
L–PEP: A Logic to Reason about
Privacy–Enhancing Cryptography Protocols

Almudena Alcaide, Ali E. Abdallah†, Ana I. González–Tablas and José M. de
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Abstract. In recent years, many cryptography protocols have been de-
signed, for many different scenarios, with the purpose of preserving secu-
rity of communications as well as privacy and anonymity of participant
entities. In general, every proposed solution has possed a real challenge
to the existing formal methods of protocol analysis and verification. The
main goal of this work is the proposal of a logic to reason about privacy-
enhancing monotonic and non–monotonic cryptography protocols. The
new logic will be called L-PEP and it extends the existing Rubin’s logic
of beliefs.
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1 Introduction

This work has been mainly motivated by the following two factors. On the one
hand, organizations are increasingly introducing privacy preserving mechanisms
to comply with laws and regulations and, to satisfy users’ and employees’ pri-
vacy requirements. As as result, newly designed system architectures require of
additional privacy and security features such as anonymity and pseudonymity,
unlinkability and unobservability of transactions, selective disclosure of informa-
tion, privacy policies embedded in data, etc [1]. Many attempts have been made
to design new cryptography protocols to provide such strong privacy properties.
In particular, the set of building block primitives used in privacy–enhancing
cryptography protocols include anonymous credentials, blind signatures, dual
signatures, recursive hashing, zero–knowledge proofs, identity–based encryption,
anonymous biometrics, etc. As it happens, in every occasion the proposed cryp-
tographic solution has possed a real challenge to the existing formal methods of
protocol analysis and verification as none of the existing methods include the
necessary inference rules to formally reason about those operations [2].

To this regard, the formal modeling of protocol privacy requirements repre-
sents a significant step forward, as it will allow us to validate protocol privacy
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properties, in the same way as it is done with security properties such us confi-
dentiality, integrity or accessibility. However, not very much work has been done
in this direction so far.

On the other hand, privacy–enhancing technologies have placed the empha-
sis on determining the so called Private Data Life Cycle. Private data life cycle
starts when data is created and finishes when the data is destroyed. The aim
of those new technologies and the security protocols deployed to such effect
is to control the whole cycle, including implicit and explicit disclosures of in-
formation, deletion of data, custody constraints, etc. For example, a common
privacy constraint describes users’ requirements to determine how long for enti-
ties are entitled to use or store someone else’s private information, which might
have been received in one of the steps of a cryptographic protocol. That is, via
privacy policies and agreements, users could force other entities to delete and
destroy users’ own personal data after a fixed amount of time or, if data are not
further required for any of the purposes which they were stored for [3]. Formally,
a non–monotonic security protocol refers to the non–incremental acquisition of
knowledge by participants along the execution of a security protocol. In fact,
participant entities might have to forget information or data which they once
knew or held, during a particular protocol instance. Again, formal representation
and verification of non–monotonic schemes is still pending a global solution and
not very much work has been carried out in this direction so far.

Since the design of BAN logic by Burrows, Abadi and Needham [4], many
derivatives of BAN, as well as new logics, have been defined to formally and
monotonically reason about cryptographic protocols. They are also known as
Logics of Beliefs, as protocol goal verification is based on the set of beliefs and
possessions that entities hold at the end of a protocol execution (for example,
entity A believes KAB is a secret key to communicate with entity B). In this
context, monotonicity refers to the way in which the knowledge and the beliefs of
a particular entity increase as the protocol execution progresses. In a monotonic
protocol, once something is known, it is known forever.

By contrast, a non–monotonic logic would allow us to reason about non–
monotonic protocols, in which entities might stop believing in a piece of infor-
mation, or forget knowledge during the execution of a protocol. This is, in fact,
the type of reasoning it is needed for the formal verification of many of today’s
privacy–enhancing cryptography protocols which rely on the deletion of informa-
tion. Only a few attempts have been made to elaborate on this type of reasoning
[5–7]. In [5] authors define a not operator to construct negation. In [6, 7] authors
include actions to directly delete beliefs from entities’ belief sets. We have cho-
sen Rubin’s logic [7] to be the focus of our study. The main reasons being that
Rubin’s logic is more tractable than Moser’s [6] and furthermore, it allows us to
differentiate between non–monotonicity of knowledge and non–monotonicity of
belief. In addition, Rubin’s logic does not require protocol idealization and the
notation and the reasoning are similar to the original BAN logic [4].
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1.1 Overview of Our Work

