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Dynamic Data-Centric Storage for long-term storage in Wireless
Sensor and Actor Networks

Ángel Cuevas • Manuel Urueña • Gustavo de Veciana •

Rubén Cuevas • Noël Crespi

Abstract Data-Centric Storage (DCS) appears as a novel information storage and delivery mechanism for Wireless Sensor

and Actor Networks in which a rendezvous node (home node) is selected to store and serve all the infor-mation of a

particular application. However, DCS was not designed to provide long-term data availability. In this paper we present a
Dynamic DCS solution to enable a long-term storage system. Dynamic DCS proposes to periodically change home nodes

over the time based on periods of fixed duration called epochs. This makes it possible to perform temporal queries to

previous home nodes in order to retrieve information from the past. We evaluate our proposal using extensive simulations,

and reveal that Dynamic DCS makes sensor events available at least 85 % of the maximum lifetime provided by an opti-

mal (but non practical) solution. Finally, we show that Dynamic DCS could easily adapt its storage performance to the

requirements of an application by just tuning the epoch duration.

Keywords Wireless Sensor and Actor Network (WSAN) � Data-Centric Storage (DCS) � Data availability � Epoch

1 Introduction

Data-Centric Storage (DCS) [16] was introduced as a 
novel distributed information storage and delivery mech-

anism in which a node is selected as a rendezvous point to 
store all events of a particular application. For instance, 
one node in the network stores all temperature events, 
another node stores humidity events, another one fire 
events, etc. Then nodes that produce the information 
related to a particular application (called producer nodes) 
compute the rendezvous node (also called home node) for 
that application, and store its information into it. In turn, a 
node that wants to retrieve information from that appli-

cation (called consumer node) only needs to query the 
associated home node, which replies with the 
application’s stored data. 

      The efficiency of DCS comes from the fact that each 
node is able to locally compute the home node for any 
application, and then, by using the underlying routing 
layer, can store/retrieve application data on/from that 
home node.
     Data-Centric Storage appears as a suitable 
information and delivery mechanism for Wireless Sensor 
and Actor NeWSANs) [2, 13]. In this novel type of 
network a new player, the actor or actuator node, performs 
some action based on the information retrieved from other 
sen-sors in the network. Actor nodes go from very simple 
devices that turn on/off a LED, to very sophisticated 
mobile robots that can obtain samples of a terrain. In 
WSANs all actor nodes are information consumers that 
query sensor nodes in order to retrieve network informa-

tion.  Therefore, DCS allows actors  (consumer nodes)  to 
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carry out their activity by easily retrieving from the home

node all the information that sensors (producer nodes) of a

particular application have generated. It must be noted that

both sensor and actor nodes can act as home node (i.e. store

data event) as long as they belong to the WSANs).

In addition, many applications may require to have long-

term access to past data, i.e. actor nodes may need some

historical information to decide whether they need to

actuate or not. However, the original DCS does not provide

long-term storage for sensor events since it does not dis-

tribute the storage load among network nodes. For

instance, in a WSAN with 100 nodes and 5 applications,

only 5 nodes will use their memory to store data events. In

addition, since all the traffic of an application is stored in a

single node, old events will quickly be replaced by new

ones, reducing sensor events lifetime. This problem is

especially relevant for applications that generate a contin-

uous stream of events (e.g. measuring the temperature

every second).

In this paper we propose a novel Dynamic DCS solution 
to enable a long-term storage system that allows informa-

tion consumers to easily access historical sensor events. 
Towards this end, we utilize a system similar to that pro-

posed in [4] in which several home nodes (or replicas) are 
selected at random and only for a limited amount of time. 
After that time a new set of home nodes is selected for the 
next period. In order to change the home nodes over time 
we divide the time into periods of a fixed duration called 
epochs. During an epoch all application events are stored in 
the selected home nodes. Therefore, a node will only 
overwrite old events after being chosen as a replica mul-

tiple times in several different epochs, thus extending 
sensor event availability. Since consumers are able to know 
all home nodes at any given epoch, an event is considered 
to be available as long as it is accessible in at least one of 
the home nodes that initially stored it.

Considering the proposed solution, on one hand, it

seems clear that changing the home node (or home nodes)

over the time will suppose a significant extension on event

availability. If the home node selected for a particular

application never changes, it quickly saturates its memory

and needs to remove old events in order to store new ones.

This effect is especially significant for high load applica-

tions. This paper demonstrates that our solution extends

events availability more than 30 times as compared to those

static DCS proposals.

On the other hand, it is not clear whether it is better to

use only one home node per application, or to set up sev-

eral replicas (home nodes) in which the events are also

stored. In this paper we analyze and determine what is the

optimal number of replicas that should be used in a

Dynamic DCS system in order to extend sensor events

lifetime. The main conclusion is that to maximize event

availability in the medium and long-term the best solution

is to use a single home node per application.

Finally, we evaluate the performance of Dynamic DCS

long-term storage proposal and compare it with three other

distributed storage mechanisms: (1) A static DCS mecha-

nism with a single home node [16]. (2) Local Storage in

which each sensor locally stores the information it gener-

ates, and (3) an ideal Round Robin Storage in which all

network storage capacity is used before deleting an event.

