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Abstract

In this paper we analyze the symmetric companion of a quasi-definite linear functional. We
focus our attention in semiclassical linear functionals and we analyze the class of the symmetric
companion in terms of the starting linear functional. We present some examples for classes zero
and one. Finally, we consider symmetric linear functionals related with perturbation by the
addition of Dirac masses.

Keywords: Linear functionals, Orthogonal polynomials, Stieltjes functions, Semiclassical function-
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1 Introduction

Given a sequence of monic polynomials (p,) which are orthogonal with respect to a linear functional
U it is a natural question to ask how the polynomials behave when a perturbation in the linear
functional I/ is introduced. In the literature several situations have been considered. For instance,
in [5] (see Chapter 1) the case of a perturbation V = zl{ is analyzed and the explicit expression
for the corresponding sequences of orthogonal polynomials is given. This has been extended to any
polynomial perturbation V = h(z)U (see [15]).

In a different way, a perturbation ¥V = U + M. via the addition of a Dirac linear functional
has been introduced in [6] and subsequently generalized in [10].

On the other hand, polynomial mappings appear in sieved process when we modify a sequence
of monic orthogonal polynomials (p,,) in such a way that we are interested to describe a sequence
of monic polynomials (g,) such that g,x(x) = p,(h(z)) where h(z) is a polynomial of degree k.
If k = 2, this problem was extensively studied in [11] and [12]. In particular, if h(z) = 22 the
connection with the so-called symmetrization problem is quite natural.

In a new direction (see [7]) the generation of non-symmetric sequences of orthogonal polynomials
from a given sequence of monic orthogonal polynomials is introduced. The general framework of
this problem is described in [14].

After such preliminary comments we will give some basic definitions and tools which are needed
for the comprehension of the article.

1.1 Basic definitions and tools

Let P be the linear space of polynomials with complex coefficients. P, will denote the linear
subspace of polynomials of degree at most n.

Let U be a linear functional on P. The complex numbers (U,), U, = (U, z™), where (-,-) means
the duality bracket, are said to be the sequence of moments associated with the linear functional
U.

The set of linear functionals defined on P is said to be the algebraic dual space of P.
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Definition 1.1 Let h € P. The linear functional hid such that (hid,p) = (U, hp), p € P, is said to
be the left-multiplication of U by a polynomial h.

Definition 1.2 Let ¢ € C. The linear functional 6. such that (§.,p) = p(c), p € P, is said to be
the Dirac functional at c.

Definition 1.3 Let ¢ € C. The linear functional (z — ¢)™'U such that ((z — ¢)™'U,p) = (U, Ocp),
where ©.(p) = p@=P) o said to be the left-multiplication of U by the rational function (z —c)~".

zZ—cC

Definition 1.4 Let h =", hiz* a polynomial of degree n. The polynomial

Uy - U, ZO
1

Uh) (2) = (L,2,...,2") | = -0 .|
0 - U h

is said to be the right-multiplication of the linear functional U by h.

Definition 1.5 Let U be a linear functional. The linear functional DU such that (DU,p) =
—(U,p"), p € P, is said to be the derivative of the linear functional U.

Lemma 1.1 For every polynomial p,
(U, Ocp) = (UOp) (c).
Proof: It is well known that for ¢(z) = Y ;" , a2, qm #0,

U, - U, 9o
m . . q1
Uq) (2) = (1, 2,...,2™) : .
0 U )
0 m
Thusa lfp(Z) = Zzn:()pkzka Pm ?é 03
Uop Umn-1 P1
UOp) (2) = (1,7,...,2™ ) :
0 Uop Pm
In other words
Uy - Un D1
(UOp) (c) = (Lc,...,c™ )| : :
0 Up Pm
On the other hand
1 7! D1
@cP: (1767 7Cm_1) :
0 1 Pm
Thus,
Uy -+ Un—1 D1
(u’(—)Cp):(]"C’""cmil) E ..- E E b
0 Uop Pm
and our result follows. ]



Lemma 1.2 For every polynomial p

(U,82p) = (UOep)' (c).

Proof: According to the above Lemma

<U, @gp> = [Z/{@C (@0p)] (c).

