butions with means µ1 = −4, µ2 = 0 and µ3 = 4.

If, for example, there exists prior information about the size of the clusters expected to

be found in the sample, α should be set accordingly. In theory, choosing α sufficiently

small guarantees the identification of all clusters represented by a mode, see Theorem 5.8

for univariate samples. However, due to finite samples, small values of α could result on

sequences of local medians stoping before reaching a fixpoint. In effect, it can happen

that even when x is not a fixpoint, the same number of neighbours is found in each side

of (each component of) x. The presence of these spurious fixpoints is more likely to

occur when m is small. On the other hand, if α is too large, not all fixpoints will be

detected, and consequently not all the populations that generate the sample are identified.

Consequently, the choice of α is a tradeoff. Being aware of that, we recommend small

values of α and introduce a second phase for the algorithm to get rid of the spurious

fixpoints that attract very little observations and are a consequence of the sampling

inaccuracies. In this phase, all fixpoints attracting less than [α3 n] are eliminated, and the

observations converging to them are assigned to the closest fixpoint. In addition to that,

we consider a last step where we merge two clusters if their means are close enough in

terms of the Mahalanobis distance. The algorithm is described in the next section.

5.2.1 The ATTRACTORS algorithm

Let x1, . . . , xn be a sample drawn from X. The following steps constitute the attrac-

tors algorithm.

82



1. Choose α, the proportion of neighbours. Let m = [αn] be the number of neighbours.

2. Repeat the following for each observation xi, i = 1 . . . n.

(a) Let xi
0 = xi and k = 0.

i. Calculate the local median at xi
k, xi

k+1 = ĝα(xi
k).

ii. If xi
k 6= xi

k+1 set k = k + 1 and return to i. Otherwise φ(xi) = xi
k is the

fixpoint where the sequence {xi
k} converges.

3. Let x∗1, . . . , x
∗
g be the elements of

⋃n
i=1{φ(xi)}. For each t = 1 . . . g, define the group

Gt = {xi | φ(xi) = x∗t } as the set of observations attracted by the fixpoint x∗t .

4. Discard from being a fixpoint any x∗j such that |Gj | < Glow, where Glow = [α3 n]

and j = 1 . . . g. Update g, the number of fixpoints. Reassign the elements of Gj to

the cluster Gt, where t is such that the Mahalanobis distance MD(x̄Gj , x̄Gt , SGt) is

minimum, for t = 1 . . . g. Substitute x∗t for the weighted mean of x∗j and x∗t .

5. Sort out the groups by descending number of observations and repeat the following

for all j = 1 . . . g − 1.

(a) For t = j + 1 . . . g, merge the groups Gj and Gt if the Mahalanobis distance

MD(x̄Gj , x̄Gt , SGj ) < χ2
0.9. Update x∗j on the weighted mean of x∗j and x∗t .

5.2.2 Improvement of the computational efficiency

The algorithm chooses the neighbours and calculates the local median several times for

each observation until it converges. If n is large, the process can be time consuming. We

propose a modified version of the algorithm where we only consider the convergence of

a subset of the n observations. The treated observations are chosen randomly. The key

problem is to decide the number of observations to be treated, nsub. Let x∗ be a fixpoint

attracting a proportion p > 0 of the points. Thus, the probability of an observation of

the sample to converge to x∗ is p. Moreover, (1 − p)n is the probability of finding n

consecutive observations not converging to the fixpoint. If n tends to ∞, (1− p)n tends

to 0, and there exist N such that for any n > N the probability (1 − p)n is very small.