We validate Dynamic DCS as a long-term storage sys-

tem because (if a reasonable epoch duration is selected) it

presents a median event lifetime longer than 85 % of the

optimal median lifetime offered by the Round Robin

solution. In addition, we demonstrate that our solution is

highly flexible and can be easily adapted to applications’

requirements by just tuning the epoch duration. Then the

performance of our solution ranges between a Round Robin

Storage when we select very short epochs, and a DCS static

behaviour in case of using long epochs.

The remainder of this paper is structured as follows:

Sect. 2 describes related work from the literature. In

Sect. 3 we introduce Dynamic DCS, and in Sect. 4 we

present a model to provide the optimal number of replicas

to maximize sensor events lifetime. Section 5 presents an

evaluation of our proposal, and we conclude the paper in

Sect. 6.

2 Related work

The original Data-Centric Storage proposal [16] already

compared DCS to other storage mechanisms such as Local

Storage and External Storage. In particular, the perfor-

mance of DCS was measured in terms of reliability,

number of messages sent and received per node and nodes

mobility. However, they did not study the time that sensor

events are available in the network, which is the scope of

our paper.

Some works [1, 4, 6, 7, 15] demonstrate that using

several home nodes (replicas) for a particular application

reduces the overall network traffic, which leads to a lower

energy consumption in the network. Some of those studies

[7, 15] propose allocating replica nodes following a grid-

structure, while the authors in [1] propose to use a uniform

replica deployment. Finally, we demonstrate in [4] that

allocating the replicas at random reduces the overall net-

work traffic compared to previous mechanisms, while being

the simplest replication algorithm.

In [4] we also claim that static DCS is an unfair system

in terms of energy consumption distribution, independently

of the number of replicas used. Nodes selected as replicas

and their surrounding neighbours will naturally expend

more energy than other nodes within the network. We
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address this issue and propose to change the replicas over

the time in order to balance the energy consumption among

all network nodes. Our Dynamic DCS proposal thus uti-

lizes both elements: multiple replicas that change over time

to enable long-term storage of sensor events. The results

demonstrate that distributing the energy consumption has a

huge impact on extending the network lifetime.

There are two studies that propose rotating the home 
node in order to balance the storage task. In the first one [9], 
the authors propose to divide the network in a grid. Each 
application is assigned to one of the grid cells, so that one 
node inside of the selected cell will be the home node for 
that application. After a pre-defined time a node in the cell 
with the immediate lower ID is selected as the new home 
node for that application, and so on. The second proposal 
[10] also divides the network in a grid and assigns each 
application to one cell. However, in this case the home node 
rotation for an application occurs within the same cell. Then 
whenever the initial home node reaches a storage threshold, 
another node within the same cell overtakes the home node 
role. Although both proposals focus on alleviating the 
storage congestion problem of using a single static home 
node, they do not discuss any-thing regarding the time that 
sensor events are available under these proposed solutions.

We did not find any previous work in the field of ‘‘pure’’ 
DCS networks that deeply studies event availability. 
However, there exist a research line on erasure coding that 
is similar in spirit and present a broader application field 
further than WSNs and WSANs [3, 5].

3 Dynamic Data-Centric Storage

In this Section we present our dynamic Data-Centric

Storage proposal for the long-term storage of sensor events.

Our proposal is a DCS system in which each application

has one or more home nodes that change over the time.

We first outline the different roles that a node could

perform in an application, then we briefly describe the

original DCS proposal, and finally we introduce the pro-

posed solution.

A node in a DCS network could play one (or more) of

the following roles:

• Producer nodes: Those nodes that generate events for a

particular application. Generally, producers are sensor

nodes. A producer node could generate from very basic

events, such as a temperature sample, until very

complex ones, such as an intruder detection. Further-

more, producer nodes are usually equipped with quite a

few sensors so in many cases they produce events

streams that require a considerable amount of memory.

We must notice that nowadays there is cheap flash

memories whose capacity can reach hundred of Mega-

bytes that can be used in scenarios with applications

requiring to store quite a lot of information. However,

in some other cases we may like to use very cheap

sensor nodes (e.g. some few dollars) that will be

equipped with small memories, which will be able to

deal only with a moderate amount of information.

• Consumer nodes: Those nodes consuming events of a

particular application. An obvious example of a con-

sumer node in a traditional WSN is the base station,

which is the one querying the network in order to

retrieve the events. In this paper we focus on WSANs

where actor nodes act as consumer nodes. Other

possible deployments eliminate the presence of a base

station and the information is retrieved from time to

time by physically accessing the place where the

network is deployed and collecting the information

using some kind of mobile device such as a PDA or

laptop. Thus, it is worth noting that the nature and

number of consumers in a network vary considerably

according to different scenarios.We notice that in some

cases the same physical node can produce events and

send consumption queries at the same time, thus

playing the role of producer (i.e. sensor) and consumer

(i.e. actor) in the network.

• Home nodes or Replicas: These nodes are the ones

selected to store and deliver the information for a

particular application.

3.1 DCS overview

Shenker et al. [16] introduced the concept of Data-Centric 
Storage in which a node, called home node, is selected to 
store and serve all the events of a particular application. 
Therefore, producer nodes store the events they generate in 
the home node while consumer nodes query the home node 
to retrieve that application events. It must be noted that the 
original DCS proposal relies on geographical information 
and is known as Geographical Hash Table (GHT). All the 
nodes within the network know their own geographical 
position and the network dimension. GHT relies on a 
geographical routing service, Greedy Perimeter Stateless 
Routing (GPSR) [8], to forward messages from source 
nodes to destination coordinates. GPSR is a very efficient 
routing protocol in terms of energy consumption for 
WSANs. Furthermore, the authors propose using a single 
home node per application. The location of the home node 
(HN) is computed using a hash function over the applica-

tion’s name, i.e. HN location = hash (0APP0). However, it 
is very unlikely that the output coordinates match any of 
the actual nodes’ location. Then, the closest node to the
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hash output location is the one selected as the home node

for that application.

