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Resumen

En esta tesis se estudia el desempeño de procedimientos que tienen por objetivo la aproximación

de densidades de predicción y sus respectivos intervalos y regiones de confianza en series de

tiempos multivariantes. En concreto, desarrollamos procedimientos bootstrap para predecir los

modelos VAR y DCC, utilizados a menudo en la modelización y predicción de series temporales

macroeconómicas y financieras. La metodologı́a bootstrap analizada en esta tesis es atractiva de-

bido a que no necesita supuestos distribucionales y es apropiada para incorporar la incertidumbre

de los parámetros y del modelo.

En el Capı́tulo 1 se describen los modelos VAR y DCC y el enfoque tradicional para construir

densidades de predicción con los mismos. Los problemas que surgen con este enfoque nos mo-

tiva a considerar alternativas, algunas de ellas basadas en bootstrapping. Para entonces será un

momento propicio para presentar brevemente la metodologı́a bootstrap en el marco de series de

tiempo ası́ como su aplicación en problemas de predicción.

En el Capı́tulo 2 se establece la validez asintótica y se analiza el desempeño en muestras

pequeñas de un procedimiento bootstrap propuesto para construir densidades de predicción mul-

tivariante en el contexto de modelos VAR no Gausianos. Este procedimiento bootstrap no necesita

de la representación backward usada por las alternativas existentes en la literatura y, por lo tanto,

se puede utilizar para obtener densidades de predicción multivariante en, por ejemplo, modelos

VARMA o VAR-GARCH. En el contexto de un VAR bivariado y estacionario, desarrollamos varios

experimentos de Monte Carlo con el objetivo de estudiar sus propiedades en muestras pequeñas,

obteniendo que las mismas son comparables a las de las alternativas basadas en la representación
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backward. Por tanto, nada se pierde cuando se abandonan los procedimientos bootstrap que ha-

cen uso the esta última. Este resultado también lo sugiere una de nuestras aplicaciones empı́ricas

en la que construı́mos densidades de predicción conjunta para la inflación, el desempleo y el crec-

imiento del producto trimestrales de EEUU y sus correspondientes regiones de predicción con sus

coberturas empı́ricas, éstas últimas obtanidas en base a un esquema rolling window. Por último,

reproducimos un ejemplo de libro que utiliza la metodologı́a de Gaussiana para predecir la in-

versión, el consumo y los ingresos en Alemania Occidental para después añadir los intervalos de

predicción bootstrap con fines de comparación.

El modelo, los parámetros y la distribución del error rara vez son conocidos con exactitud

por el usuario y, por tanto, la incertidumbre causada por la implementación del modelo estimado

debe tenerse en cuenta la hora de hacer predicciones. Distintos métodos bootstrap se han de-

sarrollado con éxito para hacer frente a las diferentes fuentes de incertidumbre en el contexto de

los modelos VAR. Por esta razón, en el Capı́tulo 3 se compara el desempeño de las regiones de

predicción construı́das en base a la metodologı́a tradicional Gaussiana y diversas variantes del

procedimiento bootstrap que incorporan sucesivamente la incertidumbre en la distribución del

error, del parámetro, la corrección por sesgo y la incertidumbre del modelo. Nuestro experimento

de Monte Carlo sugiere que la incertidumbre de los parámetros juega un papel prepondetante

cuando se predicen modelos VAR altamente persistentes.

En cuanto a las predicciones de los modelos DCC, hay dos problemas que merecen atención.

En primer lugar, la no Gaussianidad de los rendimientos requiere de formas alternativas para

aproximar sus densidades de predicción. En segundo lugar, sólo se pueden obtener predicciones

puntuales de volatilidades, covarianzas y correlaciones en cada momento del tiempo. Por tanto,

en el Capı́tulo 4 se presenta un procedimiento bootstrap para predecir los rendimientos, volatili-

dades, covarianzas y correlaciones en los modelos DCC. También llevamos a cabo simulaciones de

Monte Carlo para evaluar en muestras pequeñas las propiedades del procedimiento propuesto.

Los resultados muestran un buen desempeño con diferentes tamaños de muestras y distribu-

ciones del error. Finalmente, empleamos el algoritmo bootstrap en dos sistemas de rendimien-
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tos financieros. En primer lugar, construı́mos predicciones fuera de la muestra de rendimientos,

volatilidades, covarianzas y correlaciones para un sistema de rendimientos de tipos de cambio

diarios, Euro, Yen japonés y Dólar australiano respecto el Dólar de EE.UU. Asimismo, obtuvi-

mos intervalos de predicción bootstrap, dentro de la muestra, de la correlación condicional de los

rendimientos obtenidos con los ı́ndices de mercados S&P500 y NASDAQ. Ambas aplicaciones a

datos reales sugieren que nuestro procedimiento brinda información adicional que enriquece la

predicción de modelos DCC.

Por último, en el Capı́tulo 5 se concluye y presentan las lı́neas de investigación que quedan

abiertas.
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Abstract

In this thesis we study the performance of bootstrap procedures to approximate forecast densities

and their intervals and regions for multivariate time series data. In particular, we develop boot-

strap procedures for VAR and DCC models which are often implemented when modeling and

forecasting macroeconomic and financial time series. The bootstrap methodology considered in

this thesis is attractive since it is free of distributional assumptions and well suited to incorporate

the parameter uncertainty and can be even designed to deal with the model uncertainty.

Chapter 1 introduces the VAR and DCC models and the standard approach to construct fore-

cast densities within them. The problems that arise when forecasting these models push us to

consider alternatives, some of them based on bootstrapping. By then, it will be a propitious time

to briefly introduce the bootstrap methodology for time dependent data and review its imple-

mentation to forecast problems.

Chapter 2 establishes the asymptotic validity and analyses the finite sample performance of

a simple bootstrap procedure to construct multi-step multivariate forecast densities in the con-

text of non-Gaussian unrestricted VAR models. This bootstrap procedure avoids the backward

representation used by existing alternatives and, consequently, can be implemented to obtain

multivariate forecast densities in, for example, VARMA or VAR-GARCH models. In the con-

text of bivariate stationary VAR models, we carry out several Monte Carlo experiments to study

its finite sample properties, finding that these are comparable to those of alternatives based on

the backward representation. Hence we remark that nothing is lost when we abandon the more

complicated backward representation. This result is also suggested by one of the empirical appli-
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cations, in which we construct joint forecast densities of US quarterly inflation, unemployment

and GDP growth and the corresponding forecast regions with their empirical coverages obtained

using a rolling window scheme. Finally, we reproduce a textbook example that applies the stan-

dard Gaussian methodology to forecast West German investment, consumption and income and

then, for comparison purposes, we include the bootstrap forecast intervals.

The model, the parameters and the error distribution are rarely known without uncertainty

by the forecaster and, thus, the sampling variability caused by the use of the estimated model

needs to be taken into account. Bootstrap methods are successfully designed to deal with differ-

ent sources of uncertainties in the context of forecasting VAR models. For this reason, Chapter

3 compares the forecast performance of the regions constructed using the traditional Gaussian

methodology and several variants of the bootstrap procedure that successively incorporate error

distribution, parameter uncertainty, bias correction and lag order uncertainty. Our Monte Carlo

study suggests that the parameter uncertainty plays a prominent role when forecasting highly

persistent VAR models.

Regarding DCC forecast, there are two problem that deserve attention. First, the non-Gaussianity

of returns demands alternative ways of approximating its forecast density. Second, only point

forecasts of volatilities, covariances and correlations can be obtained at each moment of time.

These issues encouraged us to developed bootstrap procedure to forecast returns, volatilities, co-

variances and correlations in corrected DCC models, which is described in Chapter 4. We conduct

Monte Carlo simulations in order to evaluate its finite sample properties, which show a rather

good performance of the bootstrap procedure under different sample sizes and error distribu-

tions. We apply the proposed bootstrap algorithm to two systems of returns. First, we obtain

out-of-sample forecast of returns, volatilities, covariances and correlations in the context of a sys-

tem of daily exchange rates returns of the Euro, Japanese Yen and Australian Dollar against the

US Dollar. Second, we construct within sample forecast intervals of the conditional correlation

of S&P500 and NASDAQ returns. Both empirical applications point out that our bootstrap algo-

rithm can provide additional information that enriches the DCC forecast approach.
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Finally, Chapter 5 concludes and presents the research lines that are still open.
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Chapter 1

Forecasting multivariate time series

1.1 Introduction

The main topic of this thesis is forecasting multivariate densities in systems of economics and fi-

nancial variables. Increasingly, analysts are interested in assessing the uncertainty around a point

forecasts by obtaining the full probability distribution. Furthermore, multivariate forecast densi-

ties capture the dynamic interrelationships among variables in the system. For example, nowa-

days it is common practice by Central Banks to construct forecast densities of systems containing

both policy goal and instruments variables; see, for instance, the Bank of England inflation reports

which focus on forecast densities of inflation, gross domestic product and interest rates. Likewise,

risk managers rely on forecast densities of returns portfolios and since the simultaneous risk is

tied to certain features of the joint distribution; see, for instance, Prékopa (2012) who highlights

the relevance of obtaining multivariate forecast densities of portfolios for the implementation of

multivariate Value-at-Risk. These examples, although simple, are eloquent of the increasing im-

portance of multivariate forecast densities for many applications in economics and finance; see

Tay and Wallis (2000) and Corradi and Swanson (2006) for complete surveys of forecast densities

with their applications.

For multivariate time series, one essential tool to forecast macroeconomic and financial series
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FORECASTING MULTIVARIATE TIME SERIES 2

are Vector Autoregressive (VAR) models; see Stock and Watson (2001) who highlight the ability of

VAR models specially in data description and forecasting tasks. Traditionally, the forecast density

of future values of the variables in the system for a given horizon is taken to be Gaussian with

mean and variance equal to the point forecast and Mean Square Forecast Error, respectively. Of

course, these two moments depend on unknown parameters which are substituted, in practice,

by their estimates. For forecast purposes, this is particularly relevant since the sampling vari-

ability can be understated if the parameter uncertainty is ignored, especially when the system is

large relative to the sample size. Furthermore, the appropriateness of the Gaussianity assumption

is often questioned when forecasting macroeconomic and financial series; see, for instance, Lam

and Veall (2002) who illustrate how the standard formula behaves when the errors depart from

Gaussianity, noticing a bad performance that does not improve even in large samples. Conse-

quently, the Gaussian forecast density and its corresponding forecast regions could be misleading

to describe what analysts could expect in the future. Furthermore, the true model is usually un-

known by analysts who rely on data to approximate it. The question then arises as to whether

consider the approximated model as it were the true one and proceed to forecast or, alternatively,

to incorporate the variability due to model uncertainty into the forecast method. Moreover, the

parameters estimates may be subject to small sample biases, especially in the case of highly per-

sistent autoregressive models, an issue that should not be ignored since it may lead to a very poor

forecast performance of large macroeconomic systems; see Tjøstheim and Paulsen (1983).

In the context of financial time series, it is of interest to forecast conditional means but also con-

ditional variances and covariances. One of the most popular models implemented with this pur-

pose are Multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH)

models, which are crucial for financial market participants when dealing with, for example, risk

management, derivative pricing models, hedging strategies or portfolio allocation models. For

many MGARCH models, if the errors distribution is known, then the distribution of returns for

the next time period is fully characterized. However, due to the non-linearity of returns, it is im-

possible to compute analytically the density forecast when we project more further into the future.
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On the other hand, by using the standard approach, only point forecasts of conditional volatili-

ties, covariances and correlations can be provided, so that efforts need to be directed to alternative

methods of approximating their uncertainties. This is particularly important if users demand con-

ditional correlations because, unlike the case with the conditional variances and covariances, their

point forecasts are biased; see Engle (2009). Despite these issues regarding forecasts of MGARCH

models, it is striking that there have been no attempts in literature to implement alternative meth-

ods to approximate the density forecasts of non-Gaussian returns and its second moments.

Several authors propose obtaining forecast densities using Bayesian procedures which are

attractive because they not only generate directly forecast densities that incorporate the parameter

uncertainty, but can also be designed to reduce this uncertainty; see, for instance, Koop (2013) and

Wright (2013) just to mention a few recent references. However, Bayesian forecast densities also

rely on the assumption of Gaussian errors which, as mentioned above, can be violated when

dealing with real macroeconomic and financial systems. Alternatively, in the last decades there

has been an increasing interest in procedures that allow approximating the conditional probability

distribution of a multivariate system at a given future period without imposing any assumption

on the distribution of the errors while simultaneously incorporating the parameter uncertainty.

Some of them are based on bootstrap techniques.

The bootstrap methodology was introduced by Efron (1979) who proposed it as an alternative

to assess the statistical accuracy or to approximate the sampling distribution of an estimator in

the case of independent and identically distributed (i.i.d.) data. Thenceforth, taking advantage of

the the fast computers era, the bootstrap has found scope in many different statistical problems;

see Efron and Tibshirani (1993) for a broad review about the bootstrap and its scope. In partic-

ular, Freedman (1981) developed the first application of bootstrap to regression analysis, which

facilitated its posterior use for dependent data, either for estimation or forecast problems. Boot-

strap procedures have several advantages in the context of forecasting. First, they account for

possible non-Normality of the errors, providing yet asymptotically valid results for the sampling

distribution of future values of the series. Second, bootstrap forecast intervals are well suited
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to incorporate the sampling variability due to parameters uncertainty. In addition, they can be

designed to tackle small-sample biases and the sampling variability due to model uncertainty.

Finally, bootstrap confidence intervals have shown to give valid results in those cases in which

Normal forecast intervals only serve as rough approximations, due to the lack of justification,

such as GARCH models.

In multivariate VAR setting, bootstrap procedures have been implemented to obtain forecast

intervals for a single variable or even forecast path or regions for a set of variables; see Kim (1999,

2001, 2004) and Grigoletto (2005), Staszewska-Bystrova (2011). These proposals are based on the

backward representation. Pascual et al. (2004) show, for univariate ARIMA models, that this back-

ward representation is not needed and only adds computational complexity. Furthermore, when

using the backward representation, the asymptotic validity of the bootstrap can only be proved

assuming Gaussian errors. In this thesis we extend the bootstrap procure of Pascual et al. (2004)

to multivariate VAR(p) models to obtain the forecast densities and their corresponding regions.

The main advantages of this extension is that it does not rely on the backward representation,

thus avoiding its high computational costs, and that its asymptotic validity is not grounding on

the Gaussianity assumption. Moreover, it can deal with models that do not have a backward rep-

resentation such as VAR models with MGARCH errors. In particular, the bootstrap procedure is

adapted to forecast returns, volatilities, covariances and correlations in the context of Dynamic

Conditional Correlation models.

The rest of this chapter is organized as follows. In Section 2, we describe the VAR(p) model and

the issue of forecasting within this models. In Section 3, we introduce the Dynamic Conditional

Correlation (DCC) model and how it can be implemented to forecast returns and correlations.

Section 4 discusses the idea of bootstrapping time dependent data and its implementation to

forecast problems. Finally, Section 5 summaries the objectives of this thesis.
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1.2 Forecasting with VAR models

In this section we briefly describe the forecast problem in a VAR framework.

1.2.1 Description of VAR models

Consider a multivariate discrete stochastic process yt of dimension N and assume it has the fol-

lowing VAR(p) representation

yt = µ+ Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + εt, t = ...,−1, 0, 1, 2... , (1.1)

where Φj are N ×N matrices of coefficients, µ is a N × 1 vector containing the intercept terms, εt

is a vector of i.i.d innovations such that E(εt) = 0, E(εtε
′
t) = Σε is a N × N symmetric positive

definite matrix with finite elements, and E(εtε
′
s) = 0 for all t 6= s. The model is stationary so that

all the roots of the characteristic equation det(IN − Φ1L − Φ2L
2 − ... − ΦpL

p) = 0 lie outside the

unit circle, where IN is a N × N identity matrix and det(·) denotes the determinant of a matrix.

Stationary assures that the VAR process has the following moving average representation (MA)

yt =
∞∑
j=0

Πjεt−j (1.2)

where Π0 = IN and Πj =
∑j

i=1 Πj−iΦi for i = 1, 2, ....

Let yT+h for h > 0 be a future value of the process and {y1, ..., yT } the information set available

at time T . Given {y1, ..., yT }, the future of the process, yT+h, is fully characterized by its condi-

tional multivariate distribution function FT (·). When focusing on a point forecast, if the criteria

is to minimize the Mean Square Forecast Error (MSFE) then the optimal forecast turns to be the

conditional expectation at T , which is given by

yT+h|T = ET (yT+h) = µ+ Φ1yT+h−1|T + Φ2yT+h−2|T + ...+ Φpyt+h−p|T (1.3)
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where yT+j|T = yT+j for j ≤ 0.1 Note that, if the errors εt are not independent but just uncorre-

lated, then in general ET (εT+h) 6= 0 and thus the expression in (1.3) is not the conditional mean,

even though it is still the best linear forecast. Henceforth, expression (1.3) will be referred as the

optimal predictor irrespective of the properties of the white noise εt; see Lütkepohl (1991). The

corresponding MSFE is given by

Σy(h) = ET [(yT+h − yT+h|T )(yT+h − yT+h|T )′] =
h−1∑
j=0

ΠjΣεΠ
′
j . (1.4)

If εt is further assumed to be Gaussian, then the h-steps-ahead forecast error

εT+h = yT+h − yT+h|T =
h−1∑
j=0

ΠjεT+h−j (1.5)

is also Gaussian with zero mean and variance Σy(h). Consequently,

yT+h ∼ N(yT+h|T ,Σy(h)). (1.6)

This Gaussian distribution can be used to construct h-steps- ahead forecast regions with a pre-

determined probability content. However, in practice, it is not possible to obtain the forecast

densities in (1.6) given that the autoregressive order p and the model parameters are unknown.

Therefore, when dealing with real data, one substitutes p by the selected order, p̂, and the param-

eters by estimates. In this thesis, we consider the AIC to choose p and the LS estimator of the VAR

parameters. As a result, the estimated h-steps-ahead forecast of yT+h is given by

ŷT+h|T = µ̂+

p̂∑
j=1

Φ̂jyT+h−j|T , (1.7)

where ŷT+j|T = yT+j for j ≤ 0. The standard textbook approach is to construct the forecast

1The subscript in the expectation operator denotes condition on the data set available, {y1, ..., yT }.
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density assuming Gaussian errors as follows

yT+h ∼ N(ŷT+h|T , Σ̂y(h)). (1.8)

where Σ̂y(h) is obtained as (2.3) substituting the matrices Πj obtained from the estimated model.

The Gaussian forecast densities can be inadequate to construct forecast regions for several rea-

sons. First, it is well known that the LS estimator is biased; see Tjøstheim and Paulsen (1983).

Therefore, this bias affects both ŷT+h|T and Σ̂y(h). The biased parameters can be corrected us-

ing, for example, the formula proposed by Pope (1990). Furthermore, Σ̂y(h) is not the true MSFE

of ŷT+h|T because it does not incorporate the uncertainty associated with the selection of p̂ and

with the estimation of the parameters. Finally, the Gaussianity assumption is often violated in

macroeconomic and financial systems.

The sampling variability due to the LS estimator can be incorporated by following the argu-

ments by Lütkepohl (1991). First, assume that the estimation is done using a realization of the

multivariate process independent of that used to forecast and with the same stochastic structure.

Then it is possible to incorporate the parameter uncertainty by approximating the sample dis-

tribution of the LS estimator by its asymptotic distribution. In this case, the MSFE matrix with

asymptotic parameter uncertainty is given by

ΣA
y (h) = Σy(h) +

1

T
Ω(h) (1.9)

where Ω(h) = E
[
∂yT+h

∂β′ Σβ
∂y′T+h

∂β

]
with β being the vector of unknown parameters in (1.1); see

Lütkepohl (1991). Note that, as this correction implies just an additional term in the MSFE matrix,

the Gaussianity of yT+h still holds if the errors are assumed to be Gaussian.

For the time being, it is worth noting that the traditional approach to forecast depends cru-

cially on the Gaussianity of the errors. However, in fields such as macroeconomics and finance,

several authors have found evidence of departure from Gaussianity; see, for instance, Kilian

(1998b) and Harvey and Newbold (2003). Therefore, the Gaussianity assumption of yT+h may
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be misleading and give a poor depiction of the future density. Moreover, Lütkepohl (1991)’s for-

mula seems to understate the sampling variability due to parameter uncertainty in finite sample,

especially in highly persistent models; see Kim (1999). For this reason, in this thesis we consider

the implementation of resampling methods as the bootstrap since it is completely free of distribu-

tional assumptions and well suited to deal with the parameter uncertainty in small samples.

Next, we discuss the bias-correction formula and the way of selecting the lag order imple-

mented in this thesis.

1.2.2 Bias-correction

The LS estimator is biased in small sample, specially when the VAR system is highly persistent;

see, for instance, Tjøstheim and Paulsen (1983), Kilian (1998c), Kim (2004) and Engsted and Ped-

ersen (2011), among others. Of course, forecast densities constructed using parameters estimates

can be inadequate to properly represent the future projection of the system if they are distorted

due to bias. Furthermore, parameter bias can induce a double bias to bootstrap algorithms since

the the bootstrap estimates of the parameters may also be subject to bias; see Clements and Kim

(2007). For these reasons, it might be desirable to introduce a method for small sample bias correc-

tion. There are many alternative to incorporate bias-correction in a VAR setting. For example, one

may used bootstrap methods as that proposed by Kilian (1998c) or an analytic formula as those

proposed by Yamamoto and Kunitomo (1984) or Pope (1990). Here we describe the analytic for-

mula proposed by Pope (1990) because there is evidence that bootstrap based bias-correction do

not provide any advantage over the analytic formulas and, that the expression due to Yamamoto

and Kunitomo (1984) is equivalent to Pope’s one; see for details Engsted and Pedersen (2011).

To describe Pope’s analytic formula, consider the VAR(p) model in (1.1) which can alter-

natively be expressed as a VAR(1) without intercept, (Yt − µY ) = Φ (Yt−1 − µY ) + εt, where
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Yt = [y′t, ..., y
′
t−p+1]′, µY =

[
µ′y, ..., µ

′
y

]′, εt = [εt, 0, ..., 0]′ are Np× 1 vectors and

Φ =

 Φ∗ Φp

IN(p−1) 0


with µy = (IN − Φ1 − · · · − Φp)

−1µ being a N × 1 vector of unconditional means, 0 being a

N(p − 1) × p matrix of zeros and Φ∗ = [Φ1, ...,Φp−1] being a N × N(p − 1) matrix. Pope (1990)

shows that the small-sample bias of the LS estimator of the autoregressive parameters has a closed

form expression given by

ΩΦ = E(Φ)− Φ =
−bΦ
T

+O(T−3/2) (1.10)

where

bΦ = J [(I − Φ′)−1 + Φ′(I − Φ′2)−1 +
∑

λ∈Spec(Φ)

λ(I − λΦ′)−1]Γ(0)−1,

Γ(0) = E [(Yt − µy)(Yt − µy)′], J = E(εtε
′
t) and Spec(Φ) is the set of eigenvalues of the matrix Φ.

This formula for the bias can be implemented to obtain bias-corrected parameters, as follows

Φc = Φ− ΩΦ. (1.11)

The analytic formula in (1.10) has some features that are worth mentioning. First, note that it only

provides a close expression for the bias in the autoregressive matrices, notwithstanding bias-

correction of the intercept can be obtained by (IN −Φc
1µy − ...−Φc

p)µy. Second, the error in (1.10)

goes to zero at a rate T−3/2, so it is negligible even for moderate sample sizes. Third, since the bias

formula depends on unknown parameters, in practice they are replaced by their LS estimates and

higher order terms are ignored. The last issue to bring out is that the bias correction can push the

corrected parameters into the nonstationary region and, thus, an additional adjustment is needed

in order to prevent this from happening. One method widely implemented for this purpose is

that proposed by Kilian (1998a,c).
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1.2.3 Lag order estimation

Up to now, we have assumed that the lag order p is known. However, in practice when dealing

with real data, the analysts is unlikely to know the true lag order p and will estimate it by using

an Information Criteria (IC). These IC select the lag order that minimizes the following expression

IC(p̂) = ln (|Σε(p̂)|) + PT p̂ 0 ≤ p̂ ≤ pu , (1.12)

where Σε(p̂) =
∑T

t=p̂+1 εt(p̂)εt(p̂)
′/(T ) with

εt(p̂) = yt − µ− Φ1yt−1 − ...− Φp̂yt−p̂.

