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Enhaned stability of tetrati phase due to lusteringYuri Martínez-Ratón∗Grupo Interdisiplinar de Sistemas Complejos (GISC), Departamento de Matemátias,Esuela Politénia Superior, Universidad Carlos III de Madrid,Avenida de la Universidad 30, 28911-Leganés, Madrid, SpainEnrique Velaso†Departamento de Físia Teória de la Materia Condensada and Instituto de Cienia de Materiales Niolás Cabrera,Universidad Autónoma de Madrid, E-28049 Madrid, Spain(Dated: September 24, 2008)We show that the relative stability of the nemati tetrati phase with respet to the usual uni-axial nemati phase an be greatly enhaned by lustering e�ets. Two�dimensional retangles ofaspet ratio κ interating via hard interations are onsidered, and the stability of the two nematiphases (uniaxial and tetrati) is examined using an extended saled�partile theory applied to apolydispersed �uid mixture of n speies. Here the i�th speies is assoiated with lusters of i ret-angles, with lusters de�ned as staks of retangles ontaining approximately parallel retangles,with frozen internal degrees of freedom. The theory assumes an exponential luster size distribu-tion (an assumption fully supported by Monte Carlo simulations and by a simple hemial�reationmodel), with �xed value of the seond moment. The orresponding area distribution presents ashoulder, and sometimes even a well-de�ned peak, at luster sizes approximately orrespondingto square shape (i.e. i ≃ κ), meaning that square lusters have a dominant ontribution to thefree energy of the hard�retangle �uid. The theory predits an enhaned region of stability of thetetrati phase with respet to the standard saled�partile theory, muh loser to simulation and toexperimental results, demonstrating the importane of lustering in this �uid.PACS numbers: 61.30.Cz, 61.30.Hn, 61.20.GyI. INTRODUCTIONThe hard retangle (HR) �uid onstitutes a paradig-mati example of a two-dimensional �uid exhibitingsurprisingly omplex phase behavior: di�erent phasesymmetries, phase transitions with di�erent order, anddefet�mediated ontinuous transitions of the Kosterlitz�Thouless type [1℄, all governed solely by entropy. Thispeuliar two�dimensional system has three equilibrium�uid phases: isotropi (I), where partile axes are ran-domly oriented, uniaxial nemati (Nu), with partilespreferentially aligned along a single nemati diretor, andtetrati nemati (Nt), possessing two equivalent perpen-diular nemati diretors, with long partile axes orientedalong one of two diretors with equal probability.In a pioneering study, Shlaken et al. [2℄ appliedsaled�partile theory (SPT) on a �uid of HRs to demon-strate the stability of the Nt phase, a phase whih annotbe stabilised in a �uid of hard ellipses. The intersetionbetween the two spinodals assoiated with the I-Nt andI-Nu transitions de�nes a limiting aspet ratio κ = L/σ0(with L and σ0 the length and width of the retangles,respetively) for the stability of the Nt phase, whih isloated at κ ≃ 2.62. Thus, for lower values of aspetratio, the isotropi �uid exhibits a ontinuous transitionto the Nt phase, whereas if κ > 2.62 the I phase goes
∗Eletroni address: yuri�math.u3m.es
†Eletroni address: enrique.velaso�uam.es