Therefore, if after treating N consecutive observations none of them have converged to

x∗, we assume x∗ does not exist. We set prob = (1 − p)N to be very small and thus

N = log(prob)/ log(1 − p), where p is chosen to be the maximum size for a fixpoint

to be considered fixpoint, in the sense that we do not mind not to detect fixpoints

attracting less than a proportion p of points. The procedure starts treating observations
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and marking to which fixpoint they converge using a counter to keep track of the number

of observations treated. Every time an observation converges to a fixpoint none of the

previous observations have converged (a new fixpoint appears), we set the counter to

zero. If we find N consecutive observations converging to “old” fixpoints, that is, if the

counter reaches the value N , we stop. Each non-treated observation will be assigned to

the cluster defined by the closest fixpoint.

Depending on the values of p, prob and the sample size n, we may encounter nsub

being larger than n. In this case, all observations of the sample are treated and we

experience no improvement of the efficiency. Nevertheless, this will happen for small

sample sizes which does not cause the algorithm to be inefficient. Instead, if n is large,

n − nsub will also be large and the efficiency will improve significantly since only nsub

observations are treated, as opposed to n.

Fast-ATTRACTORS algorithm

Let x1, . . . , xn be a sample drawn from X. The following steps constitute the fast version

of the attractors algorithm.

1. Choose α, the proportion of neighbours. Set prob to a small value and choose p

to be the maximum size for a cluster. Set N = log(prob)/ log(1 − p), m = [αn]

to be the number of neighbours, counter = 0 and i = 1. Order the n observations

randomly.

2. While counter < N and i ≤ n repeat the following:

(a) Let xi
0 = xi and k = 0.

i. Calculate the local median at xi
k, xi

k+1 = ĝα(xi
k).

ii. If xi
k 6= xi

k+1 set k = k + 1 and return to i. Otherwise φ(xi) = xi
k is the

fixpoint where the sequence {xi
k} converges.

iii. If φ(xi) ∈ Φ then counter = counter + 1. Otherwise set counter = 0 and

Φ = Φ
⋃{φ(xi)}. Set i = i + 1.

3. Set nsub = i − 1 and let x∗1, . . . , x
∗
g be the elements of Φ. For each j = 1 . . . g,

define the group Gj = {xi | φ(xi) = x∗j} as the set of observations attracted by the

fixpoint x∗j , where i = 1 . . . nsub.

4. For each i = nsub + 1 . . . n, assign xi to the cluster Gj , where j is such that the

euclidean distance ‖xi − x̄Gj‖ is minimized, for j = 1 . . . g.
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5. Apply steps 4 and 5 of the previous version of the algorithm in Section 5.2.1.

The values p and prob can be changed using prior information if is available.

5.3 Examples and simulation results
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(a) 1st iteration: 27 different local medians.
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(b) 2nd iteration: 6 different local medians.
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(c) 3rd iteration: 4 fixpoints.

Figure 5.2: Ruspini data and the local medians (triangles) after each iteration when

invoking the attractors algorithm with α = 0.2.

We start by illustrating the behaviour of the algorithm on some well-known examples

from the literature such as those of Ruspini (1970) and Fisher (1936). The Ruspini data

set is a two-dimensional example consisting of 75 observations divided into four well-

separated clusters. In Figure 5.2 we represent the observations and the sequences of local
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medians when the algorithm is invoked with α = 0.2. We start calculating the local

median at each observation of the sample. In Figure 5.2(a) we plot with the same colour

the observations that share local median, and represent the local median with the triangle

sign of the same colour. We obtain 27 different local medians after this first iteration.

We calculate now the local medians at the 27 points and obtain six new different local

medians, which are plotted in Figure 5.2(b). After three iterations all sequences have

already converged to four different fixpoints, as shows Figure 5.2(c). The four groups

have been found correctly and in this case steps 4 and 5 of the algorithm were not needed.
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(b) Attractors algorithm.
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(c) mclust algorithm.

Figure 5.3: Iris data set on the two-dimensional space of the variables sepal-width and

petal-length and results for the mclust and attractors algorithm (α = 0.3).