The main goal of this work is the proposal of a logic to reason about privacy-
enhancing cryptographic protocols. The new logic will be called L-PEP and it
extends Rubin’s logic of beliefs [7]. Rubin’s logic is extended by adding new
inference rules and actions and by enhancing some of the original actions and
rules. L-PEP, as presented in this paper, is defined to allow us to formally reason
about cryptographic hashing, recursive cryptographic hashing, concatenation of
hashes, dual signatures, identity–based encryption and blind signatures, all these
being primitives of existing privacy–enhancing cryptography protocols. In this
paper, and to illustrate how the formalism works, we formally analyze two differ-
ent protocols. First, we apply the new L–PEP Logic to the analysis of the dual
signature mechanism defined in SET (Secure Electronic Transaction protocol)
[8]. Formal verification of dual signatures will be very relevant to other scenarios
such as, privacy–preserving authentication and access control mechanisms. Sec-
ond, we will formally reason about a privacy–enhancing non–monotonic proto-
col, applied to an electronic speed ticketing system in vehicular ad–hoc networks
(VANETs). We will give a brief description of the system and analyze vehicular
privacy related goals.

Previous related work can be found in [9–11]. In [9] and [10] authors use Ru-
bin’s Logic to formally analyze an e–commerce protocol and two authentication
protocols respectively. However, the analysis is monotonic (i.e. only incremental
knowledge is considered) and no signatures applied to hashed values (signatures
with appendix) are formally considered during the protocols’ formal analysis.
Finally, in [11], a non–monotonic authenticated routing protocol is analyzed in
which entities must forget other participant’s public key certificates once these
are revoked by the corresponding authorities. In that work, neither privacy re-
lated goals nor signatures applied to hashed values are formally analyzed.

The rest of the paper is organized as follows. In Section 2 we describe Rubin’s
logic main components including the additional features and enhancements pro-
posed in this work. In Section 3 we illustrate the new formalism giving formal
proof of privacy related goals regarding the Dual signature mechanism in the
SET protocol. In Section 4 we illustrate the new formalism giving formal verifi-
cation of a vehicular speed ticketing electronic protocol. Finally, Sections 5 and
5.1 are devoted to establish final considerations and future work, respectively.

2 Rubin’s Logic

In this section we present an extension as well as few amendments to the non–
monotonic logic introduced by Rubin in [7]. Some of the concepts and notation
have been synthesized, please refer to [4] and [7] for a detailed description.

2.1 Non–monotonicity of Knowledge vs. Non–monotonicity of
Belief

Rubin introduced a logic in which it is easy to difference between non–monotonicity
of knowledge and non–monotonicity of belief in the following way: while entities
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know things such as keys, nonces, or data, entities believe in metadata, such
as freshness of data, or in other entities’ possessions. When a principal stops
believing in something it does not imply it also stops possessing such an item or
knowing the data. By contrast, if an entity stops possessing or knowing an item,
it does automatically stop believing in it as it does not longer hold it. This fact is
very relevant in today’s schemes. Principals are forced, via privacy agreements,
to forget (stop storing and destroy) certain information and some protocols base
their correctness on that premise. Furthermore, forgetting information implies
readjustments in other principals’ sets of beliefs. For example, a merchant for-
gets the user’s card details after a transaction is processed, and the user stops
believing that the merchant possesses such information.

2.2 Special notation:

♯X Freshness of item X.
X contains x Denotes x is part of item X.

:= Denotes assignment.
k−1
Pi

Denotes entity Pi private key.
kPi Denotes entity Pi public key.

{X}k Denotes token X encrypted with key K.

2.3 Global definitions:

The specification of a protocol is the starting point of the analysis.

– Set of participants:W denotes the wholeWorld of entities. P = {P1, . . . , Pn} ⊆
W denotes the set of entities participating in the protocol.

