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Abstract. In this contribution we are focused on some spectral transforma-
tions of Hermitian linear functionals. They are the analogues of the Christoffel
transform for linear functionals, i. e. for Jacobi matrices which has been deeply
studied in the past. We consider Hermitian linear functionals associated with
a probability measure supported on the unit circle. In such a case we compare
the Hessenberg matrices associated with such a probability measure and its
Christoffel transform. In this way, almost unitary matrices appear. We ob-
tain the deviation to the unit matrix both for principal submatrices and the
complete matrices respectively.
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1. Introduction

1.1. Christoffel transforms on the unit circle

Let u be a linear functional in the linear space Λ of Laurent polynomials with
complex coefficients, i. e. Λ = span{zn}n∈Z. u is said to be Hermitian if

〈u, z−n〉 = 〈u, zn〉 for every n ∈ N.

Let S be the Hermitian bilinear form in P such that

S(p, q) = 〈u, p(z)q̄(z−1)〉, p, q ∈ P.

Let T denote the Gram matrix of S with respect to the canonical basis
{zn}n∈N. The entries tm,n of T are

tm,n = 〈u, zm−n〉.
In other words, T is an Hermitian Toeplitz matrix. Tn will denote the leading
principal submatrix of T of order n. We will assume t0,0 = 1.
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Definition 1.1 ([2]).

(i) S is said to be quasi-definite if Tn is nonsingular for every n ∈ N.
(ii) S is said to be positive definite if detTn > 0 for every n ∈ N.

In a positive definite case it is very well known (see [2], [6]) that u has an
integral representation

〈u, p(z)〉 =
∫ 2π

0

p(eiθ) dµ(θ),

where µ is a nontrivial probability measure.

Proposition 1.2. S is quasi-definite (resp. positive definite) if and only if there
exists a sequence of monic polynomials {Pn}n∈N with

(i) degPn = n,
(ii) S(Pn, Pm) = knδn,m with kn �= 0 (resp. kn > 0).

The sequence {Pn}n∈N is said to be the sequence of monic orthogonal poly-
nomials with respect to S. {Pn}n∈N satisfies the Szegö recurrence relations ( see
[2], [6])

Pn+1(z) = zPn(z) + Pn+1(0)P ∗
n(z), n � 0,

Pn+1(z) =
(
1 − |Pn+1(0)|2) zPn(z) + Pn+1(0)P ∗

n+1(z), n � 0,

where P ∗
n(z) = znP̄n(z−1) is said to be the reversed polynomial of Pn (see [2], [6]).

The n-th kernel Kn(z, y) associated with S is defined by

Kn(z, y) =
n∑
j=0

Pj(z)Pj(y)
kj

.

In the positive definite case, the n-th kernel polynomial is associated with the
following extremal problem

min
{∫ 2π

0

|p(eiθ)|2 dµ(θ) : deg p � n, p(y) = 1
}
.

Indeed, the value of this minimum is

λn(y) =
1

Kn(y, y)
.

For each complex number y, λn is decreasing in n and thus we can define

λ∞(y) = lim
n→∞λn(y)

= inf
{∫ 2π

0

|p(eiθ)|2 dµ(θ) : p ∈ P, p(y) = 1
}

� 0.

λ∞ is said to be the Christoffel function associated with µ. One of the main results
about the behavior of the Christoffel function is the following.
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Proposition 1.3 ([9], Thm. 2.2.1). Let µ be a nontrivial probability measure on the
unit circle. Then

(i) If |y| > 1, then λ∞(y) = 0.
(ii) If |y| = 1, then λ∞(y) = µ ({y}).
(iii) If

∞∑
n=0

|Pn(0)|2 = +∞, then λ∞(y) = 0 for every y with |y| < 1.

(iv) If
∞∑
n=0

|Pn(0)|2 < +∞, then λ∞(y) > 0 for every y with |y| < 1. Furthermore,

λ∞(0) =
∞∏
n=1

(
1 − |Pn(0)|2).

If P = [P0(z), P1(z), . . .]t, then there exists a lower Hessenberg matrix HP

such that
zP = HPP.

The entries hl,j of HP are

hl,j =




− kl

kj
Pl+1(0)Pj(0), if 0 � j � l,

1, if j = l + 1,
0, otherwise.

Next, consider the Hermitian bilinear form

S2(p, q) := S((z − α)p, (z − α)q), p, q ∈ P. (1.1)

Proposition 1.4 ([8]).
(i) S2 is quasi-definite if and only if Kn(α, α) �= 0 for every n ∈ N.
(ii) If {Qn(z)}n∈N denotes the sequence of monic orthogonal polynomials with

respect to S2, then

Qn(z) =
1

z − α

(
Pn+1(z) − Pn+1(α)

Kn(α, α)
Kn(z, α)

)
.

S2 is said to be the canonical Christoffel transform of the bilinear form S.

2. Polynomial perturbations of positive measures

If S is a positive definite bilinear form, then S2 is also a positive definite bilinear
form [3]. We can introduce the sequence of orthonormal polynomials {ϕn}n∈N

associated with S, where

ϕn(z) = k− 1
2

n Pn(z).