PT is a function that depends on N and T , and playing the role of penalizing large p̂, and pu is the

maximum lag order. The Aikaike (AIC), Hannan-Quinn (HQC) and Schwarz (SIC) differ in the

expression given to PT . The AIC considers it equals to 2N2/T , HQC to 2N2ln[ln(T )]/T and SIC

to N2ln(T )/T ; see Lütkepohl (1991) for details.

HQC and SIC are strongly consistent while AIC tends to overestimate the true lag order

asymptotically; see Lütkepohl (1991). However, Kilian (1998a) finds that, when the sample size is

small or moderate, HQC and SIC tend to underestimate the true lag order more frequently than

the AIC. With the purpose of checking this fact, we simulate 1000 series for a stationary VAR(4)

with Gaussian errors and T = 50 and T = 300. 2 Then, for each of the simulated series, we select

the lag order using the HQC, SIC and AIC with 0 ≤ p̂ ≤ 10. Figure 1.1, which plots the relative

frequency of estimated lag orders, shows that, when the sample size is small, HQC and SIC select

more frequently lag orders below 4 than AIC. On the other hand, when the sample size is large, all

the criteria perform reasonable well, though AIC is more likely to choose a lag order greater than

4, with a relative frequency of about 0.10. As regards forecasting, the lag order underestimation

may be more harmful than its overestimation and, consequently, AIC shows up to be preferable;

2Details about this VAR(4) model can be found in the Appendix A, model (a).
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see, for example, Müller and Stock (2011). Furthermore, Burnham and Anderson (2004) point out

that AIC works better in those cases in which there is not a “true” model.

Beyond the procedure used to estimate the lag order, for our purpose is crucial to recognize

that most of the approaches to forecast VAR models are conditioned on the estimated lag order

which is treated as it were the true unknown lag order. As a result, these forecasting approaches

do not tackle the variability that can be attributed to the model uncertainty. In contrast, in this

thesis we apply bootstrap algorithm to incorporate the lag order variability.

(a) T = 50 (b) T = 300

Figure 1.1: Relative frequency (in percent) of estimated lag order using AIC, HQC and SIC and
0 ≤ p̂ ≤ 10, based on 1000 replicates of a stationary VAR(4) model with Gaussian errors and
samples sizes T = 50 and 300.

1.3 Forecasting with DCC models

MGARCH models are designed to model the second order moments of multivariate time series

and, consequently, they play an important role in, for example, asset pricing, risk management

and portfolio allocation. One of the most popular MGARCH is the DCC model. In this section,

we briefly describe the DCC and how it can be implemented to forecast returns and correlations.
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1.3.1 Description of DCC models

We consider a vector of returns yt which is given by

yt = H
1/2
t at (1.13)

where yt is a N × 1 vector , at is a N × 1 independent white noise vector with identity covariance

matrix, Ht is a N ×N positive definite conditional covariance matrix.

Many MGARCH models have been proposed in the literature with different specifications of

the conditional covariance matrix in (1.13). Some of them focus directly on the covariance matrix

as, for example, the Diagonal VEC of Bollerslev et al. (1988) or the BEKK of Engle and Kroner

(1995), while others are based on the decomposition of the conditional covariance matrix into

conditional standard deviations and dynamic conditional correlations as, for example, the Con-

stant Conditional Correlation (CCC) model of Bollerslev (1990) and DCC model of Engle (2002);

see Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009) for comprehensive surveys on

these parametric MGARCH models and their extensions. Among these alternative parametric

specification of the covariance matrix, the most-widely implemented in applied research is the

DCC model.

The DCC model makes use of the following decomposition of the covariance matrix

Ht = DtRtDt (1.14)

where Dt = [σi,t], i = 1, ...N , is a N ×N diagonal matrix containing the univariate GARCH-type

conditional standard deviations of each of the variables in yt and Rt = [ρij,t], i, j = 1, ...N , is the

N × N matrix of conditional correlations. On the other hand, in its simplest scalar version, the

DCC model assumes that the correlation matrix Rt in the system evolve over time in a fashion

similar to that of univariate GARCH conditional variances, according to the following dynamic
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process

Rt = dg(Qt)
− 1

2Qtdg(Qt)
− 1

2 (1.15)

where dg(Qt) gives a diagonal matrix with the diagonal elements of Qt. In the scalar DCC model,

Qt is given by

Qt = (1− α− β)S + αεt−1ε
′
t−1 + βQt−1 (1.16)

where S is a N ×N matrix of constants, εt = D−1
t yt are the standardized errors and α and β are

scalars. Positiveness of Qt and Rt is guaranteed if S is positive definite together with α, β > 0

and α + β < 1; see Ding and Engle (2001). Note that the scalar DCC model in (1.16) restricts

the dynamics of all the correlations to be governed by the same parameters. Furthermore, as

it happens with the conditional variances, the conditional correlations are observable one-step-

ahead.

DCC models own their popularity to the fact that they can be easily estimated by a two-steps

target correlation procedure proposed by Engle and Sheppard (2001) and Engle (2002), allowing

their implementation to estimate the volatilities and correlations of very large systems of financial

returns as those often encountered in portfolio management problems. However, as pointed out

by, for example, Caporin and McAleer (2012), the basic scalar DCC model has some pitfalls. One

has to do with the estimator proposed by Engle and Sheppard (2001) and Engle (2002) which is

not consistent; see Caporin and McAleer (2012) and Aielli (2013). Nevertheless, the correlation

driving process in the DCC model can be reformulated in order to assure a consistent estimator,

giving rise to the corrected DCC (cDCC) model; see Aielli (2013). Moreover, the basic DCC model

has been criticized because it does not deal with many empirical features usually observed in

financial returns. For this reason, it has been extended to consider asset-specific features in the

correlation dynamics; see, for instance, Cappiello et al. (2006), Billio et al. (2006) and Hafner and

Franses (2009). Also, Cappiello et al. (2006) and Audrino and Trojani (2011) propose extensions

to account for asymmetry in correlations which often react more abruptly to joint bad news than

to good ones and Nakatani and Teräsvirta (2009) and Kasch and Caporin (2012) incorporate feed-
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back among volatilities and between volatilities and correlations. Finally, focusing on the variance

side, added flexibility has recently been proposed by Aielli and Caporin (in press).

Given the parameters, the DCC model could be used to forecast correlations. As the correla-

tion driving process is non-linear, (1.16) cannot be solved forward to construct exact forecasts. For

this reason, Engle and Sheppard (2001) assume that that ET [εt+hε
′
t+h] ≈ ET [Qt+h], in which case

the following forecast of RT+h is obtained

RT+h|T = (1− α− β)S

h−2∑
j=0

(α+ β)j + (α+ β)h−1RT+1|T , (1.17)

where RT+1|T = dg(QT+1|T )
1
2QT+1|Tdg(QT+1|T )

1
2 with QT+1|T = (1 − α − β)S + αεT ε

′
T + βQT .

Alternatively, one can implement the cDCC for which the h-steps-ahead correlation process can

be solved forward.

For the purposes of this thesis several aspects of the DCC forecasts deserve consideration.

First, it is widely recognized that returns distribution show fat-tails. For this reason, using a

Gaussian distribution to approximate the conditional future distribution of returns might be a

poor depiction of their uncertainty, even if at were truly Gaussian. To illustrate this issue, we

consider a bivariate DCC with stationary GARCH(1,1) conditional variances, correlation parame-

ters (α = 0.10, β = 0.88), an unconditional correlation of 0.5 and Gaussian errors distribution. We

simulate a series of size 1020, use T = 1000 and keep 20 as out-of-sample realizations. In panel

(a) and (b) of Figure 1.2 we plot the h-steps-ahead point forecast of ith return together their corre-

sponding 95% Gaussian forecast intervals. It seems that the 95% Gaussian forecast intervals fail

to capture the out-of-sample realization more than we might expect. Second, note that, given the

model parameters, equation (1.17) provides only point forecasts of correlations but it does not pro-

vide any hint about the uncertainty around them. As we mentioned before, the correlation matrix

is observable one-step-ahead and thus it contains only parameter uncertainty which is usually

omitted. Third, in addition to the parameter uncertainty, when the forecast horizon exceeds one,

forecasts of correlations omit the the error uncertainty. The same arguments apply to the condi-
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(a) y1,T+1 (b) y2,T+2

(c) σ2
1,T+h (d) σ2

2,T+h

(e) γ12,T+h (f) ρ12,T+h

Figure 1.2: h-steps-ahead forecasts (discontinuous balck lines) of (a)-(b) returns, yi,T+h, (c)-(d)
conditional variances, σ2

i,T+h, (e) conditional covariance, γ12,T+h, and (f) conditional correlation,
ρ12,T+h, for a simulated series from a bivariate DCC model with T = 1000, Gaussian errors and
unconditional correlation of 0.5, for h = 1, ..., 20, together with out-of-sample true realization
(discontinuous grey lines). Panels (a)-(b) show the 95% Gaussian forecast intervals (continuous
balck lines).
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tional variances and covariances. Middle of Figure 1.2 plot h-steps- ahead point forecasts of σ2
i,T+h

for i, j = 1, 2, i 6= j and h = 1, 2, ...20, while lower panels plot γ12,T+h = σ1,T+hσ2,T+hρ12,T+h and

ρ12,T+h, for h = 1, 2, ...20. We observe only point forecasts of conditional variances, covariances

and correlations and no measure of uncertainty around them.

In any case, the parameter variability needs to be incorporated into DCC forecasts as it might

be large; see, for instance, Aielli (2013). Moreover, practitioners are not interested only in point

forecasts but also in assessing the uncertainty around them, a problem that is unsolved when

forecasting conditional variances, covariances and correlations with DCC models, in particular,

or any other MGARCH model, in general.

1.4 A short review of bootstrap methods for time series

The original idea of bootstrap was introduced by Efron (1979) who was concerned about obtain-

ing the standard error of an estimator or even its sampling distribution in the context of i.i.d.

data. Generally speaking, the bootstrap can be considered resampling method in which no para-

metric assumptions are made about the underlying population from where the random sample

is drawn. Instead, the random sample is used as an estimator of the population; see Efron and

Tibshirani (1993). Of course, in the case of time series data, resampling directly from the time

series YT = (y1, y2, ..., yT ) is not a good choice because the random sampling scheme destroys

the underlying dependence in the data. Consequently, the statistics obtained from samples with

replacement from YT turn out to be inconsistent; see Efron and Tibshirani (1993) and Cao (1999),

among others. However, two bootstrap approaches are proposed to preserve the time dependence

between observations in the bootstrap samples; see Berkowitz and Kilian (2000) for a review of

bootstrap methodology in time series.

If no parametric model is available or it is inadvisable to apply it, then we can implement

bootstrap methods thought to generate replicates that mimic the time dependence structure. The

most widely used are block and stationary bootstrap. Broadly speaking, the bock bootstrap starts
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with l non-overlapping blocks of length s, y∗i = y∗i,s = (yi, yi+1, ..., yi+s−1), for i = 1, ..., n + s − 1.

It is assumed that T ≈ ls. Then, l bootstrap samples are drawn with replacement from yi until

a bootstrap series of length T is obtained, Y ∗T = {y∗1, ..., y∗l }. This bootstrap series can be used

to compute the statistic of interest. The problem with the block bootstrap is that the generated

data is non-stationary even if the originally data is. The easiest way to see this point is to note

that consecutive observations in different blocks are independent while consecutive observations

within a block are dependent. Furthermore, the block size s affects the performance of the block

bootstrap method significantly and there is not guidance about how to determine it optimally.

On the other hand, the stationary bootstrap starts with a random observation from YT , say y∗t ,

and the next observation is given by y∗t+1 with probability 1 − p, where p is small, or by a new

randomly selected observation with probability p. Note that in this way the length of the block

is randomly determined. The main advantage of the stationary bootstrap is that its performance

does not depends strongly on p as the block bootstrap does on s; see Bühlmann (2002) and Politis

(2003) for reviews of non-parametric bootstrap procedures for time series.

Alternatively, if a given parametric model is assumed for the dynamic dependence, then the

problem of the dependent structure of the data is reduced to an i.i.d. structure by bootstrapping

the corresponding residuals. Next, we briefly describe the steps to follow in the case bootstrap-

ping a VAR(p) model as proposed by Runkle (1987).

Step 1. Estimate the parameters of the model using a consistent estimator, as for example, the

LS estimator. Denote it by {µ̂, Φ̂1, ..., Φ̂p}.

Step 2. Obtain the residuals

ε̂t = yt − µ̂−
p∑
j=1

Φ̂jyt−j t = p+ 1, p+ 2, ..., T .

Denote the empirical distribution function of the residuals by Fε̂

Step 3. Choose an initial condition Y ∗p = (y∗1, ..., y
∗
p) (for instance, by either drawing a random
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block of length p or fixing the first observations to yt for t = −p+ 1, ..., 0) and generate bootstrap

replicates of the series by

y∗t = µ̂+

p∑
j=1

Φ̂jy
∗
t−j + ε∗t

where ε∗t are drawn with replacement from the empirical distribution function of the residuals,

Fε̂.

Step 4. Calculate the bootstrap parameter estimate, {µ̂∗, Φ̂∗1, ..., Φ̂∗p}.

Step 5. Repeat steps 1-4 B times.

The B bootstrap replicates µ̂ and Φ̂∗j can be used to approximate the distribution of Φ̂j , for

j = 1, ..., p. Bose (1988) establishes, under the general assumptions of section 1.2.1, that for almost

every yt,

sup
x
|P ∗

(
T 1/2Σ̂

1/2
φ (φ̂∗ − φ̂) ≤ x

)
− P

(
T 1/2Σ

1/2
φ (φ̂− φ) ≤ x

)
| = o(T−1/2)

and

sup
x
|P ∗

(
T 1/2Σ̂1/2

σ (σ̂∗ − σ̂) ≤ x
)
− P

(
T 1/2Σ1/2

σ (σ̂ − σ) ≤ x
)
| = o(T−1/2),

where Σ
1/2
φ and Σ

1/2
σ are Cholesky decompositions of their corresponding covariance matrices.

Therefore, the bootstrap distribution of the parameters of a VAR(p) model is o(T 1/2) and, con-

sequently, it improves the accuracy of the Gaussian approximation obtained by the standard

asymptotic theory which is O(T 1/2). If the true model is not of finite order, the bootstrap can

still be successfully implemented if the bootstrap replicates are generates according to a finite p

chosen as a function of T , such that p3.5/T 0.5 goes to zero. Paparoditis (1996) provides the asymp-

totic validity of the bootstrap joint distribution of the autoregressive coefficients of an infinite

order VAR model.

To illustrate Runkle (1987) procedure we simulate 2000 series of a stationary VAR(1) model

with autoregressive matrix vec (Φ1) equal to (φ11 = −0.5, 0, 0.5, 0.5), χ2
4 errors distribution and



FORECASTING MULTIVARIATE TIME SERIES 19

(a) T = 50 (b) T = 300

Figure 1.3: Empirical (continuous black line), asymptotic (discontinuous black line ) and boot-
strap (continous blue line) densities for φ11 of a simulated VAR(1) with T = 50 and 300 and χ2

4

errors. The number Monte Carlo replications for the empirical density raises to 2000 while for the
bootstrap counterparts 1000.

sample sizes T = 50 and 300. For each of the series, the parameters are estimated using LS. Panels

(a) and (b) of Figure 1.3 plot the empirical density of φ̂11. Then we select one of the series and

approximate the distribution of Φ̂1 by using its asymptotic Gaussian distribution and by imple-

menting the bootstrap procedure; see Lütkepohl (1991) for details about the LS estimator. A quick

view of panel (a) of Figure 1.3 shows that, when the sample size is T = 50, the bootstrap density

of φ̂11 is closer to the empirical than the asymptotic Normal approximation. Of course, when the

sample size increases to 300, as it is plotted in panel (b) Figure 1.3, both the asymptotic and the

bootstrap densities are rather similar and close to the empirical. This result serves to highlight the

value of bootstrap methods since, even when there exist a well-established asymptotic theory, it

can be provide desirable approximations in finite sample.

The performance of the basic bootstrap procedure for a VAR(p) model proposed by Runkle

(1987) does not recognize that the LS estimates of the autoregressive matrices can be biased in

small samples. However, this basic procedure can be modified to tackle this issue by using the

formula of Pope (1990) in steps 1 and 2 of the algorithm to correct parameters estimates and the

bootstrap parameters. This modification has not effect on the asymptotic validity of the bootstrap

since the estimated bias is of order O(T−1) while the LS estimates converge at a rate T−1/2; see

Kilian (1998a,b).

Furthermore, the performance of the basic bootstrap method can also be undermined if the
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estimated lag order offers a poor representation of the true model. Thus, Kilian (1998a) suggests

incorporating the lag order uncertainty by re-estimating the lag order in step 4. This gives rise to

what is called the endogenous bootstrap algorithm. To estimate the lag order, it may be advisable

to implement AIC since, as we have previously mentioned, it shows less tendency to choose a lag

order below the true one than HQC and SIC.

Next, we briefly review the implementation of bootstrap methods to density forecasting in

univariate and multivariate settings.

1.4.1 Bootstrap forecast of time series

Forecast users are interested in the future distribution of the process conditional to the informa-

tion up to the forecast origin. This distribution can be obtained using the bootstrap procedure pro-

posed by Thombs and Schucany (1990) for univariate AR(p) models. This procedure is grounded

on the backward representation in order to obtain bootstrap replicates of the parameters condi-

tional on the last p observations of the series; see Masarotto (1990), McCullough (1994), Grigoletto

(1998), Lam and Veall (2002) and Liu et al. (2014) for univariate applications of bootstrap fore-

cast based on the backward representation. However, using the backward representation has two

main drawbacks. First, the backward residuals are i.i.d. only if the errors are Normal, but just

uncorrelated if the errors depart from Normality; see Breidt and Davis (1992). In the latter situ-

ation, it turns out that resampling with replacement from the backward residuals might not be

appropriate and, therefore, it would be necessary to use the relationship between the backward

and forward representation of the model in order to generate bootstrap replicates; see Breidt and

Davis (1992) who show that the relationship between the backward and forward errors can be

rather complicated. Consequently, it is common practice to resample directly from the dependent

backward residuals. Note also that the asymptotic validity of the backward bootstrap procedures

can only be proved by imposing i.i.d. and, as a result, they require Normal errors. Second, these

bootstrap alternatives can only be applied to models with a backward representation which ex-

cludes their implementation in, for example, multivariate models with Moving Average (MA)
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components or with GARCH disturbances.

To overcome these drawbacks, Pascual et al. (2004) proposes a boootstrap procedure that

avoids the backward representation; see, for example, Clements and Kim (2007) and Kim et al.

(2010) for implementations of this proposal to forecast univariate autoregressive processes. The

main advantage of this bootstrap procedure is that its asymptotic validity can be established ir-

respective of the error distribution. Furthermore, this bootstrap procedure is attractive because

it can be adapted to deal with non-linear time series; see for instance, Reeves (2005) and Pas-

cual et al. (2006) who use the procedure to forecast returns and conditional variances in GARCH

models and Li (2011) who implements a slight modification of the procedure to forecast SETAR

models.

In the context of multivariate time series, there are not many papers implementing bootstrap

procedures to construct future conditional distributions and their corresponding forecast regions.

The first attempt to bootstrapping a VAR(p) model to approximate the future conditional dis-

tribution of the series is proposed by Kim (1999), who extends the univariate algorithm based

on the backward representation to multivariate setting; see Kim (2001, 2004) Grigoletto (2005),

Staszewska-Bystrova (2011) for implementations to forecast VAR(p). Also, Lütkepohl (2006) cites

Kim (1999) as a bootstrap alternative to forecast VAR(p) models when errors are non-Gaussian.

More recently, Guerbyenne and Hamdi (in press) implement the multivariate bootstrap proce-

dure of Kim (1999) to obtain forecast regions in periodic state-space models. Nonetheless, all

these bootstrap procedures previously proposed in the literature to forecast VAR models depend

on the backward representation of the process.

1.5 Objectives of the Thesis

In this thesis we describe bootstrap methods to construct forecast density for multivariate time

series. Since forecast densities in multivariate VAR models are obtained using the backward rep-

resentation, we propose an alternative solution which generalizes the procedure due to Pascual
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et al. (2004) to a multivariate setting. Its main advantage is that it does not use the backward

representation and, consequently, its asymptotic validity does not depend on the Gaussianity as-

sumption of the error. Moreover, we gather enough evidence through Monte Carlo experiments

showing that the bootstrap method based on the backward and that propose in this thesis be-

have rather similar in finite sample. This is also the main result when we compare the forecast

performance of both alternatives in a system containing US quarterly series inflation, unemploy-

ment rate and growth. Hence, nothing is gained when we use the more complicated bootstrap

algorithm based on the backward representation. This is the objective of Chapter 2.

Several variants of the basic bootstrap procedure are intended to evaluate the quality of the

density forecasts. As we have mentioned, it is possible to correct the potential bias often found in

LS estimates of the autoregressive matrices and/or to incorporate the lag order uncertainty into

forecasts. Yet a direct comparison of these variants is missing in the literature. In this thesis we fill

this gap by looking simultaneously the standard Gaussian methodology and several bootstrap

alternatives which are the basic bootstrap with and without parameter uncertainty, that incor-

porating model uncertainty as well as adjusting the parameter estimates for their bias. Such a

comparison is useful to asses the extent to which biased parameter and error distribution, model

and parameters uncertainty might affect the forecast performance. Our simulation results en-

hance the relative importance of parameter uncertainty when forecasting highly persistent VAR

models. This comparison is carried out in Chapter 3.

MGARCH models contain undoubtedly many challenges for applied researcher, some of them

dealing directly with forecasting. First, one has to deal with the non-Gaussianity of returns, which

requires alternative ways of approximating its forecast density. Second, there are no methods in

the literature to assess the uncertainty of volatility, covariances and correlation forecasts obtained

with these models. For this reason, in this thesis, we describe a bootstrap procedure that allows

approximating the forecast density of returns, volatilities and covariances in DCC models, though

it can be readily adapted to others MGARCH models. Our simulation study and empirical appli-

cation suggest that bootstrapping ideas can be successfully implemented to approximate density
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forecasts in DCC models. This is the topic considered Chapter 4.

Finally, Chapter 5 concludes the thesis and proposes possible lines of future research.



Chapter 2

Bootstrap forecast of non-Gaussian VAR

models1

2.1 Introduction

Since Sims (1980), Vector Autoregressive (VAR) models have been an essential tool for policy

making and forecasting in the context of macroeconomic multivariate time series; see Stock and

Watson (2001) for the advantages and limitations of VAR models. In this chapter, we focus on

the forecasting ability of VAR models. It is well known that, in practice, VAR forecasts of large

macroeconomic systems could be very imprecise because of the large number of parameters to

be estimated relative to the available sample sizes. However, VARs are still very popular when

forecasting small or moderate systems in which the parameters can be estimated with accept-

able precision. Some selected examples of useful VAR forecasts are Marcellino et al. (2003) and

D’Agostino et al. (2011) for unemployment, Batchelor et al. (2007) for international freight prices,

Gupta et al. (2011) for US house prices, Baumeister and Kilian (2012) for oil prices, Polito and

Wickens (2012) for fiscal forecasts, and Kilian and Vigfusson (2013) for US growth.

1This chapter, with some slight variations, first came out as an article with the same title that has been recently
accepted for publication in the International Journal of Forecasting. In the subsequent chapters, we refer directly to the
article version of this chapter.

24
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Most of the literature dealing with VAR forecasts focus on marginal point forecasts of each of

the variables in the system. However, policy makers and forecasters are increasingly interested

in metrics that require joint multivariate forecasts. Komunjer and Owyang (2012) point out the

importance of recognizing the multivariate nature of most forecasting problems which has fun-

damental implications for the prospects of rational expectations in macroeconomic models. Fur-

thermore, joint multivariate forecasts are also important when forecasting future values of one

variable conditional on particular values of other variables in the system; see Doan et al. (1984),

Waggoner and Zha (1999) and Baumeister and Kilian (2012). In order to define spillover mea-

sures Diebold and Yilmaz (2009) also consider multivariate multiperiod-ahead forecasts; see also

Klößner and Wagner (2014). On the other hand, the focus of the forecasting literature is moving

from point forecasts to density forecasts that incorporate the uncertainty about the future evolu-

tion of the variables of interest; see Diebold et al. (1999), Jore et al. (2010), Wolden Bache et al.