The Iris dataset described in Fisher (1936) consists in 50 flowers from each of the

species Iris setosa, Iris versicolor and Iris virginica. The four variables are the length
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and the width of the sepal and petal respectively. One specie is linearly separable from the

other two, while the latter tend to overlap and are hard to distinguish. Figure 5.3(a) shows

the dataset in the two-dimensional space of the sepal-width and the petal-length variables.

The results obtained with the algorithm mclust are shown in Figure 5.3(c). mclust

assumes that the sample comes from a mixture of elliptical populations and estimates

the parameters for several options on the number of clusters, selecting the one that

optimizes the bic criteria. This approach is called model-based clustering. The algorithm

does not perform well with the iris dataset and confuses two of the clusters giving as a

result two clusters with 50 and 100 observations each, instead of three. When using the

attractors algorithm instead, the observations are clustered as shown in Figure 5.3(b),

where 12 observations of the two overlapped groups were classified incorrectly.

In order to asses the performance of the fast-attractors algorithm, we use the

simulated data set shown in Figure 5.4. The clusters are reasonably separated but four

of them have unusual shapes. The attractors algorithm is able to identify the five

different clusters with no classification error, as it is also achieved in Wang et al. (2007).

Fast-attractors algorithm returns a proportion of misclassified observations equal to

0.014, which is a total of 14 observations wrongly classified (see Figure 5.4). However,

the algorithm treats only nsub = 160 observations, more than 6 times less than treating

the whole sample of n = 1000 observations, and which reduces the computational time

significantly. The values chosen for the algorithm were p = 0.1 and prob = 0.001, and

thus N = 66, the number of consecutive observations with non new fixpoints that needed

to appear as a condition to stop.
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Figure 5.4: Partition of the data set using the fast-attractors algorithm with α = 0.1.
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We also study the properties of the algorithm through a computational experiment on

randomly generated samples. We start generating samples from mixtures of g multivari-

ate normal populations with distinct scatter matrices, as stated previously in Chapter 2.

The results can be seen in Table 5.1. The measure to assess the performance of the algo-

rithms is the proportion of misclassified observations. Attractors is invoked with α = 0.05

to assure all clusters are detected for the different values of g. mclust is designed to

estimate mixtures of elliptical populations and therefore performs very well in this sit-

uation, but nevertheless the results for the attractors algorithm are comparable to

those of mclust, performing as good except for the case of fifteen dimensions and two

groups, where two out of every ten observations are misclassified.

Table 5.1: Proportion of misclassified observations for the algorithms attractors (α =

0.05), mclust and kurtosis under a mixture of g normal distributions.

p g Attractors Kurtosis Mclust

4 2 0.003 0.080 0.014

4 0.011 0.091 0.041

8 0.023 0.111 0.027

8 2 0.040 0.146 0.011

4 0.013 0.115 0.037

8 0.024 0.082 0.061

15 2 0.224 0.299 0.003

4 0.099 0.332 0.024

8 0.031 0.084 0.057

Average 0.052 0.149 0.031

If we consider mixtures of non-normal populations, where for example each cluster

follows marginal univariate t-students with two degrees of freedom so that the shape of

the clusters resembles a star, the results change substantially. mclust algorithm fails

clearly on detecting the clusters specially when the dimension is large, while attractors

behaves very well in all situations (see Table 5.2). mclust assumes the data comes

from a normal mixture and estimates the parameters of the components of the mixtures,

therefore is troubled when dealing with non-elliptical mixtures. Attractors is not a model-

based algorithm, it does not assume any model underneath the data, and consequently

does not depend strongly on the shape of the clusters. Table 5.3 shows the percentage of

times that the number of clusters that attractors and mclust return coincides with

g, for both sets of simulations, the mixture of normal distributions and the mixture of

non-normal distributions.

