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Abstract

The statistical analysis of functional data is a growing need in many research areas.

We propose a new depth notion for functional observations based on the graphic rep-

resentation of the curves. Given a collection of functions, it allows to establish the

“centrality” of a function and provides a natural center-outward ordering of the sam-

ple curves. Robust statistics such as the median function or a trimmed mean function

can be defined from this depth definition. Its finite-dimensional version provides a

new depth for multivariate data that is computationally very fast and turns out to be

convenient to study high-dimensional observations. The natural properties are estab-

lished for the new depth and the uniform consistency of the sample depth is proved.

Simulation results show that the trimmed mean presents a better behavior than the

mean for contaminated models. Several real data sets are considered to illustrate this

new concept of depth. Finally, we use this new depth to generalize to functions the

Wilcoxon rank sum test. It allows to decide whether two groups of curves come from

the same population. This functional rank test is applied to girls and boys growth

curves concluding that they present different growth patterns.
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1. INTRODUCTION

The data output sophistication in different research fields requires to advance in the statisti-

cal analysis of complex data. In functional data analysis, each observation is a real function

xi(t), i = 1, ..., n, t ∈ I, where I is an interval in R. There are several reasons that make nec-

essary the study of functional data. In many research areas (medicine, biology, economics,

engineering), the data generating process is naturally a stochastic function. Moreover, many

problems are better approached if the data are considered as functions. For instance, if each

curve is observed at different points, a multivariate analysis would not be valid, and it is

therefore necessary to smooth the data and treat them as continuous functions defined in a

common interval.

Multivariate techniques such as principal components, analysis of variance and regression

methods have already been extended to a functional context (see Ramsay and Silverman,

2005). A fundamental task in functional data analysis is to provide an ordering within a

sample of curves that allows the definition of order statistics such as ranks and L-statistics.

A natural tool to analyze these functional data aspects is the idea of statistical depth. It

has been introduced to measure the “centrality” or the “outlyingness”of an observation with

respect to a given data set or an underlying distribution. In this paper, we propose a new

definition of depth for functional observations. It permits to order a sample of curves from

the center-outward and to extend robust statistics to a functional context. For example, a

median function is a curve with the highest depth.

The notion of depth was first considered for multivariate data to generalize order statis-

tics, ranks and medians to higher dimensions. Given a distribution of probability F in Rd, a

statistical depth assigns to each point x a real non-negative bounded value D(x, F ). Some

depth definitions for multivariate data have been proposed by Mahalanobis (1936), Tukey

(1975), Oja (1983), Liu (1990), Singh (1991), Fraiman and Meloche (1999), Vardi and Zhang

(2001) and Zuo (2003). Liu (1990) and Zuo and Serfling (2000) introduced and studied four

key properties a depth should verify: affine invariance, maximality at center, monotonicity

and vanishing at infinity. Data depth can be widely applied. For example, Liu and Singh

(1993) presented a nonparametric multivariate rank test using a quality depth index and
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Liu (1995) proposed control charts for multivariate processes based on depth. Also, Liu,

Parelius and Singh (1999) offered depth based tools for multivariate analysis; for instance,

they defined trimmed regions, central regions and contours, and constructed a scale curve to

visualize sample dispersion. In addition, Rousseeuw and Hubert (1999) introduced the idea

of regression depth and Li and Liu (2004) designed a graphic tool and a test to check if two

multivariate samples come from the same population.

The main goal of this paper is to propose a new notion of depth for functional data. It is

based on the graphic representation of the functions and makes use of the bands defined by

their graphs on the plane. Its finite-dimensional version is an alternative definition of depth

for multivariate data, verifying essentially all the properties studied in Zuo and Serfling

(2000). In addition, it has the advantage of being computationally very fast, which makes

it adequate for analyzing high-dimensional data. Some asymptotic results, such as the

uniform convergence of the sample depth and deepest point, are established. Most of these

properties are extended to functions. With this new definition we can also generalize the

concepts of multivariate L-estimates (in particular, trimmed means) to a functional context,

where robust methods are possibly more useful than in multivariate problems, because there

are more ways for outliers to affect functional statistics. For instance, a curve could be

an “outlier” without having any unusually large value. Depth is particularly useful for

identifying this kind of outliers; here, besides magnitude, shape is also relevant. Fraiman and

Muniz (2001) introduced and studied a previous concept of depth for functional observations

based on the integrals of univariate depths.

The paper is organized as follows. In section 2, we present the new definition of band

depth for functional data. Section 3 explores its finite-dimensional version. In section 4, the

functional version properties are analyzed. A generalized band depth, more convenient for

irregular functions, is defined in section 5. Section 6 contains some simulations illustrating

the robustness of estimates based on the proposed depth. In section 7, real data examples

are discussed and used to check the band depth performance. A rank test for functions is

introduced in section 8 and applied to decide whether two groups of real curves come from

the same population. Finally, in section 9, we outline the main conclusions of this paper.

The proofs are included in the Appendix.
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Figure 1: (a) Band defined by two curves x1, x2 and a third curve x belonging to the band

and (b) band determined by three curves x1, x2 and x3.

2. A BAND DEPTH FOR FUNCTIONAL DATA

Our proposal follows a graph based approach. We recall definitions about function graphs

that will be used throughout the paper. Let x1(t), ..., xn(t) be a collection of real functions.

Although the following ideas can be given for more general observations, we will restrict

the exposition to functions in the space C(I) of real continuous functions on the compact

interval I. The graph of a function x is the subset of the plane G(x) = {(t, x(t)) : t ∈ I} .

The band in R2 delimited by the curves xi1 , ..., xik is

B(xi1 , xi2 , ..., xik) = {(t, y) : t ∈ I, min
r=1,...,k

xir(t) ≤ y ≤ max
r=1,...,k

xir(t)} =

= {(t, y) : t ∈ I, y = αt min
r=1,...,k

xir(t) + (1− αt) max
r=1,...,k

xir(t), αt ∈ [0, 1]}.

Figure 1a presents the band B(x1, x2) given by two curves; the graph of the function x is

included in the band. Figure 1b shows the band given by three curves B(x1, x2, x3). For any

function x in x1, ..., xn, the quantity

S(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

I{G(x) ⊂ B(xi1 , xi2 , ..., xij)}, j ≥ 2,

expresses the proportion of bands B(xi1 , xi2 , ..., xij) determined by j different curves xi1 , xi2 , ..., xij

containing the graph of x. (I{A} is one if A is true and zero otherwise).
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Figure 2: Angle in the sagittal plane formed by (a) the hip and (b) the knee, as 39 children

go through a gait cycle. The deepest curves based on Sn,2 within each sample are represented

in red.

Definition 1. For functions x1, ..., xn, the band depth of any of these curves x is

Sn,J(x) =
J∑

j=2

S(j
n (x), J ≥ 2. (1)

If X1 , X2 , ..., Xn are independent copies of the stochastic process X generating the observa-

tions x1, ..., xn, the corresponding population versions are S(j(x) = P{G(x) ⊂ B(Xi1 , Xi2 , ..., Xij)}

and SJ(x) =
J∑

j=2

S(j(x) =
J∑

j=2

P{G(x) ⊂ B(Xi1 , Xi2 , ..., Xij)}. A sample median function m̂n,J

is a curve from the sample with highest depth value, m̂n,J = arg max
x∈{x1,...,xn}

Sn,J(x), and a popu-

lation median is a function mJ in C(I) maximizing SJ(·). If they are not unique, the median

will be the average of the curves maximizing depth.