All producers and consumers of a particular application

obtain the same home node output location because all of

them use the same hash function and know the application

name. The authors claim that by just using GPSR producer

events and consumers queries forwarded towards the hash

output coordinates will ultimately reach the home node.

Therefore, this novel storage and delivery mechanism does

not require that consumers and producers of a particular

application have prior knowledge of each other, since by

just knowing the application name they can participate in

the application data flow.

3.2 Dynamic DCS for long-term storage

Although the original DCS solution is a very suitable

storage mechanism for WSANs, it was not designed to

offer long-term event storage. All the events of a particular

application are stored in a single node, the home node.

Therefore, new events can quickly overwrite old ones since

all application traffic is concentrated into a single node.

Hence, the original DCS does not use the network storage

resources efficiently. For instance in a network of 100

nodes and 10 applications, only 10 nodes (each applica-

tion’s home node) use their memory to store events, and

thus 90 % of the network storage resources are wasted.

In this paper we extend the original DCS proposal by 
using several home nodes (replicas) placed at random that 
change over time following the spirit of our previous 
proposal [4]. Our goal is to efficiently use the storage 
resources of the network to maximize the time window in 
which sensor events are available. In order to change the 
replicas over the time, the time is divided into periods of 
the same duration called epochs. Then, a new set of rep-

licas is selected at the beginning of each epoch. It is 
assumed that all nodes in the network know the epoch 
duration as well as the number of replicas for those 
applications in which they want to participate.

Under the proposed schema, new input parameters, the

number of replicas and an epoch ID, are required by the hash

function to allow consumers and producers to compute who

are/were the replication nodes in a particular epoch. Thus, the

new hash function is: HN location ¼ hashð0APP0 � epochID

�iÞ; 8i 2 ½1; r�, where r represents the number of replicas

deployed in the field for the application 0APP0.
Producer nodes store their events in the closest replica, 

which in turns replicates the information in all the 
remaining replicas using a minimum spanning tree as 
proposed in [4]. Therefore, consumer queries only need to 
access one of those replicas in order to retrieve all the 
events of an application generated in a particular epoch.

When the current epoch ends a new set of replicas is 
chosen. The replicas in the previous epoch do not transfer 
any data to the new ones, unlike [4] where replicas in 
epoch i transfer the stored events to replicas in epoch i ? 1 
and delete them. Then, any node in the network selected as 
a replica stores events until its memory is full. From that 
moment it deletes the oldest information to store new 
sensor events. Hence, it is very likely that a particular event 
stored by a node would be only overwritten after that node 
has been selected as replica several times.

In addition, the defined system allows consumers to

realize temporal queries in order to retrieve historical data.

The fact of using a fixed epoch duration facilitates to com-

pute the set of replicas that stored events of a particular

application at some particular moment in the past. To

accomplish this task, consumers only need to know the

application’s name (e.g. temperature), from which time they

want the information (e.g. 3 h ago), the epoch duration for the

application of interest (e.g. 1 h), and the number of replicas

being used by that application. Then, once the right epoch

has been identified, consumer nodes just need to send unicast

queries to any of the home nodes in that epoch. Therefore,

historical information will be available in the network until it

is overwritten in all home nodes of that epoch.

4 Sensor events lifetime analysis

In this section we analyze different distributed storage

mechanism in terms of sensor event availability. We first

present a very simple storage mechanism such as Local

Storage. Next, we describe an ideal Round Robin Storage

mechanism. Finally, we show how our Dynamic DCS

proposal can be utilized for long-term storage.

4.1 Local storage

This is the simplest storage mechanism in which each node

locally stores the events it generates. The energy con-

sumption to store those events is negligible since the radio

transceiver is not used. However, there is no way to know

where the information of a particular application in a

particular time-window is stored. Therefore, in order to

retrieve historical information, consumer nodes need to

flood the network. This converts Local Storage in a highly

inefficient storage system in terms of energy in most cases

when compared to Dynamic DCS. Our solution avoids the

need for flooding since a consumer node can easily deter-

mine the home nodes storing the desired information.

However, it must be noted that in those cases where pro-

ducers event rate is considerably larger than consumers

query rate, Local Storage appears as an efficient solution in

terms of energy.
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In order to estimate the events lifetime, we assume a

network where N nodes with a storage capacity of s events

are deployed in a network with k applications

(APP1;APP2; . . .;APPk). In addition, we consider all

events to be of the same size. Then, the probability that a

node i generates an event of an application j in each time

unit is pei;j
; i 2 ½1;N�; j 2 ½1; k� Therefore, a node i gener-

ates
Pk

j¼1 pei;j
events per time unit, and the event lifetime is

the time required to saturate its memory. Then for a par-

ticular node i the Local Storage event lifetime lt LSnodei
is:

lt LSnodei
¼ s
Pk

j¼1 pei;j

time units

In Local Storage the event lifetime very much depends

on which node it is generated. This is, events generated by

very active nodes will be available short time, whereas

nodes with a low event rate will have their events available

long periods. Therefore, Local Storage is an unfair system

from the events lifetime point of view in heterogeneous

scenarios in which different nodes contribute different

loads to network applications. This unfairness basically

means that even in the case where the network is plenty of

storage resources, very active nodes will be overwriting old

data quickly. However, in a homogeneous scenario in

which all nodes have the same probability of generating

events for each application, the system becomes fair, and

all events experience a similar lifetime.