If p is a polynomial of degree m as above, then

U - Un— p1
UOp) (2) = (1,2,..., 2" ) |+ - : :
0 Uop Pm
Thus,
Uy Um-—1 D1
(UOwp) (¢) = (0,1,...,(m —1)c"?) :
0 Uy Pm
0 Z/{O um—? D
= (1, 2¢,...,(m— 1)cm_2,mcm_1) : :
0 0 Uy
0 0 0 Pm
Z/lO um—?
. b2
= (1,20,... ,mcm_l) : :
0 Uy
Up Um—2 P2
=(1,2c,...,(m —1)c™?) : : .
0 Uy Pm
On the other hand, let /(z) = ©Op(z) = 37" pj127. Then,
1 ¢ cm?
01 3 b2
(Och) (2) = (L,2,...,2™?) : : I
0 0 1 Pm
and consequently,
Uy Uy Um—2 1 ¢ m—2
0 1 m—3 P2
(UOh) (2) = (1,2,...,2™2) 0 Lfo :
. Lﬁ D
0 0 Uy 00 1 m
The evaluation of this polynomial at ¢ yields
1 ¢ cm_2 Z/10 U um—2
0 1 3 bz
UOh) () = (Lic.....cm?) - .
. u1 Dm
0 0 1 0 0 Uy
Uo Um—2 D2
=(1,2c,...,(m —1)c™?) :
0 Uop Pm



Thus, the statement follows. ]

Definition 1.6 A linear functional U is said to be quasi-definite if the principal submatrices of the
Hankel matriz (uiﬂ-);x;zo are nonsingular.

Proposition 1.1 U is a quasi-definite linear functional if and only if there exists a sequence of
monic polynomials (p,) with degp, = n such that

Z) (uapnpm> =0,n 7é m.
ii) <L[,p721> #0, for every n € N,

Such a sequence is said to be a sequence of monic orthogonal polynomials with respect to the linear
functional U.

From the above result, we can deduce.

Theorem 1.1 (Favard’s Theorem) (p,) is a sequence of monic orthogonal polynomials with
respect to a quasi-definite linear functional if and only if there exist sequences of complex numbers
(Bn) and (yn) with v, # 0 for every n € N such that

Tpn(2) = pry1(z) + Bapn () + Yapn—1(z), n>1,
po =1, pi(z) =z —pH.

Let U be symmetric and quasi-definite linear functional. This means that
<Z/l,x2n+1> =0, n=0,1,...,

and the principal submatrices of the Hankel matrix (ui+j);’°}:0 are nonsingular.
Let (gn) be the corresponding sequence of monic orthogonal polynomials. They satisfy a three-

term recurrence relation

xQn(fL') = Qn-l—l(«'lf) + gnQn—l(x)a n>1,
0=1 qlr)=um

It is very well known (see [5] Chapter 1, Sections 8 and 9) that

qon () an(l“Z), Qont1(z) = $7’n($2),

where (p,) and (r,) are sequences of monic orthogonal polynomials related to quasi-definite linear
functionals V and zV, respectively, where (V, z") = <LI , x2”>.

The linear functional I/ is said to be the symmetrized linear functional associated with the linear
functional V. We will use the notation &/ = SV. Furthermore, taking into account the three-term
recurrence relations for (p,) and (ry,)

mpn(x) = pn—l—l(x) + ﬁnpn(g«') + 'ann—l(m')a n>1,
po=1, pi(z) =z — fo,

and
xrn(x) = Tn+1($) + <n7'n($) + ﬂn?“n—l(l“), n>1,
ro=1, r(z)=1z— (o,

we get

Bn = S2n +Sont1, n>1, Bo=qi, and Cn = S2n41 + S2n42, n >0,
Yn = Son—1%2n, N > 1. M = ©nS2n4+1, n > 1.
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On the other hand, taking into account the Stieltjes function Sy(z) = =3 02, zﬁ’% associated
with a linear functional ¢/ with the moments U,, = (U, z"™), we get

o0 o0

L% L&n
Sy (2) = _Z ol _Zszrl'
n=0 n=0
Thus,
2 U 1
Sy (22) = —Z ZT?Q = ;Su(z),
n=0
1.e.

Su(z) = 28y(2%).

In the last decades, some attention was paid to the so-called semiclassical linear functionals.
They have been introduced by J. Shohat [16] for the weight functions p satisfying a Pearson dif-
ferential equation, i.e., there exist polynomials o and 7 such that D(op) = 7p together with some
extra boundary conditions at the ends of the support interval of p.

