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Piecewise Linear Representation Segmentation
as a Multiobjective Optimization Problem

José Luis Guerrero, Antonio Berlanga, Jesús Garcı́a, and José Manuel Molina

Abstract Actual time series exhibit huge amounts of data which require an unaf-
fordable computational load to be processed, leading to approximate representa-
tions to aid these processes. Segmentation processes deal with this issue dividing
time series into a certain number of segments and approximating those segments
with a basic function. Among the most extended segmentation approaches, piece-
wise linear representation is highlighted due to its simplicity. This work presents
an approach based on the formalization of the segmentation process as a multiobje-
tive optimization problem and the resolution of that problem with an evolutionary
algorithm

1 Introduction

Time series (sequences of data having, among other components, a timestamp for
each of their points) are of great importance for a wide variety of domains, such as
financial [1], medicine [13] of manufacturing applications [7]. In recent years, the
fast development of storage and collection technologies has lead to an increasing
role of time series in the industry. A clear example can be found in the tracking of
stock prices [8], being constantly updated in the different markets all over the world.

The required amount processing for these huge volumes of data is unaffordable,
and thus the need for an approximate representation emerges. Time series segmenta-
tion is a tool designed to deal with this issue, by means of dimensionality reduction.
A segmentation technique basically divides a certain time series into a number of
segments and approximates those segments with a basic function. According to the
different choices for this function, several segmentation techniques can be defined:
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Group of Applied Artificial Intelligence (GIAA), Computer Science Department.
University Carlos III of Madrid. Colmenarejo, Spain.
e-mail: {joseluis.guerrero, antonio.berlanga, jesus.garcia, josemanuel.molina}@uc3m.es

1
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Fourier Transforms [1], Wavelets [4], Symbolic Mappings [2], etc. Each of these
approaches has its own advantages and handicaps, and also, according to them, has
reached a determined level of use.

Among the different segmentation techniques, probably the most extended one
is Piecewise Linear Representation (PLR, also named Piecewise Linear Approxi-
mation, PLA), [11, 15]. This segmentation technique is highlighted by its ease of
use, since the basic function used to approximate the different segments is a lin-
ear function. Due to its wide usage, several processes have been designed regarding
the result of this segmentation technique, such as fast similarity search [10] or the
definition of data mining approaches [12].

Traditionally, the results of the different proposed segmentation techniques were
compared according to the final error obtained, regardless of the number of seg-
ments required to obtain that error. Recently, this fact has been pointed out [15] and
new approaches at least consider this number of segments as a quality metric over
the final results. Considering this from an optimization point of view, this means
that originally only one objective function was considered (the measured error), but
the introduction of the number of segments as an additional objective function has
turned this problem into a multi-objective optimization problem (MOOP) [6].

MOOPs are complex problems which require that a set of objective functions
(usually in conflict) are optimized (maximized or minimized) jointly. In the PLR
segmentation problem defined, the two objective functions are approximation error
and number of segments. These objectives are in conflict, since a greater number of
segments implies a finer approximation, and thus a lower error value. Both objec-
tive functions have to be minimized. Evolutionary algorithms (EAs) have obtained
remarkable results applied to MOOPs, being classified as Multi-objective Evolu-
tionary Algorithms (MOEAs) [5].

The objective of this work is to define the proper problem dependent items for
the application of a MOEA to the PLR segmentation issue, define the required con-
figuration for the algorithms and compare the obtained results with one of the tech-
niques specifically designed for this purpose: bottom up segmentation. The test set
used will be a set of trajectories coming from the Air Traffic Control domain.

The organization of the paper will introduce the segmentation techniques in gen-
eral and the bottom up technique used in the second section, followed by the re-
quired MOEA definition and configuration, performed in the third section. After the
definition of the two techniques, their results and comparison are presented, along
with the conclusions which these results point to.

2 Piecewise Linear Representation segmentation techniques

Segmentation techniques can be defined as the process which divides a given trajec-
tory into a series of segments and afterwards approximates each of these segments
with a given basic function. PLR segmentation techniques in particular, use a piece-
wise linear model as its basic function.
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Several classifications can be made over PLR segmentation techniques, being
probably the two most important ones their online or offline nature and the use of
linear interpolation or regression functions. Online segmentation techniques per-
form their time series division processing the data as it is received, being the sliding
window one of its most known examples [15]. Offline segmentation techniques, on
the other hand, require the trajectory to be complete prior to the application of the
technique, allowing them to use global information about its behavior. This char-
acteristic allows them, in general, to obtain better segmentation results, but it also
makes their complexity order higher, especially according to the trajectory size. The
most extended approaches are top down and bottom up techniques [11].