We will denote {ψn}n∈N the corresponding sequence of orthonormal polynomials
associated with S2. Thus we get

(z − α)ψ(z) = Mϕ(z),
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where ψ(z) = [ψ0(z), ψ1(z), . . .]t, ϕ(z) = [ϕ0(z), ϕ1(z), . . .]t, and M is a lower
Hessenberg matrix with entries ml,j given by

ml,j =




− ϕl+1(α)ϕj(α)√
Kl+1(α,α)Kl(α,α)

, if j � l,√
Kl(α,α)
Kl+1(α,α) , if j = l+ 1,

0, if j > l+ 1.

(2.1)

Proposition 2.1.

(i) MM∗ = I.
(ii) M∗M = I − λ∞(α)ϕ(α)ϕ∗(α).

where I is the infinite unit matrix.

Proof. (i) From the orthogonality of {ϕn}n∈N and {ψn}n∈N with respect to S and
S2 respectively, we get

I = S2 (ψ(z), ψt(z)) = S ((z − α)ψ(z), (z − α)ψt(z))
= S (Mϕ(z), ϕt(z)M t) = MS (ϕ(z), ϕt(z))M∗ = MM∗.

(ii) For j = 0, 1, . . .

M∗
(j)M

(j) = Kj−1(α,α)
Kj(α,α) + |ϕj(α)|2

∞∑
l=j

|ϕl+1(α)|2
Kl+1(α, α)Kl(α, α)

= Kj−1(α,α)
Kj(α,α) + |ϕj(α)|2

∞∑
l=j

(
1

Kl(α, α)
− 1
Kl+1(α, α)

)

= 1 − λ∞(α)|ϕj(α)|2.
For k < j

M∗
(k)M

(j) = − 1
Kj(α,α)ϕk(α)ϕj(α) + ϕk(α)ϕj(α)

∞∑
l=j

|ϕl+1(α)|2
Kl+1(α, α)Kl(α, α)

= ϕk(α)ϕj(α)


− 1

Kj(α,α) +
∞∑
l=j

(
1

Kl(α, α)
− 1
Kl+1(α, α)

)


= −ϕk(α)ϕj(α)λ∞(α). �

According to Proposition 1.3,M is a unitary matrix if |y| > 1, and for |y| = 1,
λ∞(y) = 0. Furthermore, if |y| < 1 and

∑∞
n=0 |Pn(0)|2 = +∞, then M is unitary.

An analogous result for the leading principal submatrices of M is the follow-
ing.

Proposition 2.2. Let Mn be the leading principal submatrix of order n of M , then

(i) MnM
∗
n = In − Kn−1(α,α)

Kn(α,α) ene
∗
n, where In denotes the unit matrix of order n

and en = [0, . . . , 0, 1]t is a column vector of order n.
(ii) M∗

nMn = In − 1
Kn(α,α)ΦnΦ

∗
n, where Φn = [ϕ0(α), ϕ1(α), . . . , ϕn−1(α)]t.
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The matrix Mn is said to be “almost” unitary (see [7], [9]) in the sense that
its first n − 1 rows constitute an orthonormal set and the last row is orthogonal
to this set, but is not normalized.

Proof. (i) For 0 � k � n− 2, we deduce

(Mn)(k)(M∗
n)(k) = |ϕk+1(α)|2

Kk+1(α,α)Kk(α,α)

k∑
l=0

|ϕl(α)|2 +
Kk(α, α)
Kk+1(α, α)

= |ϕk+1(α)|2
Kk+1(α,α)Kk(α,α)Kk(α, α) + Kk(α,α)

Kk+1(α,α) = 1.

On the other hand,

(Mn)(n−1)(M∗
n)(n−1) = |ϕn(α)|2

Kn(α,α)Kn−1(α,α)

n−1∑
l=0

|ϕl(α)|2

= |ϕn(α)|2
Kn(α,α) = 1 − Kn−1(α,α)

Kn(α,α) .

Now, for k < j, we get

(Mn)(k)(M∗
n)(j)

=
k∑
l=0

ϕk+1(α)ϕj+1(α)|ϕl(α)|2√
Kk+1(α,α)Kk(α,α)

√
Kj+1(α,α)Kj(α,α)

− ϕk+1(α)ϕj+1(α)√
Kj+1(α,α)Kj(α,α)

√
Kk(α,α)
Kk+1(α,α)

= ϕk+1(α)ϕj+1(α)√
Kk+1(α,α)Kk(α,α)Kj+1(α,α)Kj(α,α)

(
k∑
l=0

|ϕl(α)|2 −Ki(α, α)

)
= 0.