4.2 Round robin storage

Round Robin node selection appears as an optimal storage

solution since it efficiently uses all storage capacity of the

network. Then, in this mechanism a node is initially

selected as storage point for all network applications. That

node receives events until its memory is full. At that

moment, a new node is selected to perform the storage task,

and so on, until all nodes in the network have been

selected, and thus all network storage capacity has been

used. At this point, the initial node, which contains the

oldest data, is again selected and it overwrites the oldest

events to store the new ones.

Such Round Robin Storage requires a global synchro-

nization of network nodes. This can be achieved either with

a centralized solution in which a base station decides and

notifies to the rest of the network who is the storage node at

any moment, or with some sophisticated and complex

distributed algorithm that allows synchronizing all nodes in

the network to homogeneously select the current storage

node. It must be noted that DCS neither requires a central

node nor complex distributed algorithms to select home

nodes. Although Round Robin Storage presents some

issues to be implemented in practice, it is still a very

interesting approach to be used as a benchmark to test the

performance of our solution.

In order to model events lifetime in a Round Robin

Storage system, we again assume a network in which

N nodes are equipped with a memory able to store s events.

In addition, we consider k applications running on the

network, all of them generating events of the same size.

Then, if pei;j
, i [ [1, N], j [ [1, k] is the probability that a

node i generates an event of an application j per time unit,

the expected lifetime (lt RR) is:

lt RR ¼ N � s
PN

i¼1

PK
j¼1 pei;j

time units

Then, in the Round Robin storage analysis the data lifetime

depends on the traffic generated by all applications per time

unit. In addition, events from different applications will

have a similar lifetime independently of the load generated

by each of them.

4.3 Dynamic DCS

Once we have analyzed two alternative storage models,

now we present a model to compute data lifetime when

employing our Dynamic DCS proposal. In addition, using

the same model we will be able to answer one of the key

issues of this paper: what is the optimal number of replicas

that maximizes event availability? Finally, we validate the

model via simulation and discuss the results.

We consider a slotted discrete time (epoch) system

model where N nodes are available to store data in the

system. Each epoch r (home nodes) of the N nodes are

selected at random. We assume a uniform network

deployment in which all nodes have the same probability of

being selected as replicas. The selected r nodes are used to

store the data on that epoch. The r nodes are assumed to be

distinct, and store on average e events during each epoch.

Each node is assumed to be able to store s events. When a

node’s memory is full, then the oldest event is deleted, and

the new one is stored in its place.

The objective is to maximize the availability of events

t epochs into the future, by selecting the optimal r. If r is

too large then data will be initially available at many nodes

i.e., high redundancy, but the events will be quickly

overwritten over time. If r = 1 then data is stored in a

single node, so if it gets overwritten at that node prior to

t epochs it will no longer be available.

Lets us consider the performance for our mechanism.

Suppose data is stored at epoch 0 in r nodes and each

node’s memory is full. So the new data is the newest piece

of information in each of these r nodes. To compute the

likelihood that data will be available t epochs into the

future at one of these original nodes, we need to check

whether the nodes are selected S = s/e times in the
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t epochs in the future. Let Ai(0,t] denote the number of

times that the ith node is selected after epoch 0 before

epoch t. Clearly Aið0; t� �Binomialð r
N
; tÞ. In order for the

data to be available at time t it must be that the 1; . . .r

original nodes were not all chosen more than S times each

to store data, i.e., the probability that an event is not

available after t epochs is given by

PðAið0; t�[ S; 8i ¼ 1; . . .rÞ

i.e., the data must no longer be available at any of the nodes

where it was originally stored. Next, assuming that

N C r one can roughly consider that Ai(0,t] are

independent which gives:

PðAið0; t�[ S; 8i ¼ 1; . . .rÞ ¼
Yr

i¼1

PðAið0; t�[ SÞ

And it can be computed as follows:

PðAið0; t�[ S; 8i ¼ 1; . . .rÞ ¼ 1� PðAið0; t� � SÞð Þr

¼ 1�
XS

i¼1

PðAð0; t� ¼ iÞ
!r

¼ 1�
XS

i¼1

t

i

� �
r

N

� �i

1� r

N

� �t i

 !r

Then, the optimal value of r that extends the data

lifetime, r*, will be the one minimizing previous expression

for P(Ai(0,t] [ S).

Finally, we can use previous model to compute the

events lifetime for the Dynamic DCS solution:

lt DDCS ¼
X1

i¼1

iPrðAð0; i�[ SÞepochs

The previous formula provides event availability in

number of epochs. Therefore, we only need to multiply it

by the epoch duration in order to obtain events lifetime in

time units.

4.3.1 Model validation and discussion

We validate the model via simulation. We consider a

uniform deployment (e.g. grid) in which all nodes have the

same probability of being chosen as home node.

We evaluate three different scenarios in terms of number

of nodes: small size (20 nodes), medium size (100 nodes)

and large size (500 nodes). In addition for each scenario we

consider three different storage capacities: (1) small mem-

ory case in which a node has only capacity to store the

events of one epoch, that means S = 1; (2) medium mem-

ory in which a node can store information of three different

epochs, S = 3; and, (3) high storage capacity in which a

node can store information of five epochs, thus S = 5.