diretly to the uniaxial nemati phase Nu.The study of Shlaken et al. was later supplementedby the alulation of the omplete phase diagram [3℄, alsowithin the ontext of SPT. It was found, in partiular,that the Nt phase undergoes a transition to the Nu phaseat high density, the nature of whih hanges from seondto �rst order at a triritial point. In addition, it wasshown [3℄ that, at the level of a partiular approximationfor density�funtional theory, the Nt �uid is metastablewith respet to a phase with (either partial or omplete)spatial order; the theory was approximate in the sensethat it inluded the exat funtional form of two-bodyorrelations, but only approximate higher�order orrela-tions. On the other hand, Monte Carlo (MC) simula-tions onduted on hard squares [4℄ and on a HR system[5℄ with κ = 2 indiated, as expeted, that the �uid ex-hibits quasi�long�range tetrati order, and that the high�density phase onsists of an aperiodi rystalline tetratiphase exhibiting random tiling on a square lattie. MCsimulation of a HR �uid on�ned in a slit pore [6℄ showthe presene of weak tetrati orrelations at the entre ofthe pore.In the experimental front, reent results for olloidaldiss fored to stand on edge by external potentials [1℄(and hene interating approximately as HRs) have alsodemonstrated that tetrati orrelations play a vital rolein this system. Also, experiments onduted on a mono-layer of vibrated granular ylinders lying on a plate [7℄have shown tetrati orrelations for ylinders with aspetratio as high as κ = 12.6.In Ref. [8℄ strong evidene, based on MC simulations,
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2was presented for the thermodynami stability of a Nt�uid when κ is at least as large as 7. These simulationswere supplemented by an extended SPT model that ex-atly inorporates the seond and third virial oe�ientswhile resumming the remainder of the virial series. Theinlusion of the third virial oe�ient inreases the in-terval in κ where the Nt phase is stable, approahing thesimulation result. Spei�ally, the I-Nt transition linemoves to lower paking frations, while the intersetionpoint between the I-Nu and the I-Nt transitions shifts to
κ = 3.23. However, this value is still lower than the valueindiated by simulations.The properties of the HR �uid are to be ontrastedwith those of hard disoretangles. MC simulations ofthis system have been onduted [9℄, and the global phasediagram was omputed. A areful inspetion of partileon�gurations in the isotropi phase shows that there arepeuliar equilibrium textures, with large lusters ontain-ing partiles arranged side by side, exatly as in the HR�uid. These on�gurations are favoured by the partiularshape of the partiles and by the redued dimensional-ity. However, in ontrast with the HR �uid, neighbouringlusters do not exhibit strong tetrati orrelations and,therefore, the formation of a tetrati nemati phase isdisouraged in the hard disoretangle �uid.In this artile we address the problem of how thepresent theoretial understanding of the HR �uid anbe improved by onsideration of lustering e�ets. Ourthesis is that these e�ets, very apparent in our own MCsimulations but not addressed by the theories proposedup to now, are a key fator in the stabilisation of theNt phase. Inlusion of luster formation is responsiblefor the enhanement of the region of Nt stability in thephase diagram. In the model proposed, lustering is ap-proximately taken are of by treating lusters as distintspeies in a mixture of polydispersed retangles. Thefuntional form for the luster size distribution is as-sumed to be exponential, an assumption supported byluster statistial results based on MC simulations andby a simple hemial�reation model (see Appendix), andis introdued in the model as an input. The thermody-namis of the polydispersed mixture is analysed usingSPT. The results indiate that lustering (assimilated inthe theory by means of a polydispersity parameter) sta-bilises the Nt phase for values of aspet ratio muh higherthan κ = 2.62 if the polydispersity is su�iently high.Polydispersity parameters obtained from simulation givesupport to the model.The artile is organized as follows. In Setion IIwe present numerial evidene that the size distribu-tion in the HR �uid is an exponentially deaying fun-tion. Setion III presents the main ideas of the theo-retial model proposed. The onlusions are drawn inSetion IV. Finally, details on the model and on the pro-edure of solution are relegated to Appendies A and B,while Appendix C ontains a hemial�reation model formonomer aggregation whih also supports the assump-tion of an exponential luster size distribution.