The functions in Figure 2 provide the angle in the sagittal plane formed by the hip (left

panel) and by the knee (right panel) as thirty nine children go through a gait cycle (see

Ramsay and Silverman, 2005). The deepest curves (or median functions) for Sn,2 appear in

red (they are also the deepest ones for 2 ≤ J ≤ 7). The notion of functional depth allows to

order the data curves from the center-outward and, consequently, order based statistics can

be defined. Thus, L-statistics will be generalized to the functional setting. After extensive

simulation, this definition seems to be very stable with respect to the selection of the tuning

parameter J . Figure 3a is the multiple scatter plot of the ranks using SJ for different values
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Figure 3: (a) Multiple scatterplot of the ranks of forty curves simulated from a gaussian

process with SJ , J = 2, ..., 6 and (b) mean integrated error for the deepest function.

of J . Forty sample paths in C[0, 1] have been simulated from a gaussian process with mean

m(t) = 2t and covariance function γ(s, t) = exp
{
− |t− s|2

}
. Their ranks were computed

for S2, S3, ..., S6. For J larger than 3, the points in the scatterplot fit the line y = x and the

ranks do not present dependence on J . To explore the mean integrated error, we have also

simulated forty curves from a gaussian process in C[0, 1] with mean f(t) = 4t and covariance

function γ(s, t) = exp
{
− |t− s|2

}
. Figure 3b shows the mean integrated error EIm̂(J) =∫ 1

0
(m̂n,J(t)− f (t))2 dt for different values of J , where m̂n,J(t) is the deepest observation for

Sn,J . The mean integrated error is calculated as EIm̂(J) = 1
I

I∑
k=1

[m̂n,J(k/I)− f (k/I)]2 at

I = 30 points equally spaced in [0, 1]. It is minimized for J = 3 and remains constant for

J ≥ 3: this indicates that the deepest point is the same for J = 3, 4, 5, 6 and 7.

3. FINITE-DIMENSIONAL VERSION

The finite-dimensional version of the functional band depth provides also a depth for multi-

variate data. Parallel coordinates (see, e.g., Inselberg, 1981, 1985, Inselberg et al., 1987 and

Wegman, 1990) provide a convenient way of visualizing a set of points in Rd. The orthogo-

nal axes in cartesian coordinates become parallel and equally spaced in parallel coordinates;

thus, points with dimension larger than three can be easily represented. Observations in

Rd can be seen as real functions defined on the set of indexes {1, 2, ..., d} and expressed as
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x = (x(1), x(2), ..., x(d)). Given points x1, x2, ..., xn in Rd, the corresponding band in paral-

lel coordinates B(x1, x2, ..., xn) =

{
(k, y) : k ∈ {1, 2, ..., d}, min

i=1,...,n
xi(k) ≤ y ≤ max

i=1,...,n
xi(k)

}
becomes a d-dimensional interval with sides parallel to the axes and delimited by the mini-

mum and the maximum of the coordinates of x1, x2, ..., xn,

R(x1, x2, ..., xn) =

{
x ∈ Rd : min

i=1,...,n
xi(k) ≤ x(k) ≤ max

i=1,...,n
xi(k)

}
.

Figures 4a and 4b present the band delimited by three points in the plane in parallel and

cartesian coordinates, respectively. For any point x in x1, ..., xn,

S(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

I{x ∈ R(xi1 , xi2 , ..., xij)}, j ≥ 2,

is the proportion of sets R(xi1 , xi2 , ..., xij) defined by j different points xi1 , xi2 , ..., xij con-

taining x. Hence, for points x1, ..., xn, the band depth of any of these points x is

Sn,J(x) =
J∑

j=2

S(j
n (x), J ≥ 2.

If P is a probability distribution in Rd and X1, X2,..., Xn is a random sample from P , the

band depth for any point x in Rd with respect to P is

SJ(x) = SJ(x, P ) =
J∑

j=2

P
(
x ∈ R(Xi1 , Xi2 , ..., Xij)

)
, J ≥ 2.

A sample median m̂n,J is a sample point with highest depth, m̂n,J = arg max
x∈{x1,...,xn}

Sn,J(x),

and the population median mJ is a point in Rd maximizing SJ . If there is more than one

point with maximum depth, the median is defined as their mean. Figure 5a shows in red

the four deepest points for S3. The deepest observation is marked with a green circle. Also,

rectangles determined by two and three points, respectively, can be seen in the same figure.

The scatterplot in Figure 5b compares the ranks for thirty points in R2 using Mahalanobis,

Tukey, Liu and S3 depths. The deepest observation is usually the same for different depths

and the orderings induced in the set of points are very similar. Contrary to most of pre-

vious definitions of depth, the band depth is not computationally intensive. This makes it

convenient to analyze very high-dimensional data.
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Figure 4: (a) Points (1, 2), (2, 5) and (3, 4) and the corresponding band in parallel coordinates

and (b) the same three points and band in cartesian coordinates.

3.1 Band Depth Properties

The deepest point for the band depth in one dimension is the usual univariate median;

moreover, the order induced by the band depth in the real line does not depend on J . Liu

(1990) established four natural properties a notion of depth should verify. Zuo and Serfling

(2000) analyzed them in a very general framework. The band depth SJ is a Type A depth

function in their context (just write

h(x, x1, x2, ..., xJ) = h2(x, x1, x2) + h3(x, x1, x2, x3) + ... + hJ(x, x1, x2, ..., xJ),

with hj(x, x1, x2, ..., xj) = I{x ∈ R(x1, x2, ..., xj)}). Our first theorem gives the structural

properties of the band depth: monotonicity, maximality at center, vanishing at infinity and

continuity.

Theorem 1. Let P be a probability distribution in Rd. Then:

(i) If P is absolutely continuous and its marginals Pi, i = 1, 2, ..., d are symmetric with

respect to the origin then SJ(αx) is a monotone nonincreasing function in α ≥ 0, for

all x ∈ Rd.

(ii) Under the conditions in (i), if the density f is positive in a neighborhood of the center

of symmetry m then SJ(·) is uniquely maximized at m.

8



0 2 4 6 8 10 12
0

5

10

15

0 20 400 20 400 20 400 20 40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Mahalanobis 

Tukey 

Liu 

S3 

(a) (b)

Figure 5: (a) Four deepest points from a sample in R2 are shown in red and the deepest

one in green. Two rectangles determined by two and three points are also represented. (b)

Multiple scatterplot diagram for the ranks of thirty points using Mahalanobis, Tukey, Liu

and S3 depths.

(iii) sup
‖x‖∞≥M

SJ(x) −→ 0, as M →∞ and sup
‖x‖∞≥M

Sn,J(x)
a.s−→ 0, as M →∞.

(iv) SJ(·) is upper- semicontinuous. If the marginal distributions of P are absolutely con-

tinuous then SJ(·) is continuous.

The monotonicity in (i) is not verified if the underlying distribution is not absolutely con-

tinuous: let d = 1, P (X = 0) = 1/5, P (X = ±1) = 1/5, and P (X = ±2) = 1/5; X is

symmetric with respect to 0, S2(1/2; P ) = 12/25 and S2(1; P ) = 15/25.