We compute the event overwrite probability at different

epochs for a number of replicas varying from 1 to 5. This

let us compare whether the previous model correctly cap-

tures the event overwrite probability. Furthermore, by

comparing the results for different number of replicas we

are able to conclude what is the number of replicas that

minimizes the event overwrite probability for a particular

number of epochs.

Figures 1, 2 and 3 represent the results for the small (20 
nodes), medium (100 nodes) and large (500 nodes) network 
size respectively. For each of them subfigure (a), (b) and (c) 
show the low (S = 1), medium (S = 3) and high (S = 5) 
memory capacity respectively.

First of all, the simulations results demonstrate that the

proposed model accurately captures the event overwrite

probability. In all the cases the simulation and model lines

collapse together, so they cannot be differentiated in the

figures.
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Fig. 1 Event overwrite probability for a small size network (N 20 nodes, r 1 5 replicas, t 1 100 epochs)
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To answer the question referring to the optimal number

of replicas to maximize sensor event lifetime we can also

use the model results. By looking at the graphs, the main

conclusion is that in the long-term the best solution is

always using 1 replica.

Furthermore, we advise to select one replica in all 
medium and high memory cases. Although under these 
conditions using more than one replica provides a lower 
event overwrite probability in the short term, the advantage 
is negligible in practice compared to the results obtained 
for a single replica. For instance, in the medium-size 
medium-memory scenario (Fig. 2(b)) from 1 to 80 epochs 
using a single replica is not the optimal solution. However, 
if we look at 40 epochs the optimal solution (4 replicas) 
reports an event overwrite probability of 0.002, whereas 
selecting only 1 replica 0.008. Therefore, that difference 
has a negligible impact in practice since both probabilities 
are very low.

The only scenarios in which using more than 1 replica 
would be worthwhile are those cases where: (1) the nodes’ 
memory only has capacity to store information of a single 
epoch, (2) the application requires short-term storage (5 
epochs for low-memory, 20 epochs for medium-memory, 
250 epochs for high-memory). For instance, in the 100 
nodes scenario (Fig. 2(a)), after 20 epochs the data loss 
probability in case of using 3 replicas is below 0.1, whereas 
the data loss probability is almost 0.2 when only a single 
replica is in place. Lets us consider a practical case in 
which the network information is collected once a day (24 
h), the epoch duration is 1 h and the nodes memory only 
can store th information of one epoch. Then, in practice 
using a single replica means that on average we roughly 
loose 5 h of information every day, whereas this value is 
reduced to just 2 and a half hours when deploying 3 rep-

licas, which is the optimal value provided by the model. 
We are aware that for some real applications losing 2.5 out
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Fig. 2 Event overwrite probability for a medium size network (N 100 nodes, r 1 5 replicas, t 1 200 epochs)
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Fig. 3 Event overwrite probability for a large size network (N 500 nodes, r 1 5 replicas, t 1 500 epochs)
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of 24 h is not acceptable, and in those cases we would need

to increase the memory of the nodes until S [ 3 to ensure

they are able to collect 24 h of data. Therefore, it is

importance to notice that previous example has been used

just to illustrate a case where r = 1 is not the best option

and what would be performance improvement in case of

using the optimal number of replicas provided by our

model, i.e. r = 3.

It is worth noting that the low-memory scenario refers to

those cases in which a node can just store information of a

single epoch. This could happen because, as suggested by

the employed taxonomy, the nodes may be equipped with

low storage capacity. However, in cases where an appli-

cation generates a huge amount of events, even if the nodes

have a high memory capacity, it could only store the

information of one epoch, and thus the premises that rule

the low-memory scenario are also applicable.

Finally, it must be highlighted that the defined model

accurately captures the event loss probability in case the

probability of selecting a node as replica follows a uniform

distribution. However, this is not the case in many sce-

narios. For instance, in a network based on geographical

information in which the nodes are randomly deployed, the

probability of being selected depends on the area of

responsibility of each node and it is no longer uniform.

Therefore, we have also evaluated via simulation the

number of replicas that minimizes the event loss proba-

bility, and thus maximizes the events lifetime, in non-

uniform scenarios. Although the event overwrite proba-

bility is different compared to the uniform scenario, the

main remarks are still the same. (1) Using a single replica

is the best option in the long-term, independently of the

scenario size and nodes’ storage capacity. (2) For medium

and high memory scenarios, even if in the short-term the

event overwrite probability is lower when using more than

one replica, the difference compared to using a single

replica is negligible. (3) Exclusively in those scenarios

where the sensors are equipped with low storage capacity

(S = 1) makes sense to deploy more than one replica to

maximize the events lifetime.

In a nutshell, we should use more than one replica

exclusively for those scenarios where network nodes can

only store events of one epoch, and when, in addition, the

application only requires short-term storage.

5 Performance evaluation

In this section we evaluate the performance of the proposed

solution by means of simulation and compare it with Local

Storage and Round Robin Storage solutions. We notice that

the goal of this section is to evaluate the network storage

performance in terms of event lifetime, thus we use

network nodes that generate events (i.e. sensors) and do not

focus on whether they also generate queries or not (i.e. they

are also actors), or on adding pure actor node that generate

queries in the network, since this is irrelevant to evaluate

event lifetime. We assume a uniform DCS scenario in

which all nodes have the same probability of being selected

as a replica. For each experiment we obtain the lifetime of

30,000 events. In order to do that we generate 1,000,000

events to be sure we overwrite the 30,000 evaluated events.