FIG. 1: (Colour online). Con�guration of hard retanglesof aspet ratio κ = 7 at paking fration η = 0.655, as ob-tained from MC simulation. Clusters, de�ned by the pair on-netedness riterion explained in the text, have been olouredaording to their size.II. MONTE CARLO SIMULATION OFCLUSTERINGWe started by applying standard isobari (NPT) MCtehniques on a two�dimensional �uid of hard retangles,with aspet ratios κ = 3, 5 and 7, using N = 1400 ret-angles. The transition from the I phase to the Nt phasewas identi�ed approximately by inspetion of the tetratiorder parameter q2 = 〈cos 4φ〉, where φ is the angle be-tween the long axis of the partile and an axis �xed inspae. One the samples were equilibrated, luster statis-tis was applied. The riterion for pair onnetedness,i.e. for deiding when two neighbouring retangles anbe onsidered to be `bonded', was based on the relativeangle φ12 between the long axes of the partiles and theirrelative entre�of�mass distane r12, by demanding that
φ12 < δ and |r12| < ǫ. Typial values adopted were
δ = 10◦ and ǫ = 1.3σ0, although the onlusions to bepresented below do not seem to depend qualitatively onthe exat values (provided they are not too large).Fig. 1 presents a on�guration of retangles with κ = 7at a paking fration η = 0.655. This orresponds to atetrati phase. Identi�ed lusters have been oloured a-ording to their size. One an see how these lusters looklike large �super�retangles� arranged along two perpen-diular diretions. Therefore, the tetrati struture ismaintained not only for single retangles, but also atthe level of lusters (�polydispersed super�retangles�).This hierarhial feature of the tetrati symmetry willgive support to the theoretial model to be presented inthe following setion. In Fig. 2 a logarithmi histogramof the size distribution (averaged over on�gurations) isshown; in the �gure, xi is de�ned as the fration of lus-ters of size i (see next setion). The distribution looksexponential. All the urves in the �gure pertain to a
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FIG. 2: Size distribution funtion xi as obtained from MCsimulation, in logarithmi sale, for a �uid of HRs with di�er-ent values of aspet ratio and paking fration: �lled irles,
κ = 3 and η = 0.635; open squares, κ = 7 and η = 0.600; andgrey squares, κ = 5 and η = 0.657. Straight lines are linear�ts. Inset: area distribution funtion ixi for the ase κ = 5and η = 0.692.tetrati phase, but the same behaviour is observed alsoin the isotropi phase (with the general trend that, forgiven κ, the slope dereases, i.e. the size distributionfuntion beomes wider, hene the average luster size,as density inreases). In the size region orrespondingto square lusters (i.e. lusters with aggregation num-ber i ∼ κ) it is possible to see an inipient shoulder thatgrows as density is inreased. This feature is more appar-ent in the area distribution funtion, ixi (giving the fra-tion of area oupied by lusters of a given size), whihpresents a shoulder and sometimes even a well�de�nedpeak (inset of Fig. 2), indiating that square lusters arestruturally very relevant and ontribute very deisivelyto the thermodynami properties of the �uid.We end this setion by disussing the orientational dis-tribution funtions. Let hm(φ) be the monomer orien-tational distribution funtion, giving the probability of�nding a given retangle with its long axis forming anangle φ with respet to the diretor. Having de�ned lus-ters in the �uid, we may also de�ne an orientational dis-tribution funtion assoiated with lusters, hc(φ), givingthe probability of �nding an average luster (regardlessof its size) oriented with angle φ. In the simulations weompute hc(φ) by averaging over all the identi�ed lus-ters, and then over all MC on�gurations. Fig. 3 givesthe funtions hm(φ) and hc(φ) for a state with tetratisymmetry. It is interesting to note that these funtionsare almost idential (with the same symmetry and, on-sequently, with peaks with the same height), so thatthe struture of tetrati ordering is maintained from themonomer level to the luster level, the funtions hm(φ)and hc(φ) obeying a kind of �similarity� property. This
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FIG. 3: Monomer hm(φ) (solid line) and luster hc(φ)(dashed line) orientational distribution funtions for the ase
κ = 7 and η = 0.655, as obtained from MC simulation.property does not seem to be followed in the uniaxialnemati phase.III. THEORETICAL MODELThe model we propose aounts for lustering e�ets inan approximate way. The lear identi�ation of lustersin the simulations, along with their approximate ret-angular shape, leads to a simple model where lustersare regarded as single retangular partiles with no in-ternal degrees of freedom. Therefore, we onsider a n�omponent mixture of two-dimensional hard retanglesof dimensions L and σi, with σi = iσ0 and i the aggrega-tion number. Eah of these retangles is assumed to beomposed of i monomers in perfet ontat in a side-by-side on�guration. The total number of monomers, N0,an be written as

N0 =
n
∑

i=1

iNi, (1)where Ni is the number of lusters ontaining imonomers. Dividing by the volume V ,
ρ0 =

n
∑

i=1

iρi, (2)where ρ0 = N0/V is the total monomer density, and
ρi = Ni/V = xiρ is the density of lusters of size i, with
xi = Ni/N their number fration, while N =