Several interesting properties follow from the fact that the band depth is a U -statistic.

Proposition 1. SJ(x) can be expressed as a U -statistic of order J .

The symmetry of P is inherited by the sample distribution of the deepest point. Recall

that a variable X with distribution P is antipodally symmetric with respect to c if (X − c)

and −(X − c) have the same distribution (see, e.g., Liu, Parelius and Singh, 1999).

Proposition 2. If P is antipodally symmetric then the distribution of m̂n,J is also antipo-

dally symmetric with respect to the population center of symmetry.
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3.2 Asymptotic Results

Theorem 2 provides the consistency properties of the band depth. Consider S
(j
n (x) =(

n
j

)−1 ∑
1≤ii<...<ij≤n

I
{
x ∈ R(Xi1 , ..., Xij)

}
, where Xi are independent and identically distributed

random variables taking values in Rd with distribution P and R(X1, ..., Xj) is the closed in-

terval in Rd defined by the points X1, ..., Xj. Following Arcones and Giné (1993), S
(j
n (x)

is a U -process of order j indexed by the class of functions F =
{
Rx : x ∈ Rd

}
, where Rx

= {I {(x1, ..., xj) : x ∈ R(x1, ..., xj)}} . Then S
(j
n (x) = Un

j (Rx) and its population version is

S(j(x) = P j (x ∈ R(X1, ..., Xj)).

Theorem 2. Let P be a probability distribution in Rd. Then:

(i) sup
x∈Rd

|Sn,J(x)− SJ(x)| a.s.−→ 0, as n →∞.

(ii) If SJ(·) is maximized at mJ and mn,J is a sequence of random variables such that

Sn,J(mn,J) = sup
x∈Rd

Sn,J(x) then mn,J
a.s.−→ mJ , as n →∞.

(iii) (Consistency of the sample deepest point) If the density f is different from zero in a

neighborhood of mJ and SJ(·) is uniquely maximized at mJ then m̂n,J
a.s.−→ mJ , as

n →∞.

A particular case of finite-dimensional observations are longitudinal data defined on dis-

crete instants of time t = 1, 2, ..., T . All the definitions and properties presented in this

section can be applied to this type of data.

4. PROPERTIES OF THE FUNCTIONAL BAND DEPTH

Next we analyze the band depth properties for functions. Let X be a process in C(I) with

a tight distribution P , i.e., P (‖X‖∞ ≥ M) → 0, as M → ∞. The first result expresses the

compatibility of the functional depth with the increasing finite-dimensional depth versions.

Let Q ∩ I = {q1, q2, ..., qn, ...} be the sequence of rational numbers in I. Let Cm be the set

of vectors in Rm obtained evaluating a function x at the first m rational numbers of the

interval I. SJ denotes both the functional depth and the corresponding finite-dimensional

version. The next result provides the convergence of SJ(xm) to SJ(x) as m tends to infinity,

where SJ(xm) is the depth of xm in Cm.
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Proposition 3. If xm = (x(q1), x(q2), ..., x(qm)) is the function x evaluated at the first m

rational numbers in I then SJ(xm) converges to SJ(x), as m tends to infinity.

The next Theorem gives the basic properties of the functional depth SJ .

Theorem 3.

(i) Let T (x) = ax + b, where x, a and b are continuous functions in I, with a(t) 6= 0 for

each t ∈ I. Then SJ(x, P ) = SJ(ax + b, PaX+b).

(ii) sup
‖x‖∞≥M

SJ(x) −→ 0 and sup
‖x‖∞≥M

Sn,J(x)
a.s−→ 0, as M →∞ .

(iii) SJ is an upper-semicontinuous function. Moreover, if the probability distribution P

on C(I) has absolutely continuous marginal distributions, then the band depth SJ is

a continuous functional on C(I).

Recall that a random variable X on C(I) is symmetric (with respect to the zero function)

if X and −X have the same distribution.

Proposition 4. If the population random variable X on C(I) is symmetric then the distri-

bution of mn,J is also symmetric.

The band depth is uniformly consistent on compact sets of functions.

Theorem 4. Let P be a probability distribution on C(I) with absolutely continuous marginal

distributions. Then:

(i) Sn,J(·) is uniformly consistent on any equicontinuous set E: sup
x∈E

|Sn,J(x)− SJ(x)| a.s.→ 0,

as n →∞.

(ii) If SJ(·) is uniquely maximized at m ∈ E and mn is a sequence of functions in E with

Sn,J(mn) = sup
x∈E

Sn,J(x) then mn
a.s.−→ m, as n →∞.

For instance, the set Lipα,A(I) = {x : I → R, |x(t1)− x(t2)| ≤ A |t1 − t2|α , t1, t2 ∈ I}

is equicontinuous and verifies the condition in Theorem 4; hence, Sn,J converges uniformly to

SJ over Lipα,A(I). The usual Lipschitzian functions are a particular case of Lipα,A(I) (with

α = 1) and thus the band depth is uniformly consistent on the Lipschitz functions.
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5. A GENERALIZED BAND DEPTH

Instead of considering the indicator function, a more flexible definition can be introduced

by measuring the set where the function is inside the corresponding band. For any of the

functions x in x1, ..., xn, let

Aj(x) ≡ A(x; xi1 , xi2 , ..., xij) ≡
{

t ∈ I : min
r=i1,...,ij

xr(t) ≤ x(t) ≤ max
r=i1,...,ij

xr(t)

}
, j ≥ 2, (2)

be the set in the interval I where the function x is in the band determined by the observations

xi1 , xi2 , ..., xij . If λ is the Lebesgue measure on I, λr(Aj(x )) =
λ(Aj(x))

λ(I)
gives the “proportion

of time” that x is in the band. Now,

GS(j
n (x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

λr(A(x; xi1 , xi2 , ..., xij)), j ≥ 2, (3)

is a generalized version of S
(j
n (x): if x is always inside the band, the value λr(Aj(x)) is one

and this extends the previous definition.

Definition 2. For functions x1, ..., xn, the generalized band depth of any of these curves x is

GSn,J(x) =
J∑

j=2

GS(j
n (x), J ≥ 2. (4)

If X1 , X2 , ..., Xn are independent copies of the process X giving the observations x1, ..., xn,

the population version is GS(j(x) = E λr(A(x; Xi1 , Xi2 , ..., Xij)), j ≥ 2, and GSJ(x) =
J∑

j=2

GS(j(x), J ≥ 2. In the finite-dimensional case, GS
(j
n (x) is the proportion of coordinates

of x inside the interval established by j different points from the sample:

GS(j
n (x) =

(
n

j

)−1 ∑ 1

d
1≤i1<...<ij≤n

d∑
k=1

I
{
min

{
xi1(k), ..., xij(k)

}
≤ x(k) ≤ max

{
xi1(k), ..., xij(k)

}}
.