– Set of inference rules: R denotes the set of inference rules. Each entity
applies these rules to its sets of beliefs and knowledge.

– Set of secrets: S denotes the set of secrets. Data which is meant to be kept
secret from the World. For each secret s ∈ S the set Observers(s) denotes
the set of entities which know secret s. Every communication is assumed
to be listened by the whole World so after each communication, a function
Update will recursively update the appropriate Observers sets. The Update
functions also operates over the set of possessions of each entity.

– TRUST Matrix : A matrix TRUST is used to represent the trust relation-
ship between every pair of principals. An entity Pi is said to trust entity Pj

if Pi behaves as though Pj will follow the protocol.
– Free variables: FV denotes the set free variables to be instantiated along
the formal proof.

– Bound variables: BV denotes the set bound variables which must hold the
same value throughout the whole formal proof.

2.4 Definitions local to each protocol participant:

Local sets are private to each protocol participant.
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– Set of Possessions: POSS(Pi) denotes the possessions of participant Pi.
For example: POSS(Pi) = {X, k−1

Pi
}. This is, Pi possesses (knows) X and

private key k−1
Pi

.

– Set of Beliefs: BEL(Pi) denotes the beliefs of participant Pi. For example:
BEL(Pi) = {♯k, {k−1

Pj
, k} ∈ POSS(Pj)}. This is, Pi believes that k is a fresh

key and that Pj is in possession of private key k−1
Pj

and secret key k.

– Behavior List: BL(Pi) denotes the behavior list of principal Pi. This list
dictates to entity Pi what actions to take along the protocol execution and
in which order. For example: BL(Pi) = ⟨bvr1, brv2, . . . , bvrn⟩. Where each
bvri is of the form: bvri = {msg.operation;AL}. Where:
• msg.operation denotes one of the following operations: send(Pj ,m) or
receive(Pj ,m), to denote sending a message m to Pj or receiving a mes-
sage m from Pj , respectively. After a receive(Pj ,m) message operation
is performed the corresponding POSS sets are modified accordingly.
After a send message operation is performed the Update function is
recursively called to modify the appropriate Observers sets.

• AL denotes an ordered list of zero or more actions that participants have
to perform along the protocol execution. These actions are described in
detail in section 2.5.

2.5 List of Actions

Describe how entities perform operations over data. All variables involved in
these formula are considered to be bound variables. Only those actions related
to our scope are listed and only the new ones are described in detail. Please refer
to [7] for a complete list.

A1. Apply(f,X, n)
Condition: {f,X} ⊂ POSS(P )
Result: POSS(Pi) := POSS(Pi), ∪{f l(X) ∀l ≤ n}
Description: This new action is used when Pi applies the function f to X

in a recursive way. Function f could be a hash function, a polynomial,
a biometric template, a boolean function, XOR, etc.

A2. Concat(x1, x2)
Condition: {x1, x2} ⊂ POSS(Pi)
Result: POSS(Pi) := POSS(Pi) ∪ {(x1∥x2)}

A3. Decrypt({X}k, k)
Condition: {{X}k, k} ⊂ POSS(Pi), Pi ∈ Observers(k)
Result: POSS(Pi) := POSS(Pi) ∪ {X}

A4. Decrypt–asymm({X}kPj
; k−1

Pj
)

Condition: {{X}kPj
; k−1

Pj
} ⊂ POSS(Pj), Pj ∈ Observers(k−1

Pj
)

Result: POSS(Pj) := POSS(Pj) ∪ {X}
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Description: This new action is used when a principal decrypts an encrypted
item with the corresponding private key.

A5. Decrypt–signature({X}k−1
Pj

; kPj )

Condition: {{X}k−1
Pj

, kPj} ⊂ POSS(Pi), Pi ∈ Observers(kPj )

Result: POSS(Pi) := POSS(Pi) ∪ {X}, BEL(Pi) := BEL(Pi) ∪ {X ∈
POSS(Pj)}

Description: This new action is used when a principal decrypts an encrypted
item with the corresponding public key. Note that this rule refers to
message recovery signature schemes.