The use of linear interpolation or regression functions usually depends on the
need to obtain continuous piecewise lines. Linear interpolation uses a model de-
fined by the first and last point of the segment, so that contiguous segments will al-
ways have one point in common. This characteristic may be a requirement in some
domains. Linear regression, on the other hand, obtains the regression line consider-
ing all the different points belonging to the segment, obtaining, thus, discontinuous
piecewise lines. The overall error of the regression functions is always less than or
equal to the one obtained with linear interpolation [11], leading to its usual choice
as the approximation function (it must be mentioned, though, that the required com-
plexity for its calculation is also considerably higher). Both techniques can be ap-
plied along with any of the previously mentioned segmentation algorithms.

The traditional criteria to determine the quality of a segmentation process [11, 15]
are the following:

1. Minimizing the overall representation error (total error)
2. Minimizing the number of segments such that the representation error is less than

a certain value (max segment error)
3. Minimizing the number of segments such that the representation error is less than

a certain value (max segment error)

where total error and max segment error are user defined parameters for the algo-
rithm. The segmentation problem, seen as a multiobjective optimization problem,
can be defined with (1)

T = {xk}→ S(T ) = {Bm}→Bm = {xk} j ∈ [kmin...kmax]→
min
max fquality({Bm}) (1)

where T is the original trajectory, xk are the points belonging to it, S(T) is
the segmentation process, Bm is a given resultant segment from that process and
fquality({Bm}) are the quality metrics used. Particularizing this general formulation
to the criteria presented, the segmentation problem is defined in (2)
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S(T ) = {Bm}→ Bm = {xk} j ∈ [kmin...kmax]m ∈ [1...segnum]{
d(S(T ),T )≤ totalerror

∀m,d( fap(Bm),Bm)≤ max segment error

(2)

where d(x, y) is a distance error function between segments x and y, fap(x) is
the approximation function result over segment x (in PLR the resulting line which
approximates the data in segment x), and segnum is the number of segments obtained
by the applied segmentation algorithm.

Among offline algorithms, the bottom up technique is usually reported to produce
the best results [11], so this will be the chosen technique to compare its results
with the multi-objective approach presented. The heuristic applied by this technique
consists in an initial division of the trajectory into its finest possible set of segments,
followed by an iterative merge of these segments until no pair of segments can be
merged without obtaining a segment with an error above the max segment error
boundary. An overview of this process is shown in figure 1.

3 Multi Objective Evolutionary Algorithms configuration for the
PLR segmentation problem

Multi-objective evolutionary algorithms have reached an enormous expansion in
their use in the recent years, helped by their implementation in tools such as PISA
[3] or the general metaheuristics environment PARADISEO [14], which allow the
user to focus on his particular problem. This section will cover the problem depen-
dent issues which must be implemented under these tools in order to resolve the
PLR problem.

The PLR segmentation problem requires a codification which allows expressing
a variable number of segments (with values ranging from one to the series length)
represented by the position of their boundaries in the time series. According to these
boundaries the chosen codification was a vector of integer values (which represent
the number of a measurement in the time series) with a length of the number of mea-
surements in the time series, n, minus two. These values represent the intermediate

Fig. 1 Overview of the different operations in the bottom up segmentation algorithm
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Fig. 2 Overview of the different operations in the bottom up segmentation algorithm

segmentation points in the trajectory. This representation must be sorted, ignoring
repeated gene values.

The evaluation function is defined according to the codification presented and
the two objective functions required for the problem. The distance function used to
measure the error is the Euclidean Distance calculating the sum of squares over the
least squares regression line. To evaluate a given solution, the algorithm analyzes the
codification components sequentially, adding one to the number of segments and the
calculated Euclidean distance value to the error whenever it finds a different value,
until the maximum possible value is found (n) or the vector ends. This sequential
evaluation of the chromosome requires it to be sorted (in order to obtain the output
segments of the solution and be able to calculate the objective functions values).
This leads to the application of a sorting procedure after chromosome modifications.