In general, the order induced in a sample when J increases is stable. To illustrate it we

have simulated forty curves from a gaussian process defined on [0, 1] with zero mean and

covariance function γ(s, t) = exp
{
− |t− s|2

}
. Figure 6 gives the multiple scatterplot of

the curves ranks for the generalized band depth GSJ with different values of J . The ranks

present a good fit to the line y = x, and so they are essentially the same for different values

12
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Figure 6: Multiple scatterplot diagram for ranks of forty curves simulated from a gaussian

process based on GSJ with J = 2, 3, 4, 5, 6.

of J . Therefore, throughout the paper we will consider the generalized band depth with

J = 2 and it will be denoted as GS. For J = 2,

GSn(x) =
1

d

d∑
k=1

(
n

2

)−1 ∑
1≤i1<i2≤n

I {min {xi1(k), xi2(k)} ≤ x(k) ≤ max {xi1(k), xi2(k)}}

=
1

d

d∑
k=1

SDnFk
(x(k)),

where SDFn,k
(x(k)) is the univariate simplicial depth of x(k). Hence, GSn(x) is the average

of the univariate simplicial depths for each coordinate x(k). From the simplicial depth

properties (see Liu, 1990) it is straightforward to check that the finite-dimensional version

of the generalized band depth verifies all the properties established in Theorem 1, except

(iii). The band depth is more dependent on the curves shape and more restrictive than the

generalized version, which implies the presence of many ties. The generalized band depth

relies more on the magnitude or size of the curves than on their shape. Another relevant

difference between them is their behavior for curves leaving the center of the sample only for

a short interval, i.e., remaining in the interior of the sample almost all the time, but taking

extreme values in short subintervals: the generalized band depth can still be large for them

but the band depth will always take small values on these curves.

13
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Figure 7: Curves generated from model 1 (without contamination), model 2 (asymmetric

contamination), model 3 (symmetric contamination) and model 4 (partial contamination)

with M = 5 and q = 0.1 in all cases.

6. SIMULATION RESULTS

We compare now the functional trimmed mean based on Sn,3 and GSn with the mean in

terms of robustness. We have generated curves from different models: a basic one without

contamination and several models with different types of contaminations. They include

those previously analyzed by Fraiman and Muniz (2001). Model 1 is the basic one, Xi(t) =

g(t) + ei(t), 1 ≤ i ≤ n, where ei(t) is a stochastic gaussian process with zero mean and

covariance function γ(s, t) = (1
2
)(1

2
)5|t−s| and g(t) = 4t, with t ∈ [0, 1]. An asymmetric

contamination appears in model 2, Yi(t) = Xi(t) + ciM, 1 ≤ i ≤ n, where ci is 1 with

probability q and 0 with probability 1−q; M is the contamination size constant. A symmetric

contamination is included in model 3, Yi(t) = Xi(t)+ ciσiM, 1 ≤ i ≤ n, where ci and M are

defined in model 2 and σi is a sequence of random variables independent of ci taking values 1

and−1 with probability 1/2. Model 4 is partially contaminated, Yi(t) = Xi(t)+ciσiM, if t ≥

Ti, 1 ≤ i ≤ n, and Yi(t) = Xi(t), if t < Ti, where Ti is a random number generated from

a uniform distribution on [0, 1]. Curves simulated from these four models can be seen in

Figure 7.

Model 5 is contaminated by peaks, Yi(t) = Xi(t) + ciσiM, if Ti ≤ t ≤ Ti + l, 1 ≤ i ≤

n, and Yi(t) = Xi(t), if t /∈ [Ti, Ti + l], where l = 2/30 and Ti is a random number from
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Figure 8: Fifty curves from model 5 (M = 5 and q = 0.1).

a uniform distribution in [0, 1 − l]. The contamination only occurs for a short subinterval

of length l. Figure 8 shows an example of model 5 curves. Our goal is to analyze the

robustness of statistics based on functional depth. We compare the mean and the α-trimmed

mean, given by µ̂n(t) =

n∑
i=1

Yi(t)

n
and m̂α

n(t) =

n−[nα]∑
i=1

Y(i)(t)

n−[nα]
, where Y(1), Y(2), ...Y(n) is the sample

ordered from the deepest to the least deep curve and [nα] is the integer part of nα. For

each model, we have considered R replications, generating n curves in each replication and

calculating the integrated error evaluated at T = 30 equally spaced points in [0, 1]. The

integrated errors for each replication j are EIµ(j) = 1
T

T∑
k=1

[µ̂n(k/T )− g (k/T )]2 and EIα
S (j) =

1
T

T∑
k=1

[m̂α
n(k/T )− g (k/T )]2 , respectively. Table 1 contains the mean integrated error for

each model considering R = 500 replications with n = 50 curves, contamination probability

q = 0.1, two contamination constants, M = 5, M = 25 and α = 0.2. In the model without

contamination the mean behaves always better than the trimmed mean. For models 2, 3 and

4 the best mean integrated error corresponds to GS (and with S3 the results improve over

the mean); however, for model 5 with M = 25, the mean integrated error is minimized for

S3. The reason is that contamination in model 5 appears in a small domain interval and the

generalized depth is not very robust with respect to this type of contamination; a curve with

contaminated values in a short interval of the domain can still be deep using the generalized

band depth whereas it will not be deep based on the band depth.
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Const. Estimator Model 1 Model 2 Model 3 Model 4 Model 5

M=5 Mean
0.0094

(0.0067)

0.3106

(0.2564)

0.0578

(0.0656)

0.0322

(0.0326)

0.0153

(0.0086)

S3

0.0126

(0.0096)

0.2519

(0.2584)

0.0267

(0.0290)

0.0314

(0.0313)

0.0179

(0.0113)

GS
0.0139

(0.0104)

0.0228

(0.0359)

0.0168

(0.0112)

0.0184

(0.0142)

0.0192

(0.0113)

M=25 Mean
0.0099

(0.0069)

2.1158

(2.1485)

0.7634

(1.0839)

0.3296

(0.4674)

0.1442

(0.0769)

S3

0.0128

(0.0094)

1.1345

(1.8690)

0.2907

(0.7061)

0.2558

(0.3944)

0.0876

(0.0812)

GS
0.0129

(0.0110)

0.0781

(0.3481)

0.0148

(0.0109)

0.0951

(0.1587)

1.3762

(0.0662)

Table 1: Means and standard deviations of integrated errors with R = 500 replications,

q = 0.1 and α = 0.2.
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Figure 9: Curves from model 6 with k2 = c2 = 1, µ2 = 0.2 and contamination probability

q = 0.1.