A6. Encrypt(X; k)
Condition: {X, k} ⊂ POSS(Pi), Pi ∈ Observers(k)
Result: POSS(Pi) := POSS(Pi) ∪ {X}k

A7. Forget(X)
Condition: X ∈ POSS(Pi)
Result: POSS(Pi) := POSS(Pi) − {X}, BEL(Pi) := BEL(Pi) − {♯X},

∀j such that TRUST [j, i] = 1 then BEL(Pj) := BEL(Pj) − {X ∈
POSS(Pi)}

A8. Forget–secret(s)
Condition: Pi ∈ Observers(s), s ∈ POSS(Pi)
Result: POSS(Pi) := POSS(Pi) − {s}, BEL(Pi) := BEL(Pi) − {♯s},

Observers(s) := Observers(s) − {Pi}, ∀j such that TRUST [j, i] = 1
then BEL(Pj) := BEL(Pj)− {s ∈ POSS(Pi)}

A9. Generate–secret(s)
Result: S := S∪{s}, Observers(s) := {Pi}, POSS(Pi) := POSS(Pi)∪{s},

BEL(Pi) := BEL(Pi) ∪ {#(s)}
A10. Split({(x1∥x2)})

Condition: {(x1∥x2)} ∈ POSS(Pi)
Result: POSS(Pi) := POSS(Pi) ∪ {x1, x2}

2.6 Set of Inference Rules

After each action, each participant updates its BEL set using all possible infer-
ence rules. Note that, rules are used to propagate belief during the protocol run
whereas actions are used to propagate knowledge. We will now describe the most
relevant rules for the scope of our work. Only the new ones are fully described.

R1. Function Rule
Condition: {{f,X} ⊂ POSS(Pi)} ∈ BEL(Pj)
Result: {Apply(f,X, n) ∈ POSS(Pi)} ∈ BEL(Pj)
Description: This new rule states that if Pj believes that Pi possesses f and

X then, Pj believes that Pi possesses f
i(X) ∀1 ≤ i ≤ n

R2. Message Meaning Rule
Condition: {X}k ∈ POSS(Pi), {Pi, Pj} ⊆ Observers(k)
Result: BEL(Pi) := BEL(Pi) ∪ {X ∈ POSS(Pj)}

R3. Signature Verification Rule
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Condition: {{h(X)}k−1
Pj

, X} ∈ POSS(Pi), {h(X) ∈ POSS(Pj)} ∈ BEL(Pi)

Result: BEL(Pi) := BEL(Pi) ∪ {X ∈ POSS(Pj)}
Description: In [12] authors propose some new hash inference rules to add to

BAN logic, however, these rules enforce sender authentication for every
hash value received. By contrast, we propose a new signature verification
rule such that, we are able to link a signed hash value to its original
unsigned value by authenticating the signer entity of the hash. Indeed,
the expression {h(X) ∈ POSS(Pj)} ∈ BEL(Pi) is true if and only if
the action Decrypt–signature({h(X)}k−1

Pj

) has been applied successfully.

R4. Split Rule

Condition: {f, f(x1) ∥ f(x2)} ∈ POSS(Pi)

Result: {f(x1), f(x2)} ∈ POSS(Pi)

Description: This rule states that if Pi knows function f , then it can split
concatenated items. This is common as knowing a function will give us
information about the length of its output.

2.7 Formal Verification Process

The verification process is a recursive, automated process in which inference
rules and the Update function are recursively applied until none of the rules can
proceed any further and the Observer sets cannot be modified. Note that the
processes described in the next sections are incomplete as they only highlight
the most relevant steps.

3 SET’s Dual Signature

To illustrate how the formalism described in previous sections works, and how
it can be used to formally reason about privacy properties, we introduce the
dual signature mechanism used in the SET protocol [8] for e-commerce trans-
actions. The goal of the dual signature mechanism is to implement a minimum
information disclosure1 procedure. As previously mentioned, although various
attempts have been made to formally reason about SET [14], the hash inference
rule applied was not correct [15].

Notation:
{U,M,B} Denotes the set of participant entities: User, Merchant and Bank.
K−1

U Denotes user U private key.
KUM Denotes a secret key between the user U and the merchant M .
KUB Denotes a secret key between the user U and the bank B.
h Cryptographic hash function.