(2011) and Clark (2011) among others. Traditionally, a multivariate forecast density for a given

horizon can be obtained assuming Gaussian forecast errors and known lag order and model pa-

rameters. However, since long, it has been recognized that the parameter uncertainty could be an

important issue when dealing with VAR forecasts in practice; see Lewis and Reinsel (1985) and

Fair and Shiller (1990) for early references. Furthermore, Kilian (1998a) points out the problems

associated with assuming a known lag order when it needs to be estimated. Finally, the empir-

ical evidence suggests that departures from Gaussianity are quite plausible when dealing with

economic time series; see, for example, Kilian (1998b) and Harvey and Newbold (2003). These

departures are a serious concern when forecasting with VAR models, calling into question tradi-

tional techniques for constructing joint multivariate forecast densities.

Forecast densities that incorporate the parameter and lag order uncertainties without relying

on particular assumptions on the error distribution can be obtained using bootstrap procedures;

see Holmes et al. (2003) for an interview with Bradley Efron about the advantages of bootstrap

procedures. In the context of forecasting stationary VAR(p) models, bootstrap methods are in-

troduced by Kim (1999) who extends the original procedure proposed by Thombs and Schucany
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(1990) for univariate AR(p) processes; see Berkowitz and Kilian (2000) for a review on bootstrap

procedures for time series. Because of the biases associated with the Least Squares (LS) estimator

of the VAR parameters, Kim (2001, 2004) considers bias-corrected forecast regions. The bootstrap

procedure proposed by Kim (1999) has been implemented to deal with different issues in the

context of forecasting using multivariate VAR and periodic state-space models; see, for instance,

Grigoletto (2005, 2012), Staszewska-Bystrova (2011) and Guerbyenne and Hamdi (in press). It

uses the backward representation (BR) of the VAR model to generate the bootstrap samples used

to obtain replicates of the estimated parameters. As a consequence, its asymptotic validity relies

on the assumption of Gaussian errors; see Kim (2001). Given that one of the main attractiveness

of bootstrap procedures is their ability to predict in the context of non-Gaussian VAR models, this

is an important drawback. Furthermore, bootstrap procedures based on the BR can only be im-

plemented in models with such representation which excludes, for example, multivariate models

with Moving Average (MA) components or with GARCH disturbances; see Athanasopoulos and

Vahid (2008) and Lütkepohl (2006) for forecasting using VARMA models and Kavussanos and

Visvikis (2004) for an empirical example of forecasting with a cointegrated VAR-GARCH model.

Alternatively, Eklund (2007) implements a very simple bootstrap procedure to obtain multivari-

ate bootstrap forecasts of several variables of the Icelandic economy that do not require the BR.

However, the bootstrap procedure implemented by Eklund (2007) does not incorporate the pa-

rameter uncertainty. Finally, using arguments put forward by Pascual et al. (2004) in the context

of univariate ARIMA models, one can implement simple bootstrap procedures that incorporate

the parameter uncertainty without requiring the BR. For example, Wolf and Wunderli (2012),

Staszewska-Bystrova and Winker (2013) implement the bootstrap procedure originally described

by Pascual et al. (2011)2 to construct bands for forecast paths. It is important to note that the

forward bootstrap procedure implemented in these papers is closely related to the bootstrap pro-

cedure proposed by Kilian (1998a,b,c) to construct confidence bands in the context of impulse

response functions.

2 Pascual et al. (2011) is a previous version of the article Fresoli et al. (in press) by the same authors.
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In this chapter, we provide a theoretical justification of the forward bootstrap procedure. We

establish its asymptotic out-of-sample validity in the context of VAR(p) models, without relying

on particular distributions of the forecast errors. Furthermore, Monte Carlo experiments are car-

ried out to analyse its finite sample performance when used to construct joint forecast regions.

The forward bootstrap regions are compared with traditional and backward bootstrap regions.

We show that, regardless of the error distribution, if the VAR(p) model is persistent and the sam-

ple size is not very large relative to the number of parameters, the finite sample properties of

the bootstrap regions are clearly better than those based on Gaussian densities. Furthermore,

we show that, when the VAR(p) model is far from having a unit root and the forecast errors

are truly Gaussian, the loss incurred by using bootstrapping is not large, while if the errors are

non-Gaussian the improvement in coverage is moderate. In any case, the bootstrap procedures

provide similar coverage accuracy regardless of whether they are based on the backward repre-

sentation or not. The importance of constructing forecast regions taking into account the non-

Gaussianity of the variables is illustrated by implementing the forward bootstrap to obtain joint

forecast densities of US quarterly inflation, unemployment and growth rates.

The rest of the chapter is organized as follows. Section 2 focuses the discussion and establishes

the notation by describing the traditional and backward bootstrap procedures to construct fore-

cast densities. Both procedures are illustrated in the context of a non-Gaussian bivariate VAR(2)

model. In Section 3, the asymptotic validity of the forward bootstrap procedure is established.

Section 4 reports Monte Carlo results on several bivariate VAR models with different parame-

ter configurations including stationary, persistent and near-cointegrated models. The finite sam-

ple performance of the forward bootstrap forecast regions are compared with those of Gaussian

and backward bootstrap procedures. Section 5 illustrates the results with two empirical applica-

tions. First, forecast densities of US quarterly future inflation, unemployment and GDP growth

are obtained. Second, we implement the proposed bootstrap procedure to a textbook example in

Lütkepohl (1991) to forecast West German investment, income and consumption. Finally, Section

6 concludes the chapter with suggestions for further research.
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2.2 Multi-step forecast densities and regions for VAR models

This section establishes notation and briefly describes the traditional method for the construction

of Gaussian forecast densities in stationary VAR models using asymptotic approximations of the

finite sample distribution of the parameter estimator. The bootstrap procedure based on the BR is

also described. Both procedures are illustrated by implementing them to obtain forecast regions

of a bivariate series generated by a stationary non-Gaussian VAR(2) model.

2.2.1 Gaussian forecast densities

Consider the VAR(p) model of finite lag order p

yt = µ+ Φ1yt−1 + ...+ Φpyt−p + εt, t = −p+ 1, ..., T (2.1)

described in the previous chapter. The point predictor of yT+h that minimizes the Mean Squared

Forecast Error (MSFE) is its conditional mean which, in practice, is obtained by substituting the

unknown parameters by consistent estimates as follows

ŷT+h|T = µ̂+ Φ̂1ŷT+h−1|T + ...+ Φ̂pŷT+h−p|T (2.2)

where ŷT+j|T = yT+j , j ≤ 0 and, in this paper, θ̂ = (µ̂, Φ̂1, ..., Φ̂p) denotes the LS estimator of

the parameters. The MSFE of ŷT+h|T , calculated by substituting the estimated parameters in the

expression of the MSFE of yT+h|T , does not incorporate the parameter uncertainty and, conse-

quently, underestimates the true MSFE of ŷT+h|T ; see Baillie (1979) and Reinsel (1980). Consider,

for simplicity, h = 1 and a VAR(1) model without constant. In this case, given the information

available at time T , the MSFE of ŷT+1|T can be decomposed as follows

MSFE(ŷT+1|T ) = Σy(1) + ET [(Φ1 − Φ̂1)yT y
′
T (Φ1 − Φ̂1)′] (2.3)
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where Σy(1) = ET
[
(yT+1 − yT+1|T )(yT+1 − yT+1|T )′

]
and the T under the expectation denotes

that it is conditional on the information available at time T . The estimator Φ̂1 is a function of the

available sample {y1, ..., yT } and, consequently, the expectation of the second term of expression

(2.3) can be dropped. Conditioning on the whole past of the process implies that we fix the values

of the parameters estimates; see Dufour (1985). As a result, in order to incorporate the param-

eter uncertainty in the MSFE of ŷT+1|T , many authors assume that the sample used to estimate

the parameters is independent from the sample used to forecast; see, for example, Reinsel (1980),

Bhansali (1981) and Yamamoto (1981). In this case, the second term of expression (2.3) can be

computed using the asymptotic distribution of Φ̂1; see Reinsel (1980) for the corresponding ex-

pression. The MSFE of ŷT+h|T obtained by using the asymptotic distribution to approximate the

parameter uncertainty and with all unknown parameters substituted by their sample estimates,

will be denoted by Σ̂A
y (h).

Obviously, the contribution of the parameter uncertainty to the MSFE of ŷT+h|T depends on the

dimension of the system, N , the VAR order, p, and the sample size, T ; see, for instance, Baillie

(1979) and Reinsel (1980). As long as N and/or p, or both, are big enough relative to T , the effect

of the parameter uncertainty can be substantial. However, granted that a good estimator is used,

the importance of this uncertainty could be small in systems consisting in few variables; see Riise

and Tjøstheim (1984). Obviously, as the sample size gets larger, the parameter uncertainty con-

tribution to the MSFE vanishes. If, in model (2.1), εt is further assumed to be Gaussian, then the

h-steps-ahead forecast density is estimated by

yT+h ∼ N(ŷT+h|T , Σ̂
A
y (h)). (2.4)

From (2.4) it is possible to obtain h-steps-ahead joint ellipsoids for the variables within the system.

Nonetheless, constructing these ellipsoids can be quite demanding when N is larger than two

or three. Consequently, Lütkepohl (1991) proposes using the following Bonferroni cubes with
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coverage at least (1-δ)100%

GCT+h =
{
yT+h|yT+h ∈ ∪Ni=1

[
ŷi,T+h|T ± zτ σ̂i,h

]}
, (2.5)

where ŷi,T+h|T is the ith element of ŷT+h|T , zτ is the τ th quantile of the standard Normal distribu-

tion with τ = 0.5(δ/N) and σ̂2
i,h is the ith element of the main diagonal of Σ̂A

y (h). The Bonferroni

cubes in (2.5) depend on the marginal distributions and, consequently, the information on the

dependence among the variables in the system is lost.

The forecast densities in (2.4) incorporate the uncertainty due to parameter estimation through-

out the asymptotic distribution but still rely on Gaussian forecast errors. Therefore, the corre-

sponding intervals and regions could be inadequate when this assumption is not satisfied. Even

more, in this latter case, the shape of the densities for h >2 is unknown in general. Finally, the

forecast densities in (2.4) can be missleading in cases in which the asymptotic approximation is

unreliable; see Dufour and Jouini (2006). As an illustration, consider the following non-Gaussian

stationary bivariate VAR(2) model previously considered by Kim (2001),

 y1,t

y2,t

 =

 0.9 0

−0.5 −0.7


 y1,t−1

y2,t−1

+

 −0.2 0

0.8 −0.1


 y1,t−2

y2,t−2

+

 ε1,t

ε2,t

 (2.6)

where εt = (ε1,t, ε2,t)
′ is a serially independent white noise vector with contemporaneous co-

variance matrix given by vech(Σε) = (1, 0.5, 1)′ where vech denotes the lower-diagonal column

stacking operator of a symmetric matrix. The distribution of εt is a χ2
4 which has been adequately

standardized to have variance one; see Kilian (1998b) for the adequacy of this distribution to rep-

resent some macroeconomic time series. The dominant root of |I2 − Φ1(z−1) − Φ2(z−2)| = 0 in

the VAR(2) model in (2.6) is 0.5 so the model is far from the non-stationary boundary. Panel (a) of

Figure 2.1 displays the true joint one-step-ahead density of y1,T+1 and y2,T+1, which shows clear

asymmetries. After generating a time series of size T = 100, the VAR(2) parameters are estimated

by LS assuming that the lag order is known. Panel (b) of Figure 2.1 plots the corresponding joint
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(a) Empirical (b) Gaussian approximation

(c) Bootstrap based on BR (d) New bootstrap

Figure 2.1: Kernel estimates of one-step-ahead forecast densities of a simulated bivariate series
generated by a stationary VAR(2) model with χ2

4 errors based on T = 100 observations.

density obtained assuming that the forecast errors are jointly Gaussian as given in expression

(2.4) with the following estimated MSFE that incorporates the asymptotic parameter uncertainty,

vech
(

Σ̂A
y (1)

)
= (1.13, 0.59, 1.02)′. Comparing panels (a) and (b), it is obvious that the Gaussian

density fails to capture the asymmetry of the error distribution. This inadequacy is reflected in

Figure 2.2 which plots a realization of yT+1 of size R = 5000 together with the 95% ellipsoid and

the Bonferroni region of yT+1 obtained from the density in (2.4). We can observe that none of both

regions are appropriate to construct a satisfactory forecast region for yT+1. Figure 2.2, also plots

the ellipsoid and the Bonferroni cube obtained when the MSFE of ŷT+h|T is computed without

incorporating the parameter uncertainty which are nearly identical to those obtained when the

parameter uncertainty is incorporated. Therefore, in this particular example, it seems that the pa-

rameter uncertainty is not a big issue while the non-Gaussianity of the forecast errors is a serious

concern.
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Figure 2.2: A realization of size R = 5000 of yT+1 (◦) generated by a stationary bivariate VAR(2)
model with χ2

4 errors together with 95% one-step-ahead forecast Bonferroni cubes and elliptical
regions constructed using T = 100 observations and based on the following densities (a) Gaussian
without parameter uncertainty (- -), (b) Gaussian with asymptotic parameter uncertainty (··), (c)
Bootstrap with BR (- ·) and (d) New Bootstrap (-).

2.2.2 Bootstrap forecast densities based on BR

As mentioned in the introduction, bootstrap procedures can be implemented to obtain forecast

densities that incorporate the parameter uncertainty without relying on Gaussian forecast errors.

The first bootstrap procedure proposed in the context of multivariate VAR models is due to Kim

(1999) who, in order to take into account the conditionality of VAR forecasts on past observations,

follows Thombs and Schucany (1990), and proposes to obtain bootstrap replicates of the series

based on the following backward recursion

y∗t = ω̂ + Λ̂1y
∗
t+1 + ...+ Λ̂py

∗
t+p + υ̂∗t , t = T − p, ..., 1, (2.7)

where y∗t = yt, for t = T − p+ 1, ..., T , are p starting values which coincide with the last values of

the original series, ω̂, Λ̂1, ..., Λ̂p, are LS estimates of the backward parameters, and υ̂∗t are random

draws with replacement from the empirical distribution function of the backward residuals re-
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scaled by the factor [(T − p)/(T − 2p)]0.5.3 Then, bootstrap LS estimates of the parameters of

the forward representation are obtained by estimating the forward VAR(p) model in (2.1) using

{y∗1, ..., y∗T }. Denote these estimates by θ̂∗ = (µ̂∗, Φ̂∗1, ..., Φ̂
∗
p). The h-steps-ahead bootstrap forecast

is given by

ŷ∗T+h|T = µ̂∗ + Φ̂∗1ŷ
∗
T+h−1|T + ...+ Φ̂∗pŷ

∗
T+h−p|T + ε̂∗T+h (2.8)

where ŷ∗T−i|T = yT−i, for i > 0, and ε̂∗T+h are random draws with replacement from the empirical

distribution function of the rescaled forward residuals. Having obtained B bootstrap replicates

of ŷ∗T+h|T , Kim (1999) proposes to construct the following bootstrap forecast ellipsoid with prob-

ability content (1− δ)100% as follows

KET+h =

{
yT+h|

[
yT+h − ȳ∗T+h|T

]′
SKy∗(h)−1

[
yT+h − ȳ∗T+h|T

]
< Q∗K

}
(2.9)

where ȳ∗T+h|T is the sample mean of theB bootstrap replicates, ŷ∗(b)T+h|T , SKy∗(h) is the corresponding

sample covariance 4 and Q∗K is the (1− δ)100% percentile of the empirical bootstrap distribution

of the quadratic form [ŷ∗T+h|T − ȳ
∗
T+h|T ]′SKy∗(h)−1[ŷ∗T+h|T − ȳ

∗
T+h|T ]. Furthermore, the Bonferroni

cube with at least (1-δ)100% nominal coverage is given by

KCT+h =
{
yi,T+h|yi,T+h ∈ ∪Ni=1 [q∗i (τ) , q∗i (1− τ)]

}
(2.10)

where q∗i (τ) is the τ th quantile of the empirical bootstrap distribution of ŷ∗i,T+h which is the ith el-

ement of the vector ŷ∗T+h|T . Kim (1999) uses the percentile and percentile-t methods of Hall (1992)

to define the Bonferroni cubes. However, Bonferroni cubes are defined as in (2.10) because they

are better suited to deal with potential asymmetries of the error distribution than the percentile-t

intervals; see Hall (1992). In addition, Kilian (1999) shows that, in absence of pivotal statistics, as it

3The residuals should be centered if no intercept is included in the model.
4Kim (1999) does not explicitly show how SK

y∗(h) should be defined. One can also obtain SK
y∗(h) by substituting

the expression of the MSFE matrix of yT+h|T by their corresponding bootstrap estimates and computing the average
through all bootstrap replicates. By calculating it with the sample covariance or by substituting the bootstrap parame-
ters in the corresponding expression we get similar results.
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is the case of VAR process close to the nonstationary region, bootstrap percentile methods that do

not rely on studentized statistics have better coverage accuracy than those based on percentile-t.

The bootstrap procedure proposed by Kim (1999) is illustrated by considering again the same

time series of size T = 100 simulated by the non-Gaussian bivariate VAR(2) model in (2.6) consid-

ered above. Panel (c) of Figure 2.1 plots a kernel estimate of the joint bootstrap density of y1,T+1

and y2,T+1 based on B = 4999 bootstrap replicates. When comparing this density with its Gaus-

sian counterpart in panel (b), it is clear that the bootstrap can reproduce the asymmetry and is

closer to the true density plotted in panel (a) of the same figure. Figure 2.2 plots the correspond-

ing 95% ellipsoid and Bonferroni cube defined in (2.9) and (2.10), respectively. First of all, observe

that the bootstrap and Gaussian ellipsoids are very similar and not adequate to represent the

shape of the realization of yT+1 plotted in Figure 2.2. This similarity could be expected given that

both ellipsoids only differ in the way the MSFE is computed and the bootstrap MSFE is given by

vech(SKy∗(1)) = (1.11, 0.58, 1)′ which is very close to the MSFE computed using the asymptotic ap-

proximation. Figure 2.2 clearly illustrates that, when dealing with non-Gaussian forecast errors,

the forecast regions constructed from the bootstrap joint densities cannot be based on ellipsoids

as they assume a symmetric distribution; see Wolf and Wunderli (2012). On the other hand, when

the forecast region is constructed using the Bonferroni cube, Figure 2.2 shows that the bootstrap

cube is located towards the northeast so it is more adequate than the regions based on the Gaus-

sian forecast density. This is in fact reflecting that the quantiles of the marginal densities used to

construct the Bonferroni cube can cope with the asymmetry while the ellipsoids use a quadratic

form based on the wrong Gaussianity assumption. The bootstrap Bonferroni cube is better suited

to deal with asymmetries but, as mentioned above, cannot cope with the dependence between

the variables.

Kim (1999) justifies the use of his bootstrap procedure in finite samples by suggesting that the

asymptotic results of Thombs and Schucany (1990) can be extended to a multivariate framework.

However, as mentioned in the introduction, the asymptotic validity of the bootstrap procedures

based on the backward representation relies on the assumption of Gaussian innovations; see Kim
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(2001). Note that alternatively one could use the relationship between the forward and backward

residuals and resampling from the former to obtain the latter. However, obtaining the backward

representation can be very complicated in VAR(p) models with large lag order; see Kim (1997,

1998) for the expression of the backward representation.5 Furthermore, it is obvious that any

bootstrap procedure based on the BR cannot be implemented in models without this representa-

tion, compromising the flexibility and applicability of the procedure.

2.3 A new bootstrap procedure

In this section, we propose obtaining the joint forecast density of yT+h in VAR(p) models using

an extension of the bootstrap procedure proposed by Pascual et al. (2004) for univariate ARIMA

models, which avoids using the BR when incorporating the parameter uncertainty. We describe

the proposed procedure and prove its asymptotic validity. Its performance is illustrated for the

same non-Gaussian stationary VAR(2) model considered above.

2.3.1 Description of the algorithm

The forward procedure proposed in this chapter to obtain the bootstrap forecast density of yT+h is

based on the same assumption used to construct forecast densities when incorporating the param-

eter uncertainty using the asymptotic distribution, namely, that the sample used to estimate the

parameters is independent from the sample used to forecast. In this way, we avoid the BR when

generating the bootstrap replicates used to estimate the parameters. However, the last p observa-

tions in the series are still fixed when forecasting the future values. The proposed algorithm to

obtain bootstrap replicates of yT+h is as follows.

Step 1. After selecting the order p, estimate by LS the parameters of model (2.1) and obtain

the corresponding vector of residuals. Denote by F̂ε̂ the empirical distribution function of the

5Tong and Zhang (2005) and Chan et al. (2006) show that a necessary condition for the VAR(p) model to have this
backward representation is that the covariance matrices Υ(h) = E [(yt − E(yt))(yt−h − E(yt))

′] are symmetric for all
h. This is a very strong restriction not likely to be satisfied in real data systems.
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re-scaled residuals.

Step 2. Construct a bootstrap series {y∗1, . . . , y∗T } as follows

y∗t = µ̂+ Φ̂1y
∗
t−1 + · · ·+ Φ̂py

∗
t−p + ε̂∗t , t = 1, . . . , T, (2.11)

where ε̂∗t are random draws with replacement from F̂ε̂ and y∗t = yt, for t = −p + 1, ..., 0. Obtain

θ̂∗ = (µ̂∗, Φ̂∗1, ..., Φ̂
∗
p), a bootstrap replicate of the LS estimates by fitting a VAR(p) model to the

bootstrap replicate {y∗1, ..., y∗T }.

Step 3. Using (2.1) with the parameters substituted by their bootstrap estimates and fixing the

last p observations of the original series, obtain recursively a bootstrap replicate of yT+h as follows

ŷ∗T+h|T = µ̂∗ + Φ̂∗1ŷ
∗
T+h−1|T + · · ·+ Φ̂∗pŷ

∗
T+h−p|T + ε̂∗T+h, (2.12)

with ε̂∗T+h being a random draw with replacement from F̂ε̂ and ŷ∗T+h|T = yT+h, h ≤ 0.

Step 4. Repeat steps 2 and 3 B times.

We obtain B bootstrap replicates of yT+h, denoted by {ŷ∗(1)
T+h|T , ..., ŷ

∗(B)
T+h|T }, by using this pro-

cedure. Their empirical bootstrap distribution can be used to obtain the corresponding ellipsoids

and Bonferroni cubes as described before for the procedure based on the BR. It is important to

point out that in step 2, the bootstrap replicates used to obtain bootstrap estimates of the param-

eters are obtained as proposed by Runkle (1987). This is the main difference with the procedure

based on the BR and described in the previous section, which obtains replicates of yt, t = 1, ..., T ,

using expression (2.7) while we propose using the forward representation in expression (2.11).

To illustrate the implementation of the new bootstrap procedure proposed in this chapter,

we consider again the bivariate time series generated by the non-Gaussian stationary VAR(2)

model in (2.6). Panel (d) of Figure 2.1 displays a kernel estimate of the bootstrap joint den-

sity of yT+1 which is very similar to the density obtained by implementing the bootstrap pro-

cedure based on the BR. Figure 2.3 plots the bootstrap ellipsoid and Bonferroni cube obtained

from the new bootstrap density. We observe that, although the forward bootstrap density is
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Figure 2.3: A realization of size R = 5000 of yT+1 (◦) generated by a stationary bivariate VAR(2)
model with χ2

4 errors together with 95% one-step-ahead forecast bootstrap regions based on a
sample size T = 100 (a) ellipsoid (-) (b) Bonferroni cube (-), (c) corrected Bonferroni cube (··) and
(d) High Density Regions (grey curve).

very different from the Gaussian density, there are not big differences among the correspond-

ing ellipsoids due to the fact that the first two moments involved in their definition do not

differ significantly among the procedures, which estimate similar centers and dispersion of the

future values. Note that ȳ∗T+1|T = (−2.19,−0.26)′ and vech (Sy∗(1)) = (1.11, 0.58, 1)′ are very

similar to the corresponding quantities used to compute the Gaussian ellipsoid. Also, when

looking at the bootstrap Bonferroni cube, we can observe that it is located towards the right

and up with respect to the corresponding Gaussian cube representing the assymetries of the

joint distribution of yT+1. Note that, even though the bootstrap Bonferroni cube is somehow

more adequate to represent the asymmetry in the forecast error distribution, it is not satisfac-

tory when constructing forecast regions for systems of correlated non-Gaussian variables as those

considered in the illustration. Consequently, we explore two further alternatives for the con-

struction of these regions. First, we consider the High Density Regions (HDR) proposed by

Hyndman (1996) based on kernel estimates of the joint bootstrap density. Figure 2.1 also plots
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the 95% HDR computed from the bootstrap replicates, ŷ∗T+1|T . We can observe that the shape

of the HDR seems to be more adequate to represent the realization of yT+1 than either the el-

lipsoid or the Bonferroni cube. However, HDR are unfeasible when the dimension of the sys-

tem is large as, in this case, there are not satisfactory kernel estimators of the bootstrap densi-

ties. Consequently, we also explore a simple modification of the Bonferroni cube that takes into

account the correlation between the variables in the system. The modified Bonferroni cube is

defined by the following four points [q∗1(τ), q∗2(τ) + p21,hq
∗
1(τ)], [q∗1(1− τ), q∗2(τ) + p21,hq

∗
1(1− τ)],

[q∗1(τ), q∗2(1− τ) + p21,hq
∗
1(τ)] and [q∗1(1− τ), q∗2(1− τ) + p21,hq

∗
1(τ))], where p21,h = σ̂∗21,T+h/σ̂

2∗
1,T+h

with σ̂∗21,T+h and σ̂2∗
1,T+h being elements of Sy∗(h). Note that the proposed transformation re-

expresses the original cube in a direction defined by the association between y1,T+h and y2,T+h

as measured by p21,h. Furthermore, the volume of the modified cube remains unchanged since

the coordinates for the first variable are not changed while those of the second variable are trans-

formed by the same amount, either p21,hq
∗
1(τ) or p21,hq

∗
1(1 − τ). Figure 2.1 plots the modified

Bonferroni cube which is rotated in the direction of the correlation observed between ŷ∗1,T+1|T

and ŷ∗2,T+1|T and, consequently, it gives a more appropriate picture of the values of y1,T+1 and

y2,T+1 that can be expected one-step-ahead.