We must notice that our goal is to evaluate the perfor-

mance of the proposed solution in terms of data lifetime.

Therefore, we are aware that sensor/actor nodes can present

failures that can make them unreachable during short

periods of time (e.g. low signal strength) or for long peri-

ods (e.g. battery depletion), but this is an inherent char-

acteristic of sensor nodes for whatever solution, and thus it

affects all the proposals we are comparing in this paper.

Hence, in order to avoid distraction from our main goal of

evaluating the data storage duration, we have avoided

introducing nodes failures in our simulations.

5.1 Homogeneous scenario

We define a network with N = 100 nodes, in which each

node is assigned a probability of generating an event per

time unit and application. We simulate three applications

operating in the network, named as APP1, APP2 and

APP3. All nodes have a probability 0.01, 0.02 and 0.03 of

generating an event for APP1, APP2 and APP3 per time

unit, respectively. This means an overall traffic load of 6

events per time unit. In addition, sensors are equipped with

a memory that can store s = 300 events. In order to eval-

uate the performance of Dynamic DCS we define an epoch

duration of 50 time units for the three applications. In

addition, we obtain the results for 1, 2 and 3 replicas.

Figure 4 presents the CDF of the events lifetime for

Round Robin Storage, Local Storage, static DCS with a

single replica, and Dynamic DCS for 1, 2 and 3 replicas.

The first conclusion is that, as expected, using a static DCS

proposal leads to very poor results. The median lifetime for

the events is only 130 time units, 34 times lower than the

median for the Dynamic DCS with 1 replica (4,370 time

units). Therefore, static DCS solutions cannot be used as

long-term storage systems

The results also validate the conclusions obtained in

Sect. 4 since using a single replica extends the data lifetime

when compared to those Dynamic DCS cases in which

more replicas are deployed.

In addition, in a homogeneous scenario like the one 
employed in this experiment, we can apply the formulas 
obtained in Sect. 4 for event lifetime in Round Robin and 
Local Storage. Those formulas provide an event lifetime of 
5,000 time units for both mechanisms. Looking at Fig. 4 it

8



can be appreciated that all events lifetime are very close to
5,000. However, it must be noted that Local Storage pre-

sents a higher variance due to te random generation of

events. The sudden rise observed in the Round Robin

Storage approach is due to the fact that it uses all network

storage capacity before overwriting old events. Therefore,

since the network generates on average 6 event per time

unit and a node memory can store up to 300 events, each

sensor will serve as storage node during 50 s on average.

The network size is 100 nodes, thus each event will be

overwritten on average after 5,000 time units (i.e. 50 time

units 9 100 network nodes). Therefore, all events will

experience a lifetime around 5,000 time units, and this is

why Fig. 4 shows such a sudden rise for Round Robin

solution.

When Dynamic DCS is in place sensor events last in

median 4,370 time units. In case the time units refers to

seconds (6 events per second are generated in the network)

the median event lifetime would be 73 min. In case, the

time unit is mapped to 1 h (6 events per hour) then the

median lifetime of the events grows up to 182 days.

Finally, if we measure the time units in days (6 events per

day), sensor events would typically be accessible almost

12 years. Obviously, the event lifetime very much depends

on the load of the network. The higher the network load,

the shorter the event availability. However, we can provide

an objective result to measure the goodness of the proposed

solution by comparing it with Round Robin Storage. The

described Round Robin Storage is an optimal solution that

maximizes the median event lifetime because it efficiently

uses all network storage before overwriting an event.

Therefore, with the epoch duration selected, our solution

offers a median event lifetime that corresponds to 87 % of

the maximum median lifetime provided by the Round

Robin storage simulation (5,012 time units). Therefore, we

claim that Dynamic DCS storage system is quite close to

the benchmark in median.

Furthermore, it must be highlighted that the Round

Robin Storage solution is optimal when the goal is to

maximize the median event lifetime. However, if a par-

ticular application aims to keep some portion of the

application data available as long as possible, then the best

option is to use Dynamic DCS. None of the 30,000 events

has a lifetime longer than 5062 time units under the Round

Robin Storage mechanism, whereas more than 41 % of

events last longer than that value when Dynamic DCS is in

place. In addition, more than 30 % of events are available

longer than 6,000 time units, and even 8 % of events still

duplicate the Round Robin expected lifetime (5,000 time

units).

Therefore, depending on the applications requirements

Dynamic DCS could be presented as the best distributed

storage mechanism in terms of maximizing the data

availability in the sensornet, even improving the ideal

Round Robin Storage.

5.2 Heterogeneous scenario

In this experiment, we evaluate a scenario with 100 nodes

that are assigned different probabilities of generating

events. We again use three applications but now we define

three different nodes profiles. Out of the 100 nodes, 33

have a probability 0.01 of generating one event for each

application per time unit, 34 nodes have a probability 0.02,

and the last 33 nodes a probability 0.03. Under these

conditions the traffic load is again 6 events per time unit.

The epoch duration for all applications is again 50 time

units.