In addition to the results obtained, it is worth mentioning that mclust is computa-
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Table 5.2: Proportion of misclassified observations for the algorithms attractors (α =

0.05), mclust and Kurtosis under a mixture of g non-normal distributions (marginal

t-students).

p g Attractors Kurtosis Mclust

4 2 0.014 0.219 0.279

4 0.016 0.202 0.199

8 0.023 0.172 0.125

8 2 0.011 0.280 0.369

4 0.013 0.258 0.282

8 0.021 0.236 0.201

15 2 0.094 0.350 0.473

4 0.020 0.303 0.339

8 0.020 0.300 0.227

Average 0.026 0.258 0.277

Table 5.3: Percentage of times (%) that the number of clusters that attractors (α =

0.05) and mclust return coincides with g, for a mixture of normal distributions and a

mixture of non-normal distributions (marginal t-students).

Normals T-students

p g Attractors Mclust Attractors Mclust

4 2 96 96 95 0

4 85 77 87 0

8 47 62 61 2

8 2 82 96 96 0

4 77 66 81 1

8 39 29 51 0

15 2 30 99 69 2

4 40 64 83 1

8 28 32 51 0

Average 58.22 69 74.89 0.67

tionally more intensive than attractors, even when not using the fast version of the

algorithm.

5.4 Univariate nearest-neighbours median study

The results in this section only apply to the univariate case. The extension to the multi-

variate case has proved to be highly non-trivial and may require a significant amount of
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original work. Nonetheless, the general idea behind them is still valid for the multivariate

case.

Let X be a random variable with distribution function F and density function f with

convex support S.

The local median gα of f at x ∈ R is the median of the interval of weight α ∈ [0, 1],

centered at x:

F (gα(x))− F (x− dx) =
α

2
(5.1)

where dx is such that

F (x + dx)− F (x− dx) = α. (5.2)

Substituting (5.2) in (5.1), gα can also be written as

gα(x) = F−1

[
F (x + dx) + F (x− dx)

2

]

where dx satisfies (5.2).

Following Definition 5.1, if x is a fixpoint, the local median of f at x is x, the center

of the interval. In Theorem 5.2 we prove that any density with convex support has at

least one point with these properties.

For α = 1, the local median of f is just the median of the distribution f , for any

x ∈ R. The median, therefore, is the unique fixpoint of gα. We will not consider this

case because is not of interest for our purpose.

Theorem 5.2. Let f be a density with convex support S, for 0 < α < 1, the function gα

has at least one fixpoint.

Proof of Theorem 5.2. From (5.1) we have

F (gα(x)) =
α

2
+ F (x− dx) ≥ α

2

Similarly, from (5.1) and (5.2)

F (gα(x)) = F (x + dx)− α

2
≤ 1− α

2

Thus, gα is bounded by

F−1
(α

2

)
≤ gα(x) ≤ F−1

(
1− α

2

)
. (5.3)

Therefore,

gα(x) > x, for x < F−1
(α

2

)

and gα(x) < x, for x > F−1
(
1− α

2

)

90



Since F and F−1 are continuous, gα is continuous and therefore there exists an x∗ ∈
(F−1(α

2 ), F−1(1− α
2 )) such that gα(x∗) = x∗.

The following theorem states that any x ∈ R will eventually converge to a fixpoint if

we substitute x by its local median gα(x), gα(x) again by its local median gα(gα(x)) and

so on, repeating the process until convergence.

Theorem 5.3. Let f be a density with convex support S. Suppose that we iterate

xk+1 = gα(xk),

then, for any starting value x0 ∈ R, and for 0 < α < 1, the sequence {xk} converges to

a fixpoint of gα. In particular, if x0 < gα(x0), {xk} converges to the smallest fixpoint

greater than x0. If x0 > gα(x0), {xk} converges to the greatest fixpoint smaller than x0.

Theorem 5.3 also gives results on where the sequence {xk} converges. If x0 is located

at a part of f with positive slope, {xk} converges to the first fixpoint on the right of x0,

and viceversa, which implies that the sequence escalates the density function towards the

local mode.