Before establishing the asymptotic validity of the forward bootstrap procedure, we should

mention that it can be easily modified by introducing asymptotic stationarity bias corrections

of the bootstrap parameters and the endogenous lag order bootstrap algorithm as proposed by

Kilian (1998a,c); see Staszewska-Bystrova and Winker (2013) for an implementation of the forward

bootstrap algorithm using both modifications.

2.3.2 Asymptotic validity

Consider the stationary VAR(p) model in (1) where the errors are given by

εt(θ) = yt − µ− Φ1yt−1 − ...− Φpyt−p, t = 1, ..., T. (2.13)
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In expression (2.13), it is explicit that the errors depend on the unknown parameters contained in

θ. If θ is estimated by θ̂, the corresponding estimated residuals are given by

ε̂t(θ̂) = yt − µ̂− Φ̂1yt−1 − ...− Φ̂pyt−p, t = 1, ..., T, (2.14)

which have F̂ε̂(θ̂) as empirical distribution function.

The following theorem establishes the asymptotic validity of the empirical bootstrap distribu-

tion of ŷ∗T+h|T as given in (2.12) to approximate the distribution of a future value yT+h.

Theorem. Let {yt, t = −p + 1, ..., 1, 2, ...T} be a realization of a stationary VAR(p) process

defined as in (1), θ̂ the LS estimator of θ and ŷ∗T+h|T obtained by following steps 1 to 4 in the

previous subsection. Then, ŷ∗T+h|T conditioned on {yt, t = −p+ 1, ..., 1, 2, ...T} converges weakly

to yT+h in probability as T →∞.

Proof. Following the arguments in Pascual et al. (2004), consider first the one-step-ahead

bootstrap future value given by

ŷ∗T+1|T = µ̂∗ + Φ̂∗1yT + ...+ Φ̂∗pyT−p+1 + ε̂∗T+1. (2.15)

For h = 2 we have

ŷ∗T+2|T = µ̂∗ + Φ̂∗1ŷ
∗
T+1|T + ...+ Φ̂∗pyT−p+2 + ε̂∗T+2. (2.16)

Replacing in (2.16) ŷ∗T+1|T by its expression in (2.15), it follows that

ŷ∗T+2|T = N0(θ̂∗) +N1(θ̂∗)yT + ...+Np(θ̂
∗)yT−p+1 +M1(θ̂∗)ε̂∗T+1 + ε̂∗T+2, (2.17)

where Ni(θ̂
∗) and Mi(θ̂

∗) are appropriately defined continuous functions of the estimated param-

eters.

Proceeding in this way the following expression is obtained for the h-steps-ahead bootstrap
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forecast

ŷ∗T+h|T = N0(θ̂∗) +N1(θ̂∗)yT + ...+Np(θ̂
∗)yT−p+1

+M1(θ̂∗)ε̂∗T+1 +M2(θ̂∗)ε̂∗T+2 + ...+ ε̂∗T+h,

(2.18)

where the functions Ni(θ̂
∗) and Mi(θ̂

∗) are different for different horizons. Expression (2.18) de-

fines the bootstrap future values as a function of the observed realization {y−p+1, ..., yT }, the

independent random draws ε̂∗T+h and continuous functions of the bootstrap parameter estimates

θ̂∗.

In order to establish the asymptotic convergence of ŷ∗T+h|T , we start by considering the terms

involving Ni(θ̂
∗) for which the asymptotic validity of θ̂∗ is needed. The asymptotic validity of the

bootstrap LS estimator is established by Bose (1988) who proves the convergence in probability

almost surely of θ̂∗ to θ. Therefore, given that Ni(θ̂
∗) are continuous functions of the parameters,

it follows that Ni(θ̂
∗)

p→ Ni(θ) almost surely. Moreover, note that yT−i+1 are fixed values and,

consequently, the terms involving Ni(θ̂
∗)yT−i+1

d→ Ni(θ)yT−i+1 in probability. Second, using the

same arguments as before, we can see that Mi(θ̂
∗)

p→ Mi(θ) almost surely. Finally, consider the

terms ε̂∗T+i which are random draws with replacement from F̂ε̂(θ̂). Using the results in Bickel and

Freedman (1981), it is straightforward to prove that d2(F̂ε̂(θ̂), Fε(θ))→ 0 in probability as T →∞,

where d2 is a Mallow’s metric. Given that convergence in d2 implies weak convergence of the

corresponding random variables, it follows that ε̂∗T+i
d→ εT+i in probability.6 On the other hand,

ε̂∗T+i are independent from Mi(θ̂
∗). Consequently, Mi(θ̂

∗)ε̂∗T+i
d→ Mi(θ)εT+i by the independence

of ε̂∗T+i and the bootstrap version of Slutsky’s Theorem. Consequently, all terms in expression

(2.18) converge weakly in probability and, as a result, y∗T+h|T
d→ yT+h as T →∞, in probability.

�

Before concluding this section it is important to remark that, even though the asymptotic

6The d2 metric is given by d2(GZ , GY ) = inf
C

[
EG(|Z − Y |)2

] 1
2 , where C is the set of pairs of random variables

(Z, Y ) with cumulative distribution function G such that the marginal cumulative distribution functions are GZ and
GY , respectively.
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validity is established for centered residuals, Stine (1987) shows that it is still valid if they also

are re-scaled. Furthermore, the asymptotic bias correction of the parameters proposed by Pope

(1990) does not alter the asymptotic validity of our procedure since the bias and its bootstrap

version are Op(T−1); see Kilian (1998c) for further details. Finally, Kilian (1998a) also shows that

the endogenous lag order bootstrap algorithm is still asymptotically valid for standard lag order

selection criteria as the AIC considered in this chapter.

2.4 Small sample properties

In this section, we carry out Monte Carlo experiments to analyse the finite sample properties of

the forward bootstrap procedure and compare them with those of the alternatives. We consider

three bivariate data generating processes (DGP) with different configuration of parameters and

lag orders which reproduce either stationary, persistent or near-cointegrated processes. DGP1 is

the stationary VAR(2) model defined in (2.6). DGP2 and DGP3 are a persistent VAR(5) model

and a near-cointegrated VAR(10) model, respectively; see Kilian (1998a) for similar specifications

which are described in detail in the Appendix A. In each DGP, we consider three distributions

of the errors, namely Gaussian, Student-5 and χ2
4 which are adequately centered and re-scaled.

For each of the resulting nine specifications, we generate M = 2000 replicates of sizes T = 100

and 300. The sample sizes have been chosen to be in concordance with those usually encountered

in practice when forecasting with real macroeconomic series. For each generated series, the lag

order is estimated according to the AIC. The maximum lag order is equal to 12 and 16 for T = 100

and 300, respectively. After estimating the lag order, the VAR parameters are estimated by LS

and are bias-corrected using the asymptotic correction of Pope (1990) and taking into account

the stationarity restriction as proposed by Kilian (1998c). Forecast densities for horizons h =

1, ..., 8 steps-ahead are constructed assuming Gaussian errors without parameter uncertainty and

computing the MSE as in (2.4) using the asymptotic approximation. Forecast densities are also

constructed using B = 1999 bootstrap replicates obtained by the backward bootstrap and by the
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forward bootstrap procedure. The bootstrap procedures are implemented using the asymptotic

bias and endogenous lag order corrections as proposed by Kilian (1998a,c). In each of case, we

construct the corresponding 95% ellipsoids and Bonferroni cubes.

Based on R = 5000 future values of the process yT+h, we calculate the empirical coverage

of each forecast region. Figure 2.4 plots the average through the Monte Carlo replicates of the

empirical coverages of the Bonferroni regions constructed for the stationary VAR(2) model. We

can observe that, regardless of the distribution of the error, when T = 100, the average coverages

of the cubes constructed using the Gaussian approximation without incorporating the parameter

uncertainty, are clearly smaller than the nominal 95%. When incorporating the parameter uncer-

tainty through the asymptotic approximation, the coverages get slightly closer to nominal. Using

the bootstrap Bonferroni cubes, we get very similar coverages regardless of whether the BR is

used. The bootstrap coverages are clearly closer to the nominal, irrespective of the errors distri-

bution. When the errors are non-Gaussian, we can observe that the Gaussian coverages are under

the nominal while the bootstrap cubes maintain their accuracy. On the other hand, in large sample

sizes, when T = 300, we observe that all procedures have similar coverages which are very close

to the nominal if the errors are Gaussian. Yet the Gaussian cubes are slightly below the nominal

coverages when the errors distribution departs from Gaussianity. When the sample size is small,

one would expect that the Gaussian approach to forecast is more likely to understate the true

sampling uncertainty as one portion of it, that due the parameter uncertainty, is not taken into

account. Upper panels of Figure 2.7 display the average volumes of each approach to forecasting

when T = 100. We observe that the Gaussian standard cubes are below the empirical true vol-

umes, and this happen especially when the error distribution is non-Gaussian. Of course, when

the MSFE forecast is augmented to consider the sampling variability of the parameters, Gaussian

cubes get larger and, as a result, the corresponding empirical coverages improve. But, when the

sample size increases to T = 300, the differences in average volumes between Gaussian bootstrap

cubes are comparatively minor, which in part reflect the quite similar performance in empirical

coverages. The average volume differences between bootstrap procedures are negligible.
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Note that, for this model, the number of parameters is rather small and the roots of the model

are far from the non-stationary region. As a consequence, the uncertainty of the LS estimator is

not important when constructing the forecast regions.

Figures 2.5 and 2.6 plot the coverages corresponding to the persistent VAR(5) and the near-

cointegrated VAR(10) models, respectively. These models are interesting because the number

of parameters is rather large and they are close to the non-stationarity bounds. Consider first

T = 100. We observe a clear difference the coverage performance between standard and bootstrap

procedures. For instance, for the VAR(10), is striking the bad performance of the Gaussian cube

even in the presence of Gaussian errors, with a coverages going from 0.85, when h = 1, to 0.77,

when h = 8. Incorporating the parameter uncertainty into the sampling variability improves

the coverage performances of the Gaussian cubes, though they still drop away from the 0.95

line. The bootstrap cubes are considerably better than the Gaussian, for both the VAR(5) and

VAR(10), though they deteriorate with the forecast horizon in the both models, a feature that

is more pronounced in the VAR(10) model. For instance, for the VAR(10) and Student-5 error

distribution, bootstrap coverages goes from 0.93 to 0.91, when h = 1 and 8, respectively. This

deterioration may be due to the fact that this model is close to the non-stationary regions and,

consequently, it may have more difficulties when forecasting in the long run. Furthermore, it is

worth noting that the coverages of both bootstrap cubes are rather similar regardless of whether

they use the BR or the forward representation. Also, there seem not to be differences between

coverage accuracy of the Gaussian cubes across the error distribution. Under a large sample

situation, when T = 300, empirical coverages for all the procedures recover to a level close the

0.95 line and the differences between the Gaussian and the bootstrap procedures reduce, around

0.025 in average, when h = 1.

Finally, with respect to average volumes, in middle and lower panels Figure 2.7 we observe

the same qualitative patterns highlighted before. The only difference is that, for the VAR(5), the

bootstrap cubes based on the BR are larger than that of the forward bootstrap procedure, a feature

that is reflected in the slightly better performance of the former in therm of coverage accuracy.
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Nonetheless, the opposite occurs for the VAR(10). To sum up, both bootstrap procedures provide

cubes that are generally larger than those obtained by the standard methodology, even when the

latter incorporates the sample variability due the parameter estimation. Lager bootstrap volumes

that reflect the true extent of sample variability are more likely to capture, in average, more future

realizations of the process.

After all, the simulations conducted in this section show that the forward bootstrap procedure

performs better than traditional methods based on Gaussian densities and does not worse than

the bootstrap procedure based on the BR. In addition, they suggest that, when the sample size is

small, as the persistence of the system increases, it is important to take into account the parameter

uncertainty to obtain coverages close to the nominal ones.7

2.5 Empirical application

2.5.1 Forecasting quarterly US inflation, unemployment and GDP growth

In this section, we implement the forward bootstrap procedure to construct forecast densities of

quarterly US inflation (πt), unemployment rate (ut) and GDP growth (gt) observed from 1948Q1

to 2011Q3.8 Inflation rates are computed as usual by πt = log(IPIt/IPIt−1) × 100 where IPI

is the Implicit Price Deflator. Unemployment is measured by the civilian unemployment rate.

Finally, the GDP growth is given by gt = log(GDPt/GDPt−1)× 100 where GDP is the Real Gross

Domestic Product. Where relevant, monthly data has been transformed into quarterly by taking

the observations of the last month of the quarter. The whole sample period has been split into an

estimation period from 1948Q1 to 2009Q3 (T = 247) and an out-of-sample period from 2009Q4

to 2011Q3. Table 2.1 reports the sample mean, standard deviation (sd), skewness and kurtosis

7For completeness, Appendix B we report the empirical average of Monte Carlo volumes when T = 300 and
Appendix C includes results for forecast intervals of the first variable of the systems. Results for ellipsoids are not
reported to save space. For the same reason, we do not report the results with bias-corrected parameters and without
endogenous lag-order corrections and without both, bias and endogenous lag order. All these results are available
upon request.

8The data was obtained from the Federal Reserve Bank of St. Louis, webpage: www.stlouisfed.org.
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Table 2.1: Descriptive statistics of quarterly US inflation (π), unemployment (u) and GDP growth
(g) observed from 1948Q1 to 2009Q3 with p-values in parenthesis.

Series Mean Sd Skewness Kurtosis KD ADF1 Q(8) Q2(8)

π 0.91 0.83 0.79 5.43 1478.7
(0.00)

−3.66
(0.00)

130.09
(0.00)

129.45
(0.00)

u 0.56 0.15 0.15 3.45 33.26
(0.08)

−2.68
(0.07)

890.00
(0.00)

839.74
(0.00)

g 0.80 1.02 -0.10 4.20 19.85
(0.00)

−7.25
(0.00)

55.49
(0.00)

29.29
(0.00)

(π, u, g) 1.46 21.19 1669.4
(0.00)

1 MacKinnon’s p-values approximation.

of each of the series during the estimation period together with the joint measures of skewness

and kurtosis proposed by Kilian and Demiroglu (2000). Table 2.1 also displays the normality

test statistics and corresponding p-values based on the bootstrap procedure proposed by Kilian

and Demiroglu (2000) and denoted by KD. The normality is always rejected both individually or

jointly at 10%. Table 2.1 also displays the Augmented Dickey-Fuller (ADF) statistics which reject

the non-stationarity hypothesis for all series. Finally, the Box-Ljung statistics of order 8 for the

original series and their squares, denoted byQ(8) andQ2(8) respectively, are displayed in the last

two columns of Table 2.1. We can observe that there is a dynamic dependence in the conditional

mean. However, the Box-Ljung statistics of the squared observations are smaller than those of

the levels, suggesting that the second order moments do not have significant dependence further

to those generated by the conditional mean dependence. Hence we fit a VAR model. Following

Kilian (1998a, 2001) and Marcellino et al. (2006), the lag order of the VAR is selected by the AIC

with maximum lag order being equal to 14, which chooses p̂ = 4. Given that the Normality has

been rejected, the traditional approach to forecasting using Gaussian densities may be misleading

and it is advisable to obtain bootstrap forecast densities. Consequently, the procedure proposed

in this chapter is implemented to construct out-sample forecast densities for h = 1, ..., 8.

Figure 2.8 plots bivariate one-step-ahead Gaussian and kernel estimates of the bootstrap den-

sities for the three variables in the system taken two by two. The bootstrap densities clearly reflect
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Kernel estimates of the bivariate densities of one-step-ahead forecast of inflation, un-
employment and GDP growth and computed using the Gaussian approximation with parameter
uncertainty (first column) and the bootstrap procedure proposed in this chapter (second column).
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(a) Inflation-GDP growth, h = 1 (b) Inflation-GDP growth, h = 8

(c) GDP growth-Unemployment, h = 1 (d) GDP growth-Unemployment, h = 8

(e) Inflation-Unemployment, h = 1 (f) Inflation-Unemployment, h = 8

Figure 2.9: 95% Gaussian ellipsoids and cubes (discontinuous lines), bootstrap ellipsoid and cubes
(continuous lines), corrected bootstrap cubes (dotted lines) and HDRs (dotted-discontinuous
lines) for one-step-ahead (first column) and eight-steps-ahead (second column) forecast of
Inflation-GDP growth (first row), GDP growth-Unemployment (second row) and Inflation-
Unemployment (third row).
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the non-Gaussianity which is more evident in the inflation-unemployment density. Figure 2.9

plots, for each of the three variables considered two-by-two, 95% one-step-ahead bootstrap fore-

cast ellipsoids and cubes for 2009Q4 (one-step-ahead) and 2011Q3 (eight-steps-ahead) together

with the corresponding regions obtained assuming Gaussian errors. Figure 2.9 also plots the

HDRs and the Bonferroni cubes modified to take into account the correlation between the vari-

ables. In each case, the corresponding observed out-of-sample values are displayed by a dot. First,

we can observe that the Gaussian and bootstrap ellipsoids are rather similar with the exception of

the one-step-ahead GDP growth-unemployment ellipsoids, in which case the bootstrap is larger

than that obtained assuming Gaussianity. Also note that, when h = 1, the HDRs suggest non-

elliptical densities. But, when h = 8, HRDs are closer to the corresponding ellipsoids, suggesting

that the Gaussianity may be plausible as the forecast horizon increases. Second, with respect to

the Bonferroni cubes, note that the Gaussian cubes are much smaller than those obtained by us-

ing the forward bootstrap procedure. Finally, when looking at the modified Bonferroni cubes,

we can observe that they only differ from the corresponding original cube in the case of the GDP

growth-unemployment region when h = 1. It is worth mentioning that, when looking at whether

the regions contain the true observations, we observe that, when h = 8, all regions contain them.

However, when h = 1, the GDP growth-unemployment observation falls outside the Gaussian

regions and but is it close to the boundary of the bootstrap ellipsoid and cube, but clearly within

the bounds of modified Bonferroni cube.

Finally, we compare the empirical coverages obtained when constructing the forecast densities

assuming Gaussian errors with and without parameter uncertainty and when implementing the

backward and forward bootstrap procedures with the bias and lag-order corrections. For this

purpose, we carry out a rolling window estimation with T = 100 observations, starting with

data from 1948Q1 to 1972Q3. For each estimation period, we construct joint out-of-sample 95%

ellipdois and Bonferroni cubes for the three variables in the system for h = 1, ..., 8. Therefore,

for each h and procedure, we obtain 148 out-of-sample regions. The empirical coverages for each

h and procedure are calculated by counting how many regions contain the true out-of-sample
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Figure 2.10: Empirical coverages of Bonferroni cubes for US inflation, unemployment and GDP
growth based on rolling window estimates with T = 100 observations: i) Gaussian without pa-
rameter uncertainty (♦), ii) Gaussian with asymptotic parameter uncertainty (O), iii) backward
bootstrap (◦), iv) forward bootstrap (�) and v) corrected cube (×). Nominal coverage 95%.

observation. The results are plotted in Figure 2.10. First of all, we observe that the coverages of

the Gaussian cubes are clearly smaller than those of the bootstrap ones. In concordance with the

Monte Carlo results reported above, this behavior of the Gaussian regions could be expected due

to the non-Gaussianity of the forecast errors and the persistence of the estimated model. Also

note that the performances of all bootstrap regions are remarkably similar. It is obvious that

there is not any gain in using the BR. Finally, the coverages obtained when using the modified

cube are similar to the original ones, though as we have seen before their shapes seem to be

more informative. After all, the results reported in Figure 2.10 are in line with those obtained

with simulated data in the sense that there are no large differences between using the forward

bootstrap procedure or that based on the BR.

2.5.2 Forecasting West German investment, income and consumption

We carry out an empirical implementation using the example published by Lütkepohl (1991) so

we are able to show how the forecast intervals are different when using the bootstrap instead
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of the asymptotic correction of the MSFE. We take the West German data set used in Lütkepohl

(1991) to illustrate the estimation and analysis of VAR models. The data consist of quarterly sea-

sonally adjusted fixed investment, disposable income and consumption expenditure from 1960Q1

to 1982Q4. Panel (a) of Figure 2.11 plots the level series which seem to have trend. Thus, to re-

moved the trend, we take first difference which are plotted in Panel (b) of Figure 2.11. Then, the

data set is split into an estimation period from 1960Q1-1978Q4 with T = 75 quarters and out-of-

sample period from 1979Q1-1982Q4 with H = 16 quarters. Finally, we estimate a VAR(2) for the

period 1960Q1-1978Q4; see Lütkepohl (1991) for details about the selection of the lag order in this

empirical application.

(a) Level Series (b) First difference

Figure 2.11: (a) level and (b) first difference of West German investment, income, and consump-
tion series for the period 1960Q1-1982Q4.

The proposed bootstrap procedure with bias-corrected parameters and endogenous lag order

selection is implemented to forecast during the out-of-sample period based on B = 1999 repli-

cates. Figure 2.12 plots the 1979 out-of-sample realization, the point forecast and the 95% intervals

obtained by using the standard approach and the proposed bootstrap procedure.9 Panels (a) and

(b) of Figure 2.12 show that the the out-of-sample values for 1979 (t = 77, ..., 80) are included

within the 95% bounds of the standard and bootstrap forecast intervals for the investment and

income. However, the out-of-sample realization of consumption falls outside the 95% standard

interval in 1979Q2 (t = 78) and 1979Q3 (t = 79). On the other hand, we observe that the 95%

bootstrap forecast intervals are usually wider, especially for the consumption series for which the
9The axis are chosen to reproduce the Figure 3.3 of Lütkepohl (1991).
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(a) Investement

(b) Income

(c) Consumption

Figure 2.12: 95% standard with AMSE (dashed lines) and bootstrap (dotted lines) forecast in-
tervals together with the out-of-sample realizarion (continuous line) of the first difference of
West German (a) investment, (b) income and (c) consumption for the out-of-sample year 1979
(t = 77, ..., 80).
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1979Q3 (t = 79) observation is well-inside its corresponding bootstrap bounds.

2.6 Conclusions

In this chapter, we establish the asymptotic validity and analyze the finite sample performance

of the multivariate extension of the bootstrap procedure proposed by Pascual et al. (2004) to con-

struct forecast densities in multivariate VAR(p) models. The main attractiveness of the new boot-

strap procedure is that it does not require the backward representation. As a result, we establish

its asymptotic validity in non-Gaussian models. Finally, our Monte Carlo experiments show that

the procedure works properly in incorporating the parameter uncertainty and is robust in the

presence of non-Gaussian errors. When compared with alternatives, the forward bootstrap pro-

cedure is comparable with other bootstrap procedures based on the BR and clearly better than

procedures based on Gaussian forecast errors. On the other hand, the performance of the forward

bootstrap procedure is comparable with the latter when the errors are Gaussian and the VAR

model has roots close to the unit circle, and clearly better in the presence of highly persistent VAR

models. Consequently, applied researchers are best off constructing forecast densities using the

forward bootstrap procedure, regardless of whether there is evidence of fat tails or skewness in the

forecast error distribution. Our empirical example shows that there might be important between

the Gaussian and bootstrap coverages. Furthermore, the forward procedure is computationally

simple and asymptotically valid and, consequently, an attractive alternative when dealing with

density forecast in multivariate models.