∑

i Ni isthe total number of lusters and ρ = N/V their den-sity. The set {xi}, i = 1, · · · , n, is a entral quantity inour model, sine it ontains information about lusteringtendenies. We will assume xi to be an exponential with
i, as explained later. The total paking fration of the
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FIG. 4: (Colour online). Multiomponent isotropi mix-ture omposed of di�erent speies, where speies, depited indi�erent olours, orrespond to lusters of a partiular size.Clusters are de�ned as aggregates of retangular monomersin a side-by-side on�guration. In this instane the monomeraspet ratio is κ = 5.system is
η =

n
∑

i=1

ρiai, (3)where ai = ia0 (a0 = Lσ0) is the area of a luster of size
i. Using (2), we easily obtain η = ρ0a0.Fig. 4 shows a shemati representation of an isotropion�guration of lusters of di�erent sizes (with monomeraspet ratio κ = 5). The original monomers that give riseto eah luster are indiated but note that, in our model,the identity of the monomers is lost, as monomers in thesame luster do not interat dynamially, always beingin perfet side-by-side ontat.The free�energy of this multiomponent mixture ofhard retangles will be modelled by means of SPT ap-plied to a �uid mixture of freely�rotating hard retangles.The orientational properties of the mixtures will be har-aterised by orientational distribution funtions hi(φ) foreah omponent i. The free�energy density funtional
Φ = βF/V is written as
Φ[{hi}] = ρ

{

n
∑

i=1

xi

[

ln (xiVi) +

∫ π

0

dφhi(φ) ln[hi(φ)π]

]

− 1 + ln y + yS [{hi}]
}

, (4)where Vi is the thermal volume of i�sized lusters, and wede�ned y = ρa0/(1− η). Due to the head�tail symmetryof the partiles, the angle φ an be restrited to the inter-val [0, π] and the funtions hi(φ) normalised aordingly.

The funtion S [{hi}] =
∑

i,j xixjSij [{hi}], with
Sij [{hi}] =

1

2

(

κ + ijκ−1
)

〈〈| sin φij |〉〉

+
1

2
(i + j)〈〈| cos φij |〉〉, (5)is related to Aij , the angle�averaged exluded areabetween lusters i and j, as Sij = (Aij/a0 − i −

j)/2. The shorthand notation 〈〈f(φij)〉〉 has been usedfor the double angular average of a generi funtion:
〈〈f(φij)〉〉 =

∫ π

0
dφi

∫ π

0
dφjhi(φi)hj(φj)f(φij). Now a bi-furation analysis of (4) at the I-Nu,t transition (see Ap-pendix) allows us to obtain the paking frations of theI-Nu,t spinodal lines as

η∗ =

[

1 − 4

π
gk

(

κ

m
(1)
0

+
m

(2)
0

κm
(1)
0

+ 2(−1)k

)]−1

, (6)with k = 1 for the uniaxial and k = 2 for the tetrati ne-mati, while m
(α)
0 =

∑

i xii
α (α = 1, 2), are the �rst andseond moments of the luster size distribution funtion.Based on the MC results, we adopt an exponential lus-ter size distribution:

xi =
1 − q

1 − qn
qi−1, i = 1, · · · , n, (7)with q = e−λ (λ > 0). The prefator in (7) ensures thatthe distribution is normalised, i.e. that ∑i xi = 1. The�rst two moments an be derived analytially:

m
(1)
0 =

1 − [1 + n(1 − q)] qn

(1 − q)(1 − qn)
, (8)

m
(2)
0 =

1 + q −
[

q + (1 + n(1 − q))2
]

qn

(1 − q)2(1 − qn)
. (9)Now we use (6) to obtain the maximum aspet ratiowhih an support a stable tetrati phase. This followsby imposing the ondition η∗

0,t = η∗
0,u, i.e. by searhingfor the intersetion point of the two spinodal lines I�Nuand I�Nt in the phase diagram η − κ. Solving for theorresponding value of κ, we obtain

κ =
1

2

(

3m
(1)
0 ±

√

9
(

m
(1)
0

)2

− m
(2)
0

)

. (10)In the spei� ase where the number of speies goes toin�nity, n → ∞, we obtain from (8)-(10)
∆ = κ−1

[

1

2

(

2κ2 − 3κ− 1 ±
√

κ2 + 6κ + 1
)