In 1985, E. Hendriksen and H. Van Rossum [8] from a different point of view, consider for-
mal power series f satisfying first order linear differential equations with polynomial coefficients
and state the connection between the Padé denominators of f and the polynomial solutions of
some second order differential equation, where the coefficients are also polynomials (the so-called
Laguerre-Perron Theorem). Later on [9], the same authors introduce the word semiclassical for
weight functions and rewrote the Laguerre-Perron Theorem in terms of weight functions. In 1987,
P. Maroni [13] stated the connection between such a kind of polynomials and quasi-orthogonality
for their derivatives. Finally, P. Maroni [15] proved the following characterization result for semi-
classical orthogonal polynomials (i.e. semiclassical linear functionals).

Theorem 1.2 The following statement are equivalent

i) U is a quasi-definite linear functional such that
D(olU) = 1U, (1.1)
where o, T are polynomials with dego =t > 0 and degT =p > 1.
i) The Stieltjes function S(z) = —> >, z,ﬁ’% satisfies
0(2)Sy (%) = C(2)Su(z) + D(2), (1.2)

where

Q
—~
N
~
|

—o'(2) + 7(2),
D(z) = —(UBOyo) (2) + UOT) (2).

iii) There ezists a non-negative integer number s such that

n+t
o(Phi1(2) = D anpp(z), n>s,

k=n—s
with app—s #0, n > s+ 1.

P. Maroni [15] introduced the concept of the class of a semiclassical linear functional taking into
account that the Pearson equation (1.1) holds for an infinite family of pairs of polynomials (o, 7).
Indeed, if

D(onU) = U, ie. o1DU+ U =7U,



multiplying by a polynomial 7(z) in both hand sides
no DU + o\ = mmlU,
or, equivalently
D(ro ) = (71 + 7’0y )U.

Thus, {(no1,mm + 7'o1)} for every polynomial 7 is a set of pairs of polynomials associated with
the Pearson equation (1.1). Thus,

Definition 1.7 If (o,7) is the pair of polynomials of minimum degree such that (1.1) holds, we
define the class of U as s = max{dego — 2,deg T — 1}.
Theorem 1.3 U is a semiclassical linear functional of class s if and only if
0" (c) = 7(0)| + |(U, 0% — ©.7)| > 0,
for every zero ¢ of the polynomial o.
Proof: Let o(c) = 0. Taking into account cDU = (1 — o' )U, if 7(c) — o'(c) # 0 then we can not
simplify the above equation.
Now, we consider the case 7(¢) — o'(c) = 0. Take
0(2) = (z = c)oc(z), T(2) —0'(2) = (2 = O)7e(2).
Then,
oc(2)DU = 1c(2)U + M,

where
M = {(o.(2)DU,1) — (T.(2)U,1)
= (DU0.(2)) ~ Wy (=) | |
DU, o(z) —ole)\ u. 7(2) —o'(2) —7(c) + o (c)>

_ou o(2) E o () RCE T(c)z>_:<u’ 7)) > |

But the above expression becomes

M =-—(U,0.1)— U,D(U'(C)+

]‘ n n
=—(U,O.T) — Z/l,—ia (c) — T (e)(z —¢) —>

= — U 0u) + (U, 30" +
(2) —a(e) = a'(e)(z = C)>

(=0

= - (ua @CT> + ua 2
= (U,0%0) — (U, O.).

Thus, if 7(¢) — 0'(¢) = 0, we can simplify the Pearson equation, i.e., we can reduce the class if and
only if M = 0, or, equivalently,
(U,0%0) = (U,0.7).

|
Corollary 1.1 (o,7) is the pair of polynomials of minimum degree for (1.1) if and only if the
polynomials (o,C, D) in (1.2) are coprime, i.e., their greatest common divisor is 1.

Proof: According to Theorem 1.2 it is enough to prove that if ¢ is a zero of o, then either C'(c) # 0
or C(c) =0 and D(c) # 0. But it follows from Lemma 1.1 and Lemma 1.2. ]



1.2 The aim of the paper

In this paper we will analyze two problems concerning symmetric linear functionals.