The flexibility of the procedure proposed in this chapter suggests its implementation in other

multivariate models. For example, as proposed by Pascual et al. (2005) in univariate models, it can

also be implemented to obtain forecast regions for the original observations when a VAR model is

fitted to log-transformed observations; see Ariño and Franses (2000) and Bårdsen and Lütkepohl

(2011).

Finally, further effort should be directed to the construction of bootstrap forecast regions. In
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this sense, it is worth noting that the forecast ellipsoids are only appropriate when the distribution

of the future values of the variables in the system is approximately multivariate Gaussian. When

the distribution of yT+h departs from Gaussianity, the quality of such approximation deteriorates.

The Bonferroni cubes do provide a better solution capturing the asymmetry of the distribution.

However, the shape of these cubes could not be appropriate when the variables are correlated and

usually their volumes are too high. Consequently, it would be interesting to obtain regions that

depart either from the elliptical or rectangular shapes.



Chapter 3

Bootstrap forecasts in VAR models: the

effect of parameters bias, parameter and

model uncertainties

3.1 Introduction

When analyzing a multivariate systems of time series it is often of interest to forecast their future

values. Traditionally, multivariate forecasts were provided as point forecasts. However, recently,

the attention of both econometricians and practitioners has moved to obtain probability forecast

distributions. A popular model to represent and forecast the dynamic evolution of multivariate

time series is the VAR(p) model which is the focus of this paper. The standard procedure for ob-

taining forecast densities in VAR models is based on a given lag order with known parameters and

Gaussian errors; see, for instance, Lütkepohl (1991). However, in practice, the lag order needs to

be selected, the parameters should be estimated and the error distribution is rarely known. Con-

sequently, the model implemented to forecast is an estimated VAR model which is treated as if

it were the true data generating process (DGP) and the forecast densities are conditional on the

selected lag order, the estimated parameters and the chosen error distribution with the sampling

58
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variability due to model and parameter uncertainty being ignored. It is important to take into

account that forecasts obtained with the estimated model can be inadequate to represent the fu-

ture projection of the system if the parameter estimates are biased; see, for instance, Tjøstheim

and Paulsen (1983) and Clements and Kim (2007). Even worse, Chatfield (1996) suggests that ig-

noring the model uncertainty may lead to over-optimism regarding the adequacy of the forecasts

in the sense that the resulting forecast intervals and regions may overstate the number of future

observations lying outside them. Finally, although the bias and the parameter uncertainty are of

small order of magnitude, their effect could be substantial in large and highly persistent systems

when the sample size is small; see Riise and Tjøstheim (1984). The objective of this chapter is to

analyze the contribution of the parameter bias and the model and parameter uncertainties when

building forecast regions in the context of multivariate VAR(p) models. For this purpose, we first

construct forecast regions using the standard textbook approach based on estimated VAR mod-

els with Gaussian errors. Second, we implement the bootstrap procedure proposed by Fresoli

et al. (in press) incorporating the uncertainty about the error distribution but with fixed param-

eters. Third, the bootstrap including the parameter uncertainty. Then, we add to the bootstrap

algorithm bias-correction. Finally, we also implement the bootstrap incorporating the lag order

uncertainty.

The remainder of this chapter is organized as follows. Section 2 establish notation by briefly

describing the VAR(p) model and the construction of forecast densities and regions using the stan-

dard Gaussian and bootstrap procedures. In Section 3, we present the Monte Carlo study based

on bivariate VAR models with different order and persistence properties, carried out to compare

the Gaussian forecast regions with bootstrap forecast regions. Finally, Section 4 concludes.

3.2 Forecasting VAR models

Consider the VAR(p) model introduced in the previous chapters and denote by Π = [Φ1, ...,Φp]

a N × Np matrix called companion matrix. The standard textbook approach is to construct the
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forecast density assuming Gaussian errors as follows

yT+h ∼ N(ŷT+h|T , Σ̂y(h)). (3.1)

where ŷT+h|T and Σ̂y(h) are obtained by substituting the unknown parameters in the expression

of the conditional mean of yT+h given {y1, ..., yt} and its corresponding MSFE matrix by the LS

estimates. The forecast densities in (3.1) are denoted here as standard (STD). The STD forecast

densities can be inadequate to construct forecast regions for several reasons. First, they do not

tackle the parameter bias which affects both ŷT+h|T and Σ̂y(h). Second, Σ̂y(h) partially reflects

the uncertainty around the point forecast since other sources of uncertainty, such as those asso-

ciated with the selection of p̂ and with the estimation of the parameters, are omitted. Finally, the

Gaussianity assumption may be misleading for many macroeconomic and financial systems.

Bias-corrected parameters can be obtained by using the expression proposed by Pope (1990).

The parameter uncertainty can be incorporated into the MSFE by using its asymptotic distribu-

tion; see Reinsel (1980) and Lütkepohl (1991). Alternatively, Bayesian forecast densities are able to

incorporate the parameter and lag order uncertainties; see, for instance, Koop (2013) and Wright

(2013) just to mention two recent references. However, Bayesian forecast densities usually rely on

assumptions about errors distribution . Finally, bootstrap procedures can approximate the fore-

cast density of a VAR(p) model without relying on any distributional assumptions for the errors

and are well suited to tackle the parameter and lag order uncertainty; see, for instance, Kilian

(1998a,b). From a practical point of view, it is important to find out the sources that are explaining

the bad performance of STD approach in Monte Carlo experiments and empirical applications;

see, for example, Kim (1999) and Fresoli et al. (in press). To achieve this goal, we rely on several

bootstrap alternatives that successively tackle these issues.

Next we describe the bootstrap procedure implemented to construct h-steps-ahead forecast

densities for VAR(p) models; see Fresoli et al. (in press) for its asymptotic validity.

Step 1. Select to lag order, p̂, by using AIC and estimate the parameters of the model by LS.
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Step 2. Correct the LS estimate by subtracting its bias, Π̂c = Π̂− Ω̂. Then, the largest root of the

resulting bias-corrected parameter is computed, r(Π̂c). If r(Π̂c) < 1, then Π̂c is considered as the

bias-corrected parameter estimate. Otherwise, set Ω̂1 and δ1 = 1 and define Ω̂i+1 = δiΩ̂i, δi+1 =

δi − 0.01 and Π̂c = Π̂ − Ω̂i, and iterate, for i = 1, 2, ..., until the largest root of the bias-corrected

parameter falls in the stationary region, r(Π̂c) < 1. Obtain also the bias-corrected version of the

intercept, µ̂∗c = (IN−Φ̂c
1− ...−Φ̂c

p)ȳ, where ȳ is aN×1 vector of sample means. Get the residuals ,

ε̂t, for t = p̂+1, ...T , by using the bias-corrected parameters and denote the empirical distribution

function from the centered and rescaled residuals as F̂ε̂.

Step 3. Generate a bootstrap replicate {y∗1, ..., y∗T } by using the estimated lag order, p̂, and the

bias-corrected parameters, as follows

y∗t = µ̂c + Φ̂c
1y
∗
t−1 + Φ̂c

2yt−2 + ...+ Φ̂c
py
∗
t−p̂ + ε̂∗t (3.2)

where ε̂∗t are random draws with replacement from F̂ε̂. The first p observations of {y1, ..., yp} are

set as initial conditions.

Step 4. Use the bootstrap replicate of the process to select the lag order of the model, p̂∗. Obtain

{µ̂∗c, Φ̂∗c1 , ..., Φ̂∗cp }, after adjusting a bootstrap replicate of the LS estimates by fitting a VAR(p̂∗)

model to the bootstrap series {y∗1, ..., y∗T } and correct the bootstrap parameters estimates as in Step

2.

Step 5. Generate a bootstrap replicate of the VAR forecast by using the following recursion

ŷ∗T+h|h = µ̂∗c + Φ̂∗c1 ŷ
∗
T+h−1|h + Φ̂∗c2 ŷ

∗
T+h−2|h + ...+ Φ̂∗cp ŷ

∗
T+h−p̂∗|T + ε̂∗T+h (3.3)

where ŷ∗T+j = yT+j if j ≤ 0 and ε̂∗T+h is a random draw with replacement from F̂ε̂.

Step 6. Repeat steps 1-5 B times.

As a result of implementing this procedure, we obtain {ŷ∗(1)
T+h|T , ..., ŷ

∗(B)
T+h|T } which can be used

to approximate the h-steps-ahead forecast distribution of the process. More specifically, ifG∗(x) =
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P (y∗T+h < x) is the distribution function of y∗T+h, then its Monte Carlo estimate is given by

Ĝ∗h(x) =
B∑
b=1

I
(
ŷ
∗(b)
T+h|T < x

)
B

,

where I (·) takes the value 1 when the argument is true and 0 otherwise. The estimated bootstrap

distribution is then used to construct forecast intervals and regions with appropriate probability

content.

The bootstrap procedure can be run with fixed lag order and parameters by avoiding steps 2,

3 and 4 and using the parameter estimates in step 5. In this case, the forecast densities, called here

as distribution bootstrap (Dist-B), incorporate the uncertainty about the error distribution. For

example, STATA implements the Dist-B to construct bootstrap forecast intervals for VAR mod-

els (StataCorp, 2013). Second, we consider the bootstrap procedure that avoids the step 2 and

does not re-estimate the lag order for the bootstrap replicates in step 4. This bootstrap procedure,

which is called basic bootstrap, tackles, in addition to the error distribution uncertainty, the sample

variability due to parameter uncertainty; see, for instance, Wolf and Wunderli (2012) who con-

struct bootstrap forecast regions using this method. Third, if we avoid only re-estimation of the

lag order in step 4, we have in hand a bootstrap alternative that incorporates the bias-correction

formula proposed by Pope (1990); see Clements and Kim (2007) who highlight that in presence of

biased parameters the resulting bootstrap forecast regions may be double biased since the boot-

strap estimates of the parameters might also suffer from bias. We called this bootstrap procedure

bias-corrected bootstrap (BCB). Finally, we consider the bias-corrected and endogenous bootstrap (BCEB)

in which the uncertainty about the lag order is tackled by re-estimating it for each bootstrap series;

see, for example, Staszewska-Bystrova and Winker (2013).
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3.3 Monte Carlo experiments

In order to compare the role played by the error distribution, the bias, the parameter uncertainty

and the lag order uncertainty on the construction of forecast regions, in this section we carry out

the Monte Carlo experiments. We consider the same VAR(5) and VAR(10) models of the previ-

ous chapter with three three error distributions, namely Gaussian, Student-5 and χ2
4, which are

adequately centered and re-scaled.1 M = 1000 replicates of sizes T = 100 and 300 are generated

by each of the 6 model considered. For each replicate, the AIC is implemented to choose the lag

order with the maximum lag order being equal to 12 and 16 for T = 100 and 300, respectively.

After estimating the parameters by LS, h-steps-ahead forecast densities, for h = 1, ..., 8, are con-

structed assuming Gaussian errors (STD) as in (3.1). Furthermore, bootstrap forecast densities

are also constructed based on B = 1999 by implementing the DIST-B, BB, BCB and BCEB proce-

dures. In each case, we construct 95% Bonferroni cubes and compute their empirical coverages

after generating 2000 future true values of yT+h and counting the number of them lying inside the

95% forecast Bonferroni cubes.2

Figure 3.1 plots the empirical coverages for the VAR(10) model which are similar regardless

of the error distribution. Consider first the case when T = 100. The upper panels of Figure 3.1

show that coverages of the Bonferroni cubes are always below the 0.95 nominal and decreases

with the forecast horizon, a pattern usually observed in VAR models with roots close to the non-

stationary region; see, for instance, Kim (1999, 2004) and Fresoli et al. (in press). Furthermore,

the STD regions show the largest undercoverage for all forecast horizon. For example, when the

error is Student-5, empirical coverages of the Gaussian cubes are 0.834 and 0.719, when h =1

and 8, respectively. The regions constructed using the Dist-B procedure with fixed lag order and

estimated parameter attain a smaller undercoverage. For example, when the errors are Student-

5 and h = 1, the uncercoverage of the STD region is 12.23% while that of the Dist-B region is

1See Appendix A, models (b) and (c), for details on this VAR specifications.
2Monte Carlo results for the persistent VAR(5) are qualitatively the same. For his reason we include them in the

Appendix D.
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8.21%, and these values rise to 24.31% and 19.77% when h = 8. However, the largest reduction in

undercoverage is obtained when incorporating the parameter uncertainty. For the same case con-

sidered above, the regions constructed using the BB procedure understate the nominal by 2.8%,

when h = 1, and by 6.73%, when h = 8. It is worth noting that the difference between Dist-B

and BB coverages increases as h increases. This finding suggests that incorporating the parameter

uncertainty is important for the accuracy of long-run forecasts. Including further bias-correction

only varies marginally the extent to which the coverages are below the nominal. Finally, tackling

the lag order uncertainty provide additional gains in terms of empirical coverages, though these

are less pronounced that those obtained when incorporating the parameter uncertainty. Contin-

uing with the example above, the BCB procedure is below the nominal by 2.93% while the BCEB

methods by 1.99%, when h = 1, and the undercoverages rise to 6.11% and 5.00% for BCB and

BCEB, respectively, when h = 8. Therefore, in contrast to what is often posited in the literature,

this finding points out that incorporating bias-correction and dealing with lag order uncertainty is

not as prominent as the parameter uncertainty, at least in term of the accuracy of forecast regions;

see, for instance, Chatfield (1996) and Kim (2004).

Consider now the resutls when T = 300 which are plotted in lower panels of Figure 3.1. We

observe that, regardless of the error distribution and the forecast horizon, the empirical coverages

are close to the 0.95 nominal. Also, the differences between coverages attained by the STD and

bootstrap cubes are less pronounced. Yet bootstrap cubes attain slightly better empirical cover-

ages than the Gaussian cubes, except when the parameters are fixed. On one hand, we have STD

and DIST-B, with coverages that are below the nominal by about 2 or 3%, for all forecast horizon.

On the other hand, we have BB, BCB and BCEB which have empirical coverages that are far from

the nominal by about 0.5% when h = 1, and by 1 or 1.5% when h = 8.

In any case, these results suggest that the better empirical coverages of bootstrap cubes than

Gaussian ones may be attributable, to large extent, to the sampling variability due to parameter

uncertainty, though model uncertainty also plays a moderate role. The reason may be attributed

to the fact that the VAR(10) model implemented in this simulation study is highly persistent with
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a number of parameter to be estimated rather large in comparison to the sample size and, thus,

parameter uncertainty turns out to be large; see Tjøstheim and Paulsen (1983). Notwithstand-

ing, it is important to point out that these features can be less visible in VAR models with fewer

parameters relative to sample size and lower persistence in their dynamics.

3.4 Conclusion

In this chapter we asses the effect on coverages of Bonferroni forecast regions constructed for

VAR(p) models, of error distribution uncertainty, bias and parameter uncertainty and lag order

uncertainty. With this purpose, we carry out Monte Carlo experiments and construct the regions

using bootstrap procedures which are able to differentiate each of these sources of uncertainty.

We show that the better coverages of bootstrap cubes are obtained when taking into account the

parameter estimation. Moreover, our Monte Carlo experiments shows that there are valuable

gains, in terms of coverages, of adding the model uncertainty at least for short forecast horizons.

The benefits of implementing the bias-correction formula seems to be less visible. Finally, even

when the model and parameter uncertainties and biased estimates are not a serious concern due

to large sample, bootstrap forecast cubes are preferable.
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Chapter 4

The uncertainty in forecasting returns,

volatilities and correlations in DCC

models

4.1 Introduction

Forecasting conditional correlations is a key issue for financial market participants when dealing,

for example, with risk management, derivative pricing models, hedging strategies or portfolio

allocation models; see, for example, details in Engle (2009). Multivariate GARCH (MGARCH)

models are also widely implemented to macroeconomic time series. Modeling the time variation

in macroeconomic volatility is important to the accuracy of inference and to explain, for example,

the sources of the Great Moderation; see, for example, Clark and Ravazzolo (in press) for a very

recent reference. Moreover, MGARCH are becoming popular when modeling non-financial time

series as, for example, wind speed; see Jeon and Taylor (2012) among others. As a result, modeling

the second order moments of multivariate time series has become a prevailing field of research

and many MGARCH models have been developed with this purpose; see Bauwens et al. (2006)

and Silvennoinen and Teräsvirta (2009) for comprehensive surveys. Among the many MGARCH

67
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models available in the literature, the Dynamic Conditional Correlation (DCC) model of Engle

(2002) has become one of the most popular models for the estimation of conditional correlations;

see Audrino (in press) and Laurent et al. (2012) for the forecasting usefulness of DCC models.

The DCC model assumes that the dynamic evolution of the pairwise correlations is similar to

that of univariate GARCH conditional variances. Recently, Aielli (2013) proposes a reformula-

tion of the original specification of the correlation driving process so that it is possible to obtain a

consistent Quasi-Maximum Likelihood (QML) estimator of the parameters, giving rise to the cor-

rected Dynamic Conditional Correlation (cDCC) model. Note that the consistency of the sample

estimator of the unconditional correlations is crucial for the adequate performance of the boot-

strap procedure considered in this chapter. The cDCC model is now the benchmark for empirical

applications in the context of multivariate conditional heterocedastic times series of financial re-

turns and it will be the focus of this chapter; see, for example, Engle and Kelly (2012), Hafner and

Reznikova (2012), Bauwens et al. (2013), Aielli and Caporin (in press) and Audrino (in press) for

applications of the cDCC model.

It is important to note that the conditional correlations in cDCC models are observable one-

step-ahead; see Caporin and McAleer (2013) who suggest that, in spite of its limitations, the DCC

model can be considered as a filter for estimating and forecasting conditional correlations. Con-

sequently, the only uncertainty associated with one-step-ahead correlations is that attributable

to the parameter estimation. However, when the correlations are forecast more than one-step-

ahead, they also have uncertainty associated with the future forecast errors. As far as we know,

there have been no attempts in the literature to measure the uncertainty associated with condi-

tional correlations forecast by DCC models; see, for example, Laurent et al. (2012) and Caporin

and McAleer (2010) who compare point forecasts from various MGARCH models without even

mentioning the associated uncertainty. The only attempts of measuring the uncertainty of condi-

tional correlations appear in the context of high frequency realized correlations, where Barndorff-

Nielsen and Shephard (2004) provide asymptotic intervals and Dovonon et al. (2013) propose

bootstrap intervals.
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In the context of univariate GARCH models, Pascual et al. (2006) propose using bootstrap

procedures to obtain forecast densities of returns and conditional volatilities; see Hartz et al.

(2006), Gaglianone et al. (2011), Grigoletto and Lisi (2011), Huang and Wang (2012) and Wang

et al. (2012) for empirical implementations. In a multivariate setting, Fresoli et al. (in press) il-

lustrate how to adapt this bootstrap procedure to obtain forecast distributions of the correlations

in the context of a VAR-DCC model. The proposed bootstrap procedure is appealing because it

allows the construction of multivariate forecast densities for returns, volatilities and correlations

that incorporate the parameter uncertainty without relying on any particular assumption about

the distribution of standardized returns. This chapter analyzes the finite sample performance of

the bootstrap procedure described by Fresoli et al. (in press) when implemented to obtain condi-

tional forecast regions for future returns, volatilities and correlations in the context of the cDCC

model. It is important to remark that this bootstrap procedure can be easily adapted to deal

with other MGARCH models. We illustrate the procedure by implementing it to construct time-

varying forecast Bonferroni regions for returns and forecast intervals for volatilities, covariances

and correlations in a three-dimensional system containing daily exchange rate returns of the Euro,

Japanese Yen and Australian Dollar against the US Dollar. Moreover, we implement the bootstrap

algorithm to forecast the within sample conditional correlation of S&P500 and NASDAQ returns.

The rest of this chapter is structured as follows. Section 2 describes the cDCC model and

the bootstrap algorithm proposed to approximate the conditional forecast densities of returns,

volatilities and correlations. In Section 3, we carry out Monte Carlo experiments to analyze the

finite sample properties of the bootstrap procedure. In Section 4, the bootstrap algorithm is im-

plemented to forecast out-of-sample returns, volatilities, covariances and correlations of a three-

dimensional system of aily exchange rates returns and to forecast within sample correlations of

daily returns of two US market indexes. Finally, Section 5 concludes the chapter.
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4.2 Bootstrap densities for conditional correlations

In this section, we establish briefly notation by describing the scalar cDCC model. The bootstrap

procedure proposed by Fresoli et al. (in press) to obtain forecast densities of returns, volatilities

and correlations in the context of the cDCC model is also described.

4.2.1 The DCC model

The scalar cDCC model as originally proposed by Engle (2002) and modified by Aielli (2013) is

given by

yt = H
1/2
t at (4.1)

Ht = DtRtDt (4.2)

where yt is a N × 1 vector of returns observed at time t, at is a N × 1 serially independent vector

with zero mean and identity covariance matrix, Ht is aN×N positive definite conditional covari-

ance matrix, Dt is a N × N diagonal matrix containing the univariate GARCH-type conditional

standard deviations of each of the variables in yt and Rt is the N ×N matrix of conditional corre-

lations. The most popular model for univariate conditional variances is the basic GARCH(1,1) of

Engle (1982) and Bollerslev (1986) given by

σ2
i,t = ωi + αiy

2
i,t−1 + βiσ

2
i,t−1, i = 1, ..., N , (4.3)

where σi,t is the ith element in the main diagonal of Dt. The parameters satisfy the conditions

for positivity and weak stationarity of yi,t; see Teräsvirta (2009) for a recent survey on univariate

GARCH models.1

1For simplicity, we focus on the simplest cDCC(1,1) specification with GARCH(1,1) conditional variances.
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The correlation matrix Rt is defined as follows

Rt = dg(Qt)
− 1

2Qtdg(Qt)
− 1

2 (4.4)

where dg(Qt) is a diagonal matrix with the same diagonal elements as Qt which determines the

dynamics of the conditional correlations as follows

Qt = (1− α− β)S + αυt−1υ
′
t−1 + βQt−1 (4.5)

where υt = dg(Qt)
1
2 εt with εt = D−1

t yt being the vector of standardized errors, S is the uncon-

ditional correlation matrix of υt and α and β are scalars. The scalar cDCC model in equations

(4.1)-(4.5) restricts the dynamics of all the correlations to be governed by the same parameters,

namely α and β. Furthermore, positiveness is guaranteed if S is positive definite and α, β > 0

and α+ β < 1.

The parameters of the cDCC model can be estimated by maximizing the Gaussian likelihood

(QML). First, Denote by θ = (Υ1,Υ2, s) where Υ1 = [(ω1, α1, β1), ..., (ωN , αN , βN )] is a vector

containing the parameters in the conditional variances, Υ2 = (α, β) is a vector whose components

are the parameters that govern the dynamics in the conditional correlation, and s = vech(S), is

a vector stacking the lower off-diagonal elements of S, with vech being the off-diagonal stacking

operator. Without taking into account the constants, the Gaussian log-likelihood is given by

L(θ) = −1
2

∑T
t=1

[
log(|Ht|) + y′tH

−1
t yt

]
= −1

2

∑T
t=1

[
2log(|Dt|) + log(|Rt|) + ε′tR

−1
t εt

] (4.6)

which is maximized with respect to all the parameters in θ in order to get the QML estimator.