The initialization function seeks to introduce the highest possible diversity into
the random initial population of the MOEA. According to the genotype, that was
approached by means of a random choice of an integer value for every gene. How-
ever, as shown in figure 3, this lead to a very poor diversity in the phenotype values
(especially regarding the number of segments) which lead to poor final results. To
resolve this issue, the following alternative initialization was designed: a certain
number of segments are randomly chosen, followed by the random choice of the
extreme values for those segments, duplicating the values where necessary to fill
the codification vector completely. The results obtained were better, but were highly
dependant on the initial boundaries values, leading to a final initialization function
which uses one or the other alternative randomly.

The crossover transformation function is a standard crossover with two split
points. The mutation function however, presented similar difficulties to the ones
introduced in the initialization. The initial choice was to mutate a certain number of
genes according to a gene mutation probability to a random integer value defined
by an epsilon percentage (referred to the trajectory length value). This mutation bi-
ased the evolution towards those solutions with the highest number of segments. A
complementary method was introduced: whenever a gene was chosen to mutate its
value, it could either change according to the random mutation exposed or change
its value to one of its surrounding genes. This mechanism was used to allow the
mutation operator to increase or decrease the number of segments in the mutated
chromosome. In practice, this approach obtained more disperse final Pareto fronts
than the random mutation, but the evolution was not satisfactory (the results ob-
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Fig. 3 Comparison of the objective function values obtained for an initial population of size 650
with the proposed initialization methods individually applied

tained were worse than those of the bottom up technique). The final implemented
mutation operation applies one or the other mechanism randomly to the whole chro-
mosome (instead of a random application to every individual gene).

Several MOEAs from the PARADISEO framework have been used to test the
proposed operations, (their individual results cannot be presented due to space re-
strictions), obtaining SPEA2 [16] the best results (probably due to its archive use).
This will be the chosen algorithm for the final results, with an archive size equal to
the time series length minus one (to be able to store, ideally, one solution for every
possible number of segments).

4 Experimental validation

The proposed MOEA configuration has been tested on an Air Traffic Control test
set similar to the one used in [9]. This test set includes the measurements recorded
by sensor devices of different trajectories performed by aircrafts (with an added
measuring error). Due to space restrictions, the results for only two of these trajec-
tories can be shown, being the chosen ones a racetrack (the trajectory performed by
aircrafts during landing procedures) and a turn trajectory, shown in figure 4

Along with the introduced codification vector, a different one with size n/2 was
also tested, in order to focus in solutions with a smaller number of segments. Ta-
ble 1 shows the configuration parameters and figure 5 the obtained results. For the
bottom up algorithm, the presented front was obtained by a trial process with dif-
ferent max segment error values, focusing in the search space zone corresponding
to a number of segments around 50% of the number of measurements in the time
series. The MOEA solution is composed of the non-dominated solutions obtained
both in the whole codification and the reduced one. This approach exhibits better
results than the bottom up alternative in the whole Pareto front.
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Fig. 4 Trajectories chosen for the application of the techniques exposed

Table 1 Parameter configuration for the MOEA algorithm

Parameter Value Parameter Value

initial population 3000 mutation epsilon 0.2
mut. probability: chrom. / gene 0.3 / 0.01 crossover probability 0.5
reduced codif. iterations 500 complete codif. iterations 1000

Fig. 5 Trajectories chosen for the application of the techniques exposed

5 Conclusions

Segmentation is a requirement to process the huge amount of data in actual time se-
ries. Among the variety of techniques which can be applied for this process, Piece-
wise Linear Representation is the most extended approach, probably due to its easy
implementation. The results presented in this work show that this process can be
faced with a Multi objective evolutionary algorithm obtaining better results than a
classical offline technique reported to be very accurate: bottom up segmentation.
Obviously, due to its computational complexity, these approaches cannot be used
as a general segmentation technique, but their results can be useful for the develop-
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ment of new heuristics or as a tool for quality assessment. Future lines include the
analysis of the results over a wider set of test problems, the comparison with curve
approximation algorithms and the optimization of the configuration (for example
with the inclusion of a global stopping criteria).
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