Besides magnitude contamination, we have also considered shape contamination. There

is no general definition of outlier for functional observations. A curve could be outlier

for different reasons: it can be very distant from the mean (magnitude outlier) or have a

pattern different from the other curves, being, e.g., decreasing when the remaining ones are

increasing or very irregular in a set of smooth curves (shape outlier). To generate shape

outliers, we use the covariance γ(s, t) = k exp{−c |t− s|µ}, with s, t ∈ [0, 1] , and k, c,

µ > 0 (see Wood and Chan, 1994). Different values of k, c and µ change the shape of the

generated functions. For example, increasing µ and k, the curves are smoother; however,

increasing c the curves are more irregular. Model 6 is a mixture of Xi(t) = g(t) + e1i(t),

1 ≤ i ≤ n, with g(t) = 4t and ei1(t) a gaussian stochastic process with zero mean and

covariance function γ1(s, t) = exp
{
− |t− s|2

}
and Yi(t) = g(t) + e2i(t), 1 ≤ i ≤ n, with

ei2(t) a gaussian process with zero mean and covariance function with values k2, c2 and µ2

chosen to generate more irregular curves (for example, µ2 < 2 or c2 > 1). The contaminated

model 6 is Zi(t) = (1 − ε)Xi(t) + εYi(t), 1 ≤ i ≤ n, where ε is a Bernoulli variable Be(q)

and q is a small contamination probability; thus, we contaminate a sample of smooth curves

from Xi(t) with curves from Yi(t) having different covariance function and providing more

irregular curves. Figure 9 shows curves simulated from model 6: the contaminated curves

behave more irregularly than the remaining functions but they are not far from them in

terms of distance. Table 2 contains the simulation results for model 6 with R = 500, n = 50
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Estimation
µ2 = 0.2

k2 = 1

µ2 = 0.1

k2 = 1

µ2 = 0.1

k2 = 2

q = 0.15 Mean
0.0455

(0.0487)

0.0483

(0.0622)

0.0468

(0.0418)

S3

0.0321

(0.0455)

0.0295

(0.0351)

0.0250

(0.0233)

GS
0.0542

(0.0633)

0.0488

(0.0447)

0.0364

(0.0339)

q = 0.1 Mean
0.0318

(0.0334)

0.0360

(0.0320)

0.0355

(0.0297)

S3

0.0293

(0.0344)

0.0282

(0.0313)

0.0272

(0.0299)

GS
0.0345

(0.0508)

0.0414

(0.0369)

0.0380

(0.0381)

Table 2: Simulation results with R = 500 replications, n = 50 curves and α = 0.2.

and α = 0.2. We have considered two contamination probabilities (q = 0.15 and q = 0.1)

and different values of µ2, k2 to modify the covariance of Y (t) (c2 = 1 in all cases). The

minimum mean integrated error corresponds always to the trimmed mean based on the

band depth S3. This is due to the contamination type, shape more than magnitude; thus,

the band depth performs well in terms of robustness with respect to this form of outliers.

However, the generalized band depth is less robust against shape contamination, since most

of the contaminated curves values can still be very central in the sample although the curve

behavior is different from the remaining functions.

7. REAL DATA EXAMPLES

The first real data set describes daily temperature in different Canadian weather stations

(Ramsay and Silverman, 2005). The original data was smoothed using a Fourier basis with

sixty five elements. Figure 10a shows the temperature curves; the five deepest functions for

the band depth are in red. Figure 10b presents the five deepest curves using the generalized
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Figure 10: Daily temperature in 35 Canadian weather stations for one year. The five deepest

curves (in red) based on (a) Sn,3 and (b) GS.

band depth. The second example contains the price curves for the 35 firms in the Spanish

IBEX 35 index. The functions include fifty nine daily measurements starting at June 22,

2002. Figure 11a gives in red the 30% deepest elements for S3. The mean curve is represented

with blue asterisks and the trimmed mean with α = 0.3 appears in green asterisks. The

mean curve is more sensitive to the extreme functions than the trimmed one. In Figure 11b

the 25% most extreme (least deep) curves from the sample are in red.

8. A RANK TEST FOR FUNCTIONS

The depth definition for curves allows us to extend the rank test to functional data. Liu and

Singh (1993) generalized to multivariate data the univariate Wilcoxon rank test through the

order induced by a multivariate depth. Brown and Hettmansperger (1989) and Hettmansperger

and Oja (1994) have also proposed different rank tests for multivariate observations. Fol-

lowing Liu and Singh (1993), let

R(Pn, xi) = R(xi) = proportion of xj’s from the sample with S(xj) ≤ S(xi). (5)

It takes values between 0 and 1. We rank the observations xi according to the increasing

values of R, assigning them an integer from 1 to n. If there are curves with the same

value of R, R(xi1) = R(xi2) = ... = R(xij), with i1 < i2 < ... < ij, we consider the rank

of xik+1
as the rank of xik plus one. We propose a test based on these ranks to decide if
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Figure 11: Prices included in the IBEX 35 index. (a) The 30% deepest curves are in red,

and mean and median are marked with blue and green asterisks, respectively. (b) The 25%

most extreme curves appear in blue.

two groups of curves come from the same population. Let x1, ..., xn be a sample of curves

from population P1 and let y1, ..., ym be a sample of curves from population P2. Assume

that there is a third reference sample Z = {z1, z2, ..., zn0} from one of the two populations,

for example P1, with n0 greater than n and m. Let Pn0 be the corresponding empirical

distribution. Calculate R(Pn0 , xi) = proportion of zj’s with S(zj, Pn0) ≤ S(xi, Pn0,) and

R(Pn0 , yi) = proportion of zj’s with S(zj, Pn0) ≤ S(yi, Pn0), that express the position of each

xi and yi with respect to Z. Order these values, R(Pn0 , Xi) and R(Pn0 , Yi), from smallest

to highest giving them a rank from 1 to n + m. If there are ties, we apply the previous

criterion. The proposed statistic to test H0 : P1 = P2 is W =
m∑
j=1

ranks R(Pn0 , yj). The ranks

of R(Pn0 , yj) behave under H0 as m numbers randomly chosen from {1, 2, ..., n + m} . Hence,

the distribution of W is the distribution of ρ1 + ...+ ρm, where ρ1, ..., ρm is a sample without

replacement of {1, 2, ..., n + m} (see Liu and Singh, 1993). The null hypothesis is rejected

when W is small, because this indicates that R(Pn0 , yj) take on average lower values than

R(Pn0 , xi), implying that the observations yj are less deep with respect to Pn0 than xi. The

alternative hypothesis is that on average more than 50% of population P1 is inner or more

central than any observation from P2, indicating that the distributions are not the same.

We have applied this test to real data representing the relative diameter versus the
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relative height of two groups of trees (Laricio and Radiata). Due to technical restrictions

in the measurements, the relative diameter is defined as the ratio between its value at the

corresponding height and the diameter at a fix height (1.3 centimeters). Relative height

is height over the total height of the tree. Figure 12 shows the curves corresponding to

seventy Laricio trees (left panel) and one hundred and forty Radiata trees (right panel).

Since the number of observations per tree is very irregular (from 3 to 25), the data has

been smoothed using a spline basis. To apply the rank test, we have considered seventy

functions randomly chosen from the Radiata trees group as the reference group to compute

the ranks of the remaining curves. The obtained p-values, using both the band depth and

the generalized band depth are very close to zero. Therefore, we conclude that there exists

significative differences between both groups. The second real data set includes the growth

curves for boys and girls (see Ramsay and Silverman, 2005). We have applied the rank

test to decide if there are no differences between both groups curves. We consider thirty

two curves randomly chosen from the group of girls as the reference group. The remaining

twenty two curves constitute the test group together with the thirty growth curves for boys.

The obtained p-value with S3 is 0.00011; hence, we reject the null hypothesis, concluding

that there exist significative differences between the growth curves for boys and girls. This

difference could be caused by a change either in mean or in dispersion. Graphically, the

groups do not seem to be similar (see Figure 13). The shape is different and the heights

of boys achieve higher values at the end. The rank test detects these differences. However,

if we apply the rank test using the generalized band depth (GS) or Fraiman and Muniz’s

depth (FM) instead of S3, we obtain p-values of 0.1199 and 0.1636 respectively, concluding

in this case that there is no evidence for rejecting the null hypothesis. The reason is that GS

and FM consider only the magnitudes, ignoring the curves shape. Note that the average

values of boys and girls heights only differ in the final years (17 to 18 years) and FM and

GS do not detect differences between both groups because they occur over a short interval.