Under some regularity conditions, the QML estimator is consistent and asymptotically Gaussian;

see McAleer et al. (2008) and Hafner and Preminger (2009). Furthermore, if the error distribution

is Gaussian, the QML estimator is also efficient.
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However, the maximization of the Gaussian likelihood in (4.6) with respect to θ can be com-

putationally costly for medium to large systems. Alternatively, the estimation of the parameters

can be done in three steps. The log-likelihood in (4.6) can be split into two parts and maximized

sequentially. In particular, L(θ) = Lv(Υ1) + Lc(Υ1,Υ2, s), where

Lv(Υ1) = −1
2

∑T
t=1

[
2log(|Dt|) + y′tD

−2
t yt

]
=
∑N

i=1

(
−1

2

∑T
t=1

[
log(σi,t) +

y2i,t
σ2
i,t

]) (4.7)

is the volatility part of the likelihood, and

Lc(Υ1,Υ2, s) = −1

2

T∑
t=1

[
log(|Rt|) + ε′tR

−1
t εt − ε′tεt

]
(4.8)

is the correlation part with εt = D−1
t yt. First, the parameters involved in the conditional variance

equations, Υ1, are estimated by maximizing (4.7), obtaining Υ̂1 and the corresponding standard-

ized returns, ε̂t = D̂−1
t yt. Note that the last term in (4.8), ε′tεt, only depends on the conditional

variances parameters and can be neglected when miximizing Lc with respect to Υ2 and s, giving

rise to

Lc(Υ1,Υ2, s) = −1

2

T∑
t=1

[
log(|dg(Qt)

− 1
2Qtdg(Qt)

− 1
2 |) + υ′tdg(Qt)

− 1
2Q−1

t dg(Qt)
− 1

2υt

]
. (4.9)

Furthermore, υt does not depend on S, thus it is possible to substitute S within expression (4.9)

by

S̃
(Υ̂1,Υ2)

= T−1
T∑
t=1

dg(Qt)
1
2 ε̂tε̂

′
tdg(Qt)

1
2 , (4.10)

obtaining Lc(Υ̂1,Υ2, s̃) which can be maximized with respect to Υ2. Once both Υ1 and Υ2 are

estimated, one can obtain υ̂t and estimate S by the corresponding moment estimator. This three-

steps estimation procedure is known as correlation targeting. Aielli (2013) derives the asymp-

totic distribution of the cDCC three-steps correlation targeting estimator which is consistent and
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asymptotically Gaussian under some standard assumptions.

The cDCC model delivers point forecasts of correlations and volatilities. The h-steps-ahead

forecast of the volatility of each return in yt is obtained easily by iterating forward as follows

σ2
i,T+h|T = ωi

h−2∑
j=1

(αi + βi)
j + (αi + βi)

h−1σ2
i,T+1|T (4.11)

where the one-step-ahead forecast of the conditional variance is determined by the observed se-

ries of returns as follows

σ2
i,T+1|T =

ωi
1− αi − βi

+ αi

T−1∑
j=0

βji

(
y2
i,T−j −

ωi
1− αi − βi

)
. (4.12)

Similarly, the point forecast of the conditional correlation matrix RT+h is given by

RT+h|T = dg(QT+h|T )−
1
2QT+h|Tdg(QT+h|T )−

1
2 . (4.13)

where

QT+h|T = (1− α− β)S

h−2∑
j=0

(α+ β)j + (α+ β)h−1QT+1|T (4.14)

and

QT+1|T = S + α

T−1∑
j=0

βj
[
(dg(QT−j)

− 1
2D−1

T−jyT−jy
′
T−jD

−1
T−jdg(QT−j)

− 1
2 − S

]
. (4.15)

Using DT+h|T and RT+h|T , it is possible to construct HT+h|T using equation (4.2). Finally, assum-

ing further that εt is conditionally Gaussian, one can approximate the joint forecast density of

yT+h as follows

yT+h|y1, ..., yT ∼ N(0, HT+h|T ). (4.16)

Note that, even if the errors were truly Gaussian, the forecast density in (4.16) is only valid for

h = 1 and it should be considered as an approximation for h > 1; see Drost and Nijman (1993) in
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the context of univariate GARCH models. In any case, in practice, standardized financial returns

often depart from Gaussianity usually due to fat-tails; see, for instance, Bauwens and Laurent

(2005), Pesaran and Pesaran (2007) and Rossi and Spazzini (2010). If the errors are non-Gaussian,

future densities predicted as in (4.16) might be a poor approximation of the conditional distribu-

tion of returns.

Furthermore, the parameters in equations (4.11) and (4.14) are unknown and must be esti-

mated using, for example, the three-steps correlation target estimator described by Engle (2009)

and Aielli (2013); see Hafner and Reznikova (2012) for a comparison of alternative estimators of

DCC models. Aielli (2013) derives heuristically the asymptotic distribution of the cDCC three-

steps correlation target estimator and shows that it is consistent and asymptotically Gaussian un-

der standard assumptions. The density in (4.16) does not incorporate the parameter uncertainty

and, consequently, it will underestimate the uncertainty associated with future returns.

Finally, note that equations (4.11) and (4.14) only yield point forecasts of future volatilities and

correlations. The bootstrap procedure described next allows constructing forecast densities for

future returns, volatilities and correlations that incorporate the parameter uncertainty without

relying on specific assumptions on the error distribution.

4.2.2 Bootstrap forecasts in the cDCC model

Fresoli et al. (in press) propose a bootstrap procedure to approximate the forecast density of future

returns, volatilities and correlations for the DCC model. In this section, we describe how to adapt

this procedure to forecast in the context of the cDCC model.

The algorithm to obtain bootstrap replicates of returns, volatilities and correlations is as fol-

lows.

Step 1. Estimate the model parameters θ by the three-steps correlation target procedure as

described by Aielli (2013). Denote the estimated parameter by θ̂. Obtain ât = Ĥ
− 1

2
t yt and the

corresponding empirical distribution function denoted by F̂â.
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Step 2. Compute Q∗1 = Ŝ and the correlation matrix R∗1 = dg(Q∗1)−
1
2Q∗1dg(Q∗1)−

1
2 . Obtain

ε∗1 = R
∗ 1
2

1 a∗1 and υ∗1 = dg(Q∗1)
1
2 ε∗1, where a∗1 is a random draw with replacement from F̂â. Construct

recursively for t = 2, ..., T , a bootstrap replicate of ε∗t , υ∗t and R∗t as follows

Q∗t = (1− α̂− β̂)Ŝ + α̂υ∗t−1υ
∗′
t−1 + β̂Q∗t−1,

R∗t = dg(Q∗t )
− 1

2Q∗tdg(Q∗t )
− 1

2 ,

ε∗t = R
∗ 1
2
t a∗t , (4.17)

υ∗t = dg(Q∗t )
1
2 ε∗t , (4.18)

where a∗t are random draws with replacement from F̂â. Consider σ∗2i,1 = ω̂i/(1 − α̂i − β̂i) and

y∗i,1 = ε∗i,1σ
∗
i,1, for i = 1, ..., N . Obtain recursively for t = 2, ..., T , a bootstrap replicate of yt and

their conditional variances as follows

σ2∗
i,t = ω̂i + α̂iy

∗2
i,t−1 + β̂iσ

∗2
i,t−1, (4.19)

y∗i,t = ε∗i,tσ
∗
i,t, (4.20)

where ε∗i,t is the ith element of ε∗t obtained in (4.17).

Step 3. Obtain a bootstrap estimate of the parameters θ̂∗ by fitting the cDCC model to the

bootstrap replicate {y∗1, ..., y∗T }. Construct D̂∗t and Q̂∗t , for t = 1, ..., T , which contain the in-sample

estimates of the univariate conditional standard deviations and correlations obtained by using

the bootstrap estimates of the parameters and the returns series as follows

σ̂∗i,t =
[
ω̂∗i + α̂∗i y

2
i,t−1 + β̂∗i σ̂

∗2
i,t−1

] 1
2
, (4.21)

Q̂∗t = (1− α̂∗ − β̂∗)Ŝ∗ + α̂∗
[
dg(Q̂

∗ 1
2
t−1)D̂∗−1

t−1 yt−1y
′
t−1D̂

∗−1
t−1 dg(Q̂

∗ 1
2
t−1)

]
+ β̂∗Q̂∗t−1. (4.22)
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Step 4. Compute one-step-ahead bootstrap forecasts of conditional correlations, variances

and returns according to

Q∗T+1|T = Ŝ∗ + α̂∗
T−1∑
j=0

β̂∗j
[
dg(Q̂∗T−j)

1
2 D̂∗−1

T−jyT−jy
′
T−jD̂

∗−1
T−jdg(Q̂∗T−j)

1
2 − Ŝ∗

]
(4.23)

R∗T+1|T = dg(Q∗T+1|T )−
1
2Q∗T+1|Tdg(Q∗T+1|T )−

1
2 , (4.24)

ε∗T+1 = R
∗ 1
2

T+1|Ta
∗
T+1,

υ∗T+1 = dg(Q∗T+1|T )
1
2 ε∗T+1

σ2∗
i,T+1|T =

ω̂∗i

1− α̂∗i − β̂∗i
+ α̂∗i

T−1∑
j=0

β̂∗ji

(
y2
i,T−j −

ω̂∗i

1− α̂∗i − β̂∗i

)
, (4.25)

y∗i,T+1 = ε∗i,T+1σ
∗
i,T+1|T . (4.26)

where a∗T+1 is a random draw with replacement from F̂â. Likewise, obtain future values of the

correlations, volatilities and returns through the following recursion for h = 2, ...,H

Q∗T+h|T = (1− α̂∗ − β̂∗)Ŝ∗ + α̂∗υ∗T+h−1υ
∗′
T+h−1 + β̂∗Q∗T+h−1|T , (4.27)

R∗T+h|T = dg(Q∗T+h|T )−
1
2Q∗T+h|Tdg(Q∗T+h|T )−

1
2 , (4.28)

ε∗T+h = R
∗ 1
2

T+h|Ta
∗
T+h

υ∗T+h = dg(Q∗T+h|T )
1
2 ε∗T+h

σ2∗
i,T+h|T = ω̂∗i + α̂∗i y

∗2
i,T+h−1 + β̂∗i σ

∗2
i,T+h−1|T ; (4.29)

y∗i,T+h = ε∗i,T+hσ
∗
i,T+h|T . (4.30)

where a∗T+h are random draws with replacement from F̂â.

Step 5. Repeat steps 2 to 4, B times, obtaining y∗(b)T+h|T , D∗(b)T+h|T and R∗(b)T+h|T for h = 1, ...,H and



BOOTSTRAP FORECASTS OF DCC MODELS 77

b = 1, ..., B.

It is worth mentioning that the one-step-ahead forecast of Qt in (4.23) depends on D̂∗t and Q̂∗t ,

which are the in-sample estimates ofDt andQt evaluated at the bootstrap estimates of the param-

eters, θ̂∗, and the original observations. Therefore, although the one-step-ahead bootstrap fore-

casts of the correlation matrix is conditional on the observed sample, their variability is affected

by the parameter uncertainty. The only component which varies from one bootstrap replicate to

another is the bootstrap estimates of the parameters, θ̂∗, while {y1, ..., yT } are kept fixed through-

out all bootstrap replicates. When forecasting further into the future, the bootstrap forecasts of

the correlation matrix also includes the error uncertainty by sampling with replacement from F̂â

to obtain a∗(b)T+h. A similar argument holds for the bootstrap forecasts of the conditional variances;

see also the discussion in Pascual et al. (2006) for a similar argument in the univariate context.

Using the bootstrap replicates, one can obtain estimates of the multivariate forecast densities

of returns, volatilities and correlations. Also, it is possible to obtain their forecast regions and

intervals. Consider first the construction of time-varying forecast regions for returns. First, we

can obtain bootstrap forecast ellipsoids with probability content (1− α)100% which are given by

BEy(T + h) =
{
y|y ∈

[
yT+h − ŷ∗T+h|T

]
H∗−1
T+h|T

[
yT+h − ŷ∗T+h|T

]
< C∗

}
(4.31)

where ŷ∗T+h is the sample mean of the B bootstrap replicates of returns ŷ∗(b)T+h, H∗T+h|T is the cor-

responding sample covariance of y∗T+h, and C∗ is the (1 − α)100% percentile of the bootstrap

distribution of the following quadratic form

[
ŷ
∗(b)
T+h − ŷ

∗(b)
T+h

]
H
∗(b)−1
T+h|T

[
ŷ
∗(b)
T+h − ŷ

∗(b)
T+h

]
.

It is well-known that the ellipsoids are only appropriate when the distribution is Gaussian; see

Fresoli et al. (in press) and Wolf and Wunderli (2012). Furthermore, constructing ellipsoids can be

computationally complicated when the dimension of the system is very large. Alternatively, one
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can construct Bonferroni cubes with probability content at least (1 − α)100% for future returns

which are given by

BCy(T + h) =
{
y|y ∈ ∪Nj=1

[
qy∗j,T+h

( α

2K

)
, qy∗j,T+h

(
1− α

2K

)]}
(4.32)

where qy∗j,T+h (ζ) is the ζth quantile of the empirical bootstrap distribution of the jth return,

G∗yj,T+h
(x) = #(y

∗(b)
j,T+h|T ≤ x)/B. As the Bonferroni cubes do not offer information about the

association between returns, they can be corrected to be expressed in the direction of the correla-

tions; see Fresoli et al. (in press).

As an illustration, we consider several bivariate cDCC models obtained combining three sets

of correlation parameters, Υ2 = (0.18, 0.70), (0.1, 0.88) and (0.03, 0.95), two error distributions,

namely Gaussian and Student-7, two values for the unconditional correlation, 0.5 and 0.9, and

univariate GARCH models with parameters Υ1 = (0.05, 0.05, 0.90, 0.01, 0.10, 0.85). So we con-

sider 12 different models. For each model we generate a time series of size T = 1000 and estimate

the cDCC model parameters by the three-steps correlation target estimator.2 Then, the bootstrap

procedure is implemented with B = 1000 bootstrap replicates to obtain one-steps-ahead forecast

densities of returns. We also obtain the corresponding Gaussian forecast densities computed as in

equation (4.16) with HT+1|T substituted by ĤT+1|T . From each of these conditional densities, we

construct the 95% one-step-ahead ellipsoids and corrected Bonferroni cubes. The results are plot-

ted in Figure 4.1 for the three models with Gaussian errors and unconditional correlation equal to

0.5 for three selected within-sample periods. In each, a realization of 1000 returns, yT+1, has been

represented by dots. A quick inspection of all panels in Figure 4.1 reveals that, for a particular

model, both the shape and the slope of the ellipsoids and Bonferroni cubes change over time.

Also, it is noticeable that the bootstrap ellipsoids have larger volumes than the corresponding

2The computations have been carried out by using a MATLAB code developed by the first author in a workstation
with processor Intel Core i5-2.50GHz and 8GB of RAM. Correlation target estimates are obtained numerically by using
fminunc with the interior point algorithm. For each GARCH(1,1) process, the intercept, ωi, is restricted to be greater than
e−6 while the elements in S are obtained as centered correlations. All other parameters, αi, βi, α and β, are restricted
to lie in the interval (e−6, 1− e−6) with αi + βi < 1 and α+ β < 1 being less than 1− e−6.
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Gaussian ellipsoids and, in some cases, the true observation is included in the former but not in

the latter. The discrepancy between bootstrap and standard regions is even more pronounced for

the corrected Bonferroni cubes. Given that the models considered in Figure 4.1 have Gaussian er-

rors and the forecast horizon is one, the differences between the regions based on the Gaussianity

assumption and the bootstrap regions can be attributed to the parameter uncertainty.
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Following the same ideas as in Pascual et al. (2006) for univariate conditional variances, we

can use the bootstrap replicates of the jth univariate conditional variance to construct its empirical

bootstrap distribution, G∗
σ2
j,T+h

(x) = #(σ
2∗(b)
j,T+h|T ≤ x)/B. Given that, in the cDCC model, the

conditional variances are assumed to be contemporaneously independent, here we only consider

the construction of the (1-α)100% marginal forecast intervals which are given by

BIσ2(T + h) =
{
σ2|σ2 ∈

[
qσ

2∗
j,T+h

(α
2

)
, qσ

2∗
j,T+h

(
1− α

2

)]}
(4.33)

where qσ
2∗
j,T+h (ζ) = G∗−1

σ2
j,T+h

is the ζth percentile of the empirical bootstrap distribution of the jth

conditional variance. To illustrate the construction of bootstrap forecast densities and their cor-

responding forecast intervals for conditional variances, we consider a bivariate time series gen-

erated by the cDCC with correlation parameters Υ2 = (0.03, 0.95), the unconditional correlation

being 0.9 and the error distribution being Student-7. For the sake of brevity, we just focus on the

conditional variance for the second variable in the system. Figure 4.2 displays kernel estimates

of the h-steps-ahead bootstrap conditional densities together with the empirical conditional den-

sities of σ2
2,T+h, for h = 1, 2 and 20. The empirical densities have been obtained using a kernel

estimate implemented to 2000 simulated future values of the series, conditional on {y1, ..., yT }.

First, observe that the one-step-ahead forecast of σ2
2,T+1 plotted in panel (a) of Figure 4.2 is con-

centrated on a fixed value. As we stated before, no uncertainty is associated with forecasting

one-step-ahead conditional variances. Yet the conditional bootstrap distribution of σ2
2,T+1 has

some degree of variability reflecting the parameter uncertainty. Second, note that the conditional

2-steps-ahead forecast of σ2
2,T+2 is bounded by the value of the intercept, ω2 and, consequently,

the empirical density is asymmetric to the right. However, the bootstrap replicates, σ2∗
2,T+2, might

be smaller than this value depending on the bootstrap estimates of the parameters,
(
ω̂∗2, α̂

∗
2, β̂
∗
2

)
.

Third, the uncertainty associated with σ2
2,T+h clearly increases as we forecast further into the fu-

ture due to the addition of error uncertainty, a fact that is reflected by both, the empirical and the

bootstrap conditional distributions of σ2
2,T+h. After all, the first three panels of Figure 4.2 display
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(a) σ2
2,T+1 (b) σ2

2,T+2

(c) σ2
2,T+20 (d) σ2

2,T+h

Figure 4.2: Kernel estimates of empirical (continuous line) and bootstrap densities (discontinuous
line) of σ2

2,T+h within the bivariate cDCC model with sample size T = 1000 and Student-7 errors
for (a) h = 1, (b) h = 2 (c) h = 20 (d) 95% h-steps-ahead forecast interval, for h = 1, ..., 20, (dis-
continous lines) together with point forecasts (dash-dot line) and out-of-sample true realization
(continuous line).

bootstrap densities that approximate quite well the true empirical ones with the approximation

being better for longer forecast horizon than short ones. This is due to the fact that the model

implies known one-step-ahead forecast.

Panel (d) of Figure 4.2 plots one realization of σ2
2,T+h, for h = 1, ..., 20, together with the

corresponding point forecasts and the 95% bootstrap intervals. It can be observed that the true

out-of-sample realizations of the volatilities are included within the bootstrap forecast intervals.

Finally, we implement the bootstrap procedure to construct h-steps-ahead bootstrap forecast

densities for conditional correlations. Panels (a), (b) and (c) of Figure 4.3 plot kernel estimates of

the conditional empirical h-steps-ahead forecast densities of ρ12,T+h, for h = 1, 2 and 20 together

with kernel estimates of the corresponding bootstrap densities for the bivariate cDCC model,

with correlation parameters Υ2 = (0.10, 0.88), unconditional correlation equal to 0.9 and Student-
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7 errors. The conclusions are similar to those obtained when forecasting volatilities. However, the

densities are asymmetric to the left because in this particular illustration the marginal correlation

is close to one. After all, it is clear from the first three panels of Figure 4.3 that the bootstrap

procedure it approximates adequately the shape of the conditional empirical densities of ρ12,T+h.

Once more, the h-steps-ahead bootstrap densities can be used to construct the corresponding

intervals for the forecasts of the correlations. Panel (d) of Figure 4.3 plots an out-of-sample realiza-

tion of the correlations, ρ12,T+h, for h = 1, 2..., 20, together with the point forecasts obtained after

estimating the model and the 95% bootstrap forecast intervals. We observe that the true correla-

tions fall within the bounds of the forecast intervals. Further, we observe that the point forecasts

underestimate the corresponding the out-of-sample correlations; see Engle and Sheppard (2001)

and Engle (2009).

(a) ρ12,T+1 (b) ρ12,T+2

(c) ρ12,T+20 (d) ρ12,T+h

Figure 4.3: Kernel estimates of empirical densities (continuous line) and bootstrap densities (dis-
continuous line) of ρ12,T+h within of a bivariate cDCC with T = 1000 and Student-7 error for (a)
h = 1, (b) h = 2 (c) h = 20 (d) 95% h-steps-ahead forecast interval, for h = 1, ..., 20, (discontinuous
lines) together with point forecasts (dash dot line) and out-of-sample true realization (continuous
line).
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4.3 Monte Carlo evidence

In this section, we carry out Monte Carlo experiments to analyse the finite sample properties

of the bootstrap procedure described in the previous section. We focus on two of the bivari-

ate cDCC models, used for illustration in the previous section. The first model (model 1) has

Υ2 = (0.10, 0.88) and an unconditional correlation of 0.5 while the second model (model 2) has

Υ2 = (0.03, 0.95) with an unconditional correlation of 0.9. Note that these two models bring up

two different situations. In both models the persistence is 0.98. However, the first model is char-

acterized by a large response-to-shock parameter, α while the second model resembles closely the

parameters found when fitting cDCC models to financial series, with α being relatively small; see,

for example, the empirical application in next section. Three alternative distributions for at are

assumed, namely, Gaussian, Student-7 and χ2
5. The second distribution is chosen to reproduce

the heavy tails often observed in the distribution of standardized financial returns while the third

is chosen to represent potential asymmetries. The sample sizes considered are T = 500, 1000 and

2000. The number of Monte Carlo replicates is 500; see Hafner and Franses (2009) and Hafner and

Reznikova (2012) for similar number of Monte Carlo replications. For each replicate, we gener-

ate 2000 conditional future values of yT+h, σ2
T+h and ρ12,T+h, for h =1,...,20, to approximate the

empirical distribution of returns, conditional variances and correlations, respectively. The param-

eters are estimated by the three-steps correlation target estimator of Aielli (2013). The number of

bootstrap replicates is B = 1000, and these are used to construct 95% h-steps-ahead bootstrap

forecast intervals for each return, conditional variance and correlation in the system. In order to

assess the small sample properties of the bootstrap procedure, the empirical coverage is computed

by counting the number of future values inside the corresponding intervals. In addition, to mea-

sure the adequacy of the bootstrap distributions to approximate the out-of-sample distributions

of returns, we compute the Earth Mover’s Distance (EMD) between the h-step-ahead bootstrap

distribution of the ith return and the corresponding empirical distribution. Also, we compute the

EMD when the h-steps-ahead distribution of the ith return is approximated by assuming Nor-
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mality; see Rubner et al. (1998) for the definition of the EMD and Arroyo and Maté (2009) for an

application of the EDM to forecast histograms.3

Figure 4.4 displays the empirical coverages of the 95% bootstrap forecast intervals for y2,T+h,

σ2
2,T+h and ρ12,T+h when considering model 1.

First, we consider the empirical coverages of y2,T+h which are plotted in the first row of Fig-

ure 4.4. Although the empirical coverages of the bootstrap forecast intervals are below the nom-

inal of 95%, they are always above 94.5%, and this happen irrespective of the forecast horizon.

We also observe that, as the sample size increases, the coverage rates of the bootstrap intervals

are closer to the nominal, a feature that is more evident when the error distribution departs from

Gaussianity. For the purpose of comparing alternative methods, the first row of Figure 4.4 also

includes the empirical coverage of the Gaussian forecast intervals. As expected, the difference

between the Gaussian and bootstrap intervals are less pronounced when the error distribution

is Gaussian. In contrast, in the case of the Student-7 error distribution, the coverage rates of the

Gaussian intervals are well below the nominal as well as below the bootstrap coverages for all

sample sizes. Surprisingly, when the error distribution is χ2
5, the Gaussian intervals provide em-

pirical coverages above the nominal, though this distortion seems to dampen with the forecast

horizon.

3The EMD can be approximated as follows. Let x(1) ≤ ... ≤ x(B) and y(1) ≤ ... ≤ y(B) be ordered realizations of

X and Y . Then the EMD is given by EMDxy =
[

1
N

∑R
i=1 | x(i) − y(i) |

2
] 1

2 , which is just the L2 distance between the
ordered vectors. We are thankful to Ruben Zamar for suggesting using this measure.
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The coverages plotted in the first row of Figure 4.4 are not informative about whether the

shape of the density of returns is well approximated by the bootstrap density. This is why, we

also compute the EMD. Figure 4.5 plots the average EMD between the Gaussian and the bootstrap

conditional densities of y2,t with respect to the corresponding empirical density, when the sample

size is T = 500. Consider first the results when the errors are Gaussian. In this case, we can

observe that the performance of the Gaussian and the bootstrap densities is similar for h = 1. Note

that, in this case, the true forecast density is Normal. However, if h > 1, the forecast densities are

not Normal and the EMDs of the Gaussian densities increase with h and are clearly larger than

the EMDs of the bootstrap densities. Therefore, even if the errors are truly Gaussian, it is worth

to implement the bootstrap procedure to forecast more than one-step-ahead. On the other hand,

when the errors are either Student-7 or χ2
5, the bootstrap EMDs are clearly smaller than the EMDs

of the Gaussian densities.