]1/2

, (11)where ∆ =

√

m
(2)
0 /

(

m
(1)
0

)2

− 1 =
√

q, a measure ofpolydispersity, is the relative mean square deviation. Thetwo funtions ∆(κ), orresponding to the two signs in(11), are plotted in Fig. 5 (note that one of the branhes,
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FIG. 5: The funtions ∆(κ) in terms of inverse aspet ra-tio κ−1. Symbols indiate the nemati phase whih is stablein the region in question. The region of tetrati stability isshaded. Open squares indiate values of polydispersity, forvalues of aspet ratio κ = 3, 5 and 7, at the I�Nt transition,as obtained from MC simulation; error bars orrespond tounertainty in ∆ originating from unertainty in loation ofspinodal.the one with minus sign, an be only alulated for
κ ≥ κ∗ = (3 +

√
5)/2). The two lines de�ne a region(shaded in the �gure) where the tetrati phase may bestabilised. Thus we see how, as the value of polydisper-sity ∆ is inreased, the maximum value of κ for whihthe tetrati phase eases to exist inreases, whih meansthat polydispersity enhanes the formation of tetrati or-dering.Note that the values of ∆ at the upper boundary ofthe tetrati region are very high, whih means that thereshould be a large number of lusters with their long side

iσ0 ≫ L, while their width is L. This auses the e�etiveaverage luster aspet ratio iσ0/L to be very high, whihindues formation of uniaxial nemati order and thus theNt phase is destabilised in favour of the Nu phase. Thepresene of suh big lusters is not observed in the sim-ulations, whih means that a more sophistiated modelshould somehow inlude additional entropy terms thatdisourage the formation of big lusters; for the sake ofsimpliity, we have kept the ingredients of our model to aminimum and avoided any suh additional ompliations.Finally, in Fig. 5 values of polydispersity ∆ alulatedfrom the simulated luster size distribution funtion havebeen indiated by symbols. These values orrespond tothe estimated spinodal line of the I�Nt transition for theases κ = 3, 5 and 7. Sine these estimations are veryrough, the unertainty in paking fration at the spin-odals goes over to the value of polydispersity (whih nat-urally depends on κ and η), whih is represented in eahase by error bars. We an see that in two of the asesthe symbols are well inside the tetrati stability region

alulated from the theory. In the ase κ = 7, whereunertainty is larger, the MC estimate of ∆ lies outside(but lose to) this region.IV. CONCLUSIONSBeause of the redued dimensionality, �uids of two�dimensional hard anisotropi partiles exhibit stronglustering e�ets: partiles have less freedom to orient inspae, whih fosters on�gurations where neighbouringpartiles lie parallel to eah other. However, the impatof this on the onset of new marosopi symmetries de-pends very sensitively on the partiular geometry of thepartiles. Thus, in �uids of retangles, neighbour lus-ters have a strong tendeny to adopt orthogonal relativeon�gurations, sine these lusters are almost perfet bigretangles made of several, almost parallel, monomers.These strong tetrati orrelations are apable of generat-ing full marosopi tetrati order and a thermodynam-ially stable tetrati phase. Therefore, lustering e�etsare ruial to understand phase behaviour in the HR �uid(and possibly also in the HDR and related �uids), butsimple theories at the level of two�body monomer or-relations (Onsager, SPT, et.) annot aount for thesee�ets.In this work we have presented a simple theory thatinorporates lustering in terms of luster polydispersity,where lusters are onsidered to be inert partiles with nointernal degrees of freedom. This assumption may be a-urate provided the luster lifetime (i.e. the average timeit takes for a luster to disappear sine it was formed) islonger than the typial luster di�usion rates in the �uid.Validation of this ondition will have to wait for mole-ular dynamis simulations of the hard�retangle �uid.One the �uid is modelled in terms of a multiompo-nent mixture, one of the available theories for mesophaseformation an be used. We have used SPT and have ex-amined the onsequene of polydispersity in the phasediagram. As expeted, polydispersity enhanes the sta-bility of the tetrati phase. Due to the limitations of ourmodel (e.g. the luster size distribution has to be im-posed from outside and does not result from the theory),we annot make any quantitative omparison with avail-able simulation and experimental results. However, themodel an qualitatively explain the formation of tetratiorder for rather high values of aspet ratio, as shown bysimulation and experiment.AknowledgmentsY.M.-R. gratefully aknowledges �nanial supportfrom Ministerio de Eduaión y Cienia (Spain) undera Ramón y Cajal researh ontrat and the MOSAICOgrant. This work has been partly �naned by grantsNos. FIS2005-05243-C02-01 and FIS2007-65869-C03-01,also from Ministerio de Eduaión y Cienia, and S-