(ii) For 1 � k � n− 1,

(M∗
n)(k)(Mn)(k) = Kk−1(α,α)

Kk(α,α) +
n−1∑
l=k

|ϕk(α)|2|ϕl+1(α)|2
Kl+1(α,α)Kl(α,α)

= Kk−1(α,α)
Kk(α,α) + |ϕk(α)|2

n−1∑
l=k

(
1

Kl(α,α) − 1
Kl+1(α,α)

)

= Kk−1(α,α)
Kk(α,α) + |ϕk(α)|2

(
1

Kk(α,α) − 1
Kn(α,α)

)

= 1 − |ϕk(α)|2
Kn(α,α) ,

as well as

(M∗
n)(0)(Mn)(0) =

n−1∑
l=0

|ϕ0(α)|2|ϕl+1(α)|2
Kl+1(α,α)Kl(α,α)

= |ϕ0(α)|2
n−1∑
l=0

(
1

Kl(α,α) − 1
Kl+1(α,α)

)

= 1 − 1
Kn(α,α) .

5



456 F. Marcellán and J. Hernández Mediterr. j. math.

Now, for k < j,

(M∗
n)(k)(Mn)(j) = − ϕk(α)ϕj(α)√

Kj(α,α)Kj−1(α,α)

√
Kj−1(α,α)
Kj(α,α) +

n−1∑
l=k

|ϕl+1(α)|2ϕk(α)ϕj(α)
Kl+1(α,α)Kl(α,α)

= −ϕk(α)ϕj(α)
Kj(α,α) + ϕk(α)ϕj(α)

n−1∑
l=j

|ϕl+1(α)|2
Kl+1(α,α)Kl(α,α)

= −ϕk(α)ϕj(α)


 1
Kj(α,α) −

n−1∑
l=j

(
1

Kl(α,α) − 1
Kl+1(α,α)

)

= −ϕk(α)ϕj(α)
Kn(α,α) . �

Notice that for α = 0, ϕn = ψn for every n ∈ N. Thus Mn = (Hϕ)n and we
recover some very well known results of the literature (see [5], [7], [9]).

Let L be the lower triangular matrix such that ϕ(z) = Lψ(z).

Proposition 2.3 ([8]).

(i) L = (Hϕ − αI)M∗.
(ii) Hψ − αI = ML.

Therefore, to compute Hψ − αI, we consider the QR-factorization of the
matrix (Hϕ − αI)∗, i. e. we assume the column vectors are linearly independent.

(Hϕ − αI)∗ = Q̃R̃,

where Q̃ has orthonormal column vectors and R̃ is an upper triangular matrix
with nonnegative diagonal entries. Hence

Hϕ − αI = R̃∗Q̃∗.

Proposition 2.4 ([8]). L = R̃∗ and M = Q̃∗.

This is the unit circle analog of the result obtained in [1] for Jacobi matrices.

Example. We consider the bilinear forms

S(p, q) =
∫ 2π

0

p(eiθ)q(eiθ)
1

|eiθ − β|2
dθ
2π

and

S2(p, q) =
∫ 2π

0

p(eiθ)q(eiθ)
|eiθ − α|2
|eiθ − β|2

dθ
2π
,

with |β| < 1 and |α| = 1 (see [4]). It is straightforward to prove that the sequence
{ϕn}n∈N is given by

ϕ0(z) =
(
1 − |β|2) 1

2 , ϕn(z) = zn−1(z − β), for n � 1.
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Hence

Hϕ − αI =




β − α
(
1 − |β|2) 1

2 0 · · ·
0 −α 1 0

0 0 −α 1
. . .

...
. . .

. . .
. . .


 ,

and the n-th kernel polynomial Kn(z, α) associated with S is

Kn(z, α) = 1 − |β|2 +
n∑
j=1

(z − β)(α − β)
( z
α

)j−1

.

As a consequence
Kn(α, α) = 1 − |β|2 + n|α− β|2.

The entries mk,j of M are

ml,j =




− αl(α−β)(1−|β|2) 1
2√

Kl(α,α)Kl+1(α,α)
, if j = 0,

− |α−β|2αl−j+1√
Kl(α,α)Kl+1(α,α)

, if 1 � j � l,

√
Kl(α,α)
Kl+1(α,α) , if j = l + 1,

0, otherwise.

(2.2)

From (i) of Proposition 2.3, the matrix L is obtained by means of the expression
L = (Hϕ − αI)M∗. From this we obtain a lower bidiagonal matrix with entries

lr,j =




√
K1(α, α), j = r = 0,

−α
√

Kr−1(α,α)
Kr(α,α) , j = r − 1,√

Kr+1(α,α)
Kr(α,α) , j = r,

0, otherwise.

(2.3)

Thus, by (ii) of Proposition 2.3, the entries h̃r,j of the matrix Hψ − αI are

h̃r,j =




−
(
α− β + αK0(α,α)

K1(α,α)

)
if r = j = 0,

− αr−1(1−|β|2) 1
2 (α−β)2√

K1(α,α)Kr(α,α)Kr+1(α,α)
if j = 0, r � 1,

√
Kr(α,α)Kr+2(α,α)

Kr+1(α,α) , if j = r + 1,

−α
(

|α−β|2
Kr(α,α) − Kr(α,α)

Kr+1(α,α)

)
, if 1 � j = r,

− |α−β|4αr−j+1√
Kr(α,α)Kr+1(α,α)Kj(α,α)Kj+1(α,α)

, if 1 � j < r,

0, otherwise.
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