1 All systems should comply to the policy of minimum information disclosure as stated
in [13], Article 7.
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– Step 1: User U wants to proceed with an electronic purchase. User U con-
structs an Order Information token denoted as OI describing the concept of
the purchase, quantity, price, etc. Additionally, U also generates a Payment
Information token denoted by PI, including the card details and the amount
to be paid. Item OI is destined to the Merchant M and item PI is destined
to the Bank B. Both items must be linked as the user must be able to prove
that the payment is intended for the corresponding order, however, OI must
be kept secret from B as well as PI must be kept secret from the merchant
M .

– Step 2: User U sends Merchant M the following message:

m1 = {OI, h(PI), {h(h(OI)∥h(PI))}K−1
U
}}

KUM

In receiving this item, entity M can verify the user’s signature over item OI
and can also establish the link between the OI and PI without getting to
know the content of PI.

– Step 3: User U sends the Bank B the following message:

m2 = {h(OI), P I, {h(h(OI)∥h(PI))}K−1
U
}}

KUB

In receiving this item, entity B can verify the user’s signature over item PI
and can also establish the link between the OI and PI without getting to
know the content of OI.

3.1 SET’s Dual Signature Formal Verification

As the formal reasoning of steps 2 and 3 are equivalent, we will only proceed
with the formal verification of steps 1 and 2.

Global and local definitions:

– W , the world.

– P = {U,B,M}, is the set of participant entities.

– S = {KUM ,KUB ,KU ,K
−1
U }, is the set of secrets. Where Observers(KUM ) =

{U,M}; Observers(KUB) = {U,B}; Observers(KU ) = {W}; Observers(K−1
U ) =

{U};
– R = {R1, R2, R3, R4} is the set of inference rules.

– ∀i, j ∈ {1, 2, 3}, TRUSTij = 0

– FV = {x1, x2, x3}
– BV = {h,OI, PI}. Where h represents a cryptographic hash function, OI
the order information and PI the payment information.

Principal U’s local sets:
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POSS(U) = {KUM ,KUB ,K
−1
U ,KU , h}

BEL(U) = {♯KUM , ♯KUB}
BL(U) = ⟨bvrU1 , bvrU2 ⟩
Where:

bvrU1 = { − ; generate secret(OI), generate secret(PI)}
bvrU2 = {Send(M,m1); − }

Principal M’s local sets:

POSS(M) = {KU ,KUM , h}
BEL(M) = {♯KUM , ♯KU , {K−1

U , h} ∈ POSS(U)}
BL(M) = ⟨bvrM1 ⟩
Where:

bvrM1 = {Receive(U,m);
Decrypt(m,KUM ) into x1, x2, x3

Apply(h, x1, 1),
Concat(h(x1), x2),
Decrypt− signature(x3,KU )}

Note that entity M would believe that {K−1
U ∈ POSS(U)} and ♯KU once the

corresponding public key certificate has been properly verified.

Expected security and privacy goals:

G1: {OI} ∈ POSS(M). M possesses item OI

G2: Observers(OI)={U,M} . Secret OI must only be known by U and M

G3: {OI ∈ POSS(U)} ∈ BEL(M) . M must believe that U possesses OI

G4: {{h(OI)∥h(PI)} ∈ POSS(U)} ∈ BEL(M) . M must believe that U pos-
sesses {h(OI)∥h(PI)}

G5: Observers(PI)={U,B} . Secret PI must only be known by U and B

Formal proof: Only those steps in relation to the satisfaction of goals are
shown.