60505/ESP-0299 from Comunidad Autónoma de Madrid(Spain). V. APPENDIXIn this appendix we provide additional details and fur-ther information on the onsequenes of the model. Itontains two setions. In Setion A, details on the setof non�linear equations that have to be solved to obtainthe equilibrium properties of the HR �uid are provided.Also, the bifuration analysis of the I�Nu,t transitions ispresented. Setion B is devoted to disussing the natureof the di�erent phase transitions, together with the be-haviour of the distribution funtions and to a omparisonwith simulations. In Setion C, a simple hemial modelof aggregation is disussed.A. Minimisation of free energy and bifurationanalysisUsing Fourier series to represent the orientational dis-tribution funtions,
hi(φ) =

1

π

∑

k≥0

h
(i)
k cos(2kφ), (12)with h

(i)
0 = 1 ∀i, together with Eqn. (5), we �nd

Sij =
1

π

∑

k≥0

[

κ +
ij

κ
+ (−1)k(i + j)

]

gkh
(i)
k h

(j)
k , (13)where gk = −(1 + δk0)/2(4k2 − 1). De�ning

m
(α)
k =

∑

i

xii
αh

(i)
k , α = 0, 1, (14)we obtain

∑

ij

xixjSij =
κ

π

∑

k

gks2
k, sk = m

(0)
k + (−1)k m

(1)
k

κ
.(15)Note that m

(0)
0 =

∑

i xi = 1 while m
(1)
0 =

∑

i xii isthe �rst moment of the disrete luster size distributionfuntion {xi}. Using this notation, the free-energy perpartile ϕ = Φ/ρ0 an be written
ϕ = ln

(

y0

m
(1)
0

)

− 1 +

n
∑

i=1

xi

{

ln (xiVi)

+

∫ π

0

dφhi(φ) ln [hi(φ)π]

}

+
y0κ

πm
(1)
0

∑

k

gks2
k, (16)with y0 = η/(1 − η). The funtional minimization of(16) with respet to hi(φ) gives a set of self�onsistent

non-linear equations whih, after some algebrai manip-ulations, an be transformed into a set of equations forthe new variables sk:
sk = 2

n
∑

i=1

xi

[

1 +
(−1)k

κ
i

]

Q
(i)
k , (17)

Q
(i)
k =

∫ π

0

dφ cos(2kφ)hi(φ), (18)where the normalized orientational distribution funtionsare
hi(φ) =

e−Λi(φ)

∫ π

0

dφe−Λi(φ)

, (19)
Λi(φ) =

4y0κ

πm
(1)
0

∑

k≥1

sk

[

1 +
(−1)k

κ
i

]