Proof of Theorem 5.3. In order to prove that gα is non-decreasing we want to show that

gα(x) ≥ gα(y) if x > y. Due to the monotonicity of F−1, it is sufficient to prove that

F (x + dx) ≥ F (y + dy) and F (x − dx) ≥ F (y − dy). Again, due to the monotonicity of

F , it is enough to show

x + dx ≥ y + dy

x− dx ≥ y − dy.
(5.4)

Let us suppose the contrary, x + dx < y + dy, then dx < dy and so x − dx < y − dy.

Therefore

α = F (x + dx)− F (x− dx) < F (y + dy)− F (y − dy) = α, (5.5)

which is a contradiction. The proof for the second part of (5.4) is analogous. The

inequality in (5.5) is strict because it can only be equal if both F (x + dx) = F (y + dy)

and F (x− dx) = F (y − dy), which can happen if the four points are not in S, and that

is only possible for the excluded case α = 1.

Consider first x0 < gα(x0) = x1, then, since gα is non-decreasing, gα(x0) ≤ gα(x1).

Thus,

x0 < gα(x0) = x1 ≤ gα(x1) = x2 ≤ . . . ≤ gα(xk−1) = xk ≤ . . .
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since the sequence {xk} is non-decreasing and bounded (see (5.3)), there exists x∗ such

that limk→∞ xk = x∗. Moreover, x∗ is a fixpoint:

x∗ = lim
k→∞

xk+1 = lim
k→∞

gα(xk) = gα( lim
k→∞

xk) = gα(x∗)

Also, for x ∈ (xk, xk+1), gα(x) ≥ gα(xk) = xk+1 > x, which means that there are no

fixpoints in (xk, xk+1). Therefore the fixpoint x∗ is the smallest fixpoint greater than x0.

Analogously, if x0 > gα(x0), {xk} converges to the greatest fixpoint smaller than x0.

If x0 = gα(x0), x0 is already a fixpoint.

The next theorem claims that, if the distribution is unimodal, the corresponding local

median function gα has only one fixpoint, regardless the value of α.

Theorem 5.4. Let f with convex support S be a strictly unimodal density, then, for

0 < α < 1, the function gα of f has a unique fixpoint.

Proof of Theorem 5.4. In Theorem 5.2 we proved the existence of at least one fixpoint,

for any f . In this proof we deal with its uniqueness for f unimodal.

Suppose there exist two fixpoints x1, x2 ∈ R such that x1 < x2. Assume that, without

loss of generality, f(x1) < f(x2). Otherwise consider the random variable Y = −X with

density function fY (x) = f(−x) instead.

Let d1 and d2 be such that F (x1 + d1)−F (x1) = F (x1)−F (x1− d1) = F (x2 + d2)−
F (x2) = F (x2)− F (x2 − d2) = α

2 .

Note that x1 + d1 < x2 + d2, otherwise (x2, x2 + d2) ⊂ (x1, x1 + d1) and, since the

integrals of f(x) on these intervals are α
2 , it is a contradiction because S is a convex

support.

When f is a unimodal density

f(x) > min{f(a), f(b)}, for any a < x < b. (5.6)

The following results hold too,

f(x) < f(x1), for any x < x1 (5.7)

f(x) > f(x1), for any x ∈ (x1, x2) (5.8)

the expression (5.8) is due to (5.6).

Observe that

f(x1 + d1) < f(x1). (5.9)
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Indeed, since

α/2 =
∫ x1

x1−d1

f(x)dx < d1f(x1),

because of (5.7), and

α/2 =
∫ x1+d1

x1

f(x)dx > d1 min{f(x1), f(x1 + d1)},

using (5.6), and we obtain that min{f(x1), f(x1 + d1)} < f(x1) which leads to (5.9).

This result implies that x2 < x1 +d1, otherwise x1 < x1 +d1 < x2, and we know that

f(x2) > f(x1) > f(x1 + d1), which contradicts (5.6).

Therefore, we established the following order

x1 < x2 < x1 + d1 < x2 + d2.