In Section 2, we prove that if V is a semiclassical linear functional of class s, then the linear
functional U such that U = SV is also semiclassical and the class of U is 2s, 2s + 1 or 2s + 3 (see
Theorem 2.1 below). In Section 3 we give some examples of symmetric linear functionals of class
0 and 1. B

In Section 4, we consider a perturbation of U, U = U + M §y which preserves the symmetry, and
we analyze the relation between the parameters ¢, for both linear functionals in such a way that
we can deduce an algorithm for the parameters of the three-term recurrence relation satisfied by
the sequence of monic orthogonal polynomials corresponding to V, where U = SV.

2 Main Theorem
From Sy(z) = zSy(2?) we get
SJ(2) = Sy(2%) + 2228,(2%).

But if the linear functional V is semiclassical, then
0(2)Sy(z) = C(2)Sv(z) + D(2), (2.3)

where C' and D are the polynomials introduced in (1.2).
Taking into account the change of variables z by z? in the above equation

a(2%)8, (%) = C(2*)Sv(2%) + D(2%).
Thus,
o(2?) [S),(2) — Sv(2%)] = 22C(2%)Su(z) + 22°D(2?),

i.e.

20(2%)S(2) = [22°C(2%) + 0(2%)] Su(z) + 22°D(2?). (2.4)

Several situations can be considered in order to the polynomial coefficients in (2.4) yield the
minimal condition:
First: If 0(0) =0, i.e. 0(z) = zE(z) then (2.4) becomes

2E(2%)S),(2) = [2C(2*) + E(2%)] Su(2) + 22D(2?). (2.5)
Again, two cases must be discussed
1.1) 2C(0) + E(0) = 0, i.e. 2C(2) + E(z) = 2G(z). Then,
E(2%)8),(z) = 2G(2*)Su(z) + 2D (2?). (2.6)

Let a # 0 be such that o(a?) = E(a?) = 0.

If D(a?) # 0, the above equation can not be simplified, because the polynomial coefficients
are coprime.

If D(e?) = 0, then the above equation can be simplified if and only if G(a?) = 0. But
this means that C(«?) = 0. In other words, the coefficients in (2.3) are not coprime, a
contradiction. As a conclusion, (2.6) cannot be simplified. Thus, we get

5(z) =E(2%),

7(2) =2z[G(2?) +2E'(2?)]. (2.7)



1.2) 2C(0) + E(0) # 0. Let a # 0 such that E(a?) = 0.
If 2C(a?) + E(a?) # 0, the equation (2.5) cannot be simplified.
If 2C(a?) + E(a?) = 0, then C(a?) = 0. From the minimal condition in (2.3), D(a?) # 0.

Thus, (2.5) cannot be simplified. In such a case

a(z) = zE(2?),

Ho) =2 [B(:2) + 2B (2) + C(2)] . (28)
Second: If o(0) # 0, let o # 0 be such that o(a?) = 0. Then, two cases must be discussed.
2.1) If C(a?) = 0 then from (2.3) D(a?) # 0 and thus (2.4) cannot be simplified.
2.2) If C(a?) # 0, then (2.4) cannot be simplified.
As a conclusion, if o(0) # 0,
o(z) = zo(2?),
Hz) =2 [0(2) + 220'(:2) + 20(2)] . (2.9)

Now, we can discuss the class for the semiclassical linear functional ¢/ taking into account the
three possible situations analyzed as above.
Notice that if s is the class of V it means that

(a) Either dego = s+ 2 and deg7 < s+ 1.
(b) or dego < s+ 2 and degT = s+ 1.
(c) ordego =s+2 and degT = s+ 1.
Proposition 2.1 If (a) holds then
i) s =2s for (2.7).
ii) s =2s+1 for (2.8).
i) s =2s+ 3 for (2.9).

Proof: i) Let o(z) = agz®*? + lower degree terms and 7(z) = byz® + lower degree terms. Then
E(2) = apz**t + -+ .. Since

C(z) = —0'(2) +7(2) = = (s + 2)apz* L +--- .
Thus, G(z) = —(2s 4+ 3)agz® 4 - - -. Taking into account (2.7) we get

f’T\:(Z) :z[_(28+3)00225+"'+2(S+1)a0z25—{—...]
:_a0225+1+___’

and then dego = 2s+2 and deg 7(z) = 2s+1. As a consequence § = max{dego—2,deg7—1} = 2s.
ii) dego = 2s + 3.