Figure 5 represents the events lifetime CDF. We can

appreciate that Dynamic DCS and Round Robin Storage

are not affected by nodes load heterogeneity. The ideal

Round Robin Storage, as it was previously stated, uses all

the network storage capacity before deleting an event,

while Dynamic DCS approximates that behaviour and also

distributes the storage load among network nodes. There-

fore, this experiment concludes that Dynamic DCS (and

also Round Robin Storage) is a fair storage mechanism that

does not prioritises any network application, but treats all

events in the same way.

In addition, we again verify in a different scenario that

Dynamic DCS is close to the optimum solution in median.

In this particular experiment the median events lifetime of

Dynamic DCS (4355 time units) is again an 87 % of the

Round Robin median (5020 time units).

Finally, Local Storage results demonstrate that it

depends greatly on the traffic load generated by each par-

ticular node. Then, the graph shows three clear steps
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representing the lifetime of events stored in nodes with

different traffic profiles, demonstrating that events lifetime

for Local Storage is no longer homogeneous across net-

work nodes.

5.3 Real WSN deployment scenario

In this subsection we rely on parameters extracted from

real WSNs deployments to evaluate the performance of our

solution as compared to Round Robin and Local Storage.

Our evaluation is based on the scenario presented in [14] 
where a WSN has been deployed to measure climate 
conditions inside The Mogao Grottoes. This WSN is 
formed by 241 nodes that monitor three climate parame-

ters: temperature, relative humidity and CO2 density. The 
event generation rate is 1 event per minute for each 
parameter. Unfortunately, this paper does not provide the 
memory size for the sensors. In order to obtain sensors’ 
memory size we use the data reported in [12] that refers to 
a real WSN deployment to monitor climate conditions for 
viticulture purposes. This paper uses sensors that include a 
64 kb non-volatile memory for data storage, which is the 
value we use in our experiment. Furthermore, none of the 
two previous works provides information regarding the 
memory size use by each event. For that, we use the 
information reported in a third paper [11], which refers to a 
real WSN deployment for habitat monitoring, that reports a 
25 bytes data payload (i.e. event size) in the generated 
packets. Hence, we consider that each events consumes 25 
bytes of storage.

Figure 6 shows the CDF event lifetime for Local Stor-

age, Round Robin, standard DCS, and Dynamic DCS with 
r = 1, r = 2 and r = 3. In the case of Dynamic DCS we 
establish an epoch duration of 30 s for all event types. First

of all we notice that this scenario corresponds to an

homogeneous one since all nodes generate events at the

same rate for each application. Therefore, results in the

graph are similar to those obtained in the homogeneous

scenario, and hence the explanation we provided for

homogeneous scenarios is also valid here. Using the

equation that provides event lifetime in the case of Round

Robin, we compute a median event lifetime of 6,400 s,

which is very close to the median obtained from the sim-

ulation, 6,372 s (106.2 min or 1 h and 46 min). As it

happened in the homogeneous case, Local Sotrage shows a

very similar behaviour in all the nodes, having a very close

median (6,354 s) to the benchmark established by Round

Robin. Again, standard DCS appears as a bad solution to

provide long-term storage. Finally, for the case of Dynamic

DCS, we obtain 5,628 s as median event life time, which is

88 % of the Round Robin median result. In a nutshell, we

extract the same conclusions discussed in the homogeneous

scenario, thus we refer the reader to them in order to avoid

redundancy.

5.4 Epoch selection analysis

It has been demonstrated that using the proposed Dynamic

DCS can be utilized as a long-term storage system. How-

ever, there is a key parameter that has not yet been studied,

which can tune the proposed Dynamic DCS system

towards the Round Robin Storage mechanism or the poor

static DCS results. That parameter is the epoch duration.

On one hand, if we use short epochs we expect to have a

deterministic behaviour close to Round Robin Storage.

Short epochs mean frequent changes, and thus a balanced

utilization of storage resources of the network because a
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node stores few events and quickly passes the home node

responsibility to another node. On the other hand, if we use

very long epochs we take the risk of saturating the nodes

memory before the end of the epoch. Therefore, events

happening in an epoch i would overwrite events generated

in the same epoch. Thus, the system performance would be

approximating the performance offered by a static DCS

solution, which has been demonstrated to be quite useless

in case the applications require long-term event

availability.

We evaluate the Dynamic DCS solution with a single 
replica for the following epoch durations measured in time 
units: 1, 5, 10, 50, 100, 500 and 1,000. Figure 7 shows the 
event lifetime CDF for a network with the same parameters 
as those described in the homogeneous experiment. In 
addition, Table 1 shows the average median event lifetime 
taken from 50 different simulation rounds for all epoch 
durations. As expected, the shorter the epoch the closer is 
the result to the Round Robin Solution. Then, for epochs of 
1, 5 and 10 time units the average median event lifetime is 
4991, 4938 and 4861 time units respectively. All of them 
are over a 97 % of the ideal Round Robin median (5,000 
time units). However, when we select longer epochs, i.e. 
500 or 1,000 time units, the median is reduced to 141 and 
118 time units respectively. If we look at the graph, for 
those long epochs most events (70 and 85 % respectively) 
experience a short lifetime below 350 time units. However, 
those few events that are lucky of not being overwritten 
within a single epoch experience a very long availability. 
The reason is that epochs are very long and thus the nodes 
storing those ’’lucky’’ events will only be selected again as 
home nodes after a long time. Finally, intermediate epoch 
durations (e.g. 50 time units) in which the nodes are not 
saturated in a single epoch shows median lifetimes lower

than those of the shorter epochs, but, as stated in the

homogeneous scenario, they still show an important num-

ber of events reaching a long lifetime that cannot be

achieved in case of selecting short epoch durations.