We will see now that d1 > d2. In effect,

α/2 =
∫ x1

x1−d1

f(x)dx =
∫ x2

x2−d2

f(x)dx,

and the values of f(x) in the second integral are larger than in the first, because the

expressions (5.7) and (5.8) hold, so the interval of integration should be shorter. Thus,

the interval (x+
1 , x+

2 ), where x+
1 = x1 + d1 and x+

2 = x2 + d2, is shorter than (x1, x2)

because x+
2 − x+

1 = (x2 − x1)− (d1 − d2) < x2 − x1.

Finally,

F (x2)− F (x1) > (x2 − x1)f(x1) > (x+
2 − x+

1 )f(x1)

> (x+
2 − x+

1 ) max
x∈(x+

1 ,x+
2 )

f(x) > F (x+
2 )− F (x+

1 ).

The first inequality is due to (5.8), the second due to d1 > d2, and the third inequality

is because f(x1) > max
x∈(x+

1 ,x+
2 )

f(x), which is true since (5.9) and the fact that f is strictly

decreasing after x+
1 because the mode of f is in (x1, x

+
1 ).

This result leads to a contradiction because F (x2)−F (x1) = F (x+
1 )−F (x1)−(F (x+

1 )−
F (x2)) = α/2− (F (x+

1 )−F (x2)) = F (x+
2 )−F (x2)− (F (x+

1 )−F (x2)) = F (x+
2 )−F (x+

1 ),

therefore x1 = x2 and we have shown that it is not possible to have two distinct fixpoints

x1 and x2. Therefore, for any unimodal distribution, the function gα has one and only

one fixpoint (the existence was already proved in Theorem 5.2).

The following Corollaries refer to where the fixpoint is located. In particular, the

smaller α the closer the fixpoint to the mode.
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Corollary 5.5. Let xm be the mode of f , then |F (x∗) − F (xm)| ≤ α
2 , where x∗ is the

fixpoint.

Proof of Corollary 5.5. Since x∗ is a fixpoint, dx∗ is such that

F (x∗ + dx∗)− F (x∗) = F (x∗)− F (x∗ − dx∗) =
α

2
(5.10)

Then, xm must be in (x∗ − dx∗ , x
∗ + dx∗), otherwise the density is strictly monotonous

and the two integrals in (5.10) can not be equal.

Therefore, |F (x∗)− F (xm)| ≤ α
2 .

Corollary 5.6. If α → 0 then x∗ → xm.

Proof of Corollary 5.6. From the previous proof,

|x∗α − xm| < dx∗ = F
(
x∗α +

α

2

)
− F (x∗α) .

Since F is continuous, dx∗ → 0 as α → 0. Therefore |x∗α − xm| → 0 as well.

In the following theorem we show that, for small enough values of α, there exist a

unique fixpoint in the neighbourhood of a mode of a distribution f .

Definition 5.7. xm is a (δ1, δ2)-mode if it is a mode and f is strictly unimodal in the

interval
[
F−1(ym − δ1), F−1(ym + δ2)

]
, where ym = F (xm) and δ1, δ2 > 0.

Theorem 5.8. Let xm be a (δ1, δ2)-mode, then, for any α ≤ min(δ1, δ2), there exists

a fixpoint x∗ ∈ (
F−1(ym − α

2 ), F−1(ym + α
2 )

)
and it is the only fixpoint in the interval[

F−1(ym − δ1 + α
2 ), F−1(ym + δ2 − α

2 )
]
.

Proof of Theorem 5.8. In order to prove the existence of a fixpoint in the interval
(
F−1(ym−

α
2 ), F−1(ym + α

2 )
)
, we define

δ−x = x− F−1
(
F (x)− α

2

)

δ+
x = F−1

(
F (x) +

α

2

)
− x

which implies that F (x + δ+
x ) − F (x) = F (x) − F (x − δ−x ) = α

2 . If x is a fixpoint, then

δ−x = δ+
x .