F(z) =2 [ap2® 2+ +ag(s + 1)z T2+ — (s +2)agz®™ T + - ].

Thus, deg7(z) < 2s+ 1. Then, § = max{dego — 2,degT — 1} = 2s + 1.
iii) dego = 2s + 5,

T(2) =2 [a0z25+4 + o dag(s+ 225t 4 — (s +2)age® T + - ]
= 2a9z25 14,
Thus, deg 7™ = 2s + 4. Then, s = max{dego — 2,deg 7 — 1} = 25 + 3. m



Proposition 2.2 If b) holds, then
i) §=2s for (2.7).
ii) s =2s+1 for (2.8).
iii) 5= 2s +3 for (2.9).
Proof: Let o(z) = agz®t! + lower degree terms, and 7(z) = byz*t! + lower degree terms, where

eventually ag = 0.
i) E(z) = apz® + lower degree terms. Since

C(z) = —0'(2) +7(2) = bp2* T +--- .

Thus, G(z) = 2byz*® + lower degree terms. Taking into account (2.7) we get dego = 2s + 2 as well

as
T(z) =2 [2bp2* + -+ 2a9s2* 2 + -]
= 2b022s+1 +---.

Thus, deg 7 = 2s + 1. Then, § = max{dego — 2,degT — 1} = 2s.
ii) dego < 2s + 1,

T(z) =2[2a02% + - +5a02% + -+ bp2® T2 4 -]
= 2b022s+2 +---.

Thus, deg 7™ = 2s + 2. Then, s = max{dego — 2,deg7 — 1} = 25 + 1.
iii) dego < 2s 4+ 3,

T(Z):2[2@0228+2+"'+(S+1)a0228+2+"'+b022s+4+"'].

Thus, deg 7™ = 2s + 4. Then, s = max{dego — 2,deg 7 — 1} = 25 + 3. m

Proposition 2.3 If ¢) holds, then
i) §=2s for (2.7).
i) s =2s+1 for (2.8).
iii) 3 =2s+3 for (2.9).

Proof: Let o0(z) = agz*t? + lower degree terms and 7(z) = byz°T! 4 lower degree terms, with
ag ;é 0, and b() ;lé 0.
i) E(z) = apz®*! + lower degree terms. Since

C(2) = —0'(2) + 7(2) = [by — aols +2)]2" + -+ .

Thus, G(z) = [2by — (25+ 3)ap]z® +lower degree terms. Taking into account (2.7) we get dego < 2s
as well as
7(z) =2[(2bo — (25 + 3)ag)z® + -+ + 2ap(s + 1)z* + -]
— 2[2by — ag)22 +---].
Thus, § = max{dego — 2,deg 7 — 1} = 2s.
ii) dego = 2s + 3,

F(z) =2[apz® 2+ +ao(s+1)22F 2+ + by —ao(s +2)]z%2 + -]
= 2[b0228+2 + .- ]



Thus, deg 7 = 2s + 2. Then, § = max{dego — 2,degT — 1} =25+ 1.
iii) dego = 2s + 5,

F(z) =2[apz® T+ +ag(s+2)22F + - + by —ao(s +2))22 4 + -]
— (bO +a0)z28+4+ .

Thus, s = max{dego —2,deg7 — 1} = 25 + 3. m
As a conclusion, we can summarize the above results in Propositions 2.1-2.3 as follows.

Theorem 2.1 Let V be a semiclassical linear functional of class s and U be its symmetrized linear
functional. Then U is a semiclassical linear functional of class s with

i) §=2sif (2.7) holds.
i) s =2s+1if (2.8) holds.
iii) §=2s+ 3 if (2.9) holds.

3 Examples

3.1 Classical symmetric linear functionals

Taking into account Theorem 2.1, symmetric classical linear functionals can appear if and only if
the linear functional V is classical together with the facts o(0) = 0 and 2[7(0) — ¢'(0)] + E(0) = 0,
where o(z) = zE(2).

Thus, because for a classical linear functional dego < 2 and deg7 = 1 we will consider three
cases.

a) Let o(z) =2, 7(2) =az+b, a #0.
Thus, according to Theorem 2.1,
1
20-1)+1=0 = b=1.
On the other hand,
1
2G(z) =2C(2) + E(z) =2 [az—i— 3 1] +1=2az.
Thus, from (2.7)

o(z) =1,
T(z) =2az.