Since the essential difference between both groups is shape, we have applied the rank test

to the curves derivatives (growth speed) (see Figure 14). The rank test p-values using S3,

GS and FM are very close to zero (1.6 ∗ 10−4, 4.54 ∗ 10−7 and 6.01 ∗ 10−7, respectively) and

the null hypothesis is rejected. The instant of growth maximum velocity is different for boys
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Figure 12: Relative diameter versus relative height for Laricio trees represented in blue (left

panel) and for Radiata trees represented in red (right panel).
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Figure 13: Growth curves for a sample of thirty boys (left panel) and fifty four girls (right

panel).

and girls (see Figure 14). Girls reach maximum speed at an earlier age than boys. The band

depth rank test detects these shape differences for boys and girls both in the original sample

of growth curves and in the derivatives set.

9. CONCLUSIONS

We have introduced a band depth for functional data based on the graphic representation

of the curves. It provides a criterion to order a sample of functions from center-outward and

robust statistics for functional observations, such as the median and trimmed mean, can

be constructed. Its finite-dimensional version provides a new multivariate depth. It is very
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Figure 14: First derivative of the growth curves for boys (in blue) and girls (in red).

convenient to deal with high-dimensional data since it is computationally very fast, avoiding

the main drawback of other finite-dimensional depth definitions. This new notion verifies

natural depth properties. We have also established the uniform consistency of the sample

depth in the finite and functional case. We have illustrated the robustness of this new

depth with a simulation study and several real examples. As an application, a rank test for

functional data is introduced and applied to decide whether two groups of curves come from

the same population.

APPENDIX: PROOFS

Proof of Theorem 1: (i) The proof follows along the lines of Liu (1990). We check it for

d = 2 and analyze the events contributing to the difference S(j(x) − S(j(αx), with α ≥ 1.

Consider the sets defined by the arrow from x to αx entering or leaving R(X1,..., Xj) with

sides parallel to the axes. Given two points a and b, the line containing the segment ab

divides the plane into two half planes. If the origin does not belong to this line, the half

plane including the origin is called the inner side I(a, b). Let C =
{
(a, b) : ab ∩ x, αx 6= ∅

}
;

hence, C is the set of all segments that intersect the segment x, αx. Define the sets r1 =(
min

i=1,...,j
{Xi(1)} , min

i=1,...,j
{Xi(2)}

)
, r2 =

(
max

i=1,...,j
{Xi(1)} , min

i=1,...,j
{Xi(2)}

)
r3 =

(
max

i=1,...,j
{Xi(1)} , max

i=1,...,j
{Xi(2)}

)
, r4 =

(
min

i=1,...,j
{Xi(1)} , max

i=1,...,j
{Xi(2)}

)
.

We have that x ∈ R(X1,..., Xj) is equivalent to express that x belongs to the rectangle
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determined by the random points r1, r2, r3, r4. Consider the disjoint sets

Ar1r2
in = {(X1, ..., Xj) s.t. (r1, r2) ∈ C and r3 /∈ I(r1, r2)}

Ar2r3
in = {(X1, ..., Xj) s.t. (r2, r3) ∈ C and r4 /∈ I(r2, r3)}

Ar3r4
in = {(X1, ..., Xj) s.t. (r3, r4) ∈ C and r1 /∈ I(r3, r4)}

Ar4r1
in = {(X1, ..., Xj) s.t. (r4, r1) ∈ C and r2 /∈ I(r4, r1)} .

(6)

Denote by Ain the events where the vector x, αx enters a random rectangle with vertexes

(r1, r2, r3,r4) . Therefore, Ain = Ar1r2
in ∪ Ar2r3

in ∪ Ar3r4
in ∪ Ar4r1

in . The events Aout are those

where the arrow x, αx leaves a random rectangle, and can be decomposed as a union of

disjoint events in a similar way as Ain. Let Bα = {αx ∈ R(X1, ..., Xj)} . Since P (B1 \Bα) =

P (B1) − P (B1 ∩ Bα), S(j (x) − S(j (αx) = P (B1 \ Bα) − P (Bα \ B1). Now, B1 \ Bα =

Aout \ Ain and Bα \ B1 = Ain \ Aout, S(j(x) − S(j(αx) = P (Aout \ Ain) − P (Ain \ Aout) =

P (Aout)− P (Aout ∩Ain)− [P (Ain)− P (Ain ∩ Aout)] = P (Aout)− P (Ain), and it is sufficient

to prove that P (A
rirj

out ) − P (A
rirj

in ) is positive for each i, j in (6). We present the proof only

for one of them. For example, P (Ar1r2
out )− P (Ar1r2

in ) =

=

∫
{(x1,...,xj): (r1,r2)∈C}

{P (r3 ∈ I(r1, r2))− P (r3 /∈ I(r1, r2))} dF (x1)...dF (xj)

and it will be positive when P (r3 ∈ I(r1, r2)) ≥ 1/2, since this implies that

{P (r3 ∈ I(r1, r2))− P (r3 /∈ I(r1, r2))} ≥ 0.

If the second coordinate of r1 is positive, we will denote this event as r1 up, and if it is

negative, r1 down. So,

P (r3 ∈ I(r1, r2)) = P (r3 ∈ I(r1, r2) | r1 up)× P (r1 up)+

+P (r3 ∈ I(r1, r2) | r1 down)× P (r1 down) = 0 + P (r1 down).

Now, by the definition of r1, and due to the symmetry with respect to the origin,

P (r1 down) = P (min {X1(2), ..., Xj(2)} < 0)) = 1− P (min {X1(2), ..., Xj(2)} > 0)) =

= 1− [P (X1(2) > 0)× ...× P (Xj(2) > 0)] = 1−
(

1

2

)j

>
1

2
.

Then, for α ≥ 1, Sj)(x) − Sj)(αx) ≥ 0; thus, Sj) (αx) is non increasing in α, for α ≥ 0.

Hence, SJ(αx) is also nonincreasing in α, for α ≥ 0.
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(iii) We establish first the inclusion{
(X1 , X2 , ..., Xj

): x ∈ R(X1 , X2 , ..., Xj
)
}
⊂

j
∪

r=1

{
(X1 , X2 , ..., Xj

) : ‖Xr‖∞ ≥ ‖x‖∞
}

(7)

by contradiction. If x ∈ R (X1, X2, ..., Xj) then, for each k ∈ {1, ..., d} ,

min
r=1,...,j

{Xr(k)} ≤ x(k) ≤ max
r=1,...,j

{Xr(k)} . (8)

Assume that ‖Xr‖∞ < ‖x‖∞ for each r = 1, ..., j; this implies that, for each r, we have

max
k∈{1,...,d}

|Xr(k)| < max
k∈{1,...,d}

|x(k)| .