Step 1:
bvrU1 = { − ; generate secret(OI), generate secret(PI)}

S := S ∪ {OI, PI}
Observers(OI) = {U}
Observers(PI) = {U}

bvrU2 = {Send(M,m1); − }
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Step 2:
bvrM1 =
{Receive(U,m1); − }

POSS(M) := POSS(M) ∪ {m1}
Decrypt({OI, h(PI), {h(h(OI)∥h(PI))}K−1

U
}}KUM ,KUM})

POSS(M) := POSS(M) ∪ {x1 = OI, x2 = h(PI), x3 = {h(h(OI)∥h(PI))}K−1
U
}} (G1)

Message Meaning Rule R2:
BEL(M) := BEL(M) ∪ {x1 = OI, x2 = h(PI), x3 = {h(h(OI)∥h(PI))}K−1

U
} ∈ POSS(U)}

(G3)
Function Rule R1 for hash h and concat functions:
BEL(M) := BEL(M) ∪ {h(h(OI)∥h(PI)) ∈ POSS(U)}

Apply(h, x1, 1)
POSS(M) := POSS(M) ∪ {h(OI)}

Concat(h(x1), x2)
POSS(M) := POSS(M) ∪ {h(OI)∥h(PI)}

Decrypt-signature(x3 = {h(h(OI)∥h(PI))}K−1
U
},KU )

POSS(M) := POSS(M) ∪ {h(h(OI)∥h(PI))},
BEL(M) := BEL(M) ∪ {{h(h(OI)∥h(PI))} ∈ POSS(U)}
Signature Verification rule R3:
BEL(M) := BEL(M) ∪ {{h(OI)∥h(PI)} ∈ POSS(U)}(G4)

The Update function, recursively applied until the end of
the verification process, renders the following results over the secrets OI and PI:

Observers(OI) = {U,M} (G2)
Observers(PI) = {U,B} (G5)

⊓⊔

4 Private Speed Ticketing Electronic System

Vehicular ad–hoc networks (VANETs) allow nodes, including vehicles and road
side units, to communicate with each other. These networks are used with the
purpose of optimizing traffic (reducing congestion and accidents), obtaining real–
time road information (the vehicles can serve as information collectors) and giv-
ing authorities the possibility to supervise vehicles electronically (speed control,
vehicular permits, etc). In VANETs, vehicles are equipped with tamper proof
devices known as On–Board Units (OBUs) used to communicate with other ve-
hicles and with other Road–Side Units (RSUs) part of the road infrastructure. In
VANETs, vehicles and drivers ought to maintain their identities private, at the
same time as they must keep accountable for their actions and, the information
processed in the VANET must be totally reliable. In this section we sketch a
speed ticketing electronic system which allows the transportation authorities to
enforce speed limits over a stretch of road, at the same time as the identity of
the non–offenders vehicles is kept private2.

2 The system here described is being enhanced and developed further. For the subject
of the scope of this article we only detail the most basic version.
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m1. RSU1 → World: {request id}
m2. OBU → RSU1: {ECN}KTS

m3. RSU1 → TS: {sp evidence1}K−1
RSU1

m4. RSU2 → World: {request id}
m5. OBU → RSU2: {ECN}KTS

m6. RSU2 → TS: {sp evidence2}K−1
RSU2

m7. TS → TA: {sp ticket}

Where:
sp evidence1 = {{ECN}KTS ∥ t1}
sp evidence2 = {{ECN}KTS ∥ t2}
sp ticket = {TS ∥ ECN ∥ t1 ∥ t2}KTA

Table 1. Speed Ticketing Electronic Protocol monitoring a stretch of road between
road–side units RSU1 and RSU2.

The system consists of :

– A Ticketing Authority (TA) responsible for managing unique vehicle identi-
fiers, as for example the Electronic Chassis Number (ECN).

– On–Board Units (OBUs). An OBU is a tamper proof device included in each
vehicle on the road. The ECN of a vehicle is inserted in the vehicle’s OBU
such that when a vehicle receives a {request id} token, enquiring about its
identity, the OBU responds with the ECN encrypted.

– Road–Side Units (RSUs) which periodically broadcast messages over Dedi-
cated Short Range Channels requesting the identity of the passing by ve-
hicles. The RSUs compose sp evidence tokens from the responses received
from the passing vehicles by attaching the time to the vehicle identification
token. This new token called sp evidence is sent to a Ticketing Server (TS).

– The Ticketing Server (TS) receives sp evidence tokens from two different
RSUs and issue sp ticket tickets for those vehicles which took less that the
permitted time to cover a distance between the locations of the two RSUs.
The TS is also responsible for informing the Ticketing Authority (TA) about
which vehicles have over passed the speed limit over the stretch of road being
monitored.