The small sample properties of bootstrap forecast intervals for univariate GARCH(1,1) pro-

cesses have studied in detail by Pascual et al. (2006). In this chapter, however, we also display

some results regarding average coverages of the conditional variance of y2,t. The second row of

Figure 4.4 plots the empirical coverages of the bootstrap forecast intervals of σ2
2,T+h for Gaussian,

Student-7 and χ2
5 errors in model 1. We can observe that the coverages of the bootstrap forecast

intervals depend on the forecast horizon. Regardless of the error distribution, the coverages are

below the nominal of 95% when h = 1. This undercoverage is more pronounced when the errors

are non-Gaussian and the sample size is small. In any case, it is important to note that the cov-

erages are always over 0.9. When h > 2, the coverages tend to decrease as the forecast horizon

increases. We can observe that, as expected, the coverages are closer to the nominal as T increases

suggesting that the procedure is consistent. For instance, when T = 2000, the coverages are below

the nominal by less than 2.5%, and this happen for all the forecast horizons and error distribu-

tions; these results are qualitatively similar to those reported by Pascual et al. (2006), though there

is a slight difference in the decline of the coverage curve as the forecast horizon increases.

The third row of Figure 4.4 plots the Monte Carlo coverages of the bootstrap forecast intervals
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Figure 4.5: Monte Carlo averages of EMD distances between the h-steps-ahead Gaussian forecast
densities (grey lines) and bootstrap densities (black lines) of y2,T+h and the corresponding empir-
ical conditional density for y2,t in model 1 with T = 500 and Gaussian (•), Student-7 (+) and χ2

5

(∗) errors.

for the conditional correlation, ρ12,t in model 1 when the nominal coverage is 95%. The patterns

observed are roughly similar to those observed for the conditional variance of y2,t. Once more,

the coverages of the one-step-ahead bootstrap forecast are under the nominal for all error distri-

bution and sample sizes. This undercoverage is slightly larger than that observed for conditional

variances. When h ≥ 2, we also observe that the coverages decrease with the forecast horizon.

However, this undercoverage is only observed for the smallest sample size when T = 500. When

T = 1000 and 2000, the coverages of the bootstrap forecast intervals of ρ12,t are approximately

equal to the nominal.

Finally, Figure 4.6 plots the empirical coverages of the bootstrap forecast intervals for y1,T+h,

σ1,T+h, ρ12,T+h and average EMD between the Gaussian forecast densities and bootstrap densities

of y1,T+h and the corresponding empirical density, when the error distribution is Student-7 and

T = 500, in model 2. Much of what we commented about Figures 4.4 and 4.5 is still valid for

Figure 4.6. In panel (a) of Figure 4.6, we observe that the empirical coverages of the bootstrap

forecast intervals of y1,T+h are below the nominal. Also, bootstrap intervals of y1,T+h improve
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(a) y1,T+h (b) EMD

(c) σ2
1,T+h (d) ρ12,T+h

Figure 4.6: Monte Carlo average of coverages of h-steps-ahead bootstrap forecast intervals of (a)
y1,T+h , (b) σ2

1,T+h and (c) ρ12,T+h model 2 with sample size T = 500 (◦), 1000 (�) and 2000 (�)
with Student-7 errors and nominal coverage 95%, and (d) averages of EMD distances between
the h-steps-ahead Gaussian forecast densities (grey lines) and bootstrap densities (black lines) of
y1,T+h and the corresponding empirical conditional density for y1,t in model 1 with T = 500 and
Gaussian (•), Student-7 (+) and χ2

5 (∗) errors.
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their coverage with the sample size and they provide better accuracy than the corresponding

Gaussian intervals for moderate and large sample sizes. Moreover, panel (b) of Figure 4.6 shows

that the bootstrap densities are clearly closer to the corresponding true density than the Gaussian

densities when the error distributions depart from Gaussianity. Still, when the error distribution

is Gaussian, the bootstrap seems to be as good as the Gaussian density when h = 1. Panels

(c) and (d) of Figure 4.6, that plot the empirical coverages σ1,T+h and ρ12,T+h, respectively, look

qualitatively similar to those plotted in the second and third rows of Figures 4.4. Quantitatively,

comparing the empirical coverages of Figures 4.4 and Figure 4.6 for ρ12,T+h we observe that are

slightly closer to the nominal in model 1 than in model 2. This seems to be caused by the greater

uncertainty encountered when α is larger relative to the β. In such a case, the the bootstrap

forecast intervals become considerably wider and, thus, they are more likely to capture future

realization of the conditional correlation.

After all, the Monte Carlo simulation results show that the bootstrap algorithm can reasonably

deal with forecasting returns, volatilities and correlations cDCC models.

4.4 Empirical application

In this section we implement the bootstrap procedure to forecast out-of-sample returns, volatili-

ties, covariances and correlations of a three dimensional system of daily exchange rates returns,

Euro , Japanese Yen and Australian Dollar against the US Dollar. Moreover, we illustrate the

bootstrap algorithm within sample by forecasting the conditional correlation between S&P500

and NASDAQ returns.

4.4.1 Bootstrap out-of-sample forecast of exchange rates returns

In this section, the bootstrap algorithm is implemented to forecast future returns, volatilities, co-

variances and correlations of a system of three currencies, Euro (EUR), Japanese Yen (JPY) and

Australian Dollar (AUD) against the US Dollar (USD). Note that this section is purely illustrative
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of the application of the bootstrap procedure and limited attention is given to the economic inter-

pretation of the results. Daily exchange rates of the three currencies, Pi,t i = 1, 2 and 3, have been

observed from 3/1/2003 to 13/9/2013 with 2693 observations. The full sample period have been

split in a estimation period spanning from 3/1/2003 to 1/8/2013 with T = 2663 and a forecast

out-of-sample period from 2/8/2013 to 13/9/2013 with H = 30. The currencies are transformed

to log-returns as usual by yi,t = 100 × 4log(Pi,t). Several descriptive statistics are reported in

Table 4.2 for the overall period as well as for the estimation and out-of-sample periods. Note that,

for all three currencies, the univariate skewness and excess kurtosis are significantly different

from zero in the within-sample and overall periods, though they do not differ significantly from

zero in the out-of-sample period. Table 4.2 also reports results for the multivariate extensions of

skewness and excess kurtosis as proposed by Kilian and Demiroglu (2000). It worth noting that

the multivariate distribution of returns is positive skewed in the within-sample and overall peri-

ods, but seems to be symmetric around zero in the out-of-sample period. Similarly, heavy tails are

considerable in the within-sample and overall periods, but not in the out-of-sample period. These

features of the return distribution across time are corroborated by the univariate Normality and

multivariate Jarque-Bera tests which reject the null of individual Normality of each of the series

and joint Gaussianity, respectively, in the within-sample and overall periods, though there is not

strong evidence against marginal and joint Gaussianity in the out-of-sample period; see Fiorentini

et al. (2004) for the univariate Normality test and Kilian and Demiroglu (2000) for the multivariate

Jarque-Bera test and the bootstrap approximation of their distributions. With respect to the de-

pendence of returns, Table 4.2 reports the Ljung-Box statistics adjusted to account for conditional

heteroscedasticity as proposed by Diebold (1988) and denoted by Q(l), for l = 10. It may be ob-

served that the returns show no linear dependence in any of the sub-periods considered. We also

report the multivariate portmanteau statistic of order 10 proposed by Patilea and Raı̈ssi (2013)

to test for multivariate linear dependence in the presence of conditional heterocedasticity, which

suggests an uncorrelated vector of returns, irrespective of the sub-period considered. However,

marginal squared returns are characterized by significant correlations according to the Ljung-Box
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statistics of order 10 for the individual squared returns in the within-sample and overall periods.

Likewise, the multivariate portmanteau statistic of order 10 implemented to vech(yty
′
t) shows

strong dependence in these periods. When we focus on the out-of-sample period, we note that,

even though Q2(10) is not significant, it is noticeably larger than Q(10) for each of the series, both

individually and jointly, thus supporting the existence of a weak dependence in the square re-

turns in this period. Finally, the last column of Table 4.2 reports the Ljung-Box statistics for the

first ten cross-correlations between returns and future squared returns, Q12(10), suggesting the

presence of leverage effect only in the case of AUD. In the within-sample and overall periods,

the descriptive results are in line with the stylized facts of returns, which are less visible in the

out-of-sample period, a fact that might be attributed to the calm in financial markets during 2013.

With respect to the correlation structure, the sample pairwise unconditional correlations for

the EUR-AUD and EUR-JPY are 0.63 and 0.25, respectively, and both are significant according

to the corrected Breusch and Pagan (1980) test to account for heterocedasticity; see Halunga et al.

(2011). On the other hand, the unconditional correlation between AUD and JPY is not significantly

different from zero. We also test the constancy of the conditional correlations, implementing the

test suggested by Tse (2000). First, we implement the test to the pairwise correlations, rejecting

the null of constant conditional correlations in all cases. Note that although the unconditional

JPY-AUD correlation is not different from zero, the conditional correlation seems to evolve over

time. Then, we test for the joint constancy of the three correlations in the system. The LM statistic

is 360.52 with a p-value equal to 0.00. Therefore, the constant conditional correlation hypothesis

of the whole system is also rejected. Finally, we test for asymmetries in conditional correlations,

implementing the exceedance test of Hong et al. (2007) which is based on the exceedance cor-

relations above or below a threshold. For instance, when the threshold is the median of each

exchange rate return, the exceedance test statistics are 0.30, 0.53 and 0.17 for EUR-JPY, EUR-AUD

and JPY-AUD, respectively, with the corresponding p-values being all larger than 0.40. Consid-

ering different thresholds does not change this result. Therefore, the presence of asymmetries in
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Table 4.1: Summary statistics of daily returns for Euro (EUR), Japanese Yen (JPY) and Australian
Dollar (AUD) against the US Dollar observed for the within-sample period from 3/1/2003 to
1/8/2013, the out-of-sample period 2/8/2013 to 13/9/2013 and the overall period from 3/1/2003
to 1/8/2013. Mean, standard deviation (Std), skewnees (Skew) and excess kurtosis (Ek), Normal-
ity test, Ljung-Box for returns (Q(10)), squared returns (Q2(10)) and cross-correlations between
returns and future squared returns (Q12(10)). Asymptotic p-values in parenthesis.

Mean Std Skew Ek NT1 Q(10) Q2(10) Q12(10)

Within-sample
EUR 0.00 0.28 −0.10

(0.02)
2.45
(0.00)

669.67
(0.00)

0.41
(0.99)

356.96
(0.00)

0.50
(0.99)

JPY 0.00 0.29 −0.29
(0.00)

4.55
(0.00)

2324.29
(0.00)

0.53
(0.99)

164.39
(0.00)

3.25
(0.97)

AUD -0.01 0.40 0.74
(0.00)

12.22
(0.00)

16761.15
(0.00)

2.88
(0.98)

1665.31
(0.00)

80.95
(0.00)

Multivariate 339.02
(0.00)

18999.12
(0.00)

19338.13
(0.00)

188.55
(0.46)

4438.06
(0.00)

Out-of-sample
EUR -0.01 0.16 0.24

(0.30)
−0.78
(0.19)

0.85
(0.65)

0.04
(0.99)

8.29
(0.60)

0.00
(0.99)

JPY 0.00 0.31 0.10
(0.41)

−0.28
(0.38)

0.12
(0.94)

0.32
(0.99)

14.66
(0.15)

0.99
(0.02)

AUD -0.05 0.30 −0.48
(0.14)

−0.42
(0.32)

1.14
(0.56)

0.55
(0.99)

7.85
(0.64)

0.02
(0.99)

Multivariate 4.19
(0.13)

1.31
(0.66)

5.50
(0.18)

98.37
(0.11)

350.76
(0.62)

Overall period
EUR 0.00 0.28 −0.10

(0.02)
2.47
(0.00)

689.65
(0.00)

0.40
(0.99)

366.79
(0.00)

0.50
(0.99)

JPY 0.00 0.29 −0.28
(0.00)

4.48
(0.00)

2285.50
(0.00)

0.54
(0.99)

164.05
(0.00)

3.17
(0.98)

AUD -0.01 0.40 0.74
(0.00)

12.21
(0.00)

16945.48
(0.00)

2.82
(0.99)

1683.26
(0.00)

80.21
(0.00)

Multivariate 332.72
(0.10)

18973.98
(0.00)

19306.71
(0.00)

184.03
(0.49)

4486.00
(0.00)

1 Bootstrap p-values as proposed by Kilian and Demiroglu (2000).
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Table 4.2: Estimates of the parameters of the cDCC(1,1) model and diagnosis for daily returns
of Euro (EUR), Japanese Yen (JPY) and Australian Dollar (AUD) exchange rates observed from
3/1/2003 to 1/8/2013. Lagrange Multiplier test statistics for the univariate and multivariate stan-
dardized residuals, (LM∗2 (10)). Asymptotic p-values in parenthesis.

Conditional variances ωi αi βi LM∗2 (10)

EUR 2.29e−4

(0.00)
0.03
(0.00)

0.97
(0.00)

3.50
(0.97)

JPY 8.37e−4

(0.00)
0.03
(0.00)

0.96
(0.00)

10.23
(0.42)

AUD 1.06e−3

(0.00)
0.06
(0.00)

0.93
(0.00)

10.13
(0.43)

Conditional correlations si,j α β

EUR-JPY 0.26
(0.00)

— — —

EUR-AUD 0.63
(0.00)

0.04
(0.00)

0.95
(0.00)

278.35
(0.99)

JPY-AUD 0.11
(0.02)

— — —

correlations is rejected.

The results above suggest fitting the symmetric cDCC model.4 Table 4.2 reports the three-

steps target correlation estimates of the parameters. Observe that all parameters are significant

and close to the values usually estimated when the cDCC model is fitted to systems of financial

returns. Also, observe that the constant of the equation of the correlation between the Japanese

Yen and the Australian Dollar exchange rate returns is not significantly different from zero when

α =1%. The last column of Table 4.2 reports the LM test statistics for the univariate squared stan-

dardized residuals, âi,t, and the multivariate standardized residuals, vech(ât); see Engle (1982)

and Lütkepohl (2004).5 The null hypothesis of no further dynamics in standardized returns is not

rejected. Therefore, the cDCC model seems to be adequate to represent the dynamic dependence

in the system of exchange rate returns considered.

Using the bootstrap replicates of the parameters and the original observations, we obtain one-

4Further analysis shows that the presence of leverage effect in AUD is rather weak.
5When dealing with the standardized residuals, we report results for the Lagrange Multiplier test as proposed by

Engle (1982) and Lütkepohl (2004) as its validity is guaranteed under general conditions. However, asymptotic validity
of the portmanteau test is still unsolved in the case the test is implemented to residuals. Yet, results for the multivariate
portmanteau tests of Hosking (1980) and Duchesne and Lalancette (2003) lead to the same conclusions.
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step-ahead densities of returns, volatilities and correlations during the within-sample period. Fig-

ure 4.7 plots the one-step-ahead forecasts and the 95% bootstrap intervals for correlations for the

period between 2/7/2006 and 1/8/2013 together with the sample estimate of the unconditional

correlations. We can observe that the intervals are rather tiny so that the forecasts of correla-

tions are very reliable. The second column of Figure 4.7 highlights this conclusion by plotting the

one-step-ahead forecasts of the correlations for the last nineteen days, covering the period from

8/7/2013 to 1/8/2013. We can observe large and frequent changes in the EUR-JPY and JPY-AUD

conditional correlations while the correlations between EUR-AUD are more stable. Note that,

although the unconditional correlation between AUD and JPY is not significantly different from

zero, Figure 4.7 shows that the conditional correlations fluctuate around zero, with only 1.04% of

the bootstrap intervals containing the zero within their corresponding bounds.

The proposed bootstrap procedure is also implemented to forecast returns, volatilities and cor-

relations out-of-sample. Figure 4.8 plots h-steps-ahead Gaussian and bootstrap pairwise forecast

ellipsoids and cubes for h = 1, 20 and 30. In each figure, the true observed return is represented

by a dot. First, we observe that the Gaussian and bootstrap ellipsoids are very similar. This re-

sult is not surprising as the means and conditional covariances used to construct them do not

differ significantly. Consider, for example, the EUR and AUD returns. In this case, the Gaus-

sian ellipsoid is centered on (0.00, 0.00) and the one-step-ahead covariance matrix is given by

vech(ĤT+1|T ) = (0.05, 0.04, 0.13), while the bootstrap ellipsoid is centered at (0.00, 0.01) and the

bootstrap conditional covariance matrix is given by vech(Ĥ∗T+1|T ) = (0.06, 0.05, 0.13). Clearly,

these two moments are rather similar in both cases and the corresponding ellipsoids are also

similar. Second, as expected, we note that the bootstrap corrected cubes are larger than those

based on Gaussianity, a fact that might be attributed to the parameter uncertainty and/or the

non-Gaussianity of the errors. In order to differentiate the effect of both features, we implement a

slight modification of the proposed bootstrap procedure, which consists in omitting the parameter

uncertainty by fixing the parameters at their three-steps correlation target estimates throughout

all bootstrap forecast replicates. As a result, we avoid the sampling variability due to the pa-
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rameter uncertainty while we are able to capture the asymmetries in the empirical distribution of

the error. In this case, the difference between both bootstrap corrected cubes can be attributed to

the parameter uncertainty. Figure 4.8 shows that both bootstrap cubes are rather similar. Con-

sequently, the difference between the Gaussian and bootstrap cubes is, to a large extent, due to

the non-Gaussianity of the errors with the parameter uncertainty playing a minor role. Once

more, this is not surprising as the sample size in this empirical application is considerably large.

Finally, observe that the financial market have reached a period of calm, as highlighted also in

the descriptive analysis, extreme returns are less frequent during the out-of-sample period and,

consequently, they tend to fall within the boundaries of all the regions plotted in Figure 4.8.

Finally, in order assess the adequacy of the out-of-sample h-steps-ahead bootstrap forecast in-

tervals for correlations, we compute realized correlations; see Andersen et al. (2001), Andersen

et al. (2003) and Barndorff-Nielsen and Shephard (2004). It is widely recognized that the esti-

mation of realized covariances and correlations suffers from asynchronous trading and market

microstructure noise, causing the covariance estimator to be biased and inconsistent; see, for in-

stance, McAleer and Medeiros (2008) and Corsi and Audrino (2012). In our empirical example,

the intra-day data is sampled using 1-minute intervals, avoiding the effect of non-synchronous

data. The sample data spans from 2/8/2013 to 13/9/2013, which corresponds to 30 weekdays,

and consists of transaction prices for the three exchange rates considered. In order to avoid the ef-

fect of non official trading we only consider prices between 9:00am and 4:00pm. After computing

the intra-daily returns, the realized covariance matrix is obtained as follows

Hr
t =

m∑
i=j

y(m)t+j/my
′
(m)t+j/m (4.34)

for j = 1, ...,mwhere y(m)t+j/m is the returns vector during the interval 1
m . Barndorff-Nielsen and

Shephard (2004) establish the asymptotic distribution of the realized covariance and correlation

matrices defined in (4.34).6

6Dovonon et al. (2013) propose an i.i.d. bootstrap for realized correlations which is shown to outperform the asymp-
totic theory of Barndorff-Nielsen and Shephard (2004). Comparing the bootstrap intervals for daily correlations based
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Figure 4.9 plots out-of-sample forecasts for the volatilities, covariances and correlations of

the cDCC model. The diagonal corresponds to volatilities, the lower-off-diagonal to covariances

and the upper-off-diagonal to correlations. All figures include the 95% and 99% h-steps-ahead

bootstrap forecast intervals of volatilities, covariances and correlations together with the point

forecast of the cDCC model and their corresponding realized measures. The latter have been

plotted together with the 95% asymptotic intervals obtained as suggested by Barndorff-Nielsen

and Shephard (2004). We can observe that the path depicted by the realized measures and their

95% asymptotic intervals is, in general, well-captured by their corresponding 95% and 99% boot-

strap forecast intervals during the out-of-sample period. Note also that, when h = 1, the realized

volatilities and covarianes show a large shifts and, as a result, they fall far outside their corre-

sponding bootstrap intervals bounds. However, the corresponding realized correlations correla-

tion show up to be more stable and only two of them are not included in the corresponding 99%

one-step-ahead bootstrap interval. After all, the bootstrap intervals seem to depict reasonably

well the uncertainty surrounding the conditional estimates obtained with the cDCC model.

on daily or high-frequency data is left for further research.
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4.4.2 Bootstrap within sample forecasts of conditional correlations of US market in-

dexes returns

In this application we implement the bootstrap algorithm to construct within 95% bootstrap in-

tervals for conditional correlations of daily log returns of S&P500 (SPt) and NASDAQ (NQt)

observed from 30/1/2004 to 1/8/2013. Table 4.3 provides summary statistics for SPt and NQt.

They have roughly the same qualitative characteristics as those commented for exchange rate

returns system, with the exception that now the cross-correlation between returns and squared

returns which are significant. This suggests that a different model for the conditional variances

may be needed to deal with asymmetries. Also, the exceedence test of Hong et. al (2007) is not so

conclusive about the nonexistence of asymmetries in conditional correlations. Finally, Tse (2001)

test strongly rejects the null of constant conditional correlation. For simplicity, we consider a

simple cDCC(1,1) with GARCH(1,1) volatilities and recognize that there could be scope to im-

prove it due to asymmetries in volatilities and correlations. The estimated cDCC model with the

asymptotic p-values in parentheses is as follows

HSP,t = 3.35e−3

(0.00)
+ 0.09

(0.00)
SP 2

t−1 + 0.89
(0.00)

HSP,t−1,

HNQ,t = 4.41e−3

(0.00)
+ 0.07

(0.00)
NQ2

t−1 + 0.91
(0.00)

HNQ,t−1,

Qt = (1− 0.03− 0.96)Ŝ + 0.03
(0.00)

υt−1υ
′
t−1 + 0.96

(0.00)
Qt−1,

Ŝ =

 1 .

0.93
(0.00)

1

 . (4.35)

The LM test statistics implemented to â2
i,t , for i = SP and NQ, and to vech(âtâ

′
t), put forward

that the model behaves reasonable well in modeling the dynamics. 7

7The LM statistic of order 20, with the p-values in parentheses, are 6.65 (0.75) and 11.63 (0.75) for the â2SP,t and
â2NP,t, respectively. The multivariate LM of order 20 implemented to vech(âtâ

′
t) gives a statistic equal to 217.96 (0.03).



BOOTSTRAP FORECASTS OF DCC MODELS 102

Table 4.3: Summary statistics of daily returns for S&P500 and NASDAQ observed from 30/1/2004
to 1/8/2013. Mean, standard deviation (Std), skewnees (Skew) and excess kurtosis (Ek), test of
Fiorentini et al. (2004) (Normality), Ljung-Box for returns (Q(20)), squared returns (Q2(20)) and
cross-correlations between returns and future squared returns (Q12(20)). p-values in parenthesis.

Mean Std Skew Ek Normality Q(20) Q2(20) Q12(20)

S&P500 0.01 0.57 −0.08
(0.06)

13.86
(0.00)

19117.93
(0.00)

8.92
(0.53)

3085.93
(0.00)

66.41
(0.00)

NASDAQ 0.01 0.61 −0.21
(0.00)

6.95
(0.00)

4824.50
(0.00)

6.98
(0.72)

3324.01
(0.00)

36.98
(0.00)

Multivariate 7.14
(0.03)

20021.84
(0.00)

20028.40
(0.00)

295.15
(0.45)

7979.00
(0.00)

The bootstrap procedure is implemented to approximate the within sample conditional cor-

relations using (22) based on 1000 bootstrap replicates. Once more, we gather high frequency

mid-quotes prices for the US indexes sampled using a calendar time scheme with 1-minute in-

tervals and compute the intra-day returns and their corresponding 95% asymptotic confidence

intervals just as before. For this application, intra-daily data spans from 12/10/2012 to 1/8/2013,

which means 389 days. Figure 4.10 plots the one-step-ahead 95% and 99% bootstrap intervals for

the conditional correlations together with the intra-day point measures and their 95% confidence

intervals for the period from 12/10/2012 to 1/8/2013. First, we observe that the conditional cor-

relations fluctuate in a narrow interval. Of course, this dynamic is in line with those estimated pa-

rameters reported above. Second, we note that the bootstrap forecast densities of the conditional

correlations are negative skew. The reason is that, positive related shocks increase correlation but

only gradually since the unconditional conditional correlation is close to upper bound of 1. On

the other hand, negative related shocks have a substantial effect in reducing the conditional cor-

relation. Finally, we can observe that the path depicted by the realized correlations and their 95%

asymptotic intervals is roughly capture by the corresponding bootstrap intervals.8

8Note that the realized correlation is substantially low and its precision large in the day 12/3/2013. The reason is
that intra-day returns during this day contains a lot of non-overlapping zeros, which probably is causing the down-
ward in the realized covariance estimates.
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Figure 4.10: One-step-ahead bootstrap intervals and realized measures together with its confi-
dence interval for S&P500-NASDAQ conditional correlation from 12/10/2012 to 1/8/2013. Nom-
inal coverages are 95% (dashed grey) and 99% (dashed black) for the bootstrap intervals and 95%
for the realized correlations.