Let k∗ be the point where the maximum of x(k) is achieved. Then, for all r = 1, ..., j,

|Xr(k
∗)| < |x(k∗)|, and this contradicts (8). Therefore,

sup
‖x‖∞≥M

SJ(x) ≤
J∑

j=2

sup
‖x‖∞≥M

P (x ∈ R(X1, X2, ..., Xj))

≤
J∑

j=2

sup
‖x‖∞≥M

j∑
r=1

P (‖Xr‖∞ ≥ ‖x‖∞)

≤
J∑

j=2

j∑
r=1

sup
‖x‖∞≥M

P (‖Xr‖∞ ≥ ‖x‖∞)

and sup
‖x‖∞≥M

SJ(x) −→ 0, when M → ∞. To prove that the sample depth converges almost

surely to zero we use again the inclusion in (7). S
(j
n (x) is bounded by(

n

j

)−1 ∑
1≤i1<...ij≤n

I

{
j
∪

r=1
{‖Xir‖∞ ≥ ‖x‖∞}

}
, (9)

where I

{
j
∪

r=1
{‖Xir‖∞ ≥ ‖x‖∞}

}
is 1 if ‖Xir‖∞ ≥ ‖x‖∞ for some r and 0 in any other case.

Then,

sup
‖x‖∞≥M

S(j
n (x) ≤ sup

‖x‖∞≥M

(
n

j

)−1 ∑
1≤i1<...ij≤n

I

{
j
∪

r=1
{‖Xir‖∞ ≥ ‖x‖∞}

}

≤
(

n

j

)−1 ∑
1≤i1<...<ij≤n

j∑
r=1

sup
‖x‖∞≥M

I {‖Xir‖∞ ≥ ‖x‖∞} .

Next, we prove that XM = sup
‖x‖∞≥M

I {‖Xir‖∞ ≥ ‖x‖∞} converges almost surely to 0 when M

tends to infinity (for any r). Let YM = I {‖Xir‖∞ ≥ M} ; since 0 ≤ XM ≤ YM , it is sufficient
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to prove that YM
a.s.−→ 0 or, equivalently, that P

(
sup
M≥l

I {‖Xir‖∞ ≥ M} > ε

)
−→ 0, when

l → ∞. Since sup
M≥l

I {‖Xir‖∞ ≥ M} ≤ I {‖Xir‖∞ ≥ l} , P

(
sup
M≥l

I {‖Xir‖∞ ≥ M} > ε

)
≤

P (I {‖Xir‖∞ ≥ l} > ε) = P (‖Xir‖∞ ≥ l) −→ 0, when l −→∞. Therefore, sup
‖x‖∞≥M

S
(j
n (x)

a.s.−→

0, when M →∞ and sup
‖x‖∞≥M

Sn,J(x)
a.s−→ 0, when M →∞.

(iv) S(j is an upper- semicontinuous function: if xn → x,

lim sup
n→∞

S(j(xn) = lim sup
n→∞

P (xn ∈ R(X1, ...Xj)) ≤ P

(
lim sup

n→∞
{xn ∈ R(X1, ...Xj)}

)
≤ P (x ∈ R(X1, ..., Xj)) = S(j(x).

SJ is also upper- semicontinuous:

lim sup
n→∞

SJ(xn) = lim sup
n→∞

J∑
j=2

S(j(xn) ≤
J∑

j=2

lim sup
n→∞

S(j(xn) ≤
J∑

j=2

S(j(x) = SJ(x).

To establish that SJ(x) is continuous under distributions P with continuous marginals, it is

enough to prove it for S
j)
n (x). Assume that xn converges to x. Since

{xn ∈ R(X1, ..., Xj)} ⊂ {x ∈ R(X1, ..., Xj)} ∪ {xn ∈ R(X1, ..., Xj) ∩ x /∈ R(X1, ..., Xj)} ,

it follows that

|P (xn ∈ R(X1, ..., Xj))− P (x ∈ R(X1,...,Xj))| ≤ P (xn ∈ R(X1, ..., Xj) ∩ x /∈ R(X1, ..., Xj)) +

+ P (xn /∈ R(X1, ..., Xj) ∩ x ∈ R(X1, ..., Xj)) .

Therefore,

∣∣S(j(xn)− S(j(x)
∣∣ = |P (xn ∈ R(X1, ..., Xj))− P (x ∈ R(X1, ..., Xj))|

≤ P (xn ∈ R(X1, ..., Xj), x /∈ R(X1, ..., Xj)) +

+P (xn /∈ R(X1, ..., Xj), x ∈ R(X1, ..., Xj)) ≤ 2P (An),

where An =
j
∪

i=1

d
∪

k=1
{min{x(k), xn(k)} ≤ Xi(k) ≤ max{x(k), xn(k)}} and, since the marginals

of P are absolutely continuous, P (An) converges to zero when xn → x.
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Proof of Proposition 1: S(j(x) is a U -statistic with kernel hj(x1, x2, ..., xj) = I{x ∈ R(x1, x2, ..., xj)}

(see, e.g., Serfling, 1980). We prove that the sum of U -statistics of orders {2, ..., J} is a U -

statistic of order J . Let HJ =
J∑

j=2

Hj)(x1, ..., xn) with

Hj)(x1, ..., xn) =

(
n

j

)−1 ∑
1≤i1<...<ij≤n

hj(xi1 , ..., xij). (10)

We have that

HJ =

(n
J)

(n
2)

∑
1≤i1<i2≤n

h2(xi1 , xi2) + ... +
(n

J)
(n

j)

∑
1≤i1<...<ij≤n

hj(xi1 , ..., xij) + ... +
∑

1≤i1<...<iJ≤n

hJ(xi1 , ..., xiJ )(
n
J

) ,

(11)

and, in general, the coefficient of the j-th term in HJ is
(n

J)
(n

j)
= j!(n−j)!

J !(n−J)!
. On the other hand,

consider the projection hpj : RJ → R given by hpj(x1, ..., xJ) = hj(x1, ..., xj).

The symmetrized version of hpj is h∗j(x1, ..., xJ) =

∑
∗

hpj(xσ(1),...,xσ(J))

J !
, where the sum is over

all permutations of indexes 1, ..., J . The function h∗j is a symmetric function defined on RJ .

It holds that

∑
1≤i1<i2<...<iJ≤n

h∗j(xi1 , ..., xiJ ) =

(
n−j
J−j

)
j!(J − j)!

∑
1≤i1<i2<...<ij≤n

hj(xi1 , ..., xij)

J !
(12)

and ∑
1≤i1<i2<...<ij≤n

hj(xi1 , ..., xij) =
J !(

n−j
J−j

)
j!(J − j)!

∑
1≤i1<i2<...<iJ≤n

h∗j(xi1 , ..., xiJ ). (13)

Plugging (13) in equation (11), we obtain

HJ =

∑
1≤i1<...<iJ≤n

h∗2(xi1 , ..., xiJ ) + ... +
∑

1≤i1<...<iJ≤n

hJ(xi1 , ..., xiJ )(
n
J

) .

Defining the symmetric kernel hdef : RJ → R as

hdef (x1, ..., xJ) = h∗2(x1, ..., xJ) + ... + h∗j(x1, ..., xJ) + ... + hJ(x1, ..., xJ),

HJ is a U -statistic of order J with kernel hdef ,

HJ(x1, ..., xn) =

∑
1≤i1<i2<...<iJ≤n

hdef (xi1 , ..., xiJ )(
n
J

) .
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The expected value of HJ is

EJ (HJ) =

∑
EJ

1≤i1<i2<...<iJ≤n

(
hdef (Xi1 , ..., XiJ )

)
(

n
J

) = EJ
(
hdef (X1, ..., XJ)

)
= EJ(h∗2(X1, ..., XJ)) + ... + EJ

(
h∗j(X1, ..., XJ)

)
+ ... + EJ (hJ(X1, ..., XJ))

and since the sample is identically distributed the expectation of a general term is

EJ
(
h∗j(X1, ..., XJ)

)
= EJ

(
hpj(X1, ..., XJ)

)
= EJ (hj(X1, ..., Xj)) = Ej (hj(X1, ..., Xj)) .