(Table 1 details the messages involved in the protocol.)
Although the messages exchanged between principals are detailed in Table 1,

we will use the extension of Rubin’s logic to formally represent each participant
entity behavior list and the privacy related goals to be satisfied at the end of the
message exchange.

4.1 Speed Ticketing Formal Verification

– New action Generate–ticket(ECN, t1, t2, tl)
Condition: {{ECN}K , t1, t2, tl} ⊂ POSS(TS) such that: (t2 − t1) < tl
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Result: POSS(TS) := POSS(TS) ∪ {TS ∥ ECN ∥ t1 ∥ t2}KTA

Description: This action is used to issue a sp ticket when the difference
between t2 and t1 is below a certain legal limit.

– Global definitions:

• W , the world.

• P = {TA, TS,RSU1, RSU2, OBU}, is the set of participant entities.

• S = {KTA,KTS ,KRSU1 ,KRSU2 , ECN,K−1
TA,K

−1
TS ,K

−1
RSU1

,K−1
RSU2

}, is the
set of secrets. Where Observers(KTA) = {W}; Observers(KTS) =
{W};Observers(KRSU1) = {W};Observers(KRSU2) = {W};Observers(ECN) =
{OBU};Observers(K−1

TA) = {TA};Observers(K−1
TS) = {TS};Observers(K−1

RSU1
) =

{RSU1}; Observers(K−1
RSU2

) = {RSU2};
• R = {R1, . . . , R4} is the set of inference rules.

• ∀i, j ∈ {1, 2, 3, 4, 5}, TRUSTij = 1. Note that, unlike the previous exam-
ple, all entities trust each other in following the protocol instructions.
This is a reasonable assumption as all principals belong for the same
authority, no tampering is possible on the OBU and the OBU trusts the
authority responsible for the ticketing system.

• BV = {t1, t2, tlimit, sp evidence1, sp evidence2, sp ticket}. Where tlimit

indicates the minimum legal time permitted in driving between units
RSU1 and RSU2.

– Principal RSU1:

POSS(RSU1) = {KRSU1 ,K
−1
RSU1

}
BEL(RSU1) = {}
BL(RSU1) = ⟨bvrRSU1

1 , bvrRSU1
2 , bvrRSU1

3 ⟩
Where:

bvrRSU1
1 = {Send(W,m1); - }

bvrRSU1
2 = {Receive(OBU,m2);

Encrypt(Concat(m2, t1),K
−1
RSU1

)}
bvrRSU1

3 = {Send(TS,m3); - }
– Principal RSU2:

POSS(RSU2) = {KRSU2 ,K
−1
RSU2

}
BEL(RSU2) = {}
BL(RSU2) = ⟨bvrRSU2

1 , bvrRSU2
2 , bvrRSU2

3 ⟩
Where:

bvrRSU2
1 = {Send(W,m4); - }

bvrRSU2
2 = {Receive(OBU,m5);

Encrypt(Concat(m5, t2),K
−1
RSU2

)}
bvrRSU2

3 = {Send(TS,m6); - }
– Principal OBU :
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POSS(OBU) = {ECN,KTS}
BEL(OBU) = {♯KTS ,K

−1
TS ∈ POSS(TS)}. Note that these believes indicate

that the vehicle’s OBU has got a valid public key certificate from TS.
BL(OBU) = ⟨bvrOBU

1 , bvrOBU
2 , bvrOBU

3 , bvrOBU
4 ⟩

Where:
bvrOBU

1 = {Receive(RSU1,m1);Encrypt(ECN,KTS)}
bvrOBU

2 = {Send(RSU1,m2); − }
bvrOBU

3 = {Receive(RSU2,m4);Encrypt(ECN,KTS)}
bvrOBU

4 = {Send(RSU2,m5); − }
– Principal TS:

POSS(TS) = {KTS ,K
−1
TS ,KRSU1

,KRSU2
, tlimit}

BEL(TS) = {♯KRSU1 , ♯KRSU2 ,K
−1
RSU1

∈ POSS(RSU1),K
−1
RSU2

∈ POSS(RSU2)}.
BL(TS) = ⟨bvrTS

1 , bvrTS
2 , bvrTS

3 ⟩
Where:

bvrTS
1 = {Receive(RSU1,m3); - }

bvrTS
2 = {Receive(RSU2,m6);