Let xl = F−1(ym − α
2 ) be on the left of the mode, then δ−xl

> δ+
xl

because f increases

in
(
F−1(ym − δ1), xm

)
. Let also xr = F−1(ym + α

2 ), on the right of the mode, then
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δ−xr
< δ+

xr
because f decreases in

(
xm, F−1(ym + δ2)

)
. Note that δ−xl

and δ+
xr

are con-

tained in
[
F−1(ym − δ1), F−1(ym + δ2)

]
, so that proper monotonicity is in place. There-

fore, since δ+
x − δ−x is a continuous function of x, because F and F−1 are continuous

in
[
F−1(ym − α

2 ), F−1(ym + α
2 )

]
, there exist an x∗ ∈ (

F−1(ym − α
2 ), F−1(ym + α

2 )
)

such

that δ+
x∗ = δ−x∗ , which implies that x∗ is a fixpoint.

Regarding the uniqueness of the fixpoint in
[
F−1(ym−δ1 + α

2 ), F−1(ym +δ2− α
2 )

]
, we

refer to the proof of Theorem 5.4. However, we should mention a number of things

that changed now. Since we are proving the uniqueness of the fixpoint on a finite

interval, we start assuming that x1 and x2 are two different fixpoints in the interval[
F−1(ym − δ1 + α

2 ), F−1(ym + δ2 − α
2 )

]
. Also, inequalities in (5.6) and (5.7) should be re-

stricted to the interval of interest, so that f(x) > min{f(a), f(b)}, for any F−1(ym−δ1) ≤
a < x < b ≤ F−1(ym + δ2), and f(x) < f(x1), for any x ∈ [

F−1(ym − δ1), x1

)
. The rest

of the proof is exactly the same. We can conclude now that the unique fixpoint in

[F−1(ym − δ1 + α
2 ), F−1(ym + δ2 − α

2 )] is located in
(
F−1(ym − α

2 ), F−1(ym + α
2 )

)
.

Corollary 5.9. Following Theorems 5.3 and 5.8, for any starting value x0 ∈
[
F−1(ym−

δ1 + α
2 ), F−1(ym + δ2 − α

2 )
]
, the sequence {xk} converges to x∗.

Theorem 5.8 is the main result of the chapter. It states that, if f is strictly unimodal

in an interval of weight δ1+δ2, for any α ≤ min(δ1, δ2) the identification of the population

that induces the mode is guaranteed. Any x0 ∈
[
F−1(ym − δ1 + α

2 ), F−1(ym + δ2 − α
2 )

]

will be attracted by a fixpoint x∗, which points out the existence of a mode in its

proximity. Therefore, any population in f characterized by a (δi, δj)-mode such that

α ≤ min(δi, δj) will be revealed. Theorem 5.8, thus, provides tools to use the algorithm.

It is worth mentioning that the restriction α ≤ min(δ1, δ2) in Theorem 5.8 is a suffi-

cient condition but not always necessary. In practice, good performance can be achieved

with values of α significantly exceeding the bound. As a matter of fact, the weight of

each component of the mixture in Figure 5.1 is 1/3 and, since the three densities are sym-

metric, the corresponding δ1 and δ2 are all equal to 1/6. The restriction α ≤ min(δ1, δ2)

does not hold since α = 2δ1, but the three fixpoints representing the three populations

were still identified.

5.4.1 Examples of some univariate distributions

In the following be give some results on the location and domain of attraction of the

fixpoints for some particular choices of the distribution f .
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• If X follows a uniform distribution in the interval [a, b], all points in the interval[
F−1

(
α
2

)
, F−1

(
1− α

2

)]
are fixpoints. Moreover, any {xk} starting at x0 < F−1

(
α
2

)

or x0 > F−1
(
1− α

2

)
converge to F−1

(
α
2

)
and F−1

(
1− α

2

)
respectively.