Hence, up to a linear change in the variable, I/ is the Hermite linear functional.
b) Let o(z) = 2(z — 1), 7(2) =az+ b, a # 0.

Thus, according to Theorem 2.1,
1
2b+1)—-1=0 = b:—i.
On the other hand,

zG(z):2C(z)+E(z):2[az—%—2z+1] +2z—1=(2a—3)z.
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Thus, from (2.7)
o(z) =22-1,
T(z) =2z2[2a—-3+2]=(2a—-1)z.

Hence, up to a linear change in the variable, / is the Gegenbauer linear functional.
c) Let 0(z) = 22, 7(2) =az + b, a #0.

Thus, according to Theorem 2.1,
2b=0 = b=0.

On the other hand,
2G(z) =2C(z) + E(z) =2[az — 2z] + z = (2a — 3)=z.
Thus, from (2.7)

a(z) =22,
T(2) =2z[(2a —3)+2]=(2a — 1)z
This means that D(2?U) = (2a — 1)2U. In other words, for n € N,

(U, n2""") = (1= 2a) (U, 2"") = nlhpi1 = (1 = 2a)Un1,
(n+2a — 1)Uy = 0.

Taking into account that I/ is a symmetric linear functional, the above condition yields
2(m + a)blgm+2 =0.

Thus Uy, = 0 for every p € N up to at most one py € N such that pg = —a (if a € Z7) or U, =0
for every p € N. In both cases, U is not quasi-definite.

3.2 Semiclassical symmetric linear functional of class s =1

Taking into account Theorem 2.1, this kind of semiclassical linear functionals can appear if and only
if the linear functional V is classical together with the facts o(0) = 0, 2[7(0) — ¢'(0)] + E(0) # 0.

a) Let 0(z) =z, 7(2) =az+b,a #0.

Thus E(z) =1 and 2[b— 1] + 1 # 0. As a consequence, b # 1.
On the other hand, from (2.8)

o(z) =z,
7(2) =2[1+az’>+b—1]
=2(az? +b).

The linear functional i/ is, up to a linear change in the variable, the Hermite-Chihara linear func-
tional (see [5]).
Indeed, from
D(2U) = 2(az® + b)U,

we get
—nlhy = 2alhy 12 + 20U, = 2aldpio = —(2b+ n)Uy,.

Because the linear functional I/ is symmetric,

2au2p+2 = —2(b +p)UQp, p €N,

(b)p

aldopio = —(b+p)Uzp, = Uzp = (—1)’)FU0,

as well as Ugp1 =0, p €N
Notice that is —b € N, Uy, = 0 for k& > —b. U is not a quasi-definite linear functional.
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b) Let o(z) = 2(z — 1), 7(2) =az+ b, a # 0.

Thus, E(z) =z —land 2[b+ 1] — 1 #0, i.e. b# L.
On the other hand, from (2.8)

5(z) = (2" - 1)z,
7(2) =222 -1+22+a22+b—222+1]
= 2[az? + b].

The linear functional &/ is up to a linear change in the variable, a generalized Gegenbauer linear
functional (with an extra knot at z = 0).
Indeed
D(2* — 2)U = (2a2% + 2b)U,

yields
n(un+2 - un) = 2aldy 42 + 2bU,,,

1.e.

(2a — n)Upt2 = —(n + 2b)Uy,.

Because the linear functional I/ is symmetric

2(a — p)Uzpir2 = —(b+p)Uzp, pE 1\}
b (3)
(p - a’)u2p+2 = <p + > u?pa = Z/l21/) ( 2’p

—a)puo.

Notice that we assume a ¢ N; otherwise if ¢ € N and —% ¢ N, then Us, = 0, k < a. U is not a
quasi-definite linear functional.

c¢) Let 0(z) = 22, 7(2) = az + b, b # 0.
Thus E(z) = z and b # 0. On the other hand, from (2.8)

o(z) =23,
T(z) = 2[z + 22 +az? + b — 227
2(az? +b).

This linear functional is the usual symmetrized of the Bessel linear functional.

These three examples are the unique symmetrized linear functionals in the eight canonical
semiclassical functional equations given in [4]. See also [1] in a more general framework of Laguerre-
Hahn linear functionals. An example of non-symmetric semiclassical linear functional of class 1
associated with the Jacobi linear functional is presented in [2].