Decrypt− signature(m3,KRSU1),
Forget({sp evidence1}K−1

RSU1

),

Decrypt− signature(m6,KRSU2),
Forget({sp evidence2}K−1

RSU2

),

split(sp evidence1), split(sp evidence2),
decrypt− asymm({ECN}KTS

,K−1
TS),

generate ticket(ECN, t1, t2, tlimit),
Forget({sp evidence1},
Forget({sp evidence2},
Forget({ECN}KTS

),
Forget secret({ECN})}

bvrTS
3 = {Send(TA,m7); - }

Note that, although the value sp ticket = {TS ∥ ECN ∥ t1 ∥ t2}KTA is not
forgotten, the content can only be retrieved by TA.

Expected security and privacy goals: The following list enumerates the
goals in relation to vehicular identity privacy.

G1: POSS(TS) Final = POSS(TS) Initial ∪ {sp ticket}. POSS(TS) has only
increased with {sp ticket}.

G2: Observers(ECN) = {OBU}. Secret ECN must only be known by OBU .

Formal proof: Only those steps in relation to the satisfaction of goals are
shown.
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bvrTS
2 = {Receive(RSU2,m6);

POSS(TS) = POSS(TS) ∪ {sp evidence1}K−1
RSU1

}
Decrypt− signature(m3,KRSU1),

POSS(TS) = POSS(TS) ∪ {sp evidence1}
Forget({sp evidence1}K−1

RSU1

),

POSS(TS) = POSS(TS)− {sp evidence1}K−1
RSU1

}
Decrypt− signature(m6,KRSU2),

POSS(TS) = POSS(TS) ∪ {sp evidence2}
Forget({sp evidence2}K−1

RSU2

),

POSS(TS) = POSS(TS)− {sp evidence2}K−1
RSU2

}
split(sp evidence1),

POSS(TS) = POSS(TS) ∪ {{ECN}KTS
, t1}

Note that the Update function renders the following result:
Observers(ECN) = Observers(ECN) ∪ {TS}

split(sp evidence2),
POSS(TS) = POSS(TS) ∪ {{ECN}KTS

, t2}
generate ticket(ECN, t1, t2, tlimit),

POSS(TS) = POSS(TS) ∪ {TS ∥ ECN ∥ t1 ∥ t2}
Forget({sp evidence1},

POSS(TS) = POSS(TS)− {sp evidence1}
Forget({sp evidence2},

POSS(TS) = POSS(TS)− {sp evidence2}
Forget({ECN}KTS

),
POSS(TS) = POSS(TS)− {ECN}KTS

Forget secret({ECN}),
POSS(TS) = POSS(TS)− {ECN}, (G1)
Observers(ECN) = Observers(ECN)− {TS}, (G2)

⊓⊔

5 Conclusions

In this paper we have described what we believe is tractable and powerful for-
malism for the formal verification of privacy–enhancing cryptography protocols.
The original logic introduced by Rubin offered a major contribution for the rea-
soning of non–monotonic protocols although it needed a few amendments and
updates to it, for example, the concept of signature verification used in Rubin’s
logic was, in our opinion, invalid. The new extended logic L–PEP has served
to formally verify the dual signature of the protocol SET and a speed ticket-
ing electronic non–monotonic system. The logic has enabled us to reason about
private data protection laws by which transportation authorities can only store
information about offender vehicles and where tracing of non–offenders is not
permitted.
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5.1 Future Work

Currently, we are analyzing a privacy–enhancing authentication and access con-
trol protocol based on blind signatures and recursive hashing [16].

Additionally, a more advanced version of the speed ticketing electronic service
here described, including identity based encryption, is under verification using
the described formalism.

Finally, the extended logic also intends to set the basis for future automated
design of multi-party privacy–enhancing cryptographic protocols by means of
evolutionary computation and artificial intelligence techniques. Previous works
on this area are [17, 18]. The logic just presented will allow for similar techniques
to synthesize privacy related protocols.
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