• If X follows a normal distribution with parameters µ and σ, x∗ = µ is the unique

fixpoint and attracts any x0 ∈ S.

• If X follows an exponential distribution with density function f(x) = λe−λx, x∗ =

F−1
(

α
2

)
= − 1

λ ln(1− α
2 ) is the unique fixpoint of gα of f since gα(x) = F−1

(
α
2

)
for

x ≤ F−1(α)
2 and f is strictly unimodal. Therefore, for any starting value x0 ∈ S,

the sequence {xk} converges to x∗.

5.5 Discussion

Further research will be focused on extending to the multivariate case the theoretical

results we have proved for the univariate case. The proof of the results for the multivariate

case is highly non-trivial and may require a significant amount of original work, although

we do believe they hold.

96



Conclusions and further research

In this final chapter we review the results of this thesis and mention possible future

directions of research.

In Chapter 2 we identify a subset of the eigenvectors of a kurtosis matrix as a subspace

with optimal properties for clustering in the sense that it coincides with Fisher’s linear

discriminant subspace, which maximizes the standardized distance between the cluster

centers. We also provide an explicit formula for the kurtosis matrix under a mixture of el-

liptical distributions. The eigenvectors are identified by looking for the eigenvalues whose

values are different from the value p + 2, and thus we are able to identify the subspace

without knowing the cluster centers in advance. We also prove that the eigenvectors of

the sample kurtosis matrix are consistent estimators of this subspace. The method is

easy to implement and computationally efficient, providing specially favourable results

when the ratio n/p is large. This matrix, therefore, provides a way of reducing the dimen-

sion of the space of the data in order to perform cluster analysis in a subspace of lower

dimension. Future research will be focused on modifying the kurtosis matrix to improve

the performance of the eigenvectors, specially when the scatter matrices are different, a

case that has not been addressed yet in the literature.

Following the discussion in Chapter 2, in Chapter 3 we present alternative kurtosis

matrices based on local modifications of the data, with the intention of improving the

performance of the eigenvectors of the kurtosis matrix studied in Chapter 2. By sub-

stituting each observation of the sample for the mean of its neighbours, the covariance

matrices of the components of a mixture of distributions will shrink, giving a more pre-

dominant role to the variability between clusters in the decomposition of the kurtosis

matrix. Specifically, we prove that the separation properties of the eigenvectors of the

new kurtosis matrix are improved, in the sense that the proposed modification of the

observations produces standardized means that are further from each other than those

of the original observations, and thus the clusters will appear more separated.
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We also propose in Chapter 4 a procedure to identify non-linearly shaped clusters

in a low dimensional space by projecting the sample onto straight lines. A trimmed

projection is computed, such that only a subset of observations are projected onto it, the

ones closest to the line. This idea allows the identification of clusters that would overlap

if we projected the whole sample. Further research will be conducted to reevaluate the

rules used to perform group assignments in the algorithm. At the present, the algorithm

partitions the sample into too many clusters and a merging strategy needs to be applied

after the gaps algorithm. The required strategy should be able to merge efficiently

non-linear clusters.

We present in Chapter 5 a new non-parametric cluster algorithm based on local

medians. Each observation is substituted by its local median and this new observation

moves towards the peaks and away from the valleys of the distribution. The process is

repeated until each observation converges to a fixpoint. We obtain a partition of the

sample based on where the sequences of local medians have converged. The algorithm

determines the number of clusters and the partition of the observations given a value of

α, the proportion of neighbours. A fast version of the algorithm, where only a subset of

observations from the sample are treated, is also given. Furthermore, and for a univariate

random variable, we prove the convergence of each point to the closest fixpoint, and the

existence and uniqueness of a fixpoint on the neighbourhood of each mode. In the future,

we will focus on extending to the multivariate case the theoretical results we have proved

for the univariate case. The proof of the results for the multivariate case is highly non-

trivial and may require a significant amount of original work.
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