gk cos(2kφ).(20)The linearization of (17) with respet to sk (k ≥ 1) allowus to obtain the expression (6) for the paking frationsat the I-Nu,t spinodal lines.B. Phase transitions and distribution funtionsIn this subsetion we analyse the free energy branhesof the model in order to understand the nature of thedi�erent phase transitions. The luster distribution fun-tion xi of the mixture is assumed to be exponential, andthe width of the distribution is �xed via the polydisper-sity parameter q (or ∆). Eqns. (17)�(20) are solvedfor di�erent values of η to �nd all metastable and sta-ble phases, either I, Nu or Nt phases. In Fig. 6 thefree-energy branhes as a funtion of η−1 for di�erentvalues of q (and hene for di�erent polydispersities) areshown. As an be seen, the Nt phase begins to be sta-ble from q ≈ 0.30. Also, it is lear that, for q = 0.25and 0.35, the I-Nu or Nt-Nu transitions are of �rst order(free�energy branhes ross with di�erent slopes). Theoexistene values of η annot be determined from thestandard double�tangent onstrution, sine the presentsystem is polydisperse. The usual proedure then is to�x the distribution funtion x
(0)
i and paking fration η(0)for the parent phase (I or Nu,t phases) and �nd the loudand shadow urves. We have not implemented this pro-edure here. However, for those values of q for whih thetransitions are ontinuous (i.e. q = 0.5 and 0.65), thepresent proedure adequately determines the transitiondensities. A similar situation ours for the ases κ = 5and κ = 7 (not shown).It is also interesting to look at the orientational dis-tribution funtions of monomers and lusters. From theorresponding funtions for lusters of size i, i.e. hi(φ),it is easy to de�ne a luster orientational distribution
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FIG. 6: Free energy per partile Φ/ρ vs. inverse pakingfration η−1 from SPT results for the multiomponent HR�uid of monomer aspet ratio κ = 3 and with di�erent val-ues of polydispersity: (a) q = 0.25, (b) 0.35, () 0.50 and(d) 0.65. Continuous urves: tetrati phase; dashed urves:uniaxial nemati phase; dotted urves: isotropi phase. In ()and (d) symbols indiate bifuration points from the isotropito the tetrati (�lled irles) and uniaxial nemati (open ir-les) phases. In (a) and (b) a straight line in η−1 has beensubtrated to better visualise the urves.funtion hc(φ) as
hc(φ) =

n
∑

i=1

xihi(φ). (21)From this, order parameters of the multiomponent mix-ture an also be de�ned:
Q(k) =

∑

i

xiQ
(k)
i , k = 1, 2. (22)In the ase of monomers the situation is a bit moreompliated, sine in our model we have lost trak ofmonomers as distint entities. However, we an simplyount the number of monomers pointing along some an-gle φ from the set hi(φ) and then divide by the averagenumber of lusters. Here we have to bear in mind thatlusters of size i (having i monomers) with i < κ (and κan integer) have a long axis in a diretion perpendiularto that of lusters with i > κ; therefore we write:

hm(φ) =
1

m
(1)
0

[

n0
∑

i=1

xiihi(φ) +

n
∑

i=n0+1

xiihi(φ + π/2)

]

,(23)with n0 = [κ] (note that in the ase where κ is not aninteger this division has to be done also). Thus the order
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FIG. 7: Cluster (a) and monomer (b) orientational distribu-tion funtions for κ = 5 and q = 0.65. The ontinuous lineorresponds to a stable Nu phase with η = 0.85, whereas thedisontinuous line is for the metastable Nt phase at the samevalue of η.parameters of the monomers an be alulated as
〈cos(2φ)〉m =

1

m
(1)
0

∣

∣

∣

∣

∣

n0
∑

i=1

xiiQ
(1)
i −

n
∑

i=n0+1

xiiQ
(1)
i

∣

∣

∣

∣

∣

,(24)
〈cos(4φ)〉m =

1

m
(1)
0

n0
∑

i=1

xiiQ
(2)
i . (25)Even for values of aspet ratio for whih there exists a re-gion of tetrati stability, the Nu is always the more stablephase for high values of paking fration. It is interestingto note that, in this situation, the luster and monomerdistribution funtions hc,m(φ) usually have a seondarypeak at φ = π/2 orresponding to tetrati ordering (thisfeature is also present in the simple SPT for the one�omponent HR �uid). Fig. 7 shows these distributionsfor the ase κ = 5 and q = 0.65. Note that, aording toFig. 5, there exists a stable tetrati phase in this ase,with a value of paking fration at the Nt�Nu transitionof η∗ = 0.839. In the �gure, the paking fration ho-sen is η = 0.85 > η∗ and, therefore, the stable phasehas an orientational distribution funtion pertaining to aNu. However, both the luster and the monomer orienta-tional distribution funtions of Nu have seondary peaks.We have also plotted in Fig. 7 the distribution funtionsof a metastable Nt at the same value of η. Finally, itis also interesting that, although the distribution fun-tions hm(φ) and hc(φ) in the tetrati region are alwaystetrati�like (i.e. all maxima have the same height, as itshould be by onstrution), they do not oinide in theuniaxial nemati phase and, onsequently, the similarityproperty at work in the tetrati phase is not obeyed forthe uniaxial nemati (see Setion II).C. Chemial reation modelAggregation phenomena in dilute �uids (e.g. mielleaggregation) are very often desribed in terms of a hem-
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FIG. 8: Paking frations η of the I�Nt (ontinuous line) andI�Nu (dashed line) transitions versus aspet ratio κ.ial reation model. An exponentially deaying size dis-tribution immediately emerges from these models. Herewe exploit the idea and arry it further using our density�funtional approximation. This model assumes that thelifetime of a luster is su�iently long that it an be de-�ned as a distint `hemial' speies.One assumes a hemial reation of the type Cl+C1 ⇀↽
Cl+1, with Cl denoting a `hemial' speies (i.e. a luster)ontaining l monomers. Chemial equilibrium betweenlusters and monomers then implies the relation