4.5 Conclusion

DCC models deliver within-sample and out-of-sample point forecasts of conditional correlations.

However, uncertainty measures related to these forecasts are not available. In this chapter, we

propose to approximate the uncertainty of conditional correlations in the cDCC model by imple-

menting the bootstrap procedure proposed by Fresoli et al. (in press) for multivariate models.

We analyze its finite sample properties and show that it is adequate in situations similar to those

encountered when fitting cDCC models to real systems of financial returns.

The bootstrap procedure is implemented to obtain predictive densities of returns, volatilities

and correlations of a three-dimensional system of daily exchange rates returns. The bootstrap pro-

cedure seems to work adequately when forecasting out-of-sample in the sense that the bootstrap

forecast intervals capture most of the realized correlations during the out-of-sample period.

Moreover, the bootstrap procedure considered in this paper can be easily adapted to deal with

alternative MGARCH models; see Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009)
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for alternatives. In the context of VAR models, Fresoli et al. (in press) show that the advantages

of bootstrapping are larger when the roots are close to the non-stationary regions. Therefore it

is of interest to analize the uncertainty associated with forecasting correlations in the context of

non-stationary models as those suggested by Amado and Teräsvirta (in press).

Another important issue left for further research is the feasibility of the considered bootstrap

procedure in large systems of returns. In this case, Hafner and Reznikova (2012) show that, in high

dimensions, there is a problem of biased parameter estimates when implementing the three-steps

target estimator considered in this paper due to the ill-conditioning of the sample correlation

matrix used for correlation targeting. They suggest using a shrinkage technique to solve this

problem and compare it with alternative estimators. Alternatively, one can also use a bootstrap-

after-bootstrap approach, though the computational burden is largely deepened. Whether this

computational burden can be reduced using the proposals of Giacomini et al. (2013) is also in our

future research agenda.



Chapter 5

Conclusions and extensions

5.1 Conclusions

In this thesis we investigated the performance of bootstrap procedures to construct forecast densi-

ties, intervals and regions for multivariate time series data. In particular, we focused on bootstrap

procedures developed to forecast VAR and DCC models which are useful in modeling and fore-

casting economic and financial data. The bootstrap methodology is attractive since it is free of

distributional assumptions about the errors. Moreover, bootstrap procedures are well suited to

incorporate the sampling variability due to parameter uncertainty and can be designed to tackle

also the model uncertainty.

In a VAR setting, we established the asymptotic validity of a bootstrap procedure that it is not

based on the popular backward representation. We conducted several Monte Carlo experiments

to assess its finite sample properties, and observed that the bootstrap procedure considered ex-

hibits as good properties as bootstrap alternatives based on the backward representation. There-

fore, consistent with Occam’s razor, it is worth to insist in the good properties of the bootstrap

forecasts obtained without using the backward representation.

Bootstrap methods are successfully designed to deal with different sources of uncertainty in

the context of forecasting multivariate VAR models. In this thesis, we also carried out a direct

105
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comparison of the traditional Gaussian approach and several variants of the bootstrap procedure

that successively incorporates error distribution, parameter uncertainty, bias correction and lag

order uncertainty. One may expect the role of parameter uncertainty to be of small order of

magnitude. Notwithstanding our Monte Carlo study posited that it plays a prominent role, at

least in highly persistent VAR models. Although there are additional gains of adding lag order

uncertainty and correcting biased parameters, contrary to what is pointed out in the literature,

these seem to be less pronounced.

Regarding DCC forecasts, the standard approach only provides point forecasts of conditional

variances, covariances and correlations. In this thesis, we described the implementation of a

bootstrap procedure to approximate the conditional distribution of returns for any forecast hori-

zon without assuming any particular error distribution. Also, the bootstrap procedure can be

implemented to construct forecast densities of volatilities, covariances and correlations and their

corresponding forecast intervals. Whilst the asymptotic validity of our proposal for the DCC

model is not formally established, we conducted Monte Carlo simulations that showed a rather

good performance of our bootstrap procedure under different sample sizes and error distribu-

tions. Similarly, two empirical applications, which interposes realized measures with bootstrap

forecast intervals of conditional second moments, suggested that our procedure can approximate

rather well their uncertainties and, thus, it comes up as an appealing alternative that enriches the

DCC forecast methodology.

5.2 Further research

Now we turn to discuss various extensions of the ideas proposed in this thesis.

5.2.1 Conditional forecast

Analysts may be interested in forecasting a subset of variables in the system given the values of

the rest of endogenous variables over the forecast period. This situation is referred as conditional
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forecasting to distinguish it from the forecast problem treated in this thesis.1 Conditional fore-

cast can be useful in the context of policy analysis, when a policy maker has in hand a system

containing some variables that may be considered as instruments or policy goals; see Waggoner

and Zha (1999), Jarociński (2010) and Luciani (in press). For instance, for a Central Banker it may

be crucial to forecast next year GDP growth, unemployment and inflation given a path for the

interest rate over the next year. There are basically two types of constraints on the future values

of the endogenous variables. Hard conditions refers to future values of the endogenous variables

that are fixed amounts while soft conditions set the future values in the form of an interval. For

instance, the Central Banker may announce a hard condition of 5% next year interest rate or a soft

range of (2.5%, 5%) interest rate.

Bootstrap forecasts offer a promising framework to construct such conditional densities. For

example, Figure 5.1 plots the h-steps-ahead bootstrap replicates obtained for a simulated series

from a bivariate VAR(1) model with autoregressive matrix vec (Φ1) = (−0.5, 0, 0.5, 0.5), χ2
4 errors

with zero mean and covariance matrix given by vech (Σε) = (1, 0.8, 1) and sample size T = 75. It

is clear that a soft condition on y1,T+h can be represented as a region for [y1,T+h, y2,T+h] such that

y1,T+h falls between the bound given by (a, b). On the other hand, hard conditioning corresponds

either to y1,T+h = a or y1,T+h = b.

Figure 5.1 suggests that the case of soft conditional forecasts can be straightforwardly handle

in the context of bootstrap procedure proposed in this thesis. After applying it, B bootstrap real-

izations of the h-steps-ahead forecast are generated which approximate the forecast distribution

of system. Then, in order to impose soft conditions what can be done is to consider those that

meet the constraint and get the conditional replicate set which is defined as follow

CR = {ŷ∗T+h|T |ŷ
∗
1,T+h|T ∈ [a, b]}

where a and b are the lower and upper bound for y1,T+h. The main drawback of this approach

1Note that is just terminology since we recognize that both forecasts are conditional and what is actually changing
is the information set.
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Figure 5.1: Bootstrap realizations of h-steps-ahead forecasts for a bivariate series generated by a
stationary VAR(1) process with T = 75 and χ2(4) errors.

is that the number of elements in CR is not controlled by the analyst. It might be the case that

only few unconditional bootstrap replicates fulfill the future restriction, then only few bootstrap

realizations make up the CR, and thus the ability of the procedure to approximate the conditional

distribution might be drastically worsen. Therefore, to assure that a CR contains as many repli-

cation as desired, it would be necessary to repeat steps 1 to 3 in section 2.3.1 until we reach a that

number, expressed typically in the form of a lower bound B̄. As a result, the bootstrap procedure

to soft conditioning forecasts can be describe as a sequence of 5 steps of which the first three are

exactly the same as those of section 2.3.1.

Step 1. Repeat steps 1 to 3 in section 2.3.1.

Step 2. After observing the bootstrap replicate of h-steps-ahead density, keep it if it satisfies

the restriction a < ŷ∗1,T+h|T < b.

Step 3. Repeat 1 and 2 until the number of realization in CR reaches B̄.
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To illustrate this algorithm we simulate a bivariate series obtained from following VAR(1)

model  y1,t

y2,t

 =

 0.9 0

0.2 0.5


 y1,t−1

y2,t−1

+

 ε1,t

ε2,t

 (5.1)

where εt = (ε1,t, ε2,t)
′ is an independent χ2

4 white noise vector with covariance matrix given by

Σε =

 1 ρ12

ρ12 1

 . (5.2)

The contemporaneous correlation can take two different values, ρ12 = 0.1 or ρ12 = 0.8.2 We sim-

ulate two series of sample size 75 with χ2
4, one for each value of ρ12, and then used for estimation

T = 70 while keeping the last four observations as out-of-sample realizations. Afterwards, this

basic bootstrap procedure is implemented to obtain B̄ = 1000 h-steps-ahead conditional fore-

casts, for h = 1, ..., 4. In this particular example, the first variable is constrained to fall between

the ±0.10std(y1,t) around its actual out-of-sample value.3

Figure 5.2 plots the unconditional and conditional fan charts for y2,t over the forecast period.

Upper panels of Figure 5.2 plot the results when ρ12 is high. We observe that incorporating the

information about y1,t tightens the band for y2,t. However, the extent to which tightness becomes

apparent depends on the contemporaneous correlation. This is a result of an intuitive idea which

states that the larger the contemporaneous correlation between the free and fixed variables, the

more advantage any forecast approach should obtain from future information. Lower panels of

Figure 5.2 confirms this intuition, showing that the knowledge of the future path of y1,t may not

improve our forecast if the correlation between y1,t and y2,t is low.

The performance of bootstrapping to obtain conditional forecasts needs to be studied. Of

course, one limitation of this approximation is that computational time might rise abruptly if the

soft condition are located in regions where the system is unlikely to evolve. This issue demands

2This VAR is stationary, though persistent. Its roots are 1.11 and 2.
3Given that the error is εt is multivariate χ2

4 distributed, the conditional distribution of ε1,t given ε2,t is unknown.
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Figure 5.2: Fan chart for unconditional (first column) and conditional forecasts (second column)
of the second variable for bivariate series generated by (5.1) with T = 75, χ2(4) errors and uncon-
ditional correlation of ρ12 = 0.8 (first row) or 0.1 (second row).

further research effort. Furthermore, the problem of hard conditions is trickier and no simple so-

lution can be envisioned straightforwardly. The reason is that to tighten an interval does nothing

but deepen the problem associated with soft conditions. Finding a proper way of defining hard

conditions in our bootstrap setting represents an interesting challenge that is part of our ongoing

research.

5.2.2 Forecasting cointegrated system

Economic theory imposes often long-run equilibrium relationships between variables in levels

that are characterized for being nonstationary. For example, the Purchasing Power Parity states

that the exchange rate between two counties’ currencies is in equilibrium when their domestic

price level of a fixed basket of goods and services are the same. Also, financial arbitrage the-

ory tells us that the prices of certain financial assets, which are integrated of order one, must

be linked in the long-run and, consequently, any deviation from their equilibrium must vanish

through short-run adjustments. Integrated series linked in the long-run through an equilibrium

relationship are called cointegrated; see, for instance, Juselius (2006) and Carlucci and Montaruli
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(2014) for surveys on cointegration methodology and economic analysis. The connection between

long-run equilibrium and the short-run dynamics is usually described under the form of Vector

Error Correction (VECM) models, which is given by

∆yt = αβo′yot−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 + δdt + εt (5.3)

where yt is a N × 1 vector of endogenous variables, βo′ = [β′, δ′] is N∗ × r with β being a

N × r matrix containing the cointegration relationships, yot−1
′ = [yt−1

′, dcot−1
′] is No × 1 with N

Ko = N + dim(dcot ), dcot contains all the deterministic components included in the cointegration

relationship, dt contains the remaining deterministic terms, Γj and δ are matrices of suitable di-

mension describing the short-run dynamics of the system and, finally, εt is a N × 1 zero mean

white noise process with covariance matrix Σε. It is assumed that 0 < rank(β) = r < N ; α is

a N × r matrix of loading coefficients with rank(α) = r. Also, the column dimension of δ is r.

It is worth mentioning that the key assumption regarding the deterministic variable is that they

appear just once, either in dcot or dt but not in both.

When forecasting cointegrated series, there is an old debate about the effect of imposing the

long-run equilibrium on point forecast accuracy over the long-run; see Clements and Hendry

(1993) and Christoffersen and Diebold (1998) for different points of view. This debate exemplifies

the prominent role of point forecasts when dealing with cointegrated systems; see, for instance,

Dreger and Wolters (2014) for money demand, Apergis (2014) for Australian Dollar and Kouwen-

berg and Zwinkels (2014) for US housing market for recent efforts to obtain point forecast of coin-

tegrated variables. However, little attention has received the construction of future conditional

densities in this framework.

An alternative that we would like to explore is the implementation of the bootstrap procedure

proposed in this thesis to forecast VECM models. Next we briefly examine this possibility by

considering a simple example based on similated data.

We implement the basic bootstrap procedure to forecast cointegrated variables in VECM. For
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(a)

(b)

(c)

Figure 5.3: Kernel estimates of empirical (black), Gaussian (red) and bootstrap (blue) forecast
densities for a simulated trivariate system of a VECM(1) model with T = 200 and χ2

4 errors: (a)
h = 1, (b) h = 8 (c) 95% h-steps-ahead bootstrap (blue) and Gaussian (red) forecast intervals, for
h = 1, ..., 8, together with the out-of-sample realization (black).
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doing this, we simulate data from a trivariate VECM(1) with 208 observations, χ2
4 errors, r = 2, a

constant term in (5.3) that becomes a linear trend in the variables in levels and a constant in the

cointegration relationship that shifts y2,t and y3,t with respect to y1,t.4 Throughout this example

the number of cointegrated relationships is assumed to be known. We keep T = 200 observations

for estimation and H = 8 as out-of-sample realizations. Upper and middle panels of Figure 5.3

plot the empirical one-step-ahead and eight-steps-ahead forecast densities, respectively, which

are obtained by replicating 5000 future values given the realization of the process. For the sim-

ulated series, we then estimate the parameters by using Feasible Generalized Least Squares; see

Lütkepohl (2004). Afterwards, we proceed to forecast the system variables. The standard method-

ology does not differ from that previously explained in this thesis, it replaces the unknown pa-

rameters by their estimates and assumes Gaussian error. The resulting Gaussian forecast densities

of yi,T+h, for i =1,2,3 and h = 1 and 8, are plotted in the upper and middle panels of Figure 5.3.

Note that they seem to give a poor description of the corresponding empirical forecast densi-

ties. This is evident for y2,T+8 and y3,T+8, where it can be observed that the Gaussian conditional

densities are located towards the right of their corresponding empirical densities; see, for exam-

ple, Clements and Hendry (2006) who point out that distorted parameters can severely affect the

quality of forecast in cointegrated system. The 95% individual forecast intervals are shown in the

lower panels of Figure 5.3. Interestingly, the ability of the Gaussian bands to capture the future

realization of the process seems to be limited, especially for y2,t and y3,t. Finally, we implement

a bootstrap algorithm in the spirit of that considered in this thesis to obtain the forecast density

of yT+h. The number of bootstrap replicates is set to B = 1000. The upper and middle panels of

Figure 5.3 add the corresponding one-step-ahead and eight-steps-ahead bootstrap densities. In

general, we observe that these densities are able to capture the skewness of the empirical forecast

densities and thus they are closer to the latter than the corresponding Gaussian forecast densities.

Furthermore, bootstrap densities seem the be better located than the Gaussian densities. A reason

for this to happen is that the proposed bootstrap procedure do incorporate parameter uncertainty

4See Appendix A, model (d), for details on this specification.
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and, thus, do not depend exclusively on one estimate of the parameters that may be distorted,

especially when considering the trend parameters of cointegrated systems. Finally, lower panels

of Figure 5.3 also plots the 95% bootstrap forecast intervals that do a better job than the Gaussian

ones, once more, especially for y2,T+h and y3,T+h.

Future research can be directed at establishing the asymptotic validity of the bootstrap proce-

dure to forecast VECM and investigating its finite sample properties. Of course, we also note that

the number of cointegrated relations is another source of sampling variability in many applica-

tions, and thus we need to incorporate it into the algorithm. Finally, we also recognize that it may

be of interest not only to forecast the variables in level but also the long-run equilibrium. These

topics are part of the future research agenda.

5.2.3 Forecasting Multivariate GARCH

When dealing with conditionally heteroscedastic systems, the bootstrap procedure considered in

this thesis offers several topics that can be investigated. First, although the finite sample proper-

ties show that the proposed procedure is rather adequate in terms of coverages of the bootstrap

forecast intervals for returns, volatilities and conditional correlations, its asymptotic validity has

not been explicitly derived yet. Second, it may be interesting to adapt the algorithm to deal with

alternative MGARCH models. For example, to enrich the empirical application, the fitted model

might permit asymmetries in conditional variances and correlations and feedback between the

former and the latter. Finally, another important issue left for further research is the feasibility of

the considered bootstrap procedure in large systems of returns. Of course, as the system becomes

larger, the bootstrap is less appealing due to the cost associated with the estimation of the model

parameters. Whether the computational burden can be reduced using the proposals of Giacomini

et al. (2013) is also in our future research agenda.
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5.2.4 Forecast regions and paths

To complete the implementation of bootstrap procedure to multivariate forecast we need to de-

velop statistical methods to delimit forecast regions. For univariate series, this is not a challenge

because the construction of intervals is rather straightforward task. However, constructing fore-

cast regions with accurate coverage is not that easy; see, for instance, Yang and Kolassa (2004)

and Wolf and Wunderli (2012). One simple alternative is to use Bonferroni regions which give

cubical approximation to the ellipsoids, providing a lower bound probability content. The main

drawback of Bonferroni cubes is that, as long as they are constructed by using marginal intervals

for the variables in the system, the correlations among them are ignored. For this reason, in this

thesis we have explored how to correct cubes that use the information provided by correlations.

Yet the theoretical justification as well as the small sample properties of the corrected cubes are

missing.



References

Aielli, G. P. (2013), “Dynamic conditional correlation: on properties and estimation,” Journal of

Business & Economic Statistics, 31, 282–299.

Aielli, G. P. and Caporin, M. (in press), “Variance clustering improved dynamic conditional cor-

relation MGARCH estimators,” Computational Statistics & Data Analysis.
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Silvennoinen, A. and Teräsvirta, T. (2009), “Multivariate GARCH models,” in Handbook of Financial

Time Series, Springer.

Sims, C. (1980), “Macroeconomics and reality,” Econometrica, 48, 1–48.

Staszewska-Bystrova, A. (2011), “Bootstrap prediction bands for forecast paths from vector au-

toregressive models,” Journal of Forecasting, 30, 721–735.

Staszewska-Bystrova, A. and Winker, P. (2013), “Constructing narrowest pathwise bootstrap pre-

diction bands using threshold accepting,” International Journal of Forecasting, 29, 221–233.

StataCorp (2013), “Stata 13 Base Reference Manual,” College Station, TX: Stata Press.

Stine, R. A. (1987), “Estimating properties of autoregressive forecasts,” Journal of the American

Statistical Association, 82, 1072–1078.



REFERENCES 130

Stock, J. H. and Watson, M. W. (2001), “Vector autoregressions,” Journal of Economic Perspectives,

15, 101–115.

Tay, A. S. and Wallis, K. F. (2000), “Density forecasting: a survey,” Journal of Forecasting, 19, 45–68.
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Appendix A

Models

Model used in the thesis.

a)Persistent VAR(4) model. The autoregressive matrices are given by

Φ1 =

 0.6362 −0.0012

0.0190 0.5782

 ,Φ2 =

 −0.0168 −0.0285

0.5211 −0.3041

 ,

Φ3 =

 0.0273 0.1568

0.2229 −0.2529

 ,Φ4 =

 0.1517 −0.0198

0.2734 0.0241

 ,
The dominant root of |I2 − Φ1(z−1)− ...− Φ5(z−5)| = 0 is 0.89. The intercept is given by

µ =

 0.001

0.002

 .
The contemporaneous covariance matrix of the errors is given by

Σε = 10−3 ×

 0.0792 0.0434

0.0434 0.2940

 . (A.1)

The models used in the Monte Carlo simulations of Chapter 2 and 3 are the following.
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b) Persistent VAR(5) model. The autoregressive matrices are given by

Φ1 =

 0.6337 −0.3424

0.4688 0.6755

 ,Φ2 =

 −0.0401 0.3005

0.0100 0.1967

 ,

Φ3 =

 0.4806 −0.5201

0.2582 −0.2529

 ,Φ4 =

 0.2952 0.2041

0.2734 0.0241

 ,

Φ5 =

 −0.2299 0.1266

−0.1449 0.3240

 .
The dominant root of |I2−Φ1(z−1)− ...−Φ5(z−5)| = 0 is 0.96 while the others are below 0.8. The

intercept is given by

µ =

 0.0053

0.0018

 .
Finally, the contemporaneous covariance matrix of the error is given by

Σε = 10−3 ×

 0.5412 0.4045

0.4045 0.4649

 .
c) Near-cointegrated VAR(10). The autorregresive matrices are given by

Φ1 =

 1.1763 0.0542

0.7126 1.2874

 ,Φ2 =

 −0.2624 −0.0668

−0.7618 −0.3596

 ,

Φ3 =

 0.0250 −0.0160

0.0305 −0.0168

 ,Φ4 =

 0.0000 0.0939

0.0830 −0.0510

 ,

Φ5 =

 0.1485 −0.0512

0.3678 0.0656

 ,Φ6 =

 −0.2795 −0.0278

−0.7140 0.1410

 ,
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Φ7 =

 0.2671 −0.1424

0.3072 −0.3053

 ,Φ8 =

 −0.0786 0.4398

0.2189 0.4045

 ,

Φ9 =

 −0.1181 −0.3490

−0.1909 −0.2209

 ,Φ10 =

 0.0915 0.0828

−0.0229 0.0071

 .
The largest roots of |I2 −Φ1(z−1)− ...−Φ10(z−10)| = 0 are 0.97, 0.97, 0.92 and 0.92. Moreover, the

number of roots above 0.8 rises to 12. The intercept is given by

µ =

 0.1121

0.1116

 .
The covariance matrix of the error is

Σε = 10−4 ×

 0.025 0.009

0.009 0.387

 .
VECM model used to illustrate the construction of forecast densities in Chapter 5.

d) Trivariate VECM(1) with r = 2 given by


∆y1,t

∆y2,t

∆y3,t

 =


−0.2 0

0 −0.3

0.1 0.1





1 0

0 1

−0.8 −0.8

4 1



′ 
y1,t−1

y2,t−1

y3,t−1

+


−0.2 0 0

0 0.4 0

0 0 0.1




∆y1,t−1

∆y2,t−1

∆y3,t−1

+


0.04

0.03

0.09

+


ε1,t

ε2,t

ε3,t



(A.2)
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where εt is distributed χ2
4 with zero mean and covariance matrix

Σε =


1 0.3 0.4

0.3 1 0.3

0.4 0.3 1

 .



Appendix B

Monte Carlo volumes of Bonferroni

cubes for VAR(2), VAR(5) and VAR(10)

when T = 300

We plot the empirical volumes of h-steps-ahead Bonferroni cubes, h = 1, ..., 8, for the stationary

VAR(2), persistent VAR(5) and a near-cointegrated VAR(10) model when the sample size is T =

300.
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Appendix C

Monte Carlo coverages and lengths of

marginal forecast intervals for VAR(2),

VAR(5) and VAR(10) models

We include the Monte Carlo results for the first variable in the stationary VAR(2), the persistent

VAR(5) and the near-cointegrated VAR(10) models since we may also being interested in forecast-

ing only one variable in the system.
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Appendix D

Monte Carlo coverages of Bonferroni

cubes based on Gaussian and several

bootstrap forecast densities for a

persistent VAR(5)

We plot the empirical coverages of h-steps-ahead Gaussian and several bootstrap Bonferroni

cubes, h = 1, ..., 8, for the persistent VAR(5).
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