3.3 The symmetric companion with respect to the linear functional 7 («, a+1)(u)

a+1
(

The symmetric companion of the polynomial sequence {pn x; )} orthogonal with respect to

the linear functional J (o, 4+ 1)(i) given in [2]:

pga,a-i-l)(x; M) _ 1, pga,a—l—l)(x; /1') — /BOa
P (w50) = (2 = Bus )T (@51) — YD (@3 ), m > 0,
where
p—1 ai(n—2n — 2 — 4) + (=1)"1 (20 + 1)
Bo=——"—%: Bnp1=(-1) ,
p—2a+3 2n+2a+3—p)2n+2a+5—p)
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2n+a+1)2n+1—p) 2n+2)(2n +2a+3 — p)
B y V2n+2 = 2 , n >0,
(4n + 2+ 3 — p) (4n + 20+ 5 — )

is the sequence {g, (x)} orthogonal with respect to the linear functional & such that Y = SJ (o, «+
1)(u) fulfils the following three term recurrence relation

Yon+1 =

qo(z) =1, qlz) ==z,

In+2(7) = 2qn41 (%) — Gug1qn(z), n >0,

with
. 2n41l-uyp __ 2(n+a+l)
Sdnt1 = dn +2a+3 —p’ Sdn+2 = dn +2a+3 —p’
2n+2a+4+3 —pu 2n 4+ 2
CAn+3 = y  Sdn+4 =

dn +2a+5—p dn+2a+5—p

~ . . 1 1 ~
Moreover, U is of class s = 3 if and only if yu # 3 Ifp= 3 then U of class s = 2.

3.4 The symmetric companion with respect to the linear functional V

The symmetric companion of the polynomial sequence {p, (z)} orthogonal with respect to the linear
functional V given in [3]:
po(z) =1, pi(z) =2 — P,

Pnt2(z) = (T = Bus1)Pny1(T) — Ynr1pn(z), n >0,

where
2(n+a+1)2n+ 20+ 2p +3)

dn +2a+2p +3)(4n + 2a +2p +5)’

/Bn = (_1)n+1, Yon+1 = _(

(2n +2)(2n + 2p + 3) n>0
dn+2a+2p+5)dn +2a+2p+7)" T 7

is the sequence {g,(z)} orthogonal with respect to the linear functional &/ such that ¢ = SV fulfils
the following three term recurrence relation

qo(z) =1, qlz) ==z,

QTL+2($) = $Qn+1($) - §n+IQn($)a n >0,

with
_ 2n2a+2p+3 . 2n+a+2)
Santl = dn +2a+2p + 3’ g4n+2_4n—i—2oz+2p—i—5’
2n+2p +3 2n + 2
CAn+3 = CAn+4 =

dn +2a+2p+ 5’ dn+20+2p+ 7

4 Recurrence coefficients

Let U be a quasi-definite and symmetric linear functional. We will denote as in Section 1 (g, ) the
corresponding sequence of monic orthogonal polynomials.

We introduce the linear functional 4 = U 4 Md, which is also symmetric. In [10] a necessary
and sufficient condition in order to U be quasi-definite is given.

Indeed, this is 1 + M K,,(0,0) # 0 for every n € N, where

n

(z)q;(y)
Kn(z,y) =S DG
= 2% )

13



Remark 4.1 IfU = SV, then U=38Y where V =V + M6.

On the other hand, if we denote (Gn) the sequence of monic polynomials orthogonal with respect
to U, assuming the quasi-definiteness of such a functional, we get

~ Mgy, (0)
= — K,_1(z,0),
~ gn
0) = .
w0 =K, 10,0
If
lﬁn(ﬂ?) = an+1($) + %%71(96), (4-11)
then B
_ (aa)
Sn = ﬁ
(U@)
But
(U @&@) = (U wn()an()
= (U, qn(7)qn(z)) + MGn(0)q,(0)
— U2 @)~ L8O K, 0)gn(2) + M (0)g0 (0)
T 1+MK?,1SO,0) ’ ’
1+ MK,(0,0
U,q? o
Thus we get
Proposition 4.1
_ L MEL(0,0)][1 + MKu_5(0,0)]
n — Sn , > 1.
on =S [+ MK,_1(0,0)] for n
Taking into account that U/ is a symmetric linear functional
K5,41(0,0) = Ko, (0,0),
and thus
- 1+ MKs,(0,0) _
$2m = §2m1 i MK2m72(0, 0) = 2mY2m; (412)