µi = iµ1, i = 2, · · · , n. (26)Now the hemial potential of the i�th speies an bealulated from our density�funtional theory as
βµi =

∂Φ

∂ρi
, (27)whih results in

βµi = ln (xiVi) +

∫ π

0

dφhi(φ) ln[hi(φ)π] + ln y

+yi + 2y
∑

j

xjSij + y2Si. (28)The n−1 Eqns. (26), together with the ondition (2), area set of n equations with n unknowns (x2, · · · , xn and ρ)whih allow to �nd the equilibrium on�guration of the�uid. Due to the simpliity of the model an analytialsolution an be found.Sine, for the isotropi phase, we have
∑

j

xj (iS1j − Sij) =
(i − 1)

π
(κ + m

(1)
0 ), (29)

Eqns. (26), together with (28), give xi = x1q
i−1 with

q = x1
y0

m
(1)
0

exp

[

2y0

π

(

κ

m
(1)
0

+ 1

)]

. (30)Here we assumed that Vi = V i
1 (onsistent with the ab-sene of internal degrees of freedom in the lusters andalso with the assumption that all lusters have the samemass). Now, sine∑i xi = 1, we �nd, for a �uid with anin�nite number of speies, 1 = x1/(1−q) whih, togetherwith (30), give

x1 =

{

1 +
y0

m
(1)
0

exp

[

2y0

π

(

κ

m
(1)
0

+ 1

)]}−1

. (31)Also, the �rst moment an be alulated self�onsistentlyas
m

(1)
0 = x1

∞
∑

i=1

iqi−1 =
x1

(1 − q)2

= 1 +
y0

m
(1)
0

exp

[

2y0

π

(

κ

m
(1)
0

+ 1

)]

. (32)This solution means that xi =
(

1 − 1/m
(1)
0

)i−1

/m
(1)
0 .While the �rst moment m

(1)
0 is the solution of Eqn. (32),the seond moment results in

m
(2)
0 = x1

∞
∑

i=1

i2qi−1 = x1
1 + q

(1 − q)3
= m

(1)
0 (2m

(1)
0 − 1).(33)The polydispersity oe�ient, de�ned as ∆ =

√

m
(2)
0 /

(

m
(1)
0

)2

− 1, turns out to be ∆ =

√

1 − 1/m
(1)
0 .Now the I-Nu and I-Nt spinodals an be alulated bysolving Eqn. (32), together with the value of y0 obtainedfrom Eq. (6). Fig. 8 ontains the funtions ηu,t(κ) ob-tained as the solutions of (32) and (6). As an be seen theuniaxial nemati is more stable than the tetrati up to

κ∗ ≈ 41.65. This results from the peuliar behaviour ofthe area distribution funtion ixi: its zeroth�order mo-ment is always greater than κ, while it is larger in thetetrati phase when κ < κ∗ [Fig. 9(a)℄; this behaviouris inverted for κ > κ∗, and the moment beomes largerfor the uniaxial nemati phase, as an be seen in Fig.9(b). Again this peuliar behaviour is due to the rela-tively high proportion of very big lusters, with iσ0 > L,whih stabilise the Nu phase against the Nt phase. Thisbehaviour is not observed in simulations, beause the for-mation of very big lusters is penalised by �utuations.The model has the value that an exponential luster dis-tribution funtion is predited.
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FIG. 9: Area distribution funtions for tetrati Nt and uni-axial Nu nemati phases. (a) κ = 10 and (b) κ = 100.
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