Therefore, short or medium epoch durations should be

selected depending on the application requirements. It is

clear that using long epochs is always a wrong decision

because it would bring the network closer to the imbal-

anced and weak performance experienced by Static DCS

proposals. In addition, Dynamic DCS could approximate

the Round Robin Storage scheme in those cases where the

application requires to extend the median event lifetime.

This demonstrates that our Dynamic DCS proposal is a

very flexible system that can be adapted to application

requirements in terms of data availability by just tuning the

epoch duration.

6 Conclusions and future works

We demonstrated in a previous work [4] that changing the 
home nodes over the time is essential to extend the network 
lifetime in DCS systems. This paper further enhances that 
benefit demonstrating that such dynamism also enables a 
long-term storage system. Therefore, this paper completes 
our previous investigations and now we can clearly state 
that it does not make sense to propose static DCS solutions, 
but rather it is necessary to share the load associated with 
being a home node among all network nodes. In this paper, 
we have demonstrated that a Dynamic DCS system pro-

vides great performance results not only in terms of energy 
consumption, but also in terms of long-term sensor events 
storage.

This research has assumed that nodes are homoge-

neously distributed across the network. However, in many

real WSNs and WSANs deployment this is not the case,

and this might directly impact the performance of Dynamic

DCS. Therefore, as next step, we plan to investigate the

level of such impact and, in case it is necessary, to adapt

our solution so that it can be also used as a long-term

storage system in non-uniform DCS scenarios.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor events lifetime (time units)

C
D

F

epoch−1
epoch−5
epoch−10
epoch−50
epoch−100
epoch−500
epoch 1000

Fig. 7 Epoch duration impact on event lifetime for Dynamic DCS

Table 1 Average median event lifetime for different epoch duration

in Dynamic DCS (D DCS), and its comparison to the Round Robin

(RR) bench mark 5,000 time units (t.u.)

Epoch

duration (t.u.)

1 5 10 50 100 500 1,000

Avg. median

D DCS

lifetime(t.u.)

4,991 4,938 4,861 4,378 3,726 141 118

\% of RR

median

(5,000 t.u.)

99.82 98.76 97.22 87.56 74.52 2.82 2.36
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4. Cuevas, Á., Uruena, M., & de Veciana, G. (2010). Dynamic

random replication for data centric storage. In Proceedings of the

13th ACM international conference on modeling, analysis, and

simulation of wireless and mobile systems, MSWIM ’10 (pp.

393 402). New York, NY, USA: ACM.

5. Dimakis, A. G., Prabhakaran, V., Ramchandran, K. (2006).

Decentralized erasure codes for distributed networked storage. In

IEEE/ACM transactions on networking 14(1), 2809 2816.

6. Ghose, A., Grossklags, J., & Chuang, J. (2003). Resilient data

centric storage in wireless ad hoc sensor networks. In Proceed

ings of the 4th international conference on mobile data man

agement, MDM ’03 (pp. 45 62) London, UK: Springer.

7. Joung, Y. J., & Huang, S. H. (2008). Tug of war: An adaptive

and cost optimal data storage and query mechanism in wireless

sensor networks. In Proceedings of the 4th IEEE international

conference on distributed computing in sensor systems, DCOSS

’08 (pp. 237 251). Berlin, Heidelberg: Springer.

8. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter

stateless routing for wireless networks. In Proceedings of the

sixth annual international conference on Mobile computing and

networking, Mobicom ’00 (pp. 243 254). New York, NY, USA:

ACM.

9. Le, T. N., Yu, W., Bai, X., & Xuan, D. (2006). A dynamic

geographic hash table for data centric storage in sensor networks.

In IEEE wireless communications and networking conference,

WCNC ’06 (pp. 2168 2174). New York, NY, USA: IEEE.

10. Liao, W. H., Shih, K. P., & Wu, W. C. (2010). A grid based

dynamic load balancing approach for data centric storage in

wireless sensor networks. Computer and Electrical Engineering

36(1), 19 30.

11. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., & Ander

son, J. (2002). Wireless sensor networks for habitat monitoring. In

Proceedings of the 1st ACM international workshop on wireless

sensor networks and applications, WSNA ’02 (pp. 78 87). New

York, NY, USA: ACM.

12. Matese, A., Di Gennaro, S. F., Zaldei, A., Genesio, L., & Vaccari,

F. P. (2009). A wireless sensor network for precision viticulture:

The NAV system. Computers and Electronicsin Agriculture,

69(1), 51 58.

13. Mazzini, G., Conti, A., Verdone, R., & Dardari, D. (2008).

Wireless sensor and actuator networks. Amsterdam: Elsevier.

14. Ming, X., Yabo, D., Dongming, L., Ping, X., & Gang, L. (2008).

A wireless sensor system for long term microclimate monitoring

in wildland cultural heritage sites. In IEEE international Sym

posium on parallel and distributed processing with applications,

ISPA ’08 (pp. 207 214). IEEE.

15. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R.,

et al. (2002). GHT: A geographic hash table for data centric

storage. In Proceedings of the 1st ACM international workshop

on wireless sensor networks and applications, WSNA ’02 (pp.

78 87). New York, NY, USA: ACM.

16. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., & Estrin, D.

(2003). Data centric storage in sensornets. SIGCOMM Computer

Communication Review 33(1), 137 142.

Author Biographies
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