1+ MKom—2(0,0) _ somi1
1 +MK2m(030) Yom .
On the other hand, from the Christoffel-Darboux formula

Qm+1 = S2m+1

1 gom+1(2)qam(0)

B
= Gy )
As a conclusion
Kam(0,0) = mrm(o)Pm(o)-
On the other hand, taking into account
Mq3,,(0) 1

m — 1+ )
2 1+ MKop 2(0) (U, q2,)
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as well as eventually the three-term recurrence relation for the sequence (g,) for z = 0 we get

$2m—1 ngm72(0) 1
S2m 1 + MKQm,Q(O, 0) (Ll, q%m_2>
Som—1 M[K2m 2(0,0) — Kopm4(0,0)]

Y2m =1+

=1+
Som 1+ M Ko,—2(0,0)
_ 1
=14 Zmol [1 - ,
2m Y2m—2
or, equivalently,

~ Om—12m—2
©Om = Y2mS2m = S2m—-1t+Som — —=—.
2m—2

For the parameters of odd order

2m+1 _ S2m+152m
Yom év2m

&V2m+1 =

Thus, we get

Proposition 4.2 The sequence of parameters (<) can be obtained recursively as follows

Som = S2m—1 + S2m — E/mela m > 1, S = I_H\j[luo—l

~ S2mS2m+1
Som+1 = —=——, m2>1
2m

Remark 4.2 Notice that if (pn) and (7,) are the sequences of monic polynomials orthogonal with
respect to V and xV, respectively, then we easily deduced that £V = xV. Thus, rn(x) = ry(x) for
every n € N, or equivalently, Gant1(x) = gan+1(w) for everyn € N. This means that the polynomials
of odd degree for a symmetric linear functional do not change under the perturbation U = U + M.

5 Other interesting examples

5.1 Symmetrization of L(a) + \dy

Let £(c) where —a ¢ N the Laguerre linear functional and consider the linear functional £(a; \) =
L(a) + Ado. N

In [10] it is proved that L(a;A) is a quasi-definite linear functional if and only if A # A, =
—[K,(0,0)]7t, where K,(-,-) denotes the n-th kernel polynomial associated with the linear func-
tional L(«).

Furthermore, the parameters of the corresponding three-term recurrence relations are (see [10])

1 1 1 A A
— —_ n :2 ]_ — ]._ b] Z bl
Bo —>\+1(M+2>7 Bnt1 (n + )+(M+2> (A—A2n+ )\_)\2n+2> n >0

e K“*%) (1 ) A—szn> +"] [(”* %> = *"“] |

If U denotes the symmetric companion of L£(a; A), ie. S[£] = U, then taking into account
Proposition 4.2 the recurrence coefficients of U are

1
ont1 = (M+ 5) X o +n,

1 A
= _ 1-— 1.
Son+2 <u+2> < )\_)\2n>+n+
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5.2 Symmetrization of B(«) + \dy

Let B(a) (—a ¢ N) the Bessel linear functional and consider the linear functional B(a;)\) =
B(Of) + )\(50 »

In [10] it is proved that B(a;A) is a quasi-definite linear functional if and only if A # X, =
—[K,(0,0)]~! where K, (-, -) denotes the n-th kernel polynomial associated with the linear functional
B(a).

Furthermore, the parameters of the corresponding three-term recurrence relations are (see [10])
1
a(A+1)’
l-« n A _ A
n+a)(n+a+l) (nm+a+l)A—Aur1) (+a)(A—XN,)

A(2n42a41) 1 A(2n+2a-1)
—n n A—An

(2n +2a —1)(n+ a)?(2n +2a+ 1)

Bo =

7”207

BnJrl = (

—n—2a+1]

Yn+1 = —

If U denotes the symmetric companion of B (c; ), then taking into account Proposition 4.2 we
get

A n+1
_ 1 _ [/\—/\n (2n+20¢71)i|
1= aA+ 1) S2n+2 = nt1 )
[ A nf2a-1 ]
. A—An (2n+2a—1)
n+3 = n+ o .
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