Then EJ (HJ) = E2(h2(X1, X2)) + ... + EJ(hJ(X1, ..., XJ)).

Proof of Proposition 2 : Assume that P is antipodally symmetric about zero (i.e., X and

−X are equally distributed). Let Xs = {X1, ..., Xn} be a random sample from P and let

m̂n,J(Xs) be the sample median based on Sn,J . Due to invariance under T (X) = AX + b,

where A is a diagonal and invertible matrix, it can be shown that m̂n,J(−Xs) = −m̂n,J(Xs),

where −Xs = −X1, ...,−Xn. Since X and −X are identically distributed, m̂n,J(−Xs) and

m̂n,J(Xs) are also identically distributed; hence, m̂n,J(Xs) and −m̂n,J(Xs) are identically

distributed and m̂n,J(X) is symmetric around zero.

Proof of Theorem 2: (i) By triangular inequality,

sup
x∈Rd

|Sn,J(x)− SJ(x)| ≤ sup
x∈Rd

∣∣∣∣∣
J∑

j=2

(
S(j

n (x)− S(j(x)
)∣∣∣∣∣ ≤

J∑
j=2

sup
x∈Rd

∣∣S(j
n (x)− S(j(x)

∣∣
and it is enough to show that

sup
x∈Rd

∣∣S(j
n (x)− S(j(x)

∣∣ a.s.−→ 0, when n →∞. (14)

Since S
(j
n (·) is a U -process, we can use the results in Arcones and Giné (1993) establishing that

if the family of functions F is VC with envelope G and PmG < ∞ then ‖Un
m − Pm‖F

a.s.−→ 0.

In this case F =
{
Rx : x ∈ Rd

}
is a VC class of functions (see Corollary 6.7 in Arcones and

Giné, 1993) and the envelope G is the function identically equal to one in its domain (Rd)j.

The second part follows by adapting Theorem 6.9 in Arcones and Giné (1993) to the band

depth SJ . (iii) follows as the second part of Theorem 5 in Liu (1990) since SJ(·) verifies that

theorem conditions.
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Proof of Proposition 3: We have that

S(j(xm) = P ( min
i=1,...,j

{Xm,i(qk)} ≤ xm(qk) ≤ max
i=1,...,j

{Xm,i(qk)} , k = 1, ...,m) =

= P

(
m
∩

k=1
{ min

i=1,...,j
{Xm,i(qk)} ≤ xm(qk) ≤ max

i=1,...,j
{Xm,i(qk)}}

)
.

Let Am =
m
∩

k=1
{ min

i=1,...,j
{Xm,i(qk)} ≤ xm(qk) ≤ max

i=1,...,j
{Xm,i(qk)}}. Thus Am+1 ⊂ Am for each

m and lim
m→∞

P (Am) = P (
∞
∩

m=1
Am). Hence,

lim
m→∞

S(j(xm) = P (
∞
∩

k=1
{ min

i=1,...,j
{Xi(qk)} ≤ x(qk) ≤ max

i=1,...,j
{Xi(qk)}})

= P

(
min

i=1,...,j
{Xi(t)} ≤ x(t) ≤ max

i=1,...,j
{Xi(t)} , t ∈ I

)
= S(j(x),

what implies that lim
m→∞

SJ(xm) = SJ(x).

Proof of Theorem 3: (i) follows from the definition. The proof of (ii) is analogous to the

finite-dimensional case. (iii) SJ is upper-semicontinuous (following the finite-dimensional

argument). For SJ continuity, we express it in terms of the rational numbers in I,

S(j(x) = P

(
min

i=1,...,j
{Xi(q)} ≤ x(q) ≤ max

i=1,...,j
{Xi(q)} , q ∈ Q ∩ I

)
.

For any sequence {xn} in C(I) such that xn

‖·‖∞−→ x,∣∣S(j(xn)− S(j(x)
∣∣ = |P (G(xn) ⊂ V (X1, ..., Xj))− P (G(x) ⊂ R(X1, ..., Xj))|

≤ P (G(xn) ⊂ V (X1, ..., Xj), G(x)  V (X1, ..., Xj)) +

+P (G(xn)  V (X1, ..., Xj), G(x) ⊂ V (X1, ..., Xj))

≤ 2P (An),

where

An =
j
∪

i=1
∪

q∈Q∩I
{min{x(q), xn(q)} ≤ Xi(q) ≤ max{x(q), xn(q)}} .

If the marginal distributions of P are absolutely continuous, then, for x ∈ C(I),

P

(
∪

q∈Q∩I
{X(q) = x(q)}

)
= 0.

Therefore, P (An) converges to zero when n tends to infinity, what implies that S(j is con-

tinuous and this is inherited by SJ .
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Proof of Theorem 4: Without loss of generality, consider I = [0, 1]. We have that

sup
x∈E

|Sn,J(x)− SJ(x)| ≤ sup
x∈E, ‖x‖∞<M

|Sn,J(x)− SJ(x)|+ sup
x∈E, ‖x‖∞≥M

|Sn,J(x)− SJ(x)| .

Due to (ii) in Theorem 3, the second term converges to zero when M tends to infinity.

Therefore, it is sufficient to prove that for M large enough, the first term converges to

zero when n → ∞. By Ascoli-Arzela’s Theorem (see, e.g., Pollard, 1984), the closure EM

of EM = {x ∈ E : ‖x‖∞ < M} is compact and, hence, totally bounded. Then, for every

ε > 0, there exists a finite set {x1, x2, ..., xNε} of functions such that EM ⊆
∞
∪

m=1
B(xm, ε). By

Theorem 3. (iii), to establish that sup
x∈EM

|Sn,J(x)− SJ(x)| a.s.−→ 0, when n →∞, it is enough

to prove max
x∈{xm}Nε

m=1

|Sn,J(x)− SJ(x)| a.s.−→ 0, when n →∞. But, we have that

P

{
max

x∈{xm}Nε
m=1

|Sn,J(x)− SJ(x)| ≥ ε

}
≤ Nε max

x∈{xm}Nε
m=1

P {|Sn,J(x)− SJ(x)| ≥ ε}

≤ Nε max
x∈{xm}Nε

m=1

E
[
|Sn,J(x)− SJ(x)|4

]
ε4

= O(n−2),

and Borel-Cantelli’s Lemma provides the result in (i). To prove (ii), we use that mn
a.s.−→ m

if, and only if, P

(
sup
n≥l

‖mn −m‖∞ ≥ ε

)
−→
l→∞

0. (E, ‖·‖∞) is a metric space and SJ(·) is

an upper-semicontinuous function in E and verifies that sup
‖x‖∞≥M,x∈E

SJ(x) −→
M→∞

0; thus, the

proof is analogous to that of Theorem 